AN ORTHOGONAL TEST OF THE L-FUNCTIONS RATIOS CONJECTURE
STEVEN J. MILLER

ABSTRACT. We test the predictions of (a weakened version of) the L-functions Ra-
tios Conjecture for the family of cuspidal newforms of weight £ and level IV, with
either k fixed and N — oo through the primes or N = 1 and £k — oo. We study the
main and lower order terms in the 1-level density. We provide evidence for the Ratios
Conjecture by computing and confirming its predictions up to a power savings in the
family’s cardinality, at least for test functions whose Fourier transforms are supported
in (—2, 2). We do this both for the weighted and unweighted 1-level density (where in
the weighted case we use the Petersson weights), thus showing that either formulation
may be used. These two 1-level densities differ by a term of size 1/ log(k?N). Finally,
we show that there is another way of extending the sums arising in the Ratios Conjec-
ture, leading to a different answer (although the answer is such a lower order term that
it is hopeless to observe which is correct).

1. INTRODUCTION

Zeros of L-functions are some of the most important objects in modern number the-
ory. Numerous problems are connected to them, and frequently the more detailed infor-
mation we have about zeros, the more we can say about difficult problems. We remark
on just a few of these applications. We then discuss a new procedure to predict these
properties, and discuss our tests of its predictions.

The Generalized Riemann Hypothesis (GRH) asserts that all non-trivial zeros of an
L-function have real part 1/2. Just knowing that there are no zeros on the line R(s) = 1
for ((s) suffices to prove the Prime Number Theorem. Similarly the non-vanishing of
Dirichlet L-functions at s = 1 imply the infinitude of primes in arithmetic progression
(see for example [Da]).

Assuming GRH, all the non-trivial zeros lie on the line R (s) = 1/2. We can thus ask
more refined questions about their spacing. The Grand Simplicity Hypothesis asserts
that the imaginary parts of zeros of Dirichlet L-functions are linearly independent over
@Q; this is one of the key inputs in Rubinstein and Sarnak’s [RubSa] analysis of Cheby-
shev’s bias, the observed preponderance of primes in some arithmetic progressions over
others.
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Finally, Conrey and Iwaniec [CI] show that if a positive percentage of the spacings
between normalized zeros of certain L-functions is less than half the average spacing,
then the class number of Q(y/—¢) satisfies h(g) > \/q(log )~ for some A > 0.

Since the 1970s, random matrix theory has provided powerful models to predict the
behavior of zeros of L-functions. The scaling limits of zeros of individual or of a
family of L-functions are well-modeled by the scaling limits of eigenvalues of matrices
of classical compact groups (see for example [CFKRS, Hej, KaSal, KaSa2, KeSnl,
KeSn2, KeSn3, Mon, Od1, Od2]). In particular, these models immediately imply that a
positive percentage of zeros are less than half the average spacing apart.

While the corresponding classical compact group is naturally connected to the mon-
odromy group in the function field case, the connection is far more mysterious for
number fields. Further, these models often add the number theoretic pieces in an ad-hoc
manner, and thus there is a real need to develop methods which naturally incorporate
the arithmetic.'

In this work we concentrate on one such approach, the L-functions Ratios Conjecture
of Conrey, Farmer and Zirnbauer [CFZ1, CFZ2], which provides a recipe for predicting
many properties of L-functions to a phenomenal degree, ranging from n-level correla-
tions and densities to moments and mollifiers (see [CS] for numerous applications). In
our analysis below we actually use a weaker version of the Ratios Conjecture recipe
than is stated in [CFZ1], as we do not need one of their assumptions in our analysis; we
comment on this in greater detail in Remark 1.8.

In [Mil4] we showed that the Ratios Conjecture successfully predicts all lower or-
der terms up to size O(N~'/2¥¢) in the 1-level density for certain families of quadratic
Dirichlet characters, at least provided the Fourier transform of the test function is sup-
ported in (—1/3,1/3). In this paper we apply the Ratios Conjecture to families of
cuspidal newforms. We chose these families as the 1-level density can be determined
for test functions whose Fourier transform is supported in (—2, 2).% To prove results for
support exceeding (—1, 1) requires us to take into account non-diagonal terms, specif-
ically sums of Bessel functions and Kloosterman sums. Thus our hope is that this will
be a very good test of the Ratios Conjecture.

1.1. Notation. We first set some notation. Let f € Si(/V), the space of cusp forms of
weight £ and level N, let B,(/V) be an orthogonal basis of Si(/V), and let H(N) be
the subset of newforms. To each f we associate an L-function:

L(s, f) = > Ap(n)n~". (1.1)
n=1

The completed L-function is

A(s, f) = (W) r (s+ %) L(s, f), (1.2)

2T

ISee [DM2] for some recent results on determining the symmetry group of convolutions of families,
and [GHK] for an alternate approach which is a hybrid of the Euler product and the Hadamard expansion,
which has the advantage of the arithmetic arising naturally.

’If we assume Hypothesis S from [ILS], we can extend the number theory calculations up to
(—22/9,22/9); see (4.35).
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and satisfies the functional equation A(s, f) = €fA(1 — s, f) with e, = £1. Thus

Hy(N) splits into two disjoint subsets, H; (N) = {f € H;(N) : ¢, = +1} and

H_(N) = {f € H{(N) : ¢ = —1}. We often assume the Generalized Riemann

Hypothesis (GRH), namely that all non-trivial zeros of L(s, f) have real part 1/2.
From Equation 2.73 of [ILS] we have for N > 1 that

k—1

|HE(N)| = 7J\f+0<(k1\f) ) (1.3)

If N = 1 then 71 (1) = Hi(1) if k = 0 mod 4 and H, (1) = Hi(N) it k = 2mod 4,
where |Hj(1)| = &2 + O(K*/3).
We let Dy g () ( ¢) denote the weighted 1-level density for the family H; (N):

log R
Dy gy (wy:r(6) = Z wi(NV) Z ¢(7f 02g7r ) (1.4)

eH(N vf
FeHE(N) L(1/2+iv,f)=0

[][e

We discuss the weights w}(N ) in greater detail in §1.2, and R = kN is (essentially?)
the analytic conductor, which is constant throughout the family.* Katz and Sarnak
[KaSal, KaSa2] conjectured that as the conductors tend to infinity, the 1-level den-
sity agrees with the scaling limit of a classical compact group. There are now many
cases where, for suitably restricted test functions, we can show agreement between
the main terms and the conjectures; see, for example [DMI1, FI, Gao, Gii, HR, HM,
ILS, KaSa2, Mill, OS, RR1, Ro, Rub, Yo2]. Now that the main terms have been
successfully matched in numerous cases, it is natural to try to analyze the lower or-
der terms. Here we break universality. While the arithmetic of the family does not
enter into the main terms, it does surface in the lower order term (see for example
[FI, Mil2, Mil3, Mil4, RR2, Yol]).

The Ratios Conjecture is a recipe for predicting the main and lower order terms (often
up to square-root in the family’s cardinality) for ratios of L-functions. Consider a family
JF of L-functions with some weights w;. We shall be particularly interested in both

T+ f)
= > w f L s (1.5)
feF g
and ORx(a,7y)/0ca . We are interested in the derivative as a contour integral of it

a=vy=s

yields the 1-level density.

1.2. Weights. To simplify some of the arguments, we content ourselves with investi-
gating two cases: k is fixed and N — oo through the primes,” and N = 1 and k — oo.

3Sometimes the analytic conductor is defined slightly differently, incorporating some of the constants
in the Gamma factors. In investigations of the 1-level density for these families, however, these factors
are independent of k£ and NV, and for our purposes all that matters is the £ and N dependence in the
conductor. Thus there is no loss in setting R = k2.

“It greatly simplifies our analysis to have a family where the analytic conductors are constant. This
allows us to pass the summation over the family past the test function to the Fourier transforms. Non-
constant families can often be handled, at a cost of additional work and sieving (see for example [Mill]).

SWith additional work, the arguments should generalize to N square-free, though with worse error
terms.
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Throughout our analysis we shall need to investigate sums such as
> Apm)As(n). (1.6)
feH}(N)
It is technically easier to consider weighted sums
> @ (A m)As(m), (L.7)
feHE(N)

where the w; (V) are the harmonic (or Petersson) weights, though for completeness we
study the unweighted sums as well. These are defined by

Tk — 1)

HN) = 1.8
I = G (19
where
(f, F)n = / F(2)F(2)y"2dady. (1.9)
Co(N)\H
These weights are almost constant. We have the bounds (see [HL, Iw])
N7 < wi(N) < N7 (1.10)

if we allow ineffective constants we can replace /N with log N for NV large.

The main tool for evaluating these (weighted) sums is the Petersson formula; we state
several useful variants in Appendix A.

If N > 1 we should use modified weights w(N)/w(N ), where

WN) = > wi(N). (1.11)
JEH(N)

The reason is that our family does not include the oldforms. One advantage of restrict-
ing to N prime is that the only oldforms in Sy (/N) are forms of level 1. We know there
are only O(k) such forms. As each w;(N) < N~

k k
> w(N) = X:MWW+O<M%>:1+O(NH)' (1.12)
FEH:(N) JE€SK(N)

Thus for k fixed and N — oo, the difference between using w;(N) and ws(N)/w(N)
is O(N~1%¢). We set

(1) it N =1

. _Jwy
WAN)_{wANMMN)iﬂV>k (1.13)

note

Y owiN) =1 = (1+0(N)) Y wi(N). (1.14)

fEH(N) fE€BK(N)

Remark 1.1. For some problems, such as bounding the order of vanishing at the cen-
tral point for families of cuspidal newforms [HM, ILS], it is desirable to study the
unweighted family. We shall see below that there is a difference of size 1/log R be-
tween the weighted and unweighted 1-level densities. The predictions from the Ratios
Conjecture (for weighted and unweighted families) agrees with the corresponding result
from number theory in both cases.
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1.3. Main results.

Theorem 1.2. Assume GRH for ((s) and all L(s, f) with f € H}(N). The (weakened
version of the) Ratios Conjecture predicts

Dy syvnl(®) = 225(21‘“) OEP | (o)

logR ) plog R
1 > VN 1 k+1 2mit
2log — -4 — t)dt
+logR/_Oo( ©8 s +¢(4+ 4 +logR)>(’b()
+ O ((kN)7H2+e) (1.15)
where®
2iFu(N) [ 1 2mit ¢(2) At
M = v 7 X | = . 14+ ——
(9) NlogR/_oo t\2 T 1og R g(2+1§%)( o R
4mit/log R __ 1 . Jog N
p —2mit 28
' H (1 ~ p(pimit/lg R 4 1)) e TR o(t)dt (1.16)

p

~

and Xp(s) is as in (2.9). If N > 1 then M(¢) < N~L. Let supp(¢) C (—0o,0). If
N = 1then M(¢) < 2009%k =5 ¥, which decays more rapidly than k=° for any § > 0
provided o < 1/4.

Remark 1.3. Our estimate for M (¢) is significantly worse when N = 1; see Remark
3.5 for an explanation and a connection to other problems. Interestingly, if we change
the order of some of the steps in the Ratios Conjecture’s recipe, then M (¢) changes by
a factor of e™7. See Appendix C for complete details, as well as Remark 2.10.

