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Abstract. Katz and Sarnak conjectured a correspondence between the n-level density statistics
of zeros from families of L-functions with eigenvalues from random matrix ensembles, and in
many cases the sums of smooth test functions, whose Fourier transforms are finitely supported
over scaled zeros in a family, converge to an integral of the test function against a density Wn,G
depending on the symmetry G of the family (unitary, symplectic or orthogonal). This integral
bounds the average order of vanishing at the central point of the corresponding family of L-
functions.

We can obtain better estimates on this vanishing in two ways. The first is to do more number
theory, and prove results for larger n and greater support; the second is to do functional analysis
and obtain better test functions to minimize the resulting integrals. We pursue the latter here
when n = 2, minimizing

1
Φ(0, 0)

∫
R2

W2,G(x, y)Φ(x, y)dxdy

over test functions Φ : R2 → [0, ∞) with compactly supported Fourier transform. We study a
restricted version of this optimization problem, imposing that our test functions take the form
φ(x)ψ(y) for some fixed admissible ψ(y) and supp φ̂ ⊆ [−1, 1]. Extending results from the 1-level
case, namely the functional analytic arguments of Iwaniec, Luo and Sarnak and the differential
equations method introduced by Freeman and Miller, we explicitly solve for the optimal φ for
appropriately chosen fixed test function ψ. We conclude by discussing further improvements on
estimates by the method of iteration.
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1. Introduction

1.1. Background. The location and distribution of zeros of L-functions play a central role
in numerous number theory problems. In many situations, the more one knows about their
spacing, the stronger results one has. For example, the fact that the Riemann zeta function and
Dirichlet L-functions do not vanish on the line <(s) = 1 yields the Prime Number Theorem,
and that for a given modulus q each arithmetic progression that can contain infinitely many
primes does so, and to first order they all have the same number of primes up to x. If the
Generalized Riemann Hypothesis is true, we can improve the error terms in these counts to
of size x1/2+ε for any ε (with a little work we can replace xε with a power of log x); see for
example [Da, IK].

Next, if the zeros of Dirichlet L-functions are linearly independent over Q (the Grand Sim-
plicity Hypothesis), then Rubinstein and Sarnak [RubSa] proved Chebyshev’s Bias, which
quantifies how often up to x each ordering of the possible residue classes modulo q occurs.
Assuming GRH, the non-trivial zeros of L-functions lie on the line Re(s) = 1/2. There are
many models that predict their behavior, especially Random Matrix Theory which states that
families of L-functions as the conductors tend to infinity are modeled by ensembles of matrices
(unitary, orthogonal and symplectic) with size tending to infinity; see in particular [BFMT-B,
BBLM, BK, Con, CFKRS, DHKMS1, DHKMS2, FM, Ha, KS1, KS2, KeSn1, KeSn2, KeSn3]. Some
of the most studied statistics are the n-level correlations, n-level density and spacings between
zeros, and excellent agreement has been seen: [AAILMZ, AM, CS, DM1, DM2, FiM, FI, Gal,
Gao, GK, GJMMNPP, Gü, Hej, HM, HR1, HR2, ILS, LM, Mil1, Mil2, Mil3, Mil4, MilMo, MilPe,
Mon, Od1, Od1, OS1, OS2, RR, Ro, Rub, RS, ShTe, Ya, Yo1, Yo2] (one could also look at mo-
ments and central values, and the models’ predictions fair well here; for other approaches see
[CFZ1, CFZ2, GHK]). There are many reasons for interest in what happens on the critical
line, ranging from the existence of many small gaps (relative to the average spacing) trans-
lates to bounds for the class number problem [CI] to the famous Birch and Swinnerton-Dyer
Conjecture equating the order of vanishing of elliptic curve L-functions to the order of the
Mordell-Weil group of rational points [BSD1, BSD2, Gol].

The last is the starting point for our investigations: given a family of L-functions ordered by
conductor, what fraction with conductor at most a fixed size (tending to infinity) vanish to a
given order at the central point? As remarked, for elliptic curves this is conjecturally related
to the group of rational solutions. In this paper we use the n-level density of Katz-Sarnak
[KS1, KS2], applied to an even, non-negative Schwartz test function to obtain upper bounds.
This approach was pioneered in [ILS] (see in particular Appendix A), and extended further
for the 1-level density in by Freeman [Fre, FM].

