
Sum of Consecutive Terms of Pell and Related

Sequences

Navvye Anand, Amit Kumar Basistha, Kenny B. Davenport,
Alexander Gong, Steven J. Miller, Alexander Zhu

Summer 2023

Abstract

We study new identities related to the sums of adjacent terms in the
Pell sequence, defined by Pn := 2Pn−1 +Pn−2 for n ≥ 2 and P0 = 0, P1 =
1, and generalize these identities for many similar sequences. We prove
that the sum of N > 1 consecutive Pell numbers is a fixed integer multiple
of another Pell number if and only if 4 | N . We consider the generalized
Pell (k, i)-numbers defined by p(n) := 2p(n−1)+p(n−k−1) for n ≥ k+1,
with p(0) = p(1) = · · · = p(i) = 0 and p(i + 1) = · · · = p(k) = 1 for
0 ≤ i ≤ k − 1, and prove that the sum of N = 2k + 2 consecutive terms
is a fixed integer multiple of another term in the sequence. We also prove
that for the generalized Pell (k, k − 1)-numbers such a relation does not
exist when N and k are odd. We give analogous results for the Fibonacci
and other related second-order recursive sequences.

1 Introduction

We first review some standard notation, and then describe our results. The
Fibonacci numbers are defined by

F (n) :=

 0 n = 0
1 n = 1

F (n− 1) + F (n− 2) n ≥ 2,
(1.1)

and have a closed form given by Binet’s formula:

F (n) =
φn − ψn

√
5

, (1.2)

where

φ =
1 +

√
5

2
and ψ =

1−
√
5

2
= − 1

φ
.

They are the simplest depth two constant-coefficient recurrence to study (the
simpler depth one recurrences are just pure geometric sequences). They satisfy
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numerous interesting identities and arise in various areas; see for example [Ko].
We consider the Fibonacci numbers and other recursively defined sequences of
numbers. In particular, we are interested in Pell numbers and their generaliza-
tions; we state these sequences and then our results.

Definition 1.1. Classical Pell numbers are defined by the following recurrence
and initial conditions:

P (n) :=

 0 n = 0
1 n = 1

2P (n− 1) + P (n− 2) n ≥ 2.
(1.3)

Definition 1.2. The Pell-Lucas sequence or the Companion Pell sequence is
defined by

Q(n) :=

 2 n = 0
2 n = 1

2Q(n− 1) +Q(n− 2) n ≥ 2.
(1.4)

Definition 1.3. The Lucas sequence is defined by

L(n) :=

 2 n = 0
1 n = 1

L(n− 1) + L(n− 2) n ≥ 2.
(1.5)

Definition 1.4. If terms of a recursively defined infinite sequence can be ex-
pressed in a closed form similar to that of (1.2), we call the closed form a
generalized Binet formula (see [BBILMT, Le]).

Example. Let

a := 1 +
√
2 and b := 1−

√
2 = −1

a
. (1.6)

Then the nth Pell Number is given by the generalized Binet formula:

P (n) =
an − bn

2
√
2

. (1.7)

Definition 1.5. Throughout the paper, we let C : N → N denote a natural
valued function on natural numbers.

1.1 Motivation and Results

We analyze the relationships between sums of consecutive numbers in recurrence
sequences. The first theorem below is a generalization of an observation made
by the third named author to the fifth named author (for a problem for the Pi
Mu Epsilon Journal) for sums of eight consecutive terms.
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Theorem 1.6. For any N ∈ N, the sum of 4N consecutive Pell numbers is
equal to a constant (depending on N) multiplied by the (2N + 1)st term of the
consecutive terms. In particular, we have

4N−1∑
i=0

P (n+ i) =
(a2N − b2N )√

2
P (n+ 2N), (1.8)

where

a = 1 +
√
2 and b = 1−

√
2 = −1

a
,

and therefore (a2N − b2N )/
√
2 is an integer.

Proof. The nth Pell Number is given by (1.7):

P (n) =
an − bn

2
√
2

.

Therefore, we have

4N−1∑
i=0

P (n+ i) =

4N−1∑
i=0

an+i − bn+i

2
√
2

=
an

2
√
2

4N−1∑
i=0

ai − bn

2
√
2

4N−1∑
i=0

bi (1.9)

=
an

4
(a4N − 1)− bn

4
(1− b4N )

=
an+2N

4
(a2N − b2N )− bn+2N

4
(a2N − b2N )

=
(a2N − b2N )

4
(an+2N − bn+2N )

=
(a2N − b2N )√

2
P (n+ 2N).

The above-mentioned excursion motivates the question: For which numbers
n ∈ N does the sum of n consecutive Pell numbers equal a fixed integer multiple
of another Pell number?

We answer this question for the Pell, Fibonacci and other related sequences. In
particular, for the Pell sequence we observe that multiples of 4 (see Theorem
1.6) and the trivial case of N = 1 are the only values of N that work. We
then extend our methods to generalized Pell numbers and present a conjecture
regarding when the sum of consecutive generalized Pell numbers equals a fixed
integer multiple of another generalized Pell number. Additionally, we describe
several interesting properties of Pell numbers using tilings of an n × 1 board
with polyominoes.
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2 Identities and Preliminary Results

The following lemmas describe standard identities relating Pell, Lucas and Fi-
bonacci sequences, and are used extensively in the rest of the paper. For com-
pleteness, we provide the proofs.

Lemma 2.1. For any non-negative integer k the Pell numbers satisfy

P (n+ k) + (−1)kP (n− k) = Q(k)P (n), (2.1)

where Q(k) is the kth term of the Pell-Lucas sequence given in Definition 1.2.

Proof. We proceed by induction on k, noting that the two base cases are k = 0
and k = 1. When k = 0, we have

P (n+ 0) + (−1)0P (n− 0) = 2P (n) = Q(0)P (n). (2.2)

When k = 1, we have

P (n+1)+(−1)1P (n−1) = [2P (n)+P (n−1)]−P (n−1) = 2P (n) = Q(1)P (n).
(2.3)

Now, we assume that

P (n+ k − 1) + (−1)k−1P (n− k + 1) = Q(k − 1)P (n) (2.4)

and
P (n+ k − 2) + (−1)k−2P (n− k + 2) = Q(k − 2)P (n). (2.5)

Using the recurrence relation (1.3), we have

P (n+ k) = 2P (n+ k − 1) + P (n+ k − 2).

Rearranging (2.5), we get

P (n−k+2) = 2P (n−k+1)+P (n−k) =⇒ P (n−k) = P (n−k+2)−2P (n−k+1).