The 1-level density computation has some differences depending on whether or not
N — oo through the primes or N = 1 and k£ — co. We therefore separate our results
into two cases; see Remark 1.8 for an explanation of these differences. Further, we
can often obtain results for smaller support without assuming GRH for Dirichlet L-
functions, and thus we isolate these as well.

~

Theorem 1.4. Let supp(¢) C (—o,0) and let N — oo through the primes.

e (Density Theorem Limited) If o < 3/2 then the weighted 1-level density for
the family H}(N) agrees with the prediction from the Ratios Conjecture up to
errors of size O(N° 3¢ 4 N§—1te 4 N§—1+¢"),

e (Density Theorem Extended) Assuming GRH for ((s), all Dirichlet L-functions
and L(s, f), the weighted 1-level density agrees with the prediction from the
Ratios Conjecture up to errors of size O(Nz =1+ 4 NT-1+<"),

Remark 1.5. Theorem 1.4 implies we have agreement up to a power savings in N for
o < 3/2, and up to square-root cancelation for o < 1. Assuming GRH, we can extend
agreement up to o < 2, again saving a power in V.

-~

Theorem 1.6. Let supp(¢) C (—o,0) N = 1land k, K — oc.

SIf N' = 1, note the factor w exp (—2mitlog N/ log R) below equals 1.
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e (Density Theorem Limited) The weighted 1-level density for the family H}; (1)
agrees with the prediction from the Ratios Conjecture up to errors of size O(k~(=30)/6+¢)
for o < 1/4. If we knew M (¢) < k=6739)/6%¢ for o < 1, then we would have
agreement up to o < 1.

e (Density Theorem Extended) Let h be a Schwartz function compactly supported
on (0, 00). Consider a weighted average (over k) of the weighted 1-level density

) 1 2% (k-1
A = s ¥ (M) T busoeonan

k=0 mod 2 fEH,’;(l)

where

v = Y () ) = ROk o). s
k=0 mod 2
Assuming GRH for ((s), all Dirichlet L-functions and L(s, ), the 1-level den-
sity agrees with the prediction from the Ratios Conjecture up to errors of size
O(K~6=)/6%e 4 Ko=24) for o < 1/4. If we knew M(¢) < K~ 0-0)/6+¢ 4
K772 for o < 2, then we would have agreement up to o < 2.

e (Hypothesis S and Density Theorem Extended) Assume Hypothesis S from [ILS]
(i.e., (4.35)) with A = 0 and o = 1/2. Then as K — oo the weighted average
(over k) of the weighted 1-level density agrees with the prediction from the Ra-
tios Conjecture for ¢ < 1/4. If we knew M (¢) < K~2(25=0) 4 [~(=0)/6+c 1

11

K% 0-39) for o < 22/9, then we would have agreement up to o < 22/9.

Remark 1.7. Theorem 1.6 implies we have agreement up to a power savings in K for
o < 1/4; in fact, we agree beyond square-root cancelation in this range. Assuming
GRH, by averaging over k we can extend our calculations up to o < 2 (or, if we assume
Hypothesis S, up to o < 22/9). If we knew M (¢) were small, we would again save a
power in N (with agreement up to square-root cancelation for ¢ < 3/2 if we assume
GRH for Dirichlet L-functions, or up to o < 22/9 if we assume Hypothesis S).

Remark 1.8. We briefly comment on the differences in the calculations for N — oo
through the primes and N = 1 and £ — oc. In the first family, the sign of the functional
equation is basically 1 half the time and -1 the other half, while in the second family
it is either always 1 (if £ = 0 mod 4) or —1 (if £ = 2 mod 4). It is natural to argue
in constructing the Ratios Conjecture recipe similarly as in other conjectures, such as
in the Moments Conjecture (see [CFKRS]). In both any product of the signs of the
functional equations is replaced with the average of the signs of the functional equations
in the family.” When N — oo we thus do not expect any term, as the average of the
functional equations is zero; however, for NV = 1 the average is non-zero (either 1 or
—1), and there will be a predicted term (which may or may not be small, but which must
be analyzed). This is one reason why our results are significantly weaker when N = 1.}
If we were to follow the Ratios Conjecture recipe fully, we would not have the M (¢)

7See for instance the comments after equation (4.1.5) and the analysis after equation (4.5.4) in
[CFKRS] or the comments after (5.5) in [CFZ1] (note that in an earlier draft of [CFZ1] there was no
mention of replacing products of epsilon factors with their averages, though this is a natural thing to do).
8 Another is that the analytic conductor is k2 N. If N = 1 then the conductor is essentially the square
of the family’s cardinality, while if N — oo the conductor is of the same size as the family’s cardinality.
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term when N — oco. We choose to include M(¢) as our analysis that it is O(1/N)
provides support for replacing the epsilon factors in the Ratios Conjecture recipe with
their average over the family (in this case, zero).

Theorem 1.9. Assume GRH for ((s), all Dirichlet L-functions and all L(s, f). The
unweighted 1-level density for H(N) agrees with the predictions of the Ratios Con-
Jecture for the unweighted family, up to a power savings in the family’s cardinality, as
N — oo through the primes; this answer differs from the weighted 1-level density by
an additional term of size 1/log R. The Ratios Conjecture applied to the unweighted
family predicts

1 * v N 1 k+1 2mit
Dunw*t . — 21 _ — _— t)dt
e (v:r(@) s R J_ ( 0§+ (0 (4 T T 10gR>> (t)

p—lA logp \ logp
2
* Z Z <V10gR> log R

v=0 mod 2 p;é]\/'
v>2

+ O ((kN)~1/2t) (1.19)
which agrees with number theory up to errors of size O(N~(279)/6+€),

Remark 1.10. Theorem 1.9 and our other results imply that the predictions from the
L-functions Ratios Conjecture agree with number theory for both the weighted and
unweighted families. Thus, when investigating cuspidal newforms, we may study either
family.

The paper is organized as follows. In §2 we describe the Ratios Conjecture’s recipe,
and determine its prediction for the 1-level density for our families. In §3 we analyze
these predictions and prove Theorem 1.2. In §4 we prove Theorems 1.4 and 1.6, which
show the 1-level densities agree (up to a power savings in the cardinality of the families,
at least for suitably restricted test functions) with what can be proved. Finally, in §5 we
analyze the unweighted 1-level density, and prove Theorem 1.9.

2. RATIOS CONJECTURE

The Ratios Conjecture is a recipe to predict the main and lower order terms for a
variety of problems. We analyze its predictions for the 1-level density for families of
cuspidal newforms. We first briefly describe its recipe for predicting quantities related

to
s+a,f)
f @2.1)
fezf L G+7/)

In the description below, we actually use a slightly weakened version of the Ratios
Conjecture; the difference is in step (3).

(1) Use the approximate functional equation to expand the numerator into two sums
plus a remainder. The first sum is over m up to z and the second over n up to
y, where zy is of the same size as the analytic conductor (typically one takes
x = y). We ignore the remainder term.
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(2) Expand the denominator by using the generalized Mobius function:

1 ps(h)

Lis.f) 2= b

where ji¢(h) is the multiplicative function equaling 1 for h = 1, —Xs(p) if
h = p, xo(p) if h = p* (with  the trivial character modulo N) and 0 otherwise.

(3) Execute the sum over F, keeping only main (diagonal) terms. In [CFZ1] there is
an additional step before executing the sums over m and n, as they replace any
product over epsilon factors (arising from the signs of the functional equations)
with the average value of the sign of the functional equation in the family. For
families of constant sign (such as N = 1), there is no difference; however, for
families where the sign varies (such as N — o0) there is a significant difference,
as they would not have our term M (¢). We are thus using a weaker recipe of the
Ratios Conjecture; we choose to include the analysis of the contribution from
the signs of the functional equation as this provides support for the claim that we
may ignore any term multiplied by signs of functional equations which average
to zero.” See Remark 1.8 for additional details.

(4) Extend the m and n sums to infinity (i.e., complete the products).

(5) Differentiate with respect to the parameters, and note that the size of the error
term does not significantly change upon differentiating.

(6) A contour integral involving %R;(a, 7)‘ yields the 1-level density.

a=y=s
We now describe these steps in greater detail and deduce the Ratios Conjecture’s
prediction for the 1-level density.

Remark 2.1. It is almost miraculous how well the Ratios Conjecture works, given that
several of the steps involve throwing away significant error terms. The miracle is that
all these errors seem to cancel, and the resulting expression is correct to a remarkable
order. See Remark 2.11 for more details.

Remark 2.2. Differentiating is essentially harmless because we have analytic functions.
If the error were N~'/2 cos(IN2a) and o was forced to be real, then differentiating
increases the error from size N~/2 to N3/2! For us, a will be complex. By Cauchy’s
integral theorem, if f is analytic at z, then

1 f(2)

! = — ¢ —=d 22
f (ZO) 271_% o (Z . 20)2 z7 ( )
where C' is a circle of very small radius about z,. The sum of the ratios is analytic,
and we shall see later that the main term is analytic. Thus their difference, the error
term, is also analytic. Applying Cauchy’s argument with a circle of very small radius,
say log 72" R, we see the effect of differentiating is only to increase the error by some

powers of log k. We thank David Farmer for pointing this out to us.

9 Also, of course, M (¢) is present when N = 1.
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2.1. Approximate Functional Equation. We state the approximate functional equa-
tion in greater generality than we need, though not the greatest generality possible; see
Section 1 of [CFKRS] for more details. Let

Lis) = Y = 2.3)
n=1 n

be a nice L-function with real coefficients (a, € R),
vr(s) = P(s)Q* H C(wjs + py) (2.4)
j=1

with @, w; > 0, u; > 0 and P(s) a real polynomial whose zeros in R(s) > 0 are at the
poles of L(s) (so if L(s) has no poles then P(s) is constant). Let

€(s) = v(s)L(s) = €€, (1 —s) (2.5)
be the completed L-function, with |¢] = 1 the sign of the functional equation and

€,(s) = £4(3). Our assumptions imply that &, (s) = £.(s). Set
Xy (s) = nl-s) _ PA- $)Q" T2, T(wi(1 — s) + 1)
- 7.(8) P(s)Q* [ ;- D(wjs + py) '

(2.6)

Then

Lemma 2.3 (The Approximate Functional Equation). Notation and assumptions as
above,

L(s) = Z % +eXp(s) Z n?is + remainder, (2.7

m<x n<y
where xy is of the same size as the analytic conductor.

Remark 2.4. The Ratios Conjecture’s recipe for generating predictions ignores the re-
mainder term in the approximate functional equation. Thus we too shall ignore these
errors in our arguments below, and treat the approximate functional equation as exact.

For us, L(s) will be a weight k cuspidal newform of level N, which we shall denote
by L(s, f). In this case, we have (see [ILS] for instance) that

n(s) = <§—;)1/2 <g)r (g * %) b (g i %)
() e,

note that v7,(s) depends only on the weight k and the level NV of the cuspidal newform
f- This yields the following expressions for X (s):

v = (7)) i

(2.9)
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Finally, the analytic conductor of a cuspidal newform of weight k£ and level NV is (up
to a constant) k2N. Thus we will typically take z = y ~ k2N in the approximate
functional equation.