There are many advantages to studying the n-level density in general, and the 2-level (which
is our focus) in particular; we define these in the next subsection, and just state the applica-
tions. First, as Miller showed in his thesis [Mil1], while the three orthogonal groups have in-
distinguishable support for test functions whose Fourier transforms are supported in (−1, 1),
the 2-level densities are distinct from each other (and the symplectic and unitary cases) for
arbitrarily small support. Next, the n-level density yields results of the following form (see
[HM]): there are constants cn such that the probability of at least r zeros at the central point is
at most cn/rn; equivalently, the probability of fewer than r zeros at the central point is at least
1− cn/rn. Unfortunately as n increases in practice the support where we can prove results
decreases, and thus the constants cn grow with n and the results are initially worse for small r,
though eventually the greater decay kicks in and better results than those from the 1-level are
obtained.
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Below we provide details on just how results on the distribution of zeros near the central
point (the n-level density) translate to bounds on the order of vanishing. The focus of our
work is to provide the best possible upper bounds. This leads to a functional analysis problem,
involving the optimization of integrals involving the even Schwartz test function.

1.2. n-level density. Let F be a family of cuspidal newforms, and to each f ∈ F we associate
the L-function

L(s, f ) =
∞

∑
n=1

an, f

ns .

We assume that the Riemann hypothesis holds for each L(s, f ) and for all Dirichlet L-functions,
that is, we can enumerate the non-trivial zeros of L(s, f ) by

ρ
(j)
f =

1
2
+ iγ(j)

f

for γ
(j)
f ∈ R increasingly ordered and centered about zero. By arguments due to Riemann,

the number of zeros with |γ(j)
f | bounded by an absolute large constant is of order log c f for

some constant c f > 1 known as the analytic conductor. It is of interest to study the statistics
of these ”low-lying” zeros of L(s, f ), and to this end Katz and Sarnak [KS1] introduced the
n-level density,

Dn( f ; Φ) := ∑
j1,...,jn
ji 6=±jk

Φ
( log c f

2π
γ
(j1)
f , . . . ,

log c f

2π
γ
(jn)
f

)
(1.1)

for test functions Φ : Rn → R, which we take to be non-negative even Schwartz class functions
with compactly supported Fourier transform and Φ(0) > 0. In practice the sum (1.1) is im-
possible to evaluate asymptotically, since by choice of Φ it essentially captures only a bounded
number of zeros. Instead we study averages over finite subfamilies F (Q) := { f ∈ F : c f ≤ Q},
namely

E(Dn( f ; Φ), Q) :=
1

#F (Q) ∑
f∈F (Q)

D( f ; Φ). (1.2)

If F is a complete family of cuspidal newforms in a spectral sense, there exists a distribution
Wn,F such that

lim
Q→∞

E(Dn( f ; Φ), Q) =
1

Φ(0, . . . , 0)

∫
Rn

Φ(x1, . . . , xn)Wn,F (x1, . . . , xn)dx1 · · · dxn. (1.3)

Katz and Sarnak [KS1, KS2] conjectured that Wn,F depends on a corresponding symmetry
group G(F ), the scaling limit of one of the classical compact groups, so for the remainder we
shall write Wn,G in place of Wn,F .

Define

K(y) :=
sin(πy)

πy
, Kε(x, y) := K(x− y) + εK(x + y)
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for ε = 0,±1. The corresponding n-level densities have the following distinct closed form
determinant expansions [HM, KS1],

Wn,SO(even)(x) = det
(
K1(xi, xj)

)
i,j≤n , (1.4)

Wn,SO(odd)(x) = det
(
K−1(xi, xj)

)
i,j,≤n +

n

∑
k=1

δ(xk)det
(
K−1(xi, xj)

)
i,j, 6=k , (1.5)

Wn,O(x) =
1
2

Wn,SO(even)(x) +
1
2

Wn,SO(odd)(x), (1.6)

Wn,U(x) = det
(
K0(xi, xj)

)
i,j,≤n , (1.7)

Wn,Sp(x) = det
(
K−1(xi, xj)

)
i,j,≤n . (1.8)

1.3. Main result. It is discussed in [FM] and [ILS] that the 1-level density gives estimates on
the average order of vanishing of L-functions at the central point in a family. Here we deal with
the 2-level densities, which has the advantage of giving better estimates on higher vanishing
at the central point. Let Pr(m) := Pr( f ∈ F : r f = m), where r f is the order of the zero of

L(s, f ) at s = 1/2. Considering (1.2) for n = 2 and taking only terms with γ
(j1)
f = γ

(j2)
f = 0

gives the bound

4
∞

∑
m=1

(
m(m− 1)Pr(2m) + m2 Pr(2m + 1)

)
≤ 1

Φ(0, 0)

∫
R2

Φ(x, y)W2,G(x, y)dxdy. (1.9)

It is therefore of interest to choose Φ optimally to obtain the best bound on the left-hand side
of (1.9). Rather than minimizing over test functions of two variables, we instead fix a single
variable test function ψ and, imposing the restriction Φ(x, y) = φ(x)ψ(y), minimize over single
variable test functions φ with supp φ̂ ⊆ [−1, 1]. For our fixed ψ, we consider

ψ(y) =

(
sin(πy)

πy

)2

. (1.10)

It follows from Corollary A.2 in Appendix A of [ILS] that the optimal test functions with
Fourier transforms supported in [−1, 1] for the 1-level densities are exactly scalar multiples of
ψ, making it the natural choice of fixed test function. Our main result is to solve this restricted
optimization problem for ψ as defined above.