Thus,

P (n+ k) + (−1)kP (n− k)

= 2P (n+ k − 1) + P (n+ k − 2) + (−1)k(P (n− k + 2)− 2P (n− k + 1)).
(2.6)

Rearranging the right-hand side of (2.6) yields

2(P (n+k−1)+(−1)k−1P (n−k+1))+(P (n+k−2)+(−1)k−2P (n−k+2)). (2.7)

We apply the inductive hypotheses (2.4) and (2.5) along with Definition 1.2 to
this expression to conclude

2Q(k − 1)P (n) +Q(k − 2)P (n) = (2Q(k − 1) +Q(k − 2))P (n)

= Q(k)P (n),

which completes the proof.
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Lemma 2.2. For the Fibonacci and Lucas numbers we have
4N−1∑
i=0

F (n+ i) = F (2N)L(n+ 2N + 1). (2.8)

Proof. We use induction and the following well-known properties of the Fi-
bonacci and Lucas Numbers [Ko, §5.3, §5.8]:

(i) F (n− 1)F (n+ 1)− F (n)2 = (−1)n. (2.9)

(ii) F (n+ k) = F (n)F (k − 1) + F (n+ 1)F (k). (2.10)

(iii) F (n− 1) + F (n+ 1) = L(n). (2.11)

(iv)

n−1∑
i=0

F (i) + 1 = F (n+ 1). (2.12)

(v)

k∑
i=0

F (n+ i) = F (n+ k + 2)− F (n+ 1). (2.13)

We now prove Lemma 2.2. First, begin by noting that for n = 0, we have

4N−1∑
i=0

F (i) = F (4N + 1)− 1 (Using (2.12))

= F (2N)F (2N + 2) + F (2N − 1)F (2N + 1)− 1 (Using (2.10))

= F (2N)(F (2N + 2) + F (2N)) (Using (2.9)

= F (2N)L(2N + 1). (Using (2.11))

Now, by our induction hypothesis,
4N−1∑
i=0

F (m + i) = F (2N)L(m + 2N + 1)

holds for all m < n+ 1. We now expand
4N−1∑
i=0

F (n+ 1 + i) using the following

manipulations:

4N−1∑
i=0

F (n+ 1 + i) = F (n+ 4N + 2)− F (n+ 2) (Using (2.13))

= F (n+ 4N + 1) + F (n+ 4N)− (F (n+ 1) + F (n))

(Using (1.1))

= F (n+ 4N + 1)− F (n+ 1) + (F (n+ 4N)− F (N)) (Rearranging terms)

=

4N−1∑
i=0

F (n+ i) +

4N−1∑
i=0

F (n− 1 + i)

(Using (2.13))

= F (2N)(L(n+ 2N + 1) + L(n+ 2N)

(Induction hypothesis)

= F (2N)L(n+ 2N + 2) (Using Definition 1.3),
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which yield the desired result.

Lemma 2.3. For the Fibonacci numbers, we have for all positive integers n

φn = F (n)φ+ F (n− 1) where φ =
1 +

√
5

2
.

Proof. We proceed by induction on n. When n = 1, the statement of the lemma
is φ = φ, which is trivially true. Similarly, n = 2 is true because φ2 = φ+ 1 is

true as 1+
√
5

2 is a root of the characteristic polynomial. Thus we may assume
the statement holds for all natural numbers less than k ≥ 3. Then

φk = φk−1 + φk−2

= (F (k − 1)φ+ F (k − 2)) + (F (k − 2)φ+ F (k − 2))

= (F (k − 1) + F (k − 2))φ+ (F (k − 2) + F (k − 3))

= F (k)φ+ F (k − 1),

which completes the proof.

3 Some General Results

One of our main goals is to determine not only when the sum of consecutive
terms in a recurrence is a fixed multiple of a term of the recurrence, but further to
determine which term. In this section we shall consider the following sequence.

Definition 3.1. Let r be a non-negative integer. Consider a sequence {f(n)}
of non-negative integers recursively defined by

f(n) := rf(n− 1) + f(n− 2)

with initial conditions so that it is not identically zero (we call this a non-
degenerate sequence).

If we set

α :=
r +

√
r2 + 4

2
and β :=

r −
√
r2 + 4

2

then the generalized Binet formula (see [BBILMT, Le])) yields

f(n) = aαn + bβn.

Theorem 3.2. Fix any integer N > 0. If there is an integer C(N) such that
for every sufficiently large n there exists an integer index j(n;N) such that the
following equation holds

N−1∑
i=0

f(n+ i) = C(N) · f(j(n;N)),
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then there is an integer k(N) such that

j(n;N) = n+ k(N) and k(N) ∈
[
N

2
, N

]
.

Proof. Define

b :=
αN − 1

C(N)(α− 1)
and k(N) := logα b,

with α, β and f as above.
Note that |α| > |β| and |β| < 1. Then by the generalized Binet’s formula

f(n) = aαn + bβn

and

lim
n→∞

|f(n)− aαn| = 0.

This implies that for any ε > 0 there exists a natural number M such that for
all n > M ,

|f(n)− aαn| < C(N) · ε
2N

. (3.1)

We choose M sufficiently large such that

|f(j(n;N))− aαj(n;N)| < ε

2
(3.2)

for all n > M .

Then∣∣∣∣∣aαj(n;N) − 1

C(N)

N−1∑
i=0

aαn+i

∣∣∣∣∣
<
∣∣∣aαj(n;N) − f(j(n;N))

∣∣∣+ 1

C(N)

∣∣∣∣∣C(N) · f(j(n;N))−
N−1∑
i=0

aαn+i

∣∣∣∣∣
<

ε

2
+

1

C(N)

∣∣∣∣∣
N−1∑
i=0

f(n+ i)−
N−1∑
i=0

aαn+i

∣∣∣∣∣
<

ε

2
+
ε

2
= ε.

(3.3)

We now have

1

C(N)

N−1∑
i=0

αn+i = αn+logα b.

7



If k(N) ̸∈ N then consider m = min{n + k(N), j(n;N)}. The conditions on
f imply that it is an increasing sequence, therefore j(n;N) → ∞ as n → ∞.
Hence m→ ∞ as n→ ∞. We also note that

∣∣∣∣∣aαj(n;N) − 1

C(N)

N−1∑
i=0

aαn+i

∣∣∣∣∣ = |a|αm
∣∣∣α|j(n;N)−n−k(N)| − 1

∣∣∣
≥ |a|αm

(
α|j(n;N)−n−k(N)| − 1

)
, (3.4)

and since j(n;N) ∈ N we have j(n;N)− n− k(N) ̸∈ Z. Similarly, since α > 1
we have α|j(n;N)−n−k(N)| − 1 > 0. Lastly, m→ ∞ as n→ ∞ and thus for large
enough n, the left hand side of (3.4) tends to infinity:

lim
n→∞

∣∣∣∣∣aαj(n;N) − 1

C(N)

N−1∑
i=0

aαn+i

∣∣∣∣∣ → ∞,

which contradicts (3.3), implying that k(N) ∈ N, and j(n;N) = n+ k(N).

We now prove that

k(N) ∈
[
N

2
, N

]
.

We begin by noting that

αN − 1

C(N)(α− 1)
= αk(N) =⇒ C(N) =

N−1∑
i=0

αi−k(N). (3.5)

Let k(N) < N
2 , then

C(N) = 1 +

k(N)∑
i=1

(
αi +

1

αi

)
+

N−1∑
i=2k(N)+1

αi−k(N).

Now, note that the coefficient of the irrational part of
N−1∑

i=2k(N)+1

αi−k(N) is a

positive integer. We now have

αi +
1

αi
= αi + (−β)i. (3.6)

Applying the binomial theorem to the above-mentioned equation gives the co-
efficient of the irrational part in αi + (−β)i for i > 1 to be

⌊ i−1
2 ⌋∑

j=1

(r2 + 4)(ri−2j+1 + (−r)i−2j+1) ≥ 0,
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which implies that C(N) is irrational, resulting in a contradiction. Therefore
k(N) ≥ N/2.