2.2. Ratios Conjecture. Let x( denote the principal character with conductor N. For
f aweight k cuspidal newform of level N we have

L(s,f) = H(l_)\f()_l_XO(P))_ -

S 25
. p p -
1 Ar(p) ) S m(n)
— 1— (2.10)
e - 0% ; z
where jip(n) is the multiplicative function such that pf(1) = 1, pur(p) = —As(p),

115(P*) = xo(p), and pz(p*) = 0 for k > 3.
Let F be a family of weight & cuspidal newforms of level /N. The Ratios Conjecture
for the family gives an expansion for

s+of)
wf 2.11)
]; L 2+, f)

where «v and + satisfy
(1) R(e) € (=1/4,1/4);
(2) R(7y) € (1/log|F], 1/4);
(3) S(),S(y) < |F|t<forall e > 0.

We have introduced weights wy, as often in practice the weighted sum is significantly
easier to control. For example, we may take wy to be the Petersson weights, which fa-
cilitates applying the Petersson formula (see Appendix A for statements). As remarked
in §1.2, it is convenient to choose wy = w}(N) (see (1.13)).

We shall concentrate on the diagonal terms in the Petersson formula. Thus if our

family is H;(N) then by the Petersson formula we have for ny and n, relatively prime
to N,

> Wi N)Af(n1)Af(n2) = 6y, + small. (2.12)
feH;(N)
The weights are normalized to sum to 1. If N > 1 our sums do not include the oldforms;
however, the oldforms do not contribute to the main term of the Petersson formula in
this case.

In general, we must be careful by what we mean by ‘small’ when we apply the
Petersson formula. The error term is a Bessel-Kloosterman sum, and is typically small
only if n; and ny are not too large with respect to k£ and N (and are relatively prime
to V). It is very important that our sums are restricted. It is only after we compute
the main term that the heuristics of the Ratios Conjecture tells us to extend the sums
to infinity. Depending on how (and when!) we extend our sums to infinity can lead to
different answers.'”

10These differences, however, involve terms of size 1 /N, which is unimaginable beyond anything we
can hope to prove (except possibly if N = 1; we hope to return to this in a future paper). Interestingly,
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Unless our family is all of H;(N) and N = 1, however, the sign of the functional
equation is not constant.!! For square-free N we have

e = i*u(N)A(N)VN; (2.13)

thus the sign of the functional equation only weakly depends on the specific form f.

Further \;(¢)> = 1/q if | N. Note p(1) = 1 and u(N) = —1if N is prime, and since
k is even we have i* = £1. Thus there is at most one ‘bad’ prime, namely N.

Remark 2.5. We consider just the case 7 = H}(N) with N either 1 or prime here;
more involved arguments should be able to handle the case of N square-free (at a cost

of worse error terms), and we will investigate the sub-families H ;t (N) in a future paper
[HuMi].

Lemma 2.6. The Ratios Conjecture predicts that

1 1
RH;;(N)(O‘77) = H <1 - pltoty + p1+27>

p
Fu(N)XL (3 + @) plooty
N1 -a ) 1;[ (1 T (e - 1))
+ 0 (JHy (V)| (2.14)

where the N-factors are present only if N is prime.

Proof. From the Approximate Functional Equation (Lemma 2.3) and (2.13) we have

L(%+a,f> = ZA"( ) 4 (N))\f(N)\/NXL<%+a)Z>\f(> (2.15)

Jr
m<x m2 n<y n2

where © = y ~ Vk2N. From (2.10) we have

- 2.16
VRS Z e (210
Therefore
RH* )(aa’Y) =
h)A 1 A (N)A
h2 T Ymata 2 h2 T Yms—«
feH;(N) mew n<y

If N > 1 then the presence of the A;(N) factor requires us to handle the two sums
in slightly different manners. We first analyze the sum without the A;(V) factor. By
the Petersson formula, we have ZfeH;(N) WHN)Ap(n1)Af(n2) = 6y my + small if at
least one of n; and n is relatively prime to N. There are two cases: either N = 1 and

however, the difference between these two terms is related to sieving actual versus random primes. See
Appendix C.

See Remark 1.8 for comments on how the non-constancy of the signs of the functional equation
affects the Ratios Conjecture’s prediction.
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k — oo or k is fixed and N — oo through the primes. As x ~ V k2N, if N > 1 then N
does not divide m for sufficiently large V. Thus we may assume (n2, V) = 1. Using the
multiplicativity of the Fourier coefficients, from the Petersson formula (Lemma A.3) we
see that if p|n; then there is negligible contribution unless pf||n; and p’||n,. From the
definition of the multiplicative function 1¢(h), we see immediately that 4 must be cube-
free (if not, y17(h) = 0). Thus we may write h = py---p, - g7 - - q; where p1, ..., q
are distinct primes, and zi7(h) = (—=1)"Af(p1 -+ pr)Xo(q1 - - - o). We immediately see
that unless m is square-free and equal to p; - - - p, and the ¢; are relatively prime to N
then the main term from y¢(h)Af(m) is zero. Further, the p; must also be prime to [V,

as p; < m < x ~ Vk2N. Thus the only contribution from the m and h-sum is

Ar(p)® 1 1
H (1 - p1f+a+v T p1+2v) ' H (1 + p1+2v> : (2.18)

<z p>x
p= p#EN

To see this, use multiplicativity to replace the sum in (2.17) with a product over primes,
dropping all terms which will give a negligible contribution after applying the Petersson
formula. For each prime p < z we either have 1, s (p)A;(p) or ps(p*)Af(1). The
product over p > x arises from the fact that, for such large primes, we must either
have 1 or ps(p?)A;(1) (as the m-sum is only up to primes at most z, and the prime
p = N can be ignored because yo(/N) = 0). Thus when we use the Petersson formula
we always have two Fourier coefficients relatively prime to the level N. Summing over
f € H}(N) allows us to replace \;(p)? with 1 + small (and, as always, we ignore all
‘small” terms), so the first half of Ry (v)(a,7) is

1 1 1
H (1  pltety + p1+27) . H (1 + p1+27> ; (2.19)

<z p>x
p= p#N

see Remark 2.8 for an explanation as to why we have chosen to write this factor in this
way. As is customary in applications of the Ratios Conjecture, we complete the m-sum
by extending it to infinity. This is equivalent to sending x to infinity. Thus the first term

of RH,:(N)(O% ’}/) 18

1 1
H (1 T piraty + pHQV) : (2.20)

p

We now study the A ¢(N)ur(h)Af(n) terms in (2.17), noting that NV does not divide n

(since n < y ~ Vk2N). There is thus negligible contribution unless N||h. For p = N
the factor is now

frave = — NIo (2.21)
(again, this factor is not present if NV = 1). Remember we have a truncated sum, with
n < y. Thus for p < y the factors are the same as before (except we replace o with
—q), arising from factors of 1, pi;(p)Af(p) or py(p*)As(1). However, fory < p # N
the factor is 1 + p~'27 (arising from 1 or p(p®) — there is no ps(p)A;(p) term as
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p > vy). Thus our factors are

F (N (N)VNX, (% + a)

A(p)? 1 LY =AWY)
. g(l_pl—a+7+p1+2’7) . g <1+p1+27) : N%"FV ) (222)
p#EN

where as before the /N-factor is present only if N is prime. If N > 1 we replace
A¢(N)? with 1/N, so when we apply the Petersson formula all Fourier coefficients will
be relatively prime to the level N. If N = 1 we do not have this second factor of A;(N);
however, as Af(1) = 1 the resulting expression is the same.

Summing over f € H;(N) allows us to replace the \;(p)? factors above with 1 +

small. Thus the product becomes

i (N 1 1 1 1
T TNIH X1 (§ - a) H (1 - platy + p1+2'y> H (1 + p1+2'y) '

Py P>y
ik (N) 1
_ Nl-‘r’Y XL (5 + O[)
(157 ) - (1 ey T (14 )
I (- 1+ JI1+ =5 )
1—a+ty 1+2y(pl—a+y 142y
s p p'+(p n) p

(2.23)

As before, we complete the n-sum by sending y to infinity. We have deliberately pulled
out the p-factor of 1/{(1 — a + ) to improve the convergence of the remaining piece.
We thus find this factor is

Zk/JJ(N) 1 1 pl—oﬁ-v
i X (5 + 04) e 1;[ (1 T o (pima 1)) (2.24)

Substituting the above completes the proof. U

Remark 2.7. In the Ratios Conjecture, the size of the error term is added in a some-
what ad-hoc manner. The predicted size of the error term is amazing, as it implies the
lower order terms depending on the arithmetic of the family are calculated basically up
to square-root cancelation in the family’s cardinality. As the recipe involves throwing
away numerous remainders and arguing their aggregate does not matter, it is not possi-
ble to rigorously derive the size of the error term (unless, of course, we make significant
progress towards proving the Ratios Conjecture!), and the standard assumptions in prac-
tice are that it is typically smaller than the main term by approximately the square-root
of the family’s cardinality. See Remark 2.11 for additional comments on the discarded
error terms.

Remark 2.8. We briefly discuss how we chose to write some of the factors above; we
are thankful to the referee for pointing this out, and paraphrase their comments below.
The usual convention in the Ratios Conjecture is to pull out factors of zeta, which
leaves a product over primes that is convergent when the shift parameters « and v are
very small. When this is done then every orthogonal family ratios conjecture looks the
same, except for the convergent prime product, which is specific to the family; the polar
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structure of the terms is determined by the factors of zeta. For us, we could have pulled
out a factor of ¢ (1 + 2v) /¢ (1 + « + ) to leave something convergent for small o and
v. One expects this to be the same for every orthogonal family (for example, we can
see the same factor in equation (2.55) of [CS]). The structure of the zetas pulled out to
ensure convergence is an identifying feature of the orthogonal symmetry as they mirror
the structure of the random matrix result (compare the structure of the ratios of “z”s, the
quantities called “y”, in section 4 of [CFZ1] for different symmetry types). The number
theory results exactly mirror these RMT results. It is not always convenient to write the
number theory results in this way when you want to calculate with them, but there is a
universal structure there. This is similar to some of the computations in [HM], where an
alternate expression for the n-level density (different than the determinantal one from
Katz-Sarnak [KaSal, KaSa2]) was derived to facilitate comparisons between number
theory and RMT).

Lemma 2.9. Let R’H;(N) (r,r) = a—iRH;(N)(a,’y) N Then for Rr > 0 the Ratios
Conjecture predicts
logp  i*u(N) 1 1
- = X (= 1 -
) (75 7) ; phier Ty ALl T 1;[ + (p— 1)p>
+0 (| ()|, (2.25)

where, as always, the N-factors are present only if N > 1.

Proof. We must differentiate the two terms in Lemma 2.6, and investigate the limit as
y — o0; see Lemma 2.2 for an explanation as to why the size of the error term is
unaffected. The first term is easily handled. Using dlog f(a)/da = f'(a)/f(a), we

see that
1 1
- H (1 - pltoty + p1+2'y)

8[ ( 1 1 )]
I (1~ +

1+« 1+2
1oJe ", p++7 p+’7

a=y=r p a=y=r
0 1 1
.~ log [H(1— - + )]
+a+ 142
a& p p ! p ! a=y=r
log p
> e (2.26)

p

where we need 3(r) > 0 to ensure that the sum converges.
We now handle the second term in Lemma 2.6. We must differentiate, with respect

to «a,
CFp(N) X (2 +a) H - plets 227)
N1 —a+7) & pr(ptetr = 1) ) '

We use the following observation (see page 7 of [CS]): if f(z, w) is analytic at (z, w) =
(r,7), then

0  fla,7)

dal(l—a+7) = —f(r,r). (2.28)

a=vy=r
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Thus the derivative of (2.27) with respect to a, evaluated at « = v = r, is

Eu(N) (1 1
Z]QLLT)XL (5 + r> I1 <1 + m) . (2.29)

p

g

Remark 2.10. If we don’t extend the sums to infinity before differentiating, we get
from Mertens’ theorem (see Appendix C) a factor of e~” in the second sum, where y
here is Euler’s constant. This is very interesting, as e~ is related to sieving primes. The
sieving constant of e~ in Mertens theorem is not 1, though for a generic sequence of
random primes (also called Hawkins primes) it is. While it is fascinating that there are
two procedures which lead to different answers, this term is of size 1/N, well beyond
any plausible hope of testing.'> See [BK, Ha, HW, Gr, NW, Wu] for some additional
comments on e .