Theorem 1. Let ψ be as in (1.10). For each of the classical compact groups G = SO(even), SO(odd),U,O,
and Sp, there exists an optimal square integrable function gG,ψ ∈ L2[−1/2, 1/2] and constant cG,ψ
such that

cG,ψ∫ 1/2
−1/2 g(x)dx

= inf
φ

1
φ(0)ψ(0)

∫
R2

φ(x)ψ(y)W2,G(x, y)dxdy, (1.11)

where the infimum is taken over test functions φ with Fourier transform satisfying supp φ̂ ⊆ [−1, 1].
The constants and optimal square integrable functions are given by

cG,ψ =


1
2 , if G = Sp,
1, if G = U,
3
2 , if G = SO(even), SO(odd),O,

(1.12)
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and

gSO(even),ψ(x) =
216 cos(4x/

√
3) + 36

√
3 sin(2/

√
3)

162 cos(2/
√

3)− 5
√

3 sin(2/
√

3)
, (1.13)

gSO(odd),ψ(x) =
8 cos(4x/

√
3) + 12

√
3 sin(2/

√
3)

11
√

3 sin(2/
√

3) + 2 cos(2/
√

3)
, (1.14)

gU,ψ(x) =
6 cos(2x) + 6 sin(1)
3 cos(1) + 4 sin(1)

, (1.15)

gO,ψ(x) =
36 cos(4x/

√
3) + 18

√
3 sin(2/

√
3)

18 cos(2/
√

3) + 13
√

3 sin(2/
√

3)
, (1.16)

gSp,ψ(x) =
8 cos(4x) + 12 sin(2)

2 cos(2) + 3 sin(2)
. (1.17)

Additionally, the optimal test function φG,ψ realizing the infimum in (1.11) satisfies φ̂G,ψ = gG,ψ ∗ gG,ψ.

The test function ψ is used in Section 1 of [ILS] to obtain naive bounds on the average
order of vanishing. Similarly, we can compute naive bounds for the 2-level densities by taking
Φ(x, y) = ψ(x)ψ(y). Table 1 shows that the bounds derived from Theorem 1 significantly
improve the naive bounds.

Family Naive bounds Closed form of (1.11)
SO(even) 5

12 ≈ 0.416666 1
96

(
54
√

3 cot
(

2√
3

)
− 5
)
≈ 0.378448

SO(odd) 13
12 ≈ 1.083333 1

32

(
33 + 2

√
3 cot

(
2√
3

))
≈ 1.07909

O 3
4 ≈ 0.75 1

24

(
13 + 6

√
3 cot

(
2√
3

))
≈ 0.733014

U 1
2 ≈ 0.5 1

12(4 + 3 cot(1)) ≈ 0.493856
Sp 1

12 ≈ 0.083333 1
32(3 + 2 cot(2)) ≈ 0.0651464

Table 1. Comparing naive bounds taking φ = ψ with the optimal value over
support in [−1, 1] from (1.11) for each of the classical compact groups.

1.4. Applications to vanishing at the central point. If we instead consider (1.2) for n = 1 and
again take only the terms at the central point, we obtain the 1-level analogue to (1.9),

∞

∑
m=1

m Pr(m) ≤ 1
φ(0)

∫
R

φ(x)W1,G(x)dxdy. (1.18)

Comparing with (1.9), we see that the 2-level densities gives improvements on estimates for the
average order of vanishing m by a factor of m. For example, consider the orthogonal groups
SO(even), where the order at the central point is always even, and SO(odd), where the order is
always odd. It was shown in Appendix A of [ILS] that the optimal values for the right-hand
side of (1.18) for test functions with Fourier transforms supported in [−2, 2] are

inf
φ

1
φ(0)

∫
R

φ(x)W1,G(x)dx =


1
8

(
3 + cot

(
1
4

))
≈ 0.8645, if G = SO(even),

1
8

(
5 + cot

(
1
4

))
≈ 1.1145, if G = SO(odd).