Now, by induction we get the following inequality:

n+N−1∑
i=0

f(i) < f(n+N + 1),

which proves k(N) ≤ N .
This implies that

j(n;N) ∈
[
n+

N

2
, n+N

]
.

Theorem 3.3. Given a non-degenerate sequence of non-negative integers re-
cursively defined by

f(n) := rf(n− 1) + f(n− 2),

where r ∈ N, if
3∑

i=0

f(n+ i) = C(N) · f(j(n;N))

then r = 2.

Proof. From the proof of Theorem 3.2 we have C(N) =
3∑

i=0

αi−k(N) for C(N)

a positive integer, where 2 ≤ k(N) ≤ 4. Therefore, the only possible values for
k(N) are 2, 3, 4. We will now do casework based on the value of k(N).

Case 1: k(N) = 2.

C(N) =
1

α2
+

1

α
+ 1 + α

= 1 +
2r2 + 4− 2r

√
r2 + 4

4
+

√
r2 + 4− r

2
+
r +

√
r2 + 4

2

= 1 +
r2 + 2

2
+

(
2− r

2

)√
r2 + 4.

Since r is an integer and there is no Pythagorean triple with 2 as one of the
terms, therefore

√
r2 + 4 is irrational. Thus for C(N) to be an integer, we must

have 2−r
2 = 0, therefore r = 2.
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Case 2: k(N) = 3.

C(N) =
1

α3
+

1

α2
+

1

α
+ 1

=
(r2 + 4)

√
r2 + 4− 3r(r2 + 4) + 3r2

√
r2 + 4− r3

8

+
2r2 + 4− 2r

√
r2 + 4

4
+

√
r2 + 4− r

2

=
−4r3 + 4r2 − 16r + 8

8
+

(
4r2 + 4− 4r + 4

8

)√
r2 + 4

=
−r3 + r2 − 4r + 2

2
+

(
r2 − r + 2

2

)√
r2 + 4.

Since C(N) is an integer, we must have r2 − r+ 2 = 0. But since this equation
has no integer roots, no such r exists.

Case 3: k(N) = 4.

Then C(N) =
1

α4
+

1

α3
+

1

α2
+

1

α
(3.7)

=
r4 − r3 + 5r2 − 3r = 4

2
+

(
−r3 + r2 − 3r + 1

2

)√
r2 + 4.

Since C(N) is an integer, we must have −r3 + r2 − 3r+ 1 = 0. But this has no
integer roots, so no such r exists.

Clearly, only looking at rational multiples of terms in the sequence is sufficient,
because the desired multiple can be written as a ratio of integers. The following
theorem proves why only looking at integer multiples of terms in the sequence
is sufficient.

Theorem 3.4. Define {f(n)} by the recurrence relation

f(n) := rf(n− 1) + f(n− 2)

where r ∈ N, and choose initial conditions so that f is not identically zero. Then
if the sum of N > 1 consecutive terms of {f(n)} is a fixed rational constant times
another term in the sequence, then the rational constant is an integer.

Proof. Let d = gcd(f(0), f(1)). We notice that d | f(n) for all n ∈ N and
therefore consider the equivalent sequence h(n) := f(n)/d instead. Then

gcd(h(n), h(n+ 1)) = 1
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for all n ≥ 1 since

gcd(h(n), h(n+ 1)) = gcd(h(n), rh(n) + h(n− 1))

= gcd(h(n), h(n− 1))

...

= gcd(h(0), h(1)).

Now suppose

N−1∑
i=0

f(n+ i) =
a

b
f(j(n;N)), (3.8)

where a, b ∈ Z and gcd(a, b) = 1. Dividing both sides by d, we get

N−1∑
i=0

h(n+ i) =
a

b
h(j(n;N)). (3.9)

From Theorem 3.2 we know that there exists M ∈ N such that j(n;N) =
n+k(N) for n > M . Applying (3.8) tells us that b | h(n+k(N)) for all n > M .
However, if b > 1 we reach the contradiction that gcd(f(n), f(n + 1)) ̸= 1 for
all n ∈ N. Therefore b = 1, which completes our proof.

4 Pell numbers

In Theorem 1.6, we proved that the sum of 4N consecutive Pell numbers is a
constant integer multiple of the (2N +1)st term. We generalize to other related
partial sums.

4.1 Sum of 4N + 2 Consecutive Terms

Theorem 4.1. Let P (n) denote the nth Pell number. Fix any integer N > 0.
There is no integer C(N) such that for every n there exists an integer index
j(n;N) such that the following equation holds:

2N∑
i=0

P (n+ i) = C(N)P (j(n;N)).

Proof. We note that

4N+1∑
k=0

P (n+ k) =

n+4N+1∑
k=0

P (k)−
n−1∑
k=0

P (k). (4.1)
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The following result

n∑
k=0

P (k) =
1

2

[
P (n+ 1) + P (n)− 1

]
, (4.2)

from [Br, §2, equation (2)] implies that

4N+1∑
k=0

P (n+k) =
1

2

[
P (n+4N +2)+P (n+4N +1)−P (n−1)−P (n)

]
. (4.3)

We also note that

P (n+ 4N + 2) = P (n+ 2N + 1 + (2N + 1)), (4.4)

P (n+ 4N + 1) = P (n+ 2N + (2N + 1)), (4.5)

−P (n− 1) = P (n+ 2N − (2N + 1)), (4.6)

−P (n) = P (n+ 2N + 1− (2N + 1)). (4.7)

Applying Lemma 2.1 on expressions (4.4) and (4.7) in equation (4.2), we get

P (n+ 4N + 2) + (−1)2N+1P (n) = Q(2N + 1)P (n+ 2N + 1). (4.8)

Furthermore, applying Lemma 2.1 on expressions (4.5) and (4.6) in equation
(4.2), we get

P (n+ 4N + 1) + (−1)2N+1P (n− 1) = Q(2N + 1)P (n+ 2N), (4.9)

where {Q(n)} is the companion Pell sequence given in Definition 1.2. Therefore,

4N+1∑
k=0

P (n+ k) =
1

2

[
Q(2N + 1)P (n+ 2N + 1) +Q(2N + 1)P (n+ 2N)

]
= Q(2N + 1)

(
P (n+ 2N + 1) + P (n+ 2N)

2

)
. (4.10)

Since Q(n) is even for all n (see Definition 1.2), we have
Q2N+1

2
∈ N.