Remark 2.11. We briefly comment on the size of the errors made at various steps in
the Ratios Conjecture. For example, consider the first piece of R,HZ( N) (r,r), namely

Zp pl?_%gpr. This piece arose from a product originally over p < v/R which we extended
to be over all p; thus the error between what we should have had and what we wrote is
Y psVE ]%. We typically evaluate this when r = € + it, and thus we have introduced

an error of size O(R™). Thus while this is smaller than any power of 1/log R, it

is significantly more than R~'/2*¢, Thus this sizable error must be canceled by other
errors if the Ratios Conjecture is to yield the correct prediction.

3. WEIGHTED 1-LEVEL DENSITY FROM THE RATIOS CONJECTURE

3.1. Main Expansion. We now compute the 1-level density for the family H}(N),
with either N = 1 and £ — oo or £ a fixed even integer and N tending to infinity
through the primes. We follow closely the arguments in [CS, Mil4].

Lemma 3.1. Assume GRH for ((s) and all L(s, f) with f € H}(N), and let ¢ be
an even Schwartz function whose Fourier transform has compact support. Denote the
weighted 1-level density for the family H;;(N) by

log R
DLH;;(N);R(@ = Z wi(NV) Z gb(W 02g7T ) (3.1)

eH (N vf
FEHE(N) L(1/2+ivy,f)=0

12This term is related to M (¢). If N = 1 we can only show M (¢) is small for o < 1/4, though based
on number theory computations we expect it to be small for o < 2 or even 22/9.
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Assuming the Ratios Conjecture, we have

~(2logp\ logp
D1,HZ(N);R(¢) - 22¢ ( logR) plog R
p

—00

27/k/,L<N) o 1 27T7/t 1 —9 'tlogN
e | Xrls 1 : i lox R b(t)dlt
+ Nlog R / L\ 9 + log R pl;][\/ - (p — 1)pimit/log R € o(t)

+

1 [ VN 1 k+1  2mit
2log ~— Sy
log R /_Oo ( R Y (4 - 4 * logR>> o(t)dt

+ O ((kN)~V/2te) (3.2)

Proof. We first compute the unscaled, weighted 1-level density 51,7 () (g) for the fam-
ily H;(N) with g an even Schwartz function,

Suman(g) = Y wiN) D glyy). (3.3)

cHf(N vf
FEH(N) L(1/2+ivf,f)=0

Letc € (% + m&);thus

Summle) = Y % (/() - /(10)) u’7‘(N>g((j,iff))g (_i (S - %)) *

feHE(N)
= Siem:vy(9) + Sti—euz v (9)- (3.4)

We argue as in §3 of [CS]. We first analyze the integral on the line $(s) = ¢. By GRH
and the rapid decay of g, for large ¢ the integrand is small. We use the Ratios Conjecture
(Lemma 2.9 with 7 = ¢ — 3 +it) to replace the o wi(N)L'(s, f)/L(s, f) term when ¢
is small. We may then extend the integral to all of ¢ because of the rapid decay of g. As
the integrand is regular at » = 0 we can move the path of integration to ¢ = 1/2. The
contribution from the error term in the Ratios Conjecture is negligible, due to g being a
Schwartz function. Thus the integral on the c-line is

L[~ 1 L'(5+(c—5+it).f)
Stemrn(9) = 5= 9 (t —i (c - —)) > wHN) = 2 2oyt
i 21 J_ o 2 ferim L(5 + (c— 5 +it), f)
1 [ log p
= 5/ 90 [Z T
p
*u(N) 1 1
v R (5 i Zt) 1;[ (1 e 1)192“) o
+ O ((kN)~1/2te) (3.5)

As

o0 , o0 - 2logp (21
/ gt)p~2dt = / g(t)e > dr = g( — ) (3.6)

o0 —0o0
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we have

1 _(2logp\ logp
Sl,c;H;(N)(g) = 5= ( o ) »

or £
Ry ——

+ O ((kN)71/2te) 3.7)

We now study Si1—¢;m7(v) (9):

Siaemm(9) = D %(ZN)/OOOO LL/((ll:((CCiZ))J{)) ( ’(1 - C) —t) (—idt).

feH(N)
(3.8)
We use the functional equation
L(S,f) = EfXL(S)L(l—S,f) (39)
to find that
L= (c+it),f) = L'c+it, f)  Xilc+il) (3.10)
L(1—(c+it), f)  L(c+it,f) Xp(c+it) '
This yields
L’c+zt f) ( .(1 ) >
S11—cHr (N / ——=Zg| iz —c)—t)dt
LizeHi (N feHZ(N) L(c+it, f) 2
X (c+it) (1
= ——c|—t]dt 3.11
o) XL(c—i-zt)g( Z(Q ) ) G-11)

The first term yields the same contribution as 51 .17+ (w) (g); this follows by sending ¢ to
1/2 and noting ¢ is an even function. Thus

21o lo
S, Zg< gp> gp

p

+% /_oo X (% + it) 1;[ (1 + m) N~"g(t)dt

1 [ X1(1/2+ it)

In investigating zeros near the central point, it is convenient to renormalize them by

the logarithm of the analytic conductor Let g(t) = ¢ (“g—iR). A straightforward com-

gb(27r§ /log R). The (scaled) weighted 1-level density

g(t)dt + O ((kN)~1/2*e) . (3.12)

putation shows that g(§) =
for the family H}(N) is

log R
Dy mx(nyr(6) = Z wi(N) Z ¢(7f ogﬂ ) = Sumzvy(g) (3.13)

€eH(N vf
FEHE(N) L(1/2+ivy,f)=0

log R
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(where g(t) = ¢ (H22) as before). Thus

2logp\ logp
D1 g (wy; = 2
L iR (@ Z (logR) plog R
2iFu(N) [ 1 . 1 i, [(tlogR
—_— Xp| =+t 1+ —n— | N7 dt
T 2t N /_OO P2 i pl;][\[ i (p— 1)p*t ¢ 27

1 [~ X’L(1/2+it)¢(tlogR

T 5 —1/2+€
2 J_oo X1(1/2 +it) o ) dt + O ((kN) ) (3.14)

Changing variables yields

2logp\ logp
D = 2
bk (9 Z (logR)plogR
2i* (N /°° 1 2mit 1 omitlog N
—_— Xr | = 1 . Tog R
+ NlogR J_ L\ 9 + log R pl;][V + (p — 1)prit/log R € o(t)dt
00 X/ < + 2mit
1 L log R
- logR/ : ) o(t)dt + O ((kN)~'/2+) . (3.15)

_ 1 2mit
oo XL <2 + logR)

Set ¢(z) = I'"(2)/T'(2). As the derivative of log X (s) is X7 (s)/XL(s), we find

X'L( + &) VN 1 (1 k+1  2rit
Pelt) - _ 2log—+—w(—+—i m) (3.16)
XL( + 1(2)7gm]2> T 2 4 IOgR

(note there are four y-terms). As ¢ is an even function, the +¢ and —¢ terms yield the
same integral, completing the proof. U

The first sum and the last integral in Lemma 3.1 will match up perfectly with terms
from the number theory calculation. In §3.2 we finish the proof of Theorem 1.2 by
analyzing the middle term.

3.2. Proof of Theorem 1.2.

Proof of Theorem 1.2. Most of the analysis for the first part of the theorem has been
done in §3.1; in particular, the expansion in (3.15). The proof is completed by Lemmas
3.2 and 3.4 below, which derive a simpler expression for the middle piece and then
show it yields a negligible contribution. U

Lemma 3.2. Let R(u) = 0. Then

U

1 S u) - =l
H(”m) = @z SULHY H(l p(p1+u+1)>’ (3.17)

p p

note the product over primes converges rapidly for (u) = 0, as each term in the
product is like 1 + O(1/p?).
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Proof. We have

11 (HW) - 1l (lel*") ‘ <1+ (p— 1)(;1+“+1)>

p

(L+5) - (1= )
- =5 ()
(1 +u) 1
EEET 11 (1 gompmrn) 6

We can rewrite this a little further, using

1;[(”<p—1><;1+u+1>) - Hp—1< -5 T)
- 1;[ 1 ()

-1
_ H<1 —]’HUH)). (3.19)
p

Substituting this into (3.18) completes the proof. U

Remark 3.3. When arguing along the lines of the Ratios Conjecture, it often greatly
simplifies the calculations to rewrite the prime products in a more rapidly convergent
manner by factoring out zeta or L-functions. In Lemma B.1 we use the above expansion
to show that the X term in the 1-level density is negligible. When N = 1 this is the
hardest part of the proof, and follows by shifting contours.

Lemma 3.4. Let

2U(N) [ (1 2mit) () it
Ma) = a7 (1 1
@) Nlog R /_Oo L\ 2 + logR) ¢(2+ 1igl§)< + —logR
dmit/log R __ 1 -
P —2mit28
11 (1  p(p'Himit/log R 4 1)) s R (1) dl (3.20)
P
If N > 1 we have M(¢) = O(1/N). Assume supp@) C (=0,0). If N = 1 then

1—4o0

M(¢) =0 (2009’“ kT3 k), which tends to zero more rapidly than k™ for any § > 0
foro < 1/4.

Proof. We use the lemmas from Appendix B to bound the relevant quantities. As ¢ is
an even function, there is no contribution from the pole of the Riemann zeta function.
Assume first N > 1. If u > 0 then

t — 1 §
‘g<2+2u+18mR>‘ >1-3 5 = 1- (%-1) >0, (3.21)
08 n*2n

As remarked above, there is no contribution from the pole of the Riemann zeta function
(since ¢ is even). We may thus subtract off the pole without changing the value of the
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integral, and note that

4mit log R
1 —
‘C ( * log R) 4mit

< (t*+1)logR (3.22)

(we could of course do far better, but a very weak bound suffices for large ¢ due to the
rapid decay of ¢). Thus the product of the zeta terms is O((t> + 1) log N). The product

over primes is bounded by
2
11— —, (3.23)
11 ( p(p — 1)>

P
which is O(1). Finally, the X -term is O(1) by Lemma B.1. Thus

1 ~ 1
M(¢) < NlogR/ (*+ Dlog R - ¢(1)dt < (3.24)

—00

(as ¢ is a Schwartz function).