(1.19)
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Note that our bounds in Table 1 are better on the same order of magnitude as those above.
Thus for SO(even) and SO(odd) we immediately see improvements on upper bounds for order
two and above. For higher orders such as m = 2020, 2021, we see significant improvements.
We obtain the 1-level bounds applying (1.19) to (1.18), yielding

Pr(2020) / 2.456 · 10−4 if G = SO(even), (1.20)

Pr(2021) / 3.692 · 10−4 if G = SO(odd). (1.21)

The 2-level bounds are obtained using the optimal values listed in Table 1 and (1.9), yielding

Pr(2020) / 9.284 · 10−8 if G = SO(even), (1.22)

Pr(2021) / 2.642 · 10−7 if G = SO(odd). (1.23)

Moreover, subtracting either (1.9) or (1.18) from ∑m Pr(m) = 1 gives lower bounds on low
orders of vanishing. In the case of the groups SO(even) and SO(odd), we can also use the
parity of the order for marginally better results. For SO(even), the 1-level and 2-level lower
bounds are respectively

k

∑
m=0

Pr(2m) ≥ 1− 1
(2k + 2)φ(0)

∫
R

φ(x)W1,SO(even)(x)dx, (1.24)

and
k

∑
m=0

Pr(2m) ≥ 1− 1
4(k + 1)(k + 2)Φ(0, 0)

∫
R2

Φ(x, y)W2,SO(even)(x, y)dxdy, (1.25)

For SO(odd), the 1-level and 2-level lower bounds are respectively

k

∑
m=0

Pr(2m + 1) ≥ 1− 1
(2k + 3)φ(0)

∫
R

φ(x)W1,SO(odd)(x)dx, (1.26)

and
k

∑
m=0

Pr(2m + 1) ≥ 1− 1
4(k + 2)2Φ(0, 0)

∫
R2

Φ(x, y)W2,SO(odd)(x, y)dxdy. (1.27)

For example, consider k = 1. Using the 1-level estimates (1.24) and (1.26) with the values from
(1.19) yields the lower bounds

Pr(0) + Pr(2) ' 0.7839 if G = SO(even), (1.28)

Pr(1) + Pr(3) ' 0.7771 if G = SO(odd). (1.29)

On the other hand, using the 2-level estimates (1.25) and (1.27) and the optimal values from
Table 1 yields the bounds

Pr(0) + Pr(2) ' 0.9842 if G = SO(even), (1.30)

Pr(1) + Pr(3) ' 0.9701 if G = SO(odd). (1.31)

We see that using the 2-level estimates also provides significant improvements on the lower
bound for low average order of vanishing at the central point compared to the 1-level estimates
from [ILS] despite considering smaller support. A natural question to examine is how large of
a support needs to be considered for the 1-level estimates to provide better bounds on these
low orders of vanishing than our 2-level estimates for fixed support in [−1, 1]. Currently the
largest support where the optimal test functions for the 1-level densities are known is [−3, 3],
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shown in [FM, Fre]. The corresponding optimal values follow from Corollary 1.2 of [FM]
taking σ = 1.5, which yields

inf
φ

1
φ(0)

∫
R

φ(x)W1,G(x)dx ≈
{

0.60363, if G = SO(even),
1.04304, if G = SO(odd),

(1.32)

where the infimum is taken over test functions with Fourier transforms supported in [−3, 3].
Applying the optimal values from (1.32) to the 1-level estimates (1.24) and (1.26), we obtain

Pr(0) + Pr(2) ' 0.84909 if G = SO(even), (1.33)

Pr(1) + Pr(3) ' 0.79139 if G = SO(odd). (1.34)

These 1-level bounds are still worse than our 2-level bounds from (1.30) and (1.31), so it would
seem that we need much larger support for the 1-level estimate to surpass the 2-level estimates
for fixed support at these low orders of vanishing. Further, to date there are no families where
the 1-level density has been done for support as large as [−2, 2]; the best we have is up to [−2, 2]
(or a little more for cuspidal newforms if we assume Hypothesis S from [ILS]); however, we
do have the 2-level up to [−1, 1]. This motivates further research into deriving optimal test
functions for higher level densities and small support.