We now suppose the sum of 4k+2 Pell numbers is equal to a constant multiple
of another Pell number. Then for some t1 ≥ t2 ∈ N, we have the following
equations:

rP (t1) = Q(2N + 1) · P (n+ 2N + 2) + P (n+ 2N + 1)

2
(4.11)

rP (t2) = Q(2N + 1) · P (n+ 2N + 1) + P (n+ 2N)

2
. (4.12)

Dividing the two, we get

P (n+ 2N + 1) + P (n+ 2N + 2)

P (n+ 2N) + P (n+ 2N + 1)
=

P (t1)

P (t2)
. (4.13)
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Now, let
Tm = P (m) + P (m− 1) for m ∈ N,

then Tm satisfies

2Tm−1 + Tm−2 = 2[P (m− 1) + P (m− 2)] + [P (m− 2) + P (m− 3)]

= 2P (m− 1) + 3P (m− 2) + P (m+ 3)

= [2P (m− 1) + P (m− 2)] + [2P (m− 2) + P (m+ 3)]

= P (m) + P (m− 1)

= Tm,

which gives us the following recurrence:

Tm = 2Tm−1 + Tm−2. (4.14)

By applying induction on (4.14), we deduce

2 <
Tm+1

Tm
≤ 3, (4.15)

which implies that t1 > t2 as otherwise we would have Tm+1/Tm < 1.
We now notice that if t1 ≥ t2 + 2 then

P (t2 + 2)

P (t2)
=

(
P (t2 + 2)

P (t2 + 1)

)(
P (t2 + 1)

P (t2)

)
> 4

=⇒ P (n+ 2N + 1) + P (n+ 2N + 2)

P (n+ 2N) + P (n+ 2N + 1)
> 4

=⇒ P (n+ 2N + 2) > 4P (n+ 2N) + 3P (n+ 2N + 1)

=⇒ 2P (n+ 2N + 1) + P (n+ 2N) > 4P (n+ 2N) + 3P (n+ 2N + 1)

which leads to a contradiction. Therefore, we must have t1 = t2 + 1. We now
note that

P (n+ 2N + 2) < P (n+ 2N + 1) + P (n+ 2N + 2) =
2rP (t1)

Q(2N + 1)

< 2P (n+ 2N + 2) + P (n+ 2N + 1) = P (n+ 2N + 3)

=⇒ 2r

Q(2N + 1)
<

P (n+ 2N + 3)

P (t1)

=⇒ 2r

Q(2N + 1)
̸= 1. (4.16)

Additionally, since Tm+1 = 2Tm + Tm−1, we have

gcd(Tm+1, Tm) = gcd(2Tm + Tm−1, Tm)

= gcd(Tm, Tm−1). (4.17)
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Now, note that gcd(T1, T2) = 1. Therefore, by induction we can conclude that
gcd(Tm+1, Tm) = 1. Utilizing the same argument, we deduce that gcd(P (m +
1), P (m)) = 1, but this contradicts the following statements:

rP (t2 + 1) =
Q(2N + 1)

2
Tn+2N+2, (4.18)

rP (t2) =
Q(2N + 1)

2
Tn+2N+1, (4.19)

and
2r

Q(2N + 1)
> 1, (4.20)

which are obtained by trivial substitution.

4.2 Sums of Odd Numbers of Consecutive Terms

Theorem 4.2. Let P (n) denote the nth Pell number. Fix any integer N > 0.
There is no integer C(N) such that for every n there exists an integer index
j(n;N) such that the following equation holds:

2N∑
i=0

P (n+ i) = C(N)P (j(n;N)).

Proof. Suppose that we can write the sum of any N consecutive Pell numbers
as C(N) times a Pell number for some positive integer C(N) where N is odd.
Consider the Pell sequence modulo C(N). By using the Pigeonhole Principle
and the fact that two consecutive Pell numbers uniquely determine the terms
before and after them we see that {Pn,C(N)}n≥0 := {P (n) mod C(N)}n≥0 is
periodic. The period is called the Pisano Period and is denoted by π(C(N)).

Notice that π(1) = 1 and π(2) = 2. Now consider C(N) > 2. Since {Pn,C(N)}n≥0

is not a constant sequence, therefore π(C(N)) ≥ 2, which implies that

Pc+π(C(N)),C(N) = Pc,C(N).

Now since(
2 1
1 0

)π(C(N))+1

=

(
P (π(C(N)) + 2) P (π(C(N)) + 1)
P (π(C(N)) + 1) P (π(C(N)))

)
, (4.21)

this implies that, with I2 the 2× 2 identity matrix,(
2 1
1 0

)π(C(N))

= I2 in GL2 (Z/C(N)Z) . (4.22)

Taking the determinant, we get (−1)π(C(N)) = 1, which implies that π(C(N))
is even for all C(N) > 2.
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Now let N be an odd number, to emphasize this we change notation and write
it as 2N +1. Suppose the sum of any 2N +1 consecutive Pell numbers is C(N)
times another Pell Number. Then

2N+1−1∑
i=0

P (n+ i) ≡ 0 (mod C(N)), for n ≥ 0.

Replacing n by n+ 1 we get

P (n+ 2N + 1) ≡ P (n) (mod C(N)) for all n ≥ 0,

which implies that π(C(N)) | N . However, since π(C(N)) is even when C(N) ≥
2, this implies that C(N) = 1. Thus the sum of any 2N + 1 consecutive Pell
numbers must be equal to a Pell number. In other words,

2N+1−1∑
i=0

P (n+ i) = P (j(n;N))

for some integer j(n;N) and n ≥ 0. Notice that when N = 0, we obtain
j(n;N) = n. Now suppose 2N + 1 is an odd integer greater than 1. Then, we
have

2N+1−1∑
i=0

P (n+ i) > P (n+ 2N + 1− 1).

However,

2N+1−1∑
i=0

P (n+ i) <

n+2N+1−1∑
i=0

P (i) < P (n+ 2N + 1)

where the last inequality can be proven by using induction based on the value
of n+ 2N + 1. We conclude that

P (n+ 2N + 1− 1) <

2N+1−1∑
i=0

P (n+ i) < P (n+ 2N + 1),

and hence the sum of 2N+1 consecutive Pell numbers is a fixed integer multiple
of a Pell Number if and only if N = 0.

We will use a proof of a similar flavor in 6.5.

5 Fibonacci Numbers

We now prove similar results for the Fibonacci numbers. In particular, we show
that the sum of N consecutive Fibonacci numbers is equal to a fixed constant
multiple of a Fibonacci number if and only if N ≡ 2 (mod 4), N = 3, or N = 1.
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5.1 Sum of 4N + 2 Consecutive Terms

Theorem 5.1. Let F (n) denote the nth Fibonacci number, and L(n) denote
the nth Lucas number. Fix any N > 0. The following equation

4N+1∑
i=0

F (n+ i) = L(2N + 1)F (n+ 2N + 2),

holds for all n.

Proof. The Fibonacci numbers are the solutions to

F (n) = F (n− 1) + F (n− 2)

with F (0) = 0 and F (1) = 1, while the Lucas Sequence are the solutions to the
same recurrence

L(n) = L(n− 1) + L(n− 2),

but with initial conditions L(0) = 2 and L(1) = 1. It is well known (see [Ko,
Theorem 5.1]) that

n∑
i=0

F (i) = F (n+ 2)− 1.

A straightforward induction yields F (n+k)+(−1)kF (n−k) = L(k)F (n), and
therefore

4N+1∑
i=0

F (n+ i) = F (n+ 4N + 3)− F (n+ 1)

= L(2N + 1)F (n+ 2N + 2),

(5.1)

which completes the proof.

5.2 Sum of 4N Consecutive Terms

Theorem 5.2. Let F (n) denote the nth Fibonacci number. Fix any integer
N > 0. There is no integer C(N) such that for every n there exists an integer
index j(n;N) such that the following equation holds:

4N−1∑
i=0

F (n+ i) = C(N)F (j(n;N)).