Assume now that N = 1. We follow the method used in [Mil4], and replace ¢ with
t— iwk’f;f (where initially w = 0), shift contours and exploit the decay in w. By
analyzing X and the zeta factors, we see we may shift the contour to w = 2k — 1 — €
without passing through any zeros or poles. We shift to w = 221 as this will simplify

3
some of the computations. We have

2k [ 1+w  2mit ¢(2) 4t
Mo — — X (1
(¢) logR/ L( 2 +1ogR) <(2+2w+l%g)C T e R

—00

2mit . log R
A . t— dt
(w+logR) ¢< or )

(3.25)

where

T+iy
Az +iy) = [] (1 - p(p#) . (3.26)

14+z+iy
. p +1)

As ¢ is even, there is no contribution from the pole of the zeta function. In the arguments
below, we could be more explicit and subtract off this pole. The shifted term will have
a factor of size O ((w? + (t/log R)?)~') = O(1), which will not change any of the
arguments.

From Lemma B.4 we have A (w + 2””) = O(1). For any w > 0, by (3.21) the

log R

ratio of the zeta factors ¢(2) /(2 + 2w+ 7% is O(1). From Lemma B.1 we know that
for w = 2221 the X -term is O (2009% - k~*/%), and from Lemma B.3 we have

. logR log? R\" Rov

t—iw———m logR) - (¢ —_ 3.27
¢( " or ) < oxp(owlog ) ( T 6 > Sw@ine O
Thus
Row [ dt 2009% Ro®
M 2009% - kF/3) . / ‘ . (328
(@) < ) logR J_o (2 +1)" DTIE log R (3:28)
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For cuspidal newforms of level 1 and weight k, one takes (see (1.14) and (4.29) of
[ILS]) R ~ k% Asw = % the above decays more rapidly than

2000 - k5775 = 2009F . ks, (3.29)
thus as long as o < 1/4, this term decays faster than k=% for any & > 0. U

Remark 3.5. Note the results in Lemma 3.4 are significantly worse for NV = 1 than for
N — 00." This is due to the rapid growth of QAS(x +4y) in y, and leads to a significantly
reduced support. This is very similar to the difficulties encountered in studying families
of quadratic characters [Mil4], where we again had to perform a contour shift, which
restricted our results to 0 < 1 (with square-root agreement for o < 1/3). Our result
is weaker than the corresponding result in [Mil4] (we have o < 1/4 instead of o < 1)
because here the conductor is k% (whereas in [Mil4] the conductor is d) and k appears
in the Gamma factors.

Remark 3.6. Another approach to analyzing M (¢) when N = 1 is to shift the contour
very far to the right, picking up contributions from the poles of the Gamma function in
the numerator of X;. Unfortunately the resulting expressions can only be shown to be
small for o < 1/4. The poles arise when w = k — 3 + 2 for ¢ € {0,1,2,...}, and
yield contributions of

log R (24 2k —1+40T (k-1 +¢) VN 2m

(3.30)
The ¢ term is at most RZ*#~220_while the main term of I'(k— () is of size kRt
The problem is the resulting sum over ¢ is only small if o < 1/4, though based on our
number theory computations we expect it to be small for ¢ < 1 or even 0 < 2. The

difficulty is that we are ignoring all oscillation when we shift contours.

4. WEIGHTED 1-LEVEL DENSITY FROM NUMBER THEORY

We now determine the main and lower order terms in the 1-level density for the family
H(N) for as large support as possible for the Fourier transform of the test function.

~

In [ILS] the main term is determined for supp(¢) C (—2, 2); however, as they are only
concerned with the main term they are a little crude in bounding the error terms. We
perform a more careful analysis below.

In Section 4 of [ILS] the explicit formula is used to compute the 1-level density for

the family H; (N). In their paper Q = /N /x. Noting that 5(()) = [T ¢(t)dt, we may

B3In fact, for N — oo the Ratios Conjecture states we should not include M (¢). We only have it as
we are using a weaker version of their conjecture; see Remark 1.8 for additional details.

)
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rewrite the weighted sum over f € H} (V) of their equation (4.11) as

1> VN 1 k+1 2mit
D1 e (n. = 2log — -+ —
1,1 (N);R (D) log R /_OO ( og——+ (0 (4 t— logR)) o(t)dt
a(p) + B (p vlogp\ logp
-9 f f
D, wiN ZZ P2 ¢(1ogR) log R’
feH;(N) p v=l

4.1

L(s, f) = N Af;ff) =11 (1—%@)_1 (1—%@>_1. 4.2)

n=1 p

where

Note the first term agrees exactly with the last term from the Ratios Conjecture (Theo-
rem 1.2).
The following identities for the Fourier coefficients (for p| N) are standard:

Arp) = as(p) +as(p)” 17 |0éf(p)| =1, as(p)™ = B¢(p)
() = ap(p) +ap() A ap(p) T+ ap(p)
ap(p)’ +ap()™ = A0") = NP 2) (4.3)
Trivially bounding the contribution from p = N, we may thus rewrite D1 g (ny);r(¢)
as
1 o VN 1 k+1 2mit
D1 mx(n. = 2log — -+ — t)dt
Ly (V)i (9) logR/_oo< 0g — +¢(4+ 1 +logR>)¢()
Ar(p) ~ (logp '\ logp
2 Y gy Mg
FeTN) oy VD logR ) log R
Ar(p?) =1 ~(logp\ logp
2 ) W) o2
FeE(N) ooy P log R ) log R
Ar(P") = As(p"™%) = ( logp') logp
—2 Z wf ZZ pr/2 ¢ logR log R
FEH}(N) p#N v=3
1
+0 [ —
(%)
1 o VN 1 k+1 2mit
= 2log — S B t)dt
logR/_Oo< ©8 s +¢<4+ 4 +logR>)¢()

1~/ _ logp\ logp
2y —o¢|(2
* ;p(b( logR) log R

—51(¢) — Sa(0) — Ss3(¢) + O (\/%) : (4.4)
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where
Ar(p) =~ (logp '\ logp
S0 = 2 3 e SN ¢(
Pireeri oy VD logR ) log R
A ~ log p
S(¢) = 2 ), wiN)), o )¢(lo R)l R
fEH;(N) p#N &
s _ As(p” p"?) ~( logp\ logp
0 =2 S TS M 5 () ks
fEHF(N p#N v=3

The first and the second terms above perfectly match with terms from the Ratios
Conjecture. We must therefore show the other three terms are negligible. We prove
Theorems 1.4 and 1.6 in stages below; we first perform the analysis for limited support,
and then extend the support by assuming various conjectures.

4.1. Density Theorem Limited. As the arguments are similar when N — oo through
the primes and when N = 1 and £k — oo, we give complete details for N — oo and
sketch the arguments when N = 1.

Remark 4.1. It is important to note that we have included the harmonic (or Petersson)
weights in our family to facilitate applications of the Petersson formula. When using
results from [ILS], one must be careful as they have three related quantities involving
averages of the Fourier coefficients over families. The first (converting to our notation)
is their equation (2.7),

Ap(m,n) = Y wi(N)Ap(m)Ap(n); (4.6)

fEBL(N)

the weights sum to 1, and thus in this expression we have effectively divided by the
cardinality of the family. Note that we are summing over all cusp forms of weight k£ and
level NV, and not just the newforms. The second is their equation (2.54), where we sum
over just the newforms:

Ap(m)As(n)

L(Lsmef)a o c {*7 +7 _} (47)

Af n(m,n) = ((2)
fEHg(N)

Finally, we have the unweighted, pure sums (their equation (2.59)):

A7) = > Af ), o€ {x+,—} (4.8)

FEHT (N

Much effort was spent in [ILS] to remove the weights; thus when reading their paper
we must look carefully to see which variant they are using.

Lemma 4.2. Let supp(&ﬁ\) C (—0,0). Then S1(¢) < No—3+e f N5-14e gs N — o0
through the primes, and if o < 1 then S, (¢) < k**27% for N = 1 and k — oo.
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Proof. Assume N > 1 tends to infinity through the primes. We use the Petersson
formula (Lemma A.4) to bound the weighted sum of A¢(p), and find

Si(p) < 2 Z logR< VP \/]3+(pN)E>. (4.9)

As1/\/N+/p < 1/VN, wefind

log N ,
Si(¢) < Z o8 +N€+"1 < N3 L NTH(410)
p<R‘7

If now N = 1 and ¥ — oo, we use Lemma A.3 (which forces us to take 0 < 1 as
R = k?) and find

1 logp 90—k
—= 2 4.11
51(0) < 5 e R S k , (4.11)

p<k3

which is O(k~'/2) for k large. O

Remark 4.3. In the next lemma we shall see that S5(¢) and S3(¢) are extremely small
if o < 2.If o < 1, then S;(¢) < N~Y2 or k~'/2, and we obtain square-root agreement
of this term with the Ratios prediction (if N = 1 we must restrict to o < 1/4 because
of our estimate for M (¢)). For o > 1 we don’t have such phenomenal agreement (we
can take 0 < 3/2 for N — oo, but if & — oo the above arguments fail for o > 1), but
we do at least agree up to a power of N. We have not exploited any cancelation in the
Bessel-Kloosterman terms (we shall do this in §4.2), contenting ourselves here to argue
simply and crudely. The quality of our results is exactly the same as that in Theorem
5.1 of [ILS] (where they have not yet exploited properties of the Bessel-Kloosterman
terms, which is required to increase the support).

Lemma 4.4. Let supp(¢) C (—0,0).

(1) We have So(¢p) < Ni %" as N — oo through the primes, and Sy(¢) <
k=(6=30)/6+e if N = 1 and k — oo.

(2) We have S3(¢) < N2+ as N — oo through the primes, and S3(¢) <
k=0=0)/6t< if N = 1 and k — oc.

Proof. As the proofs are similar, we only prove the second statement. We first consider
N — oo. We apply the Petersson Formula (Lemma A.4) to the sums of A¢(p”) and
Ar(p”~%). As the error from the A\f(p”~?) terms is dominated by the error from the
Af(p”) terms, we only consider the former. As we evaluate ¢ at vlog p/log R with
n > 3, we may restrict the p-sums to p < R?/3 (where R = k*N). We find
el logN  pv/? ( YN)e
S, <
) <pNZ); ; V2 ( N \/N+p”/2 N )
p<RY

log® N
N

< f% +_p¢€71
p<Ro/3

< N THep N« N (4.12)
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We now examine the case when N = 1 and k — oo. We use Lemma A.2. As R = k?
and v > 3, the prime sum is restricted to p < k>*/3. We find

! 1 - € - —(5—0c €
S3(¢) < log’k Z 57 o |0/6+ Z p Y« f6mo)/6te
p§k20/3 p + k p§k2‘7/3

(4.13)
U

Remark 4.5. Even for 0 < 6 (which is well beyond current technology for analyzing
S1(p)1), S3(¢) is O(N~Y?); itis O(k~'/?) for o < 2, which is in the range of current
technology. If N > 1 then Sy(¢) = O(N~/2+) for o < 2; however, if N = 1 then we
only have square-root cancelation up to o = 2/3 (in fact, if ¢ > 5/3 then our argument
is too crude to bound this term). Thus the difficulty in showing agreement between
number theory and the Ratios Conjecture’s predictions is entirely due to S;(¢) on the
number theory side and M (¢) on the Ratios side.

4.2. Density Theorem Extended. To improve our 1-level density results for H};(V),
we need to improve our analysis of

. At (p) A(logp) log p
S (4) — 9 N , 4.14
1(¢) fE%N)wf( )% /P ¢ log R ) log R 19

We are ableA to show agreement with the Ratios Conjecture up to a power savings in
N if supp(¢) C (—o,0) with 0 < 2 (with additional analysis of S5(¢) we should be
able to extend our results up to 0 < 2 when N = 1). To do this we modify the ar-
guments in [ILS]. There are two major differences. First, they were concerned only
with the main term and N square-free, and thus some of their error terms can be sig-
nificantly improved for N prime. Second, they studied the unweighted sum (i.e., they
did not include the Petersson weights). Including the Petersson weights simplifies the

computations, though they can be done with the unweighted sum as well (see §5).