2. Proof of Theorem 1

2.1. Functional analytic setup. Prior literature on the optimization problem, such as [FM]
and [Fre], dealt with the 1-level densities following the functional analytic approach outlined
in Appendix A of [ILS]. We want to impose restrictions so that such an approach is amenable
to the 2-level density optimization problem. To that end, we consider the optimization over
test functions of the form Φ(x, y) = φ(x)ψ(y) for fixed admissible ψ(y) with supp ψ̂ ⊆ [−1, 1].
This reduces the problem to one analogous to the 1-level density, where we are optimizing
over one-variable test functions. Explicitly, we want to compute

inf
φ

1
φ(0)ψ(0)

∫
R2

φ(x)ψ(y)W2,G(x, y)dxdy (2.1)

where the infimum is taken over test functions φ : R → R with supp φ̂ ⊆ [−1, 1]. Attacking
the optimization problem via the Fourier transform is more promising than a direct approach.
On the transform side, assumptions on the support reduce an integration over the entire plane
R2 to an integration over the square [−1, 1] × [−1, 1], and the 2-level densities themselves
are unwieldy to work with, while their Fourier transforms are sums of linear polynomials in
|x| and Dirac delta functions. Moreover, Gallagher [Gal] noted that a correspondence exists
between admissible test functions φ and square-integrable functions. Namely, it follows by the
Ahiezer and Paley-Wiener theorems that φ is a test function with supp φ̂ ⊆ [−1, 1] if and only
if there exists f ∈ L2[−1/2, 1/2] such that

φ̂(x) = ( f ∗ f̆ )(x), (2.2)

where
f̆ (x) = f (−x). (2.3)

Thus rather than minimizing a functional over test functions, we can instead view the problem
as minimizing a functional R̃G,ψ on a subset of L2[−1/2, 1/2], defined by

R̃G,ψ( f ) :=
1

φ(0)ψ(0)

∫
R2

φ(x)ψ(y)W2,G(x, y)dxdy. (2.4)
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This perspective gives access to more functional analytic tools, namely Fredholm theory. Mo-
tivated by our earlier remarks on the Fourier transform, we apply the Plancharel theorem to
write

R̃G,ψ( f ) =
1

φ(0)

∫ 1

−1
φ̂(x)ṼG,ψ(x)dx, (2.5)

where we have a weight function ṼG,ψ given by

ṼG,ψ(x) =
1

ψ(0)

∫ 1

−1
ψ̂(y)Ŵ2,G(x, y)dy. (2.6)

In the 1-level case, the role of the weight function is played by the Fourier transforms of the 1-
level distributions (1.4) - (1.8), which take the form δ+mG. Analogously, following calculations
due to Hughes and Miller [HM], for each of the classical compact groups the weight function
(2.6) takes the form

ṼG,ψ(x) = cG,ψδ(x) + m̃G,ψ(x)1[−1,1](x) (2.7)

for constants cG,ψ ∈ R and kernel m̃G,ψ ∈ L2[−1, 1] depending on our choice of initial test
function ψ and the classical compact group G, namely

cG,ψ =
ψ̂(0)
ψ(0)

+


−1

2 , if G = Sp,
0, if G = U,
1
2 , if G = SO(even), SO(odd),O,

(2.8)

and

m̃SO(even),ψ(x) =
1
2

(
ψ̂(0)
ψ(0)

+
1
2

)
+ 2

ψ̂(x)
ψ(0)

(|x| − 1)−

∫ 1−|x|
|x|−1 ψ̂(y)dy

ψ(0)
, (2.9)

m̃SO(odd),ψ(x) =
1
2

(
ψ̂(0)
ψ(0)

− 3
2

)
+ 2

ψ̂(x)
ψ(0)

(|x| − 1) +

∫ 1−|x|
|x|−1 ψ̂(y)dy

ψ(0)
, (2.10)

m̃O,Ψ(x) =
1
2

(
ψ̂(0)
ψ(0)

− 1
2

)
+ 2

ψ̂(x)
ψ(0)

(|x| − 1), (2.11)

m̃U,ψ(x) =
ψ̂(x)
ψ(0)

(|x| − 1), (2.12)

m̃Sp,ψ(x) = −1
2

(
ψ̂(0)
ψ(0)

− 1
2

)
+ 2

ψ̂(x)
ψ(0)

(|x| − 1) +

∫ 1−|x|
|x|−1 ψ̂(y)dy

ψ(0)
. (2.13)

To complete the analogy with the 1-level case, we consider the normalized functional, weight
function and kernel:

RG,ψ( f ) :=
R̃G,ψ( f )

cG,ψ
, (2.14)

VG,ψ(x) :=
ṼG,ψ(x)

cG,ψ
, (2.15)

mG,ψ(x) :=
m̃G,ψ(x)

cG,ψ
. (2.16)
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Consider the compact self-adjoint operator KG,ψ : L2[−1/2, 1/2]→ L2[−1/2, 1/2] (see Section
6.6 of [RS]) defined by

(KG,ψ f )(x) :=
∫ 1/2

−1/2
mG,ψ(x− y) f (y)dy. (2.17)

Then the optimization problem (2.1) is equivalent to the minimization of the quadratic form