Proof. From Lemma 2.2 we have

4N−1∑
i=0

F (n+ i) = F (2N)L(n+2N +1) = F (2N)(F (n+2N)+F (n+2N +2)).

Now setting Tm = F (m)+F (m+2) and repeating the proof of the 4N +2 case
for Pell numbers gives us the desired result.
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5.3 Sums of Odd Numbers of Consecutive Terms

We note that any Fibonacci number is one times itself and the sum of any three
consecutive Fibonacci numbers is two times the third term. We prove that these
are the only solutions for odd cases with the following theorem.

Theorem 5.3. Let F (n) denote the nth Fibonacci number. Fix any integer
N ≥ 2. There is no integer C(N) such that for every n there exists an integer
index j(n;N) such that the following equation holds:

2N∑
i=0

F (n+ i) = C(N) · F (j(n;N)).

Proof. The proof of Theorem 3.2, specifically, 3.5 tells us that if the sum of N
consecutive Fibonacci numbers is C(N)-times another Fibonacci number, then

b =
(φN − 1)

C(N)(φ− 1)
=

N−1∑
i=0

φi

C(N)
= φγ for some γ ∈ N.

Using an argument of a similar flavor to Section 4.2, we deduce that C(N) must
either be 1 or 2.

Now, Lemma 2.3 tells us that

b =

φ
N−1∑
i=1

F (i) +
N−2∑
i=1

F (i) + 1

C(N)
(5.2)

=
(F (N + 1)− 1)φ+ F (N)

C(N)
, (5.3)

where C(N) is either 1 or 2. Since for n ≥ 3, b ≥ α, we let b = αm where m ≥ 1.
Thus, we get

(F (N + 1)− 1)φ+ F (N)

C(N)
= F (m)φ+ F (m− 1),

which implies that

F (m− 1) =
F (N)

C(N)
and F (m) =

F (N + 1)− 1

C(N)
.

We now consider the two cases, C(N) = 1 and C(N) = 2.

Case 1: C(N) = 1.
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If C(N) = 1, we see that if m ̸= 3 then m = N + 1 leads to a contradiction,
therefore m = 3 and thus N = 1.

Case 2: C(N) = 2.

If C(N) = 2 then Carmichael’s Theorem [Ca] tells us that for n > 13, F (n)
has a prime factor not present in the previous Fibonacci numbers. Therefore,
we only need to check the cases where n ≤ 13. Checking for the smaller cases
we realize that N = 3 is the only case where F (N)/2 is another Fibonacci
number.

6 Generalized Pell and Fibonacci Numbers

We adapt our previous results to a generalization of the Pell numbers that
satisfies a (k + 1)st order recursion, where k ∈ N. We also conjecture that for
k > 1, the sum of N consecutive generalized Pell numbers is a fixed integer
multiple of another term of the sequence if and only if N = 2k + 2. Finally, we
prove similar properties for a generalization of the Fibonacci numbers.

6.1 Definition

In [Ki] the authors consider the following generalization of the Pell numbers (we
slightly modify their notation as we start our indexing at n = 0).

Definition 6.1. Generalized Pell (k, i)-numbers are the solutions to the follow-
ing recursion with given initial conditions:

P i
k(n) = 2P i

k(n− 1) + P i
k(n− k − 1) (6.1)

with P i
k(0) = P i

k(1) = · · · = P i
k(i) = 0

and P i
k(i+ 1) = P i

k(i+ 2) = · · · = P i
k(k) = 1

where 0 ≤ i ≤ k − 1. (k ∈ N).

6.2 Sum of 2k + 2 Consecutive Terms

Applying the following formula from [Ki, §4, Theorem 19], we get

n∑
i=0

P k−1
k (i) =

1

2

(
−1 +

k∑
i=0

P k−1
k (n− i+ 1)

)
(6.2)

where n ≥ k − 1. We prove a result similar to Theorem 1.6 for the generalized
Pell sequence.

Theorem 6.2. For n ≥ k we have

2k+1∑
i=0

P k−1
k (n+ i) = 4P k−1

k (n+ 2k). (6.3)

18



Proof. Let

Sn =

n∑
i=0

P k−1
k (i). (6.4)

Note that the first k − 1 terms in this sum are 0.

We proceed by induction on n, starting at n = k for the base case. Shifting
indices on (6.4) for n = k gives

2k+1∑
i=0

P k−1
k (k + i) =

3k+1∑
i=k

P k−1
k (i) = S3k+1.

Noting that the first k − 1 terms of Sn are all zero, we find

S3k+1 = S3k + 2P k−1
k (3k) + P k−1

k (2k)

= S2k−1 + 2P k−1
k (2k) +

3k−1∑
i=2k+1

P k−1
k (i)︸ ︷︷ ︸

(6.5)

+3P k−1
k (3k).

Now, we consider

S := S2k−1 + 2P k−1
k (2k) +

3k−1∑
i=2k+1

P k−1
k (i). (6.5)

Since the first k − 1 terms of the sum in (6.4) are zero,

S2k−1 =

2k−1∑
i=0

P k−1
k (i)

=

2k−1∑
i=k

P k−1
k (i)

= P k−1
k (k) +

2k−1∑
i=k+1

P k−1
k (i).
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Then, applying recursion (6.1) to (6.5), we find

S =

2k−1∑
i=k+1

P k−1
k (i) + P k−1

k (2k + 1) +

3k−1∑
i=2k+1

P k−1
k (i)

=

2k−1∑
i=k+1

P k−1
k (i) + 2P k−1

k (2k + 1) +

3k−1∑
i=2k+2

P k−1
k (i)

=

2k−1∑
i=k+2

P k−1
k (i) + 2P k−1

k (2k + 1) + P k−1
k (k + 1) +

3k−1∑
i=2k+2

P k−1
k (i)

...

= 2P k−1
k (3k − 1) + P k−1

k (2k − 1) = P k−1
k (3k), (6.6)

where the final reduction of S results from alternatively removing terms indexed
by the lower bounds of each of the summations and then applying recursion
(6.1). Thus we have S3k+1 = S + 3P k−1

k (3k) = 4P k−1
k (3k), proving the base

case.
Now, by the induction hypothesis we have

2k+1∑
i=0

P k−1
k (n− 1 + i) = 4P k−1

k (n+ 2k − 1), (6.7)

and by (6.2) we have

2k+1∑
i=0

P k−1
k (n− 1 + i) =

n+2k∑
i=0

P k−1
k (i)−

n−2∑
i=0

P k−1
k (i)

=
1

2

(
k∑

i=0

P k−1
k (n+ 2k + 1− i)−

k∑
i=0

P k−1
k (n− 1− i)

)
. (6.8)

Combining (6.7) and (6.8) we get

k∑
i=0

P k−1
k (n+ 2k + 1− i)−

k∑
i=0

P k−1
k (n− 1− i) = 8P k−1

k (n+ 2k − 1). (6.9)
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Furthermore, we have

2k+1∑
i=0

P k−1
k (n+ i) =

1

2

(
k∑

i=0

P k−1
k (n+ 2k + 2− i)−

k∑
i=0

P k−1
k (n− i)