Lemma 4.6. Assume GRH for ((s), all Dirichlet L-functions and all L(s, f) with f €
Sk(N). If N — oo through the primes then Sy (¢) < N2 71+,

Proof. The most difficult part in the proofs in [ILS] were from handling the non-diagonal
terms in the unweighted Petersson formula. We bypass some of these difficulties by us-
ing weighted sums. We have

/1 21
S0 =Y [ X wi)np) ¢(1§ggg) \/ﬁfgp}%. (4.15)

p#N \ fEH}(N)

Let
) dmm./p\ ~ ( logp 2logp
Qi(m;c) = 2mi* S(m?, p;c) s < >¢< . (4.16)
il ) }%\; ( } e c logR/) \/plog R
Applying the Petersson formula (Lemmas A.1 and A.4) to S;(¢) yields
Qi (L;¢) Ro/?
Sie) = Y. 0 (5 )- 4.17)

c=0 mod N
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This is very similar to the sum P} (¢) in equation (5.15) of [ILS], with X =Y = 1,
L =1, M = N. The difference is that (5.15) has an extra factor of (k — 1) N/12, which
is basically the cardinality of H;(N). We can use the results from sections 5 through 7
of [ILS] to bound Q;(1; c). We have (see (7.1) of [ILS]) that

Qi(m;c) < Fp(2)mPY?(EN)<(log2¢) 2, (4.18)

where R = kN, P = R, z = 4nm+/P/c and 7(z) = 27%if 32 < k and k=/2
otherwise. Thus

k2N)7/2(kN)® 0 o
Sie) < Y ( CGlg 2(0)2 S NEe < B (419)
c=0 mod N
(write ¢ = ¢ N), which is negligible so long as 0 < 2. U

Remark 4.7. We briefly comment on where we use GRH for Dirichlet L-functions. If
X is a character modulo ¢, then under GRH we have

ZX Ylogp = 537—}—0( 1/210g20$>, (4.20)
p<x

where 9, = 1 if  is the principal character and 0 otherwise. In Section 6 of [ILS] they
expand the Kloosterman sum. Setting

Gy(n) = > x(a)e/e, (4.21)
we find o
gs(m,npm) = so(10) (X%;ch(a)S(m’ cm;C)) : (;Y(p) 10gp)
bre =
= ﬁ X; C Gy (m)Gy(n) (6, + O (z/?log’ cz)) (4.22)

If we did not assume GRH, the error term above would have to be replaced with some-
thing significantly larger. This estimate is a key input in the bound for Q. (m; ¢).

Lemma 4.8. Assume GRH for ((s), all Dirichlet L-functions and all L(s, f). Let
supp(¢) C (—o,0) with o < 2, N = 1, and consider the 1-level density averaged
over the weights (see Theorem 1.6 for an explicit statement). As K — oo the I-

level density agrees with the prediction from the Ratios Conjecture up to errors of size
O(K—(5—a)/6+e + Ka'—2+e).

Proof. As the proof is similar to our previous results, we merely highlight the differ-
ences. Following [ILS] (Sections 8 and 9), we average over the weights as follows. Let
h be a Schwartz function compactly supported on (0, co). The weighted 1-level density

is
A = s ¥ (M) T Duseo.62)

k: 0 mod 2 feH*(l)
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AY(K) = A, (k_l) |H;(1)] = h(0)K + O(K??).  (4.24)

The only pieces whose errors cannot be trivially added arise from S;(¢) and Sa(¢)
for each k; we now discuss how to handle these weighted averages.'* The main idea is
to exploit the oscillation in the Bessel functions as k varies. The argument is easier than
that in [ILS] due to the presence of the harmonic weights, though a similar result holds
if we remove the weights (see §5).

We first handle the average of S;(¢). Averaging over k allows us to exploit the
oscillation in the Bessel functions; this is the reason we are able to double the support.
The main input is their Corollary 8.2, which says

I(z) = 2i*h (E> Jp1(z) < zK ™, 4.25

() k;)d 2 T () (4.25)

where © = 47rm\/}_9/c, P = R° = K?, and for us m = 1 (as [ILS] remove the

harmonic weights, they have a sum over m < Y). Corollary 8.2 requires v < K?7¢,

i.e., 0 < 2 — e. The analysis of the average of S;(¢) is completed by feeding in the

estimate from their equation (8.11), which yields a bound of K°"¢~2? (remember we

already executed the summation over k£ when we bounded /(z)). Thus the total error
from the sum over k of the S;(¢) terms is O(K7+2).

We now consider the average of Sy(¢). There are two major differences between
this term and S;(¢). The first is that the Kloosterman sums are S(1,p?; ¢) instead of

S(1,p; c). The second is that we have ¢ (21°gp> 989 instead of ¢ < logp) 98P this

logR ) plogR logR ) \/plogR
leads to a shorter prime sum of smaller terms. We can modify the arguments in Section
9 of [ILS] (remembering, as in Lemma 4.6, that our sum is simpleras L = X =Y =
m = M = 1). Performing the averaging over k yields

@) (1.
Z—Q il’c), (4.26)

[

where

Adp\ ~ (2logp\ 2logp
QU = 2y sttal ()0 () o @27

and I(x) is the sum of Bessel functions (see their equation (8.7)). By their Corollary

8.2 we have ,
K - K

14Actually, we need to be a little more careful. The problem is that the analytic conductors are no
longer constant; if supp(h) C (a,b) then the conductors basically run from (aK)? to (bK)?). Fortu-
nately, an analysis of our previous arguments show that we do not need to localize the conductor exactly,
but instead only up to a constant (see also equations (4.29) and (4.30) in [ILS], and the comments imme-
diately after). Thus we may set R = K?2. The varying conductors here are significantly easier to handle
than in other families, such as one-parameter families of elliptic curves [Mill].
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The error term yields to an insignificant contribution to >°, Q?(1;¢)/c (much less
than in [ILS], due to the remarks above). Trivially estimating the Kloosterman sum by
c'/?*¢ and recalling R = K? yields a contribution of

1 1
Yo N et ks« g, (4.29)
c cK*p
c pSRa/Q

which is negligible for ¢ < 4 (and smaller than O(K ~%/2) for o < 3.5).
We now study the main term of Q) (1; c). Following [ILS] it is

2K /¢
@) (1) — _2BVTCr.
0@ (1;¢) g R T(1;¢), (4.30)
where
_ Amip cK?*\\ ~(2logp logp
. _— 2‘
T(l;¢) = ZS(l,p,c)Im{QgeXP( c )h<87rp)}¢<10g3 P2

p#EN
— = h(—\/a) U
h(v) = /0 Nz " du. 4.31)

We do not need as delicate an analysis as in [ILS]. This is because of the extra /p in the
denominator and the fact that the prime sums are up to R°/? and not R?. We trivially
estimate the Kloosterman sums and use the bound on 4 from [ILS]: for any A > 0,
h(v) < v=4. Taking A = 1 + ¢ yields

1 Jes
C§+Ep1+6 1ng K§+05—2—26

T(e) < D, sierm 7 T (4.32)
p<Ro/?
We substitute this into (4.26), and find a contribution bounded by
Z4+06—-2-25
> Kye K < K-G0, (4.33)

- C c%"'&_ﬁ
By taking ¢ sufficiently large, we can make this sum as small as we desire (and thus
smaller than the contribution from the averaged S;(¢)). g

Remark 4.9. There is a mistake right before equation (8.10) in [ILS]; it should read

2 T+n x
AT (z) = —=p (220 <—> ~1,1); 434
@) = 2 (1) +0 (5« me (L) @34)
fortunately all [ILS] use in their argument is that I’(z) < K~ when z < K?7¢, and
that is true. Also, it is worth noting that our analysis of O® uses their results for the
family {sym?f : f € H}(N)}; our support is significantly larger because (1) this is
now a 1/p term and not a 1/\/_; (2) we sum over p < R°/? and not p < R.

4.3. Hypothesis S and further extensions. Iwaniec, Luo and Sarnak [ILS] show how
a hypothesis on the size of some classical exponential sums over the primes can be used
to increase the support to beyond (—2,2). They consider
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Hypothesis S: For any x > 1, ¢ > 1 and a with (a,c) = 1 we have

i
Z exp (%\/ﬁ) & cAxote, (4.35)

p<z
p=a mod ¢

where o, A are constants with A > 0, 1/2 < « < 3/4 and € is any positive number.

They present numerous arguments (see their Section 10 and their Appendix C) in
support of the belief that Hypothesis S holds with A = 0 and o = 1/2; however, any
o < 3/4 suffices to increase the support past (—2,2)."” We show how this hypothesis
allows us to extend our computations. As [ILS] were only concerned with the main
term, their error bounds are too crude; however, some additional book-keeping suffices
to obtain all lower order terms up to a power savings in the family’s cardinality.

To prove the third statement in Theorem 1.6 we need to study the weighted averages
over k of S;(¢) (i € {1,2,3}). We note that they use the Petersson weights in their Sec-
tion 10 (and thus we are using the same normalization for our sums). From Lemma 4.4,
we see we may average S3(¢) and obtain a contribution bounded by O (K ~(5-9)/6+¢),
The analysis in Section 10 of [ILS] handles S;(¢), and shows (under the assump-

20+ A+5/4 )

tion that Hypothesis S holds) that it is O(K ~2(25=9) 4 F AT (1= ).
In particular, taking A = 0 and @ = 1/2 yields the weighted average of S;(¢) is
O(K 2(2.5—0) _i_Kf—(lf—o))

We are left with bounding the weighted average over k of Sy(¢), remembering R =

K?2. In [ILS] it is shown to be O (%), which does not suffice for our purposes.

This term contributes

5 X B0R D

where B(K) = h(0)K + O(1) (with 1(0)
K — S(1, 2, amip K? _
B 1) = _\/j]_j Im{CsZ% % h(CSTp)}-l—O(pK Y 437)

and a(v) < v~ for any 6 > 0. The O(pK~*) term in B(p?,1) leads to a contribution
of size K~(~9) which is dwarfed by the other error terms. We trivially bound the
main term in B(p?, 1) by using S(1,p?, ¢) < 2+ and h(cK2/87p) < p°/(cK?)? for
some 0 > 1/2 (we take 0 > 1/2 so that the resulting c-sum converges). This yields a
contribution to the average of Sg(gb) of

2+e
— Z Z - —CéKzé < K- QJZp‘S“ D« KUTR0® 0 (438)

p<Rcr/2

(4.36)

/\
)
o
oy

2logp\ logp
plog R’

N
=
S~—

Taking § just a little larger than 1/2 shows that this error is also dwarfed by our existing
errors (as well as being O(N 7€), which completes the proof.

15Vinogradov proved Hypothesis S with « = 7/8; assuming the standard density hypothesis for
Dirichlet L-functions allows one to take ov = 3/4.
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5. CALCULATING THE UNWEIGHTED 1-LEVEL DENSITY

Much effort was spent removing the harmonic weights in [ILS]. Below we remove
them for our family and calculate the lower order terms. We see some new, lower order
terms which did not appear in either the expansion from the Ratios Conjecture or our
number theory computations. This is not entirely surprising, as those computations
were for weighted sums.