RG,ψ( f ) =
〈(I + KG,ψ) f , f 〉
|〈 f , 1〉|2 (2.18)

subject to the linear constraint 〈 f , 1〉 6= 0. We know RG,ψ ≥ 0, which implies I +KG,ψ is positive
definite. If I + KG,ψ is non-singular, that is, −1 is not an eigenvalue of KG,ψ, then it follows
from the Fredholm alternative that there exists a unique gG,ψ ∈ L2[−1/2, 1/2] satisfying the
integral equation

(I + KG,ψ)(gG,ψ)(x) = gG,ψ(x) +
∫ 1/2

−1/2
mG,ψ(x− y)gG,ψ(y)dy = 1 (2.19)

for x ∈ [−1/2, 1/2], and by Proposition A.1 of [ILS],

inf
f

RG,ψ( f ) =
1

〈1, gG,ψ〉
. (2.20)

Observe (1.11) in Theorem 1 follows directly from (2.4), (2.14) and (2.20). It remains to check
the following lemma,

Lemma 2. I + KG,ψ is non-singular, that is, −1 is not an eigenvalue of KG,ψ.

Proof. Let f ∈ L2[−1/2, 1/2] such that KG,ψ f = − f , i.e.,

0 = f (x) +
∫ 1/2

−1/2
mG,ψ(x− y) f (y)dy.

This is a Fredholm equation of the second kind, and the unique continuous solution is given by
the corresponding Liouville-Neumann series, which, in this case, is the constant zero function.
On the other hand, mG,ψ is uniformly continuous on [−1, 1], so for fixed ε > 0, there exists
δ > 0 witnessing the uniform continuity. Then

| f (x + h)− f (x)| ≤
∫ 1/2

−1/2
|mG,ψ(x + h− y)−mG,ψ(x− y)|| f (y)|dy ≤ ε|| f ||L2

whenever |h| < δ. It follows that f is continuous, so by uniqueness, f = 0. �

Remark. A similar argument shows that the solution gG,ψ to (2.19) is continuous.

2.2. Solving a Fredholm integral equation with quadratic kernel. Let ψ be as in (1.10), which
has Fourier transform

ψ̂(x) = (1[−1/2,1/2] ∗ 1[−1/2,1/2])(x) = (1− |x|)1[−1,1](x). (2.21)

Not only is this the natural choice of fixed test function ψ, it also lends to an elegant derivation
of the corresponding optimal gG,ψ, as the kernels mG,ψ take the form of quadratic polynomials
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in |x| on the interval [−1, 1]. Namely,

mSO(even),ψ(x) = −3
2
+

8
3
|x| − 2

3
x2, (2.22)

mSO(odd),ψ(x) = −5
6
+

8
3
|x| − 2x2, (2.23)

mO,ψ(x) = −7
6
+

8
3
|x| − 4

3
2x2, (2.24)

mU,ψ(x) = −1 + 2|x| − x2, (2.25)

mSp,ψ(x) = −5
2
+ 8|x| − 6x2. (2.26)

Prior experience with the analogous 1-level problem in [ILS], [Fre] and [FM] suggests that
gG,ψ takes the form of an even trigonometric polynomial. Indeed, not only does this hold in
Theorem 1, this holds in generality for Fredholm integral equations where the kernel is an
even quadratic polynomial in |x|, as Lemma 2 relies only on uniform continuity of the kernel.

Theorem 3. Let a, b, c ∈ R with b ≥ 0. The following Fredholm integral equation with quadratic
kernel,

1 = g(x) +
∫ 1/2

−1/2
(a + b|x− y|+ c|x− y|2)g(y)dy, (2.27)

admits the unique continuous solution

g(x) =
6b3/2(b + c) cos(

√
2bx)− 6

√
2bc sin(

√
b/2)

6
√

b(b + c)2 cos(
√

b/2) +
√

2(6ab2 + 3b3 + 3b2c + bc(c− 12)− 6c2) sin(
√

b/2)
.

(2.28)

Theorem 1 follows as an immediate corollary. We prove Theorem 3 following a differential
equations argument due to Freeman and Miller. Observe that the left-hand side of (2.27) is
constant, so derivatives of the expression on the right vanish. Assuming g is smooth, we
differentiate under the integral sign to obtain

d
dx

∫ 1/2

−1/2
|x− y|g(y)dy =

d
dx

(∫ x

−1/2
(x− y)g(y)dy +

∫ 1/2

x
(y− x)g(y)dy

)
=
∫ x

−1/2
g(y)dy−

∫ 1/2

x
g(y)dy,

d2

dx2

∫ 1/2

−1/2
|x− y|g(y)dy = 2g(x),

and

d
dx

∫ 1/2

−1/2
(x− y)2g(y)dy =

∫ 1/2

−1/2
(2x− 2y)g(y)dy,

d2

dx2

∫ 1/2

−1/2
(x− y)2g(y)dy = 2

∫ 1/2

−1/2
g(y)dy.
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We thereby obtain the corresponding system of linear homogeneous differential equations,