)

=
1

2

(
P k−1
k (n+ 2k + 2)− P k−1

k (n+ k + 1) + 8P k−1
k (n+ 2k − 1)

+ P k−1
k (n− k − 1)− P k−1

k (n)
)

=
1

2

(
2P k−1

k (n+ 2k + 1) + 8P k−1
k (n+ 2k − 1)− 2P k−1

k (n− 1)
)

=
1

2

(
2P k−1

k (n+ 2k + 1)− 2P k−1
k (n+ k) + 2P k−1

k (n+ k)

− 2P k−1
k (n− 1) + 8P k−1

k (n+ 2k − 1)
)

=
1

2

(
4P k−1

k (n+ 2k) + 4P k−1
k (n+ k − 1) + 8P k−1

k (n+ 2k − 1)
)

= 4P k−1
k (n+ 2k). (6.10)

We obtain the last equation by using

P k−1
k (n+ k − 1) + 2P k−1

k (n+ 2k − 1) = P k−1
k (n+ 2k). (6.11)

Now, consider

2k+1∑
i=0

P k−1
k (n+ i) =

1

2


k∑

i=0

P k−1
k (n+ 2k + 2− i)︸ ︷︷ ︸

s1 (6.13)

−
k∑

i=0

P k−1
k (n− i)︸ ︷︷ ︸

s2 (6.14)

 . (6.12)

We have the following explicit formulas for s1 and s2:

s1 = P k−1
k (n+ 2k + 2)− P k−1

k (n+ k+ 1) +

k∑
i=0

P k−1
k (n+ 2k + 1− i), (6.13)

s2 = P k−1
k (n)− P k−1

k (n− k − 1) +

k∑
i=0

P k−1
k (n− i− 1). (6.14)

We now note that the RHS of 6.13 and 6.14 are particularly amenable to ma-
nipulation, and therefore turn our attention towards 1

2 (s1 − s2).
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Thus, we have

1

2
(s1 − s2) =

1

2

(
P k−1
k (n+ 2k + 2)− P k−1

k (n+ k + 1) + 8P k−1
k (n+ 2k − 1)

+ P k−1
k (n− k − 1)− P k−1

k (n)
)

=
1

2

(
2P k−1

k (n+ 2k + 1) + 8P k−1
k (n+ 2k − 1)− 2P k−1

k (n− 1)
)

=
1

2

(
2P k−1

k (n+ 2k + 1)− 2P k−1
k (n+ k) + 2P k−1

k (n+ k)

− 2P k−1
k (n− 1) + 8P k−1

k (n+ 2k − 1)
)

=
1

2

(
4P k−1

k (n+ 2k) + 4P k−1
k (n+ k − 1) + 8P k−1

k (n+ 2k − 1)
)

= 4P k−1
k (n+ 2k). (6.15)

Setting k = 1 in Theorem 6.3, we obtain the following corollary.

Corollary 6.3. The sum of any four consecutive Pell numbers is a four times
the third Pell number:

3∑
i=0

P (n+ i) = 4P (n+ 2). (6.16)

The partial sum formula of Pell numbers along with the identity

P (n+ k) + (−1)kP (n− k) = Q(k)P (n), k ∈ N ∪ {0} (6.17)

proven in Lemma 2.1, can be used to give an alternate proof of Theorem 1.6.
Although we have a similar partial sum formula for P k−1

k , there is no obvious
way to extend this partial sum to a general property of adding consecutive
generalized Pell numbers to get a multiple of another generalized Pell number
for arbitrary k > 1. For k > 1, we haven’t been able to find N ̸= 2k+2 such that
the sum of N consecutive generalized Pell-(k, i) numbers is an integer multiple
of another generalized Pell-(k, i), suggesting the following conjecture.

Conjecture 1. Fix any integer N > 0. There exists an integer C(N) such that
for every n there exists an integer index j(n;N) such that the following equation
holds

N∑
i=0

P i
k(n+ i) = C(N) · P i

k (j(n;N))

if and only if N = 2k + 2.

Theorem 6.4. For 0 ≤ i ≤ k − 1 we have

2k+1∑
j=0

P i
k(n+ j) = 4P i

k(n+ 2k). (6.18)
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Proof. In [Ki, §2, Corollary 2] they prove for n > k that

P k−1−j
k (n) = P k−1

k (n) +

j−1∑
i=0

P k−1
k (n− k + i). (6.19)

This along with Theorem 6.3 gives the result.

6.3 Sum of Odd Number of Consecutive Terms

The same argument given for the classical Pell numbers (4.2) can be generalized
for the sequence {P k−1

k (n)}n≥0 where k is an odd natural number. This is
because from [Ki, §2,Theorem 2] we have the following equality:

2 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


n

=


P k−1
k (n+ p+ 1) P k−1

k (n+ 1) · · · P k−1
k (n+ p− 1) P k−1

k (n+ p)

P k−1
k (n+ p) P k−1

k (n) · · · P k−1
k (n+ p− 2) P k−1

k (n+ p− 1)

P k−1
k (n+ p− 1) P k−1

k (n− 1) · · · P k−1
k (n+ p− 3) P k−1

k (n+ p− 2)
...

...
. . .

...
...

P k−1
k (n+ 1) P k−1

k (n− p+ 1) · · · P k−1
k (n− 1) P k−1

k (n)

 .

Since

det


2 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

 = (−1)k = −1,

we obtain the following theorem.

Theorem 6.5. Fix any integer N > 0. There is no integer C(N) such that for
every n there exists an integer index j(n;N) such that the following equation
holds:

2N∑
i=0

P k−1
k (n+ i) = C(N) · P k−1

k (j(n;N)).

Proof. The proof follows from the discussion above and from the proof of the
odd case for the classical Pell numbers.

We now prove the following stronger theorem for the generalized Pell sequence.
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Theorem 6.6. Fix any odd integer N > 0, and even integer k ≥ 0. Suppose
that there exists an integer C(N) such that for every n there exists an integer
index j(n;N ; k) such that the following equation holds:

N−1∑
i=0

P k−1
k (n+ i) = C(N)P k−1

k (j(n;N ; k)).

Then,

i) 2 ∤ C(N) and

ii) N > 2k + 2.

Proof. i) By induction we know that an : = P k−1
k (n) (mod 2) is of the form

an =

{
1, if (k + 1) | (n+ 1)
0, otherwise.

Let N = q(2k+2)+ r. Since N is odd, we have 1 ≤ r ≤ 2k+1. Now take
any n such that n ≥ k + 1 and (k + 1) | n. We now prove that 2 ∤ C(N).
Define 

Sn,N :=
q(2k+2)∑
i=−r+1

P k−1
k (n+ i) if r ≤ k + 1,

Sn,N :=
N−1∑
i=0

P k−1
k (n+ i) if r > k + 1.

Using the explicit form of an we conclude that Sn,N is odd in both cases,
and therefore C(N) must be odd.

ii) By the same argument, we know that π(p) | N where p is any prime
dividing C(N). Similarly, using the previous argument, we also know
that p > 3. Now since

P k−1
k (0) = P k−1

k (1) = · · · = P k−1
k (k − 1) = 0,

and P k−1
k (k) = 1, we must have

P k−1
k (π(p)) ≡ P k−1

k (π(p) + 1) ≡ · · · ≡ P k−1
k (k − 1) ≡ 0 (mod p).