We prove Theorem 1.9. We first concentrate on the unweighted version of S (¢),
which yields negligible contributions for ¢ < 2. We then analyze the unweighted
versions of Sy(¢) and S5(¢), and find new lower order terms. The other terms in (4.4)
are unaffected by removing the weights. We conclude by determining the prediction
from the Ratios Conjecture for the unweighted 1-level density, and show agreement
with number theory.

5.1. Analyzing the unweighted S;(¢). Below we modify the arguments in [ILS] to
show that S} unwt (¢) has negligible contribution for o < 2 when we do not include the
harmonic weights.

~

Lemma 5.1. Assume GRH for L(s, f). If supp(¢) C (—o,0) with 0 < 2, then
Shunwt (¢) < N™G=0)/6+¢ a5 N — oo through the primes, where S} uuwi(¢) is de-
fined analogously as S1(¢) except now we do not include the harmonic weights.

Proof. We use the expansions in [ILS] for A} y(p), remembering to divide by |H} (N)|.
Let X and Y be two arbitrary parameters (depending on V) to be determined later. We
let € denote an arbitrarily small number (not necessarily the same value from line to
line). We write

Apn(p) = Apn(p) + AfN(p), (5.1)
where ((2.63) of [ILS])
, k—1 M(L)M Ak,M(m2,n)
Nnp) = S TN S SR (5.2)
LM=N ’ (m,M)=1

and Ay (p) is the complementary sum. Here

(0) = [To(1) : To(0)] = (][ 53)
ple

As N is prime, so long as X < N then in A} ~(p) the only term is when L = 1 and
M = N. Thus

1 ) ~(logp\ 2logp
nw = T/ AT\ | A
S1unwt (@) |H;(N)] p%; ka(p)gb (10g R) \/g_ologR

1 ~(logp\ 2logp
+ = AN (p ( >
|H(N)| p%; en(p)o logR/) \/plog R
= Si,unwt(gé) + Sloimwt(¢)' (54)

We first show there is no contribution from the complementary sum. As we are going
for a power savings in /N and not just attempting to understand the main term, we choose
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different values for X and Y then in [ILS], and argue slightly differently. Assuming the
Riemann hypothesis for L(s f ) if log @) < log kN then (Lemma 2.12 of [ILS])

APy (p)—= <« EN(pkNXY){(X'+Y 2. (5.5)
pNZ>1 \/]3 (p )<( )

p<Q

Using partial summation, the compact support of $ and H;(N) < kN shows that the
complementary sum piece is bounded by
1 R ~ ( logp dp

S = ———— | EN@ENXY) (X '+Y %) |¢

1unwt(¢) kNlOgR/ (p ) ( + ) ¢ IOgR plOgR

< NY(X 'Y 712 (5.6)

We now analyze the contribution from A}, (p). The formulas from [ILS] simplify
greatly as we only have one (L, M) pair, and as p is not a perfect square there are no
main terms. We have

k—1)N 1 Qr(m;c)
S, ,unw (¢) = ( * - K ’ ) (57)
R 12|Hk(N)| <m;—1 mcEO;odN ¢
m<Y
where
i dmm/p\ ~ [ lo 2lo
i) = o oS () () Bt

In (5.14) of [ILS] they set X = Y = (kN)<; however, their estimates of Q) (m;c) are
independent of X and Y, and we may thus use their results. We have (see (7.1) of [ILS])
that

Qi(m;c) < Fu(z)mPY?(kN)<(log2¢) 2, (5.9)
where R = kN, P = R, z = 4nm+/P/c and 7(z) = 2% if 32 < k and k~/2
otherwise. Thus

2 /2 €
Lt (@) < > 1Y (KN)7(kN) < N3y, (5.10)

Sl
2
&
(m,N)=1  ¢=0 mod N (10g2€)
m<Y

Combining our estimates yields

St (¢) < N27IFY 4 NY(X1 4 y—1/2), (5.11)
We may take X = N — 1 (as N is prime). Equalizing the two errors involving Y, we
find we should take Y = N(=9)/3 which gives S yuwi(¢) < NZ=9)/6, O

Lemma 5.2. Assume GRH for L(s, f). If supp(@ C (—o,0) with 0 < 2, then
Stunwt (@) <K K~(@=0)/6te q¢ N = 1 and K — oo (where we average over the weights).

Proof. As the proof is similar to Lemma 5.1, we merely highlight the differences. Fol-
lowing [ILS] (Section 8), we average over the weights as follows. Let h be a Schwartz
function compactly supported on (0, 00). We consider the weighted 1-level density

A'(K;¢) = Z k:—l (K) > Dimpaue(9),(5.12)

k: 0 mod 2 feH*(l)
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where

A*(K) = 24 h(k;(l) |H(1)] = h(0)K +O(K*?).  (5.13)
k=0 mod 2

The pieces whose errors cannot be trivially added arises from S; nwi (¢) (0 € {1,2,3})
for each k. We analyze the weighted average of S1(¢) below, and then study the other
two in §5.2. The main idea is to exploit the oscillation in the Bessel functions as k
varies.

In their Lemma 2.12 we now take X = 1 and Y = K. The complementary sum
gives an error bounded by kY ~'/2. The averaging over k allows us to exploit the
oscillation in the Bessel functions; this is the reason we are able to double the support.
The main input is their Corollary 8.2, which says

I(z) = Y 2i*h (kK )Jk 1(z) < zK™, (5.14)

k=0 mod 2

where z = 47m+/P/c and P = R° = K?’. Corollary 8.2 requires z < K>, In
their arguments they take Y = K¢, and thus for them m < K¢ (recall m < Y). As
we are interested in sharper error estimates, we must take Y a small power of K. This
leads to a slight reduction in the support (our condition on x forces 0 < 2 — §). The
proof is completed by feeding in the estimate from their equation (8.11), which yields
a bound of K°9+<=2 for the term from the non-complementary piece (remember we
already executed the summation over & when we bounded /(z)).

Thus the total error from the sum over k of the S; ynwi(¢) terms is O(KY~1/2 +
K°t9+<=2) Equalizing the errors yields § = (2 — ¢)/3, or the total error from the
weighted Sy unwi (¢) terms is O(K ~(2=)/6), O

Remark 5.3. There is a mistake right before equation (8.10) in [ILS]; see Remark 4.9.

5.2. Analyzing the unweighted S(¢) and S;3(¢). We now modify our investigation
of S3(¢) and S5(¢) and remove the weights. We set

B 2 A (p” p’%) ~( logp'\ logp
S3,unwt(¢) - ‘H (N Z Z Z V/2 (b (Vlog R) logR
2
i

FEH(N) p#N v=3

)‘f logp \ logp
. 5.15
N)| Z Z (logR) log R (5-15)

fEH* (N) p#N

S2,unwt (Qb) -

|H:(N)|

We argue as in the analysis of S1 unwt(¢). As the two terms are handled analogously,
we concentrate on Sz unwt(¢). The analysis is significantly easier than the analysis of
S1,unwt (@) due to the higher power of primes (both in dividing by larger quantities and
restricting further the summation over primes). Let v = v or v — 2. We must study the
pure sums

Arn@) = D M0 (5.16)

feH(N)
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From Proposition 2.13 of [ILS] we have

Af y(n) = % 8o+ O (%) (5.17)

where the main term is present only if n is a square and (n, N) = 1. The contribution
from the error term to S; uuwt (@) is bounded by

3/6 k:N 2/3 log” R
p og
> D 7 < G (5.18)

v<log, R p<R0/3

Thus the error term yields a negligible contribution.
The main term from Proposition 2.13, however, is a different story. Whenever v is
even it will contribute, and yields

1—p~( logp)\ logp
: 5.1
Z Z (VlogR> log R .19)

v= O mod 2 p;éN

The unweighted S2(¢) term will also contribute, as it involves A;(p?). It gives another
secondary term of size 1/ log R, as well as an error of size O(N ~(6=7)/6+¢), Substituting
everything into (4.4) yields

1 % VN 1 k+1 2wt
DLH;Z(N);R(@ = logR/_ (210g7 + 1 (Z_L + i + logR>> o(t)dt

p—l logp \ logp
2
LIPS (”1ogR) log R

v=0 mod 2 N
ol 2 p#

L0 (N-V2 4 N-C-o)/oeey (5.20)

the sum starts at » = 2 and not ¥ = 4 as we have incorporated both S5 yuwt(¢) and
the Zp 1/p term in (4.4). This completes the analysis of the number theory terms in
Theorem 1.9.

5.3. Unweighted Ratios Prediction. We sketch the derivation of the prediction for the
unweighted 1-level density from the Ratios Conjecture, which completes the proof of
Theorem 1.9. We concentrate on the case N — oo through the primes. As the analysis
is similar to the weighted case, we just highlight the new terms.

The Ratios Conjecture recipe states we should replace averages over the family by the
main term, throwing away the ‘small’ error. The problem is that while >, He () WS (N)A¢(n)
is small for n > 2, it is not small for n a perfect square if we drop the weights (see
(5.17)).

We highlight the changes to Theorem 1.2 from studying the unweighted family H; ().
The first change is in Lemma 2.6. Originally we had the first term of Ry (n)(,7) as

1 1
1T (1 ~ e T plm) ; (5.21)

p
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now, however, we shall see it is

p+1 1 1 1 \!
H (1 - p pitoty T P2y (1 p2t2a : (5.22)

p

We do not worry about the changes to the second term, as it leads to a contribution of
size O(1/N).

The proof follows from mirroring the calculation in Lemma 2.6. We again split
the sum into a product over primes. We constantly use (from (4.3)) A¢(p)Af(p¥) =
Ar(p"™1) + Ap(p”*th). We average over the family by using (5.17); which says there
is no main term unless we are evaluating at a square. Thus below we drop all terms
involving \;(p)A;(p**) or A;(p**1), as these yield lower order terms. We also ignore
the product over p > x, as those terms vanish when we complete the product by sending
x — 00. Thus we have that

py(h)As(m) 11 (1 _ M) L) . (1 L M) Ar(P?) +-~.)(5.23)

m<x h%+7m%+a pr p%—i_’}/ p1+2’y p%—HX p1+2a

contributes
1T (1+ 1 )i () 1 f: Ar(P%*) + A (p*2) (5.24)
s p1+2'y — (p1+2a)k p1+a+'y pr (p1+2a)k

We now average over the family and divide by the family’s cardinality; this replaces
Ar(p*) with 1/p” (remember we ignore all error terms). Using the geometric series
formula and completing the product, after some simple algebra we find a contribution

of
1 p+1 1 1\
H (1 + ECTE. p1+a+7) (1 + p—2+2a) . (5.25)

p

For the Ratios Conjecture prediction, however, we need the derivative of this piece
with respect to a when o = v = r. We must therefore modify Lemma 2.9 as well. This
piece contributes to 1., (r,) a factor of

(p—1)logp = 1
Do = D - Dlgp) | oo (5.26)
P £ php

p p

this is very similar to what we previously had for R’H; (v (7, 7), namely

lo
3 pfi . (5.27)

p

This change propagates to Lemma 3.1, where instead of

°° log p _(2logp
/_Oog(t)zmdt = Zg< o (5.28)

p p
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we now have

/ ZZ p%p?};gpdt - ZZ _1 bgp /_ g(t)e 2 gy

p k=1 p k=1

_ ZZ —1logpA(2klogp). (5.29)
2T

p k=1

Setting g(t) = ¢ (%) and collecting all the terms completes the proof of the
Ratios Conjecture’s prediction in Theorem 1.9.