1 = g(0) + a
∫ 1/2

−1/2
|y|g(y)dy, (2.29)

0 = g′′(x) + 2bg(x) + 2c
∫ 1/2

−1/2
g(y)dy, (2.30)

0 = g′′′(x) + 2bg′(x). (2.31)

Equation (2.29) is exactly (2.27) taking x = 0. We obtain (2.30) and (2.31) by differentiating
(2.27) under the integral sign twice and thrice respectively. Assuming g is even, solutions to
(2.31) take the form g(x) = A cos(

√
2bx) + C for some constants A, C ∈ R. Substituting into

(2.30) reduces these two degrees of freedom to one,

0 = g′′(x) + 2bg(x) + 2c
∫ 1/2

−1/2
g(y)dy = 2C(b + c) +

4Ac√
2b

sin

(√
2b
2

)
. (2.32)

This shows that

g(x) = A cos(
√

2bx)− A
2c

b + c
sin
(√

b/2
)

√
2b

. (2.33)

Substituting the above into (2.29) allows us to solve for A explicitly, which completes the
derivation of (2.28). 2

Remark. The same differential equations method can be applied for kernels which take the
form of of higher order polynomials in |x| on [−1, 1], that is, m(x) = p(x) for some degree n
polynomial p. Future approaches to the optimization problem may want to consider optimiz-
ing over fixed test functions ψ which produce kernels of such form.

3. Iteration

One can improve the bounds found in Table 1 by choosing φG,ψ as our new fixed test function
and optimizing accordingly. As φ̂G,ψ takes the form of a piecewise trigonometric polynomial
for each of the classical compact groups, the methods used in Section 2.2 are not applicable.
We instead appeal to the standard approach to solving Fredholm integral equations by method
of iteration. Suppose an even continuous kernel m : [−1, 1]→ R satisfies∫ 1/2

−1/2

∫ 1/2

−1/2
|m(x− y)|2dxdy < 1. (3.1)

Define a self-adjoint compact operator K : L2[−1/2, 1/2]→ L2[−1/2, 1/2] by

(K f )(x) :=
∫ 1/2

−1/2
m(x− y) f (y)dy. (3.2)

It follows from the Cauchy-Schwarz inequality that the operator norm satisfies ||K||L2→L2 < 1,
that is, K is a contraction mapping, since

||Kg||22 =
∫ 1/2

−1/2

(∫ 1/2

−1/2
m(x− y)g(y)dy

)2

dx ≤ ||g||22
∫ 1/2

−1/2

∫ 1/2

−1/2
|m(x− y)|2dxdy < 1. (3.3)

Thus by the Weierstrass M-test, the series

g(x) :=
∞

∑
n=0

(−1)nKn(1)(x) (3.4)
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converges absolutely and uniformly on the interval [−1/2, 1/2]. Moreover, it is the unique
continuous solution to the Fredholm integral equation (I +K)g = 1. Since the series converges
absolutely, we can integrate term by term to obtain the corresponding minimum value,

cG,φ

〈1, g〉 = cG,φ

(
∞

∑
n=0

(−1)n
∫ 1/2

−1/2
Kn(1)(x)dx

)−1

. (3.5)

Unfortunately, this method of deriving new bounds is computationally intensive as we need
to compute n-dimensional integrals of unwieldy expressions. Additionally, depending on the
rate of convergence we may need to compute a large number of terms to obtain meaningful
degrees of accuracy. For the purposes of this paper we focus on the unitary group, where
these challenges can be avoided.

For brevity, denote φ := φU,ψ. In this case we know the series converges, as∫ 1/2

−1/2

∫ 1/2

−1/2
|mU,φ(x− y)|2dxdy =

2 sin2(1)(128− 110 cos(2)− 37 sin(2))
3(−8 + 6 cos(2)− sin(2))2 < 1. (3.6)

Moreover, φ̂ is non-negative, so it follows that (−1)nKn
U,φ(1) is non-negative. We can therefore

truncate the series in (3.5) to obtain an upper bound, as the terms are non-negative. Summing
five terms gives the bound

inf
Φ

1
Φ(0, 0)

∫
R2

Φ(x, y)W2,U(x, y)dxdy ≤ cG,ψ

(
5

∑
n=0

(−1)n
∫ 1/2

−1/2
Kn(1)(x)dx

)−1

≈ 0.4888, (3.7)

a small improvement on our previous bound in Table 1.