However, we know that

P k−1
k (k + i) = 2i for 1 ≤ i ≤ k,

and since k ≥ 2, we have

P k−1
k (2k + 1) = 2k+1 + 1

P k−1
k (2k + 2) = 2k+2 + 4

P k−1
k (2k + 3) = 2k+3 + 12.
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Now as p > 2, we know that π(p) > 2k. We notice that if π(p) = 2k + 1,
then p | 2k+1 + 1 and p | 2k+2 + 4 which implies p | 2: a contradiction.
Similarly, if p = 2k + 2, then p | 2k+2 + 4 and p | 2k+3 + 12 which implies
p | 4 which is also a contradiction. Therefore, π(p) > 2k+2 which implies
N > 2k + 2.

6.4 Tilings and Generalized Pell Sequence

In [BSP] the authors proved certain properties related to the Pell numbers using
tilings of an n × 1 board. We generalized some of the properties for P k−1

k (n).
Let us first define a sequence (pk,n)n≥0 such that

pk,n := P k−1
k (n+ k). (6.20)

It is not difficult to see that pk,n counts the number of tilings of an n× 1 board
using black 1× 1 squares, white 1× 1 squares and grey (k+1)× 1 polyominoes.

Theorem 6.7. We have

pk,(k+1)n+r+1 =


2

n∑
m=0

pk,m(k+1)+r, 0 ≤ r < k

2

n∑
m=0

pk,m(k+1)+r + 1, r = k.

(6.21)

Proof. Firstly, assume that r < k. Now, consider the tiling of a [(k + 1)n +
r + 1] × 1 board, with the cells on the board numbered from left to right 1 to
(k+1)n+r+1. Let t be the location of the last 1×1 cell in the tiling. Black or
white squares cannot cover the cells to the right of t, so they must be covered
by (k+1)× 1 polyominoes. Therefore, t is of the form (k+1)m+ r+1. In this
case, the number of tilings of the board is 2pk,mk (accounting for the fact that
cell t can be covered by either black or white 1×1 squares), proving the identity.

Now, let us assume that r = k. We can still cover the board with black and
white squares as well as grey polyominoes as we discussed in the previous case,

yielding 2
n∑

m=0
pk,m(k+1)+r tilings of the board. However, since the length of the

board is now (k + 1)(n + 1), it is possible the board can be covered without
black and white squares altogether. We add this new case to the total number
of tilings, proving the second identity.

Note that (6.2) also follows from this result. An alternate proof using matrices
is given in [Ki, §4, Theorem 19], which can be generalized further.
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Definition 6.8. Define the sequence {fk(n)} as follows:

fk(n) := afk(n− 1) + bfk(n− k − 1) a, b ∈ N
with fk(0) = fk(1) = · · · = fk(k − 1) = 0 and fk(k) = 1 where k ∈ N.

Definition 6.9. Define the sequence {pk,n} as follows:

pk,n := fk(n+ k) for n ∈ N ∪ {0}.

Theorem 6.10.

pk,(k+1)n+r+1 =


a

n∑
m=0

bn−mpk,m(k+1)+r, 0 ≤ r < k

a
n∑

m=0
bn−mpk,m(k+1)+r + 1, r = k

(6.22)

Proof. Analogous to the proof of Theorem 6.7.

6.5 Generalized Fibonacci sequence

Define the order-k generalized Fibonacci sequence by

fk(n) :=

k∑
i=1

fk(n− i) (6.23)

with fk(1) = fk(2) = · · · = fk(k − 1) = 0 and fk(k) = 1.

Its generating matrix (see [KiTa]) is given by
1 1 . . . 1 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

 . (6.24)

A similar argument to the generalized Pell case in Section 6.3 tells that the
Pisano Period for fk(n) is even modulo n whenever n > 2 and k is even, and
yields the following Theorem.

Theorem 6.11. Let Fk(n) denote the nth order-k Fibonacci number where k
is even. Fix any N > 0. There is no integer C(N) such that for every n there
exists an integer index j(n;N) such that the following equation holds:

2N∑
i=0

Fk(n+ i) = C(N) · Fk( j(n;N) ).
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Proof. Let the sum of any 2N + 1 consecutive terms in the kth Fibonacci se-
quence be C(N) times another integer in the Fibonacci Sequence. An argument
similar to Theorem 4.2 rules out the cases C(N) > 2. Therefore, we just need
to take care of the cases when C(N) = 1, 2.

Case 1: C(N) = 1.

By induction on r > 2k + 1, we have

r∑
n=0

fk(n) < fk(r + 2), (6.25)

which implies

2N∑
i=0

fk(n+ i) ≤
n+2N∑
i=0

fk(i) < fk(n+ 2N + 2).

From the definition of the order-k generalized Fibonacci sequence, for 2N > k+1
we have

fk(n+ 2N + 1) <

2N∑
i=0

fk(n+ i),

and thus C(N) ̸= 1.

Case 2: C(N) = 2.

Define

λk := lim
n→∞

fk(n+ 1)

fk(n)
.

We now note that [KuSi, §11, Theorem 9] states λk + λ−k
k = 2, which implies

that λk < 2 and hence for n > 2k + 1 we have fk(n + 1)/fk(n) < 2. Applying
(6.25) thus implies

r∑
n=0

fk(n) < fk(r + 2) < 2fk(r + 1). (6.26)

Now since, 2N > k+1, from the definition of the order-k generalized Fibonacci
sequence we have

fk(n+ 2N) <

2N−1∑
i=0

fk(n+ i) =⇒ 2fk(n+ 2N) <

2N∑
i=0

fk(n+ i).

Lastly, we have

2fk(n+ 2N) <

2N∑
i=0

fk(n+ i) <

n+2N∑
i=0

fk(i) < 2fk(n+ 2N + 1), (6.27)

which implies C(N) ̸= 2, completing the proof.
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7 Other Second-Order Recurrence Relations

Below we generalize some of the earlier results and proofs to other second-
order recurrence relations. We prove novel results regarding the partial sums of
consecutive terms of generalized Pell-like second-order recursive sequences.

7.1 Sum of 4N + 2 Consecutive Terms

We again consider sequences f(n) satisfying the recurrence relation

f(n) := rf(n− 1) + f(n− 2),

but now we choose f(0) = 0 and f(1) = 1 and r ≥ 2.

Theorem 7.1. Let f be as above, and fix any integer N > 0. There is no
integer C(N) such that for every n there exists an integer index j(n;N) such
that the following equation holds:

4N+1∑
i=0

f(n+ i) = C(N)f( j(n;N) ).

Proof. Define the sequence g(n) by g(0) = 2, g(1) = r and

g(n) := rg(n− 1) + g(n− 2). (7.1)

Using induction on k, we find

f(n+ k) + (−1)kf(n− k) = g(k)f(n). (7.2)

Using (6.22) we get

n∑
k=0

f(n) =
1

r

(
f(n) + f(n+ 1)− 1

)
. (7.3)

Therefore, we have

4N+1∑
k=0

f(n+ k) =

n+4N+1∑
k=0

f(k)−
n−1∑
k=0

f(k)

=
1

r

[
f(n+ 4N + 1) + f(n+ 4N + 2)− f(n− 1) + f(n)

]
=

1

r

[
g(2N + 1)f(n+ 2N + 1) + g(2N + 1)f(n+ 2N)

]
= g(2N + 1)

f(n+ 2N + 1) + f(n+ 2N)

r
.