APPENDIX A. PETERSSON FORMULA
Below we record several useful variants of the Petersson formula. We define
Apn(mon) = Y wi(N)Ap(m)As(n). (A.1)
fEBR(N)
We quote the following versions of the Petersson formula from [ILS] (to match nota-
tions, note that \/w¢(N)Af(n) = ¥r(n)).
Lemma A.1 ([ILS], Proposition 2.1). We have
S : 47/
Apn(m,n) = 6(m,n) +2mi* 3" stmnie) ;| ( t m”) . (A2
c c

c=0 mod N

where 6(m, n) is the Kronecker symbol,

* d+ nd
S(m,n;c) = Z exp (2m%) (A.3)
d mod ¢

is the classical Kloosterman sum (dd = 1 mod c), and Jy,_,(z) is a Bessel function.

We expect the main term to arise only in the case when m = n (though as shown
in [HM, ILS], the non-diagonal terms require a sophisticated analysis for test functions
with sufficiently large support). We have the following estimates.

Lemma A.2 ([ILS], Corollary 2.2). We have

B 7(N) (m,n, N)73((m,n)) mn 1/2
A n(m,n) = 6(m,n)+0 (Nk5/6 o) T ) (\/ﬁ—l—k]\f) log 2mn | ,

(A.4)
where T3({) denotes the corresponding divisor function (which is the sum of the cubes
of the divisors of {).

We can significantly decrease the error term if m and n are small relative to kN

Lemma A.3 ([ILS], Corollary 2.3). If 12ny/mn < kN we have

Apx(m,n) = 8(m,n) + 0 ( 2:%32 j@%ﬁ%) T((m,n))) (A.5)
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In this paper we consider two cases, N = 1 and k — oo or k fixed and N —
oo through prime values. In the first case, there is no problem with using the above
formulas; however, in the second case we must be careful. A, y(m,n) is defined as
a sum over all cusp forms of weight k& and level N; in practice we often study the
families H (V) of cuspidal newforms of weight & and level N (if 0 = + we mean the
subset with even functional equation, if o = — we mean the subset with odd functional
equation, and if ¢ = * we mean all). Thus we should remove the contribution from the
oldforms in our Petersson expansions. Fortunately this is quite easy if /V is prime, as
then the only oldforms are those of level 1 (following [ILS], with additional work we
should be able to handle N square-free, though at the cost of worse error terms). We
have (see (1.16) of [ILS])

i k—1
[Hie (N)| ~ =5 #(N), (A.6)
where ¢(N) is Euler’s totient function (and thus equals N — 1 for N prime). The
number of cusp forms of weight £ and level 1 is (see (1.15) of [ILS]) approximately
k/12. As A\f(n) < 7(n) < n and wj(N) < N7, we immediately deduce

Lemma A.4. Let Bi*"(N) be a basis for H;,(N) and let w3 (N) be as in (1.13). For N
prime, we have

feBp (N)
Substituting yields
N €
3 WA (m)A(n) = §(m,n) + O (W)
feBRev(N)

T(N) (m,n, N)m3((m,n)) mn 1/2
+ 0 <Nk5/6 \/(m, N) (0 (\/ﬁ‘f‘ k:N) log 2mn> , (A.8)

while if 12m/mn < kN we have
> WHN)A(m)As(n) = d(m,n)

FeBev (N)

7(N)  (m,n,N)y/mn (mnN)k
© <2kN3/2 S N) + (m, N) T(<m’n>)> +0 (T

) . (A9)

Proof. The proof follows by using equations (1.13) and (1.14) in the Petersson lemmas.
g

APPENDIX B. USEFUL ESTIMATES

X (HT“’ + 1?)?;%) , with Xp(s) given by (2.9). If w = 0 it is

2k—1
O(1), while if w = 2L it is O ((M) :o k—k/3>,

Lemma B.1. Consider

3 VN
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Proof. We have
XL (1—|—w+ 27m't) _ (@)wéﬁf(%Jr%J&)_ B
2 log R 27 F(HTw_F%_i_lowgi%)

The claim follows from analyzing the ratio of the Gamma factors. As |['(z + iy)| =
II'(z — iy)| we may replace —mit/log R with +mit/log R in the Gamma function in
the numerator. The proof is thus trivial for w = 0. If w > 0 then we use the identity

r )b — L
(CL + Zy) ( CL) _ / ta+1y—1(1 o t)b_a_ldt. (B.2)
L'(b +iy) 0
Note that if @ = b then our bound is poor due to the presence of the I'(b — a) term;
however, for us that would correspond to w = 0, and in that case the ratio of the

Gamma factors is just 1.

We apply (B.2) with a = I_T“’ + % and b — a = 5. We take w = % (chosen so
thatb —a =a = %). We want w < 2k — 1 as in our applications we will be shifting
contours, and we want to avoid the pole of the numerator. The ratio of the Gamma
factors, when w = 2£=1

L, s
F<%;1+ f“) 1 1 7 4(1/0)%
L LA Q. /(t.(l—t))%alldt < A/
F<%T‘1+%) r (%)
2k

(as the integrand is largest when ¢t = 1/2). Thus for w = %’ applying Stirling’s
formula to I' (2:1) we find

(B.3)

2k—1

2k—1

k+1 2mit T 3 4 2009\ 3
X, (2= 2 < < (== k7R3 (B4
‘ L( 3 logR>' = (WV) = (wv) B
0O

Remark B.2. In the hope that this might be useful to other researchers on related prob-
lems, we sketch an alternative attack'® for estimating X; in Lemma B.1. Unfortunately

~

for our applications it also requires supp(¢) C (—1/4,1/4). In the proof above w was a
function of ; this was deadly as we had a factor of R°* = k?°* from gg from the contour
shift (see (3.27)). This forced us to take o < 1/4, as our denominator was (essentially)
k“/2. We sketch an alternative approach using Hélder’s inequality; unfortunately this
method also forces o0 < 1/4 (and gives a worse error term).

We apply (B.2) with a = 1_T“’ + % and b — a = §. We choose w = 1/8 for
definiteness and ease of exposition; similar results hold for all w, always requiring
o < 1/4. For such w, we have b — a — 1 < 0; thus the factor of (1 — ¢)*~%"! is very
large for ¢t near 1. We surmount this by using Holder’s inequality, which states that if
p,q > 1with1/p+1/q =1 then

/01 |f()g(t)]dt < (/01 |f(t)|pdt> " </01 |g(t)|th) l/q. (B.5)

16We shall use Holder’s inequality. See [HM] for another application of Holder’s inequality to bound-
ing error terms in n-level computations.
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We let f(t) = t*7', g(t) = (1 —)"*', p = 2= and ¢ = 5% in Holder’s
inequality, yielding

1 1 1/p 1 /4
/ (1=t < ( / t<“1>p) ( / (1—t)<b“1)th) . (B.6)
0 0 0

As (b—a—1)q = — 555 > —1, the integral involving 1 — ¢ is just O(1). The integral
involving ¢ is ((a — 1)p + 1) /7 <« k=Y/16%¢, For o < 1/4, the k*** term from (3.27)

will be smaller than /16,

Lemma B.3. Let ¢ be an even Schwartz function such that supp(¢) C (—o, ). Then
Pt +1iy) <ng €™ (P +yH) " (B.7)

Proof. From the Fourier inversion formula, integrating by parts and the compact support
of ¢, we have

ot +iy) = / " B ge

= /OO &5\(%) (&) - (2mi(t + iy))_%e%i(t—iy)ﬁdg

< 627r\y|a'(t2 +y2>7n. (B.8)
U
Lemma B.4. Let
. B p:p+iy -1

If x > —1 then A(x +iy) = O(1).
Proof. We have
Az +iy) < ] (1 + Qmax—(l’p)) , (B.10)

24
» p

and the product is O(1) as long as x > —1. O

APPENDIX C. MERTENS’ THEOREM AND HOW WE EXTEND THE SUMS.

We examine other ways of completing the product of the second factor in the defini-
tion of Ry (n)(«, ), and the consequences of this alternate completion on R}I; (7).

Recall this second factor contributes the product

1 pl—a-‘,-'y 1
H (1 - p1a+'y) ' (1 + P (pl-aty — 1)) ' H (1 + p1+2'y) ;

Py P>y

(C.1)

we wrote it this way as we wanted to pull out factors of 1/{(1 — « + ) before sending
y — 00. We now analyze this contribution in another manner. We do not pull out the
factors of 1/¢(1 — a + ), and we keep y fixed and finite. To find the derivative with
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respect to « forces us to analyze the following (we ignore the product over p > y for
now as these terms have no o dependence):

1 1
H (1 - pl-aty - p1+2'y) ; (C.2)

p<y

here the product over p < y follows from brute force multiplication of the two terms in
(C.1). Keeping y fixed, we now calculate the derivative of (C.2) with respect to a:

0 1 1
o [H (1 - platy + p1+2'y)]

p<y a=y=r
e e
- T pl—aty 142y
Py p p a=y=r
0 1 1
- —log [H (1 - + )]
—oty 142y
Oa o q q P
1 1 1 1\ —logg
- H(l__+ 1+2r> 'Z(l__+ 1+27"> ' : (C.3)
p<y pp <y q q a

It is here that we must be careful in how we complete the sums (i.e., in how we let
y — o0). For %(r) > 0 we write

11 (1 - }? + piQT) =11 (1 - %) 1I (1 e _11)p2r) . (C4)

p<y p<y

as R(r) > 0 the second factor is of size 1. By Mertens’ Theorem (see [Da]) we have

H(1—1) _ <1+O< ! )) (C.5)
P log y logy

p<y

Thus this product over primes tries to make our resulting term small; it is, however,
balanced by the sum over ¢ of log ¢/q, as (see [Da])

3y 84 Jogy + O(1). (C.6)
q<y
Completing the book-keeping, we find a very similar result for the second term in
Lemma 2.9. Sending y — oo gives us the second term in Lemma 2.9 but now mul-
tiplied by e™"7.

This is a fascinating observation. It shows that there are at least rwo natural answers,
and their main terms differ by e7. Which is correct? It will almost surely be impossible
to tell as N — oo, as this term contributes O(1/N), and thus is well beyond current
technology! We hope in a future paper to explore the case when N = 1 and kK — oo
further.

Moreover, there is a lot of number theory and probability theory in e~”. Instead of the
prime numbers, one could instead look at ‘random’ primes. There are many different
models one can use to generate sequences of ‘random’ primes; often for each integer
n one sets n to be prime with probability p(n) (with p(n) chosen so that the density




40

STEVEN J. MILLER

of our sequence mimics that of the primes). In these cases, the Riemann hypothesis is
true with probability one; however, now the Riemann hypothesis is the statement that
Trandom (7) = Li(z) + O(z'/?*€) (and not a statement about zeros of a corresponding
function), where 7 anqom () denotes the number of ‘random’ primes less than x. In
sieving heuristics, the number of primes at most « is about 2e =7z / log =, where 2e™7 ~
1.12292. Tt is fascinating that the difference is equivalent to the differences in viewing
the primes as random independent events versus including the congruence relations!
See [BK, Ha, HW, Gr, NW, Wu] for additional remarks on e~ 7.
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