4. Future Work

We conclude with some remarks on how to further improve estimates on the optimal value
of right hand side of (1.9) and thereby obtaining improved bounds on the average order of
vanishing at the central point. Recall that the quantity of interest is

1
φ(0)ψ(0)

∫
R2

φ(x)ψ(y)W2,F (x, y)dxdy (4.1)

for one variable test functions φ and ψ with Fourier transforms supported in [−1, 1]. As hinted
in the previous section, so far we have optimized over test functions φ for fixed ψ, so a natural
approach to improving the bounds is to iterate: for each k ≥ 1 we find optimal φk+1 for
fixed φk, then taking φ = φk and ψ = φk+1 in (4.1) gives a non-increasing sequence in k. The
hope is that this iteration converges to a global minimum. The main challenge encountered in
computing the iteration is that we lack a general method of obtaining a closed form expression
for the optimal φk. From prior experience in [ILS, FM] and Theorem 1, we expect the series (3.4)
converges to a piecewise continuous trigonometric polynomial, and likewise if we continue to
iterate the optimization.

We also hope to generalize these arguments to arbitrary n-level densities, that is, optimiz-
ing over n-variables test function taking the form Φ(x1, . . . , xn) = φ1(x1) · · · φn(xn) for fixed
φ1, . . . , φn−1. Again, the natural choices for the fixed test functions are

φ1(x) = · · · = φn−1(x) =
(

sin(πx)
πx

)2

,

and we suspect the differential equations method outlined in Section 2.2 continues to be
amenable to this particular case.
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[DHKMS2] E. Dueñez, D. K. Huynh, J. C. Keating, S. J. Miller and N. Snaith, Models for zeros at the central
point in families of elliptic curves (with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina
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[DM2] E. Dueñez and S. J. Miller, The effect of convolving families of L-functions on the underlying group
symmetries, Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018.

[ER-GR] A. Entin, E. Roditty-Gershon and Z. Rudnick, Low-lying zeros of quadratic Dirichlet L-functions,
hyper-elliptic curves and Random Matrix Theory, Geometric and Functional Analysis 23 (2013), no. 4,
1230–1261.

[FiM] D. Fiorilli and S. J. Miller, Surpassing the Ratios Conjecture in the 1-level density of Dirichlet L-functions,
Algebra & Number Theory Vol. 9 (2015), No. 1, 13–52.

[FM] F. W. K. Firk and S. J. Miller, Nuclei, Primes and the Random Matrix Connection, Symmetry 1 (2009),
64–105; doi:10.3390/sym1010064. http://www.mdpi.com/2073-8994/1/1/64.

[FI] E. Fouvry and H. Iwaniec, Low-lying zeros of dihedral L-functions, Duke Math. J. 116 (2003), no. 2,
189–217.

[Fre] J. Freeman, Fredholm theory and optimal test functions for detecting central point vanishing over families
of L-functions, Williams College Thesis, 2017.

[FM] J. Freeman and S. J. Miller, Determining optimal test functions for bounding the average rank in fami-
lies of l-functions, in SCHOLAR – a Scientific Celebration Highlighting Open Lines of Arithmetic
Research, Conference in Honour of M. Ram Murty’s Mathematical Legacy on his 60th Birthday



DETERMINING OPTIMAL TEST FUNCTIONS FOR 2-LEVEL DENSITIES 13

(A. C. Cojocaru, C. David and F. Pappaardi, editors), Contemporary Mathematics 655, AMS and
CRM, 2015.

[Gal] P. X. Gallagher, Pair correlation of zeros of the zeta function, Journal für die reine und angewandte
Mathematik 362 (1985), 72–86.

[Gao] P. Gao, N-level density of the low-lying zeros of quadratic Dirichlet L-functions, Ph. D thesis, University
of Michigan, 2005.

[Gol] D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. 3, 4 (1976), 624–663.

[GK] D. Goldfeld and A. Kontorovich, On the GL(3) Kuznetsov formula with applications to symmetry types
of families of L-functions, In Automorphic Representations and L-Functions (ed. D. Prasad et al),
Tata Institute (2013), 263–310.

[GJMMNPP] J. Goes, S. Jackson, S. J. Miller, D. Montague, K. Ninsuwan, R. Peckner and T. Pham, A unitary test
of the L-functions Ratios Conjecture, Journal of Number Theory 130 (2010), no. 10, 2238–2258.

[GHK] S. M. Gonek, C. Hughes and J. P. Keating, A hybrid Euler-Hadamard product for the Riemann zeta
function , Duke Math. J. 136 (2007) 507–549.
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