Further by induction on N we know that
g(2N + 1)

r
∈ N.
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Now suppose the sum of 4N +2 terms is a fixed multiple of another term. Then
for some t1 ≥ t2 ∈ N, the following equations hold:

sf(t1) = g(2N + 1)
f(n+ 2N + 2) + f(n+ 2N + 1)

r

sf(t2) = g(2N + 1)
f(n+ 2N + 1) + f(n+ 2N)

r
. (7.4)

Dividing both sides yields

f(n+ 2N + 1) + f(n+ 2N + 2)

f(n+ 2N) + f(n+ 2N + 1)
=

f(t1)

f(t2)
. (7.5)

Now for m a positive integer let

Tm := f(m) + f(m− 1).

Then Tm satisfies the following recurrence:

rTm−1 + Tm−2 = rf(m− 1) + rf(m− 2) + f(m− 2) + f(m− 3)

= f(m) + f(m− 1)

= Tm.

Using this recursion and induction it follows that

r <
Tm+1

Tm
≤ 3r

2
, (7.6)

which implies that t1 > t2. If t1 ≥ t2 + 2 then

f(t2 + 2)

f(t2)
=

rf(t2 + 1) + f(t2)

f(t2)

=
r2f(t2) + rf(t2 − 1)

f(t2)
+ 1

> r2 + 1,

(7.7)

which leads to a contradiction as r ≥ 2 =⇒ r2 > 3r/2. Thus we must have
t1 = t2 + 1.

Now we know that

f(n+ 2N + 2) < fn+2N+1 + fn+2N+2

=
rsft1
g2N+1

< fn+2N+3,
(7.8)

and therefore c = rs/g2N+1 cannot possibly equal 1. Lastly, we note that

gcd(Tm+1, Tm) = gcd(rTm + Tm−1, Tm)

= gcd(Tm, Tm−1).
(7.9)
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Applying induction proves that this gcd is 1. The same argument shows that
gcd(fm+1, fm) = 1, but this contradicts the following statements:

sf(t2 + 1) =
g(2N + 1)

r
Tn+2N+2, (7.10)

sf(t2) =
g(2N + 1)

r
Tn+2N+1 (7.11)

and c > 1, (7.12)

which completes our proof.

Note that in the above proof the result does not hold for r = 1, which is the
Fibonacci sequence (see Theorem 5.2). Recall that the sum of 4N+2 consecutive
Fibonacci numbers is a fixed integer multiple of another Fibonacci number (see
Theorem 5.1).

7.2 Sum of Odd Number of Consecutive Terms

Let a be any integer, x, y ≥ 0 and y be odd. Define {f(n)} to be the sequence
following the recurrence relation

f(n) := 2af(n− 1) + f(n− 2)

with f(0) = 2x, f(1) = y and 4axy + 4x2 − y2 = −1.

Theorem 7.2. Let f be as above and fix any N > 0. There is no integer
C(N) such that for every n there exists an integer index j(n;N) such that the
following equation holds:

N−1∑
i=0

f(n+ i) = C(N)f( j(n;N) ).

Proof. Assume that

N−1∑
i=0

f(n+ i) = C(N)f(j(n;N))

where C(N) > 1. We now prove the following lemma, which allows us to look
at the distribution of residues modulo primes.

Lemma 7.3. There exists no prime p such that p | f(n) for all n ≥ 0.

Proof. We prove the lemma by contradiction, and divide the proof into two
cases: p = 2 and p > 2.

Case I: p = 2.

Since p = 2, and p | f(n) for all n ≥ 0, this implies that p | f(1) = y, which is
odd, which immediately leads to a contradiction. Hence, p ̸= 2.
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Case II: p > 2.

Since p | 2x and p | y, this implies that x, y ≡ 0 (mod p). Let x = k1p
and y = k2p for some k1, k2 ∈ N2. We now employ the following manipulations:

4axy + 4x2 = y2 − 1

=⇒ 4a(k1p)(k2p) + 4(k1p)
2 = (k2p)

2 − 1

=⇒ 4ak1k2p
2 + 4k21p

2 = k22p
2 − 1

=⇒ p2(4ak1k2 + 4k21) = k22p
2 − 1

=⇒ 4ak1k2 + 4k21 = k22 −
1

p2
.

Note that the LHS is an integer, whereas the RHS is not. This results in a
contradiction, which completes our proof.

Now, an argument of similar flavor to Theorem 4.2 tells us that the sequence is
periodic modulo n for any natural number n with a period π(n) ≥ 2. Therefore,
if we can prove π(n) is even then the rest of the argument in Theorem 4.2 also
follows. The given condition implies π(2) = 2, therefore, let us assume n > 2.

Define

h(n) := 2ah(n− 1) + h(n− 2)

with h(0) = 0, h(1) = 1.
(7.13)

Furthermore, let πh(n) be the period of h(n) modulo n. A simple proof by
induction yields (

2a 1
1 0

)n+1

=

(
h(n+ 2) h(n+ 1)
h(n+ 1) h(n)

)
,

and then the same argument as for the Pell numbers (Theorem 4.2) gives(
2a 1
1 0

)πh(n)

= In mod n. (7.14)

Also, induction on n gives(
2a 1
1 0

)n(
2ay + 2x y

y 2x

)
=

(
f(n+ 2) f(n+ 1)
f(n+ 1) f(n)

)
,

and

det

(
2ay + 2x y

y 2x

)
= 4axy + 4x2 − y2 = −1 ̸= 0.

We note that 4axy+4x2−y2 = ±1, but since y is odd, we can write y = 2k+1,
and quickly realize that 4axy+4x2 = (2k+1)2+1 has no solutions. Therefore,
we only consider 4axy + 4x2 − y2 = −1.
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We now have

(
2a 1
1 0

)π(n)(
2ay + 2x y

y 2x

)
=

(
2ay + 2x y

y 2x

)
=⇒

(
2a 1
1 0

)π(n)

= In over Z/nZ.

(7.15)

Now (7.14) and (7.15) imply that π(n) = πh(n). Similarly, Theorem 4.2 tells us
that πh(n) is even. Lastly we note that when C(N) = 1 then x, y ≥ 0 means
that the terms of the sequence are non-negative, which leads to the following
inequality via induction when y is odd.

f(n+N − 1) <

N−1∑
i=0

f(n+ i) < f(n+N). (7.16)

This results in a contradiction for N > 1, which completes our proof.

A Appendix

The computational experiments for the paper were carried out in the Wolfram
and Python Languages. The GitHub repository can be accessed from
https://github.com/navvye/Polymath-Pell-Numbers.

We thank the 2023 Polymath Jr REU for creating the opportunity for this work,
Stephanie Reyes for numerous comments throughout the research and for nu-
merous technical conversations regarding the paper. This work was partially
supported by NSF Grant DMS2313292.
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