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ABSTRACT
We study new identities related to the sums of adjacent terms in the Pell sequence,
defined by Pn := 2Pn−1 + Pn−2 for n ≥ 2 and P0 = 0, P1 = 1, and generalize these
identities for many similar sequences. We prove that the sum of N > 1 consecutive
Pell numbers is a fixed integer multiple of another Pell number if and only if 4 | N .
We consider the generalized Pell (k, i)-numbers defined by p(n) := 2p(n−1)+p(n−
k− 1) for n ≥ k+1, with p(0) = p(1) = · · · = p(i) = 0 and p(i+1) = · · · = p(k) = 1
for 0 ≤ i ≤ k − 1, and prove that the sum of N = 2k + 2 consecutive terms is a
fixed integer multiple of another term in the sequence. We also prove that for the
generalized Pell (k, k − 1)-numbers such a relation does not exist when N and k
are odd. We give analogous results for the Fibonacci and other related second-order
recursive sequences.

1. Introduction

We first review some standard notation, and then describe our results. The Fibonacci
numbers are defined by

F (n) :=

 0 n = 0
1 n = 1

F (n− 1) + F (n− 2) n ≥ 2,
(1.1)
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and have a closed form given by Binet’s formula

F (n) =
φn − ψn

√
5

, (1.2)

where

φ =
1 +

√
5

2
and ψ =

1−
√
5

2
= − 1

φ
.

This is the simplest depth two constant-coefficient recurrence to study (the simpler
depth one recurrences are just pure geometric sequences). They satisfy numerous in-
teresting identities and arise in various areas; see for example [Ko]. We consider the
Fibonacci numbers and other recursively defined sequences of numbers. In particular,
we are interested in Pell numbers and their generalizations; we state these sequences
and then our results.

Definition 1.1. Classical Pell numbers are defined by the following recurrence and
initial conditions:

P (n) :=

 0 n = 0
1 n = 1

2P (n− 1) + P (n− 2) n ≥ 2.
(1.3)

Definition 1.2. The Pell-Lucas sequence or the Companion Pell sequence is defined
by

Q(n) :=

 2 n = 0
2 n = 1

2Q(n− 1) +Q(n− 2) n ≥ 2.
(1.4)

Definition 1.3. The Lucas sequence is defined by

L(n) :=

 2 n = 0
1 n = 1

L(n− 1) + L(n− 2) n ≥ 2.
(1.5)

Definition 1.4. Every sequence defined by a homogeneous linear recurrence with con-
stant coefficients has a closed-form expression. If the terms of such a sequence can be
expressed in a closed form like (1.2), this is called a generalized Binet formula (see
[BBILMT, Le]).

Example. Let

a := 1 +
√
2 and b := 1−

√
2 = −1

a
. (1.6)

Then the nth Pell Number is given by the generalized Binet formula:

P (n) =
an − bn

2
√
2
. (1.7)
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Definition 1.5. Throughout the paper, we let C : N → N denote a natural valued
function on natural numbers.

1.1. Motivation and Results

We analyze the relationships between sums of consecutive numbers in recurrence se-
quences. The first theorem below is a generalization of an observation made by the
third named author to the sixth named author (for a problem for the Pi Mu Epsilon
Journal) for sums of eight consecutive terms.

Theorem 1.6. For any N ∈ N, the sum of 4N consecutive Pell numbers is equal to a
constant (depending on N) multiplied by the (2N +1)st term of the consecutive terms.
In particular, we have

4N−1∑
i=0

P (n+ i) =
(a2N − b2N )√

2
P (n+ 2N), (1.8)

where

a = 1 +
√
2 and b = 1−

√
2 = −1

a
.

Proof. The nth Pell Number is given by (1.7):

P (n) =
an − bn

2
√
2
.

Therefore, we have

4N−1∑
i=0

P (n+ i) =

4N−1∑
i=0

an+i − bn+i

2
√
2

=
an

2
√
2

4N−1∑
i=0

ai − bn

2
√
2

4N−1∑
i=0

bi (1.9)

=
an

4
(a4N − 1)− bn

4
(1− b4N )

=
an+2N

4
(a2N − b2N )− bn+2N

4
(a2N − b2N )

=
(a2N − b2N )

4
(an+2N − bn+2N )

=
(a2N − b2N )√

2
P (n+ 2N).

The above result motivates the question: For which numbers n ∈ N does the sum of n
consecutive Pell numbers equal a fixed integer multiple of another Pell number?
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We answer this question for the Pell, Fibonacci and other related sequences. In par-
ticular, for the Pell sequence we observe that multiples of 4 (see Theorem 1.6) and the
trivial case of N = 1 are the only values of N that work. We then extend our methods
to generalized Pell numbers and present a conjecture regarding when the sum of con-
secutive generalized Pell numbers equals a fixed integer multiple of another generalized
Pell number. Additionally, we describe several interesting properties of Pell numbers
using tilings of an n× 1 board with polyominoes.

2. Identities and Preliminary Results

The following lemmas describe standard identities relating Pell, Lucas and Fibonacci
sequences, and are used extensively in the rest of the paper. These have been derived
from the [OEIS] and [Ko]. We provide the proofs in the appendix for completeness.

Lemma 2.1. For any non-negative integer k the Pell numbers satisfy

P (n+ k) + (−1)kP (n− k) = Q(k)P (n), (2.1)

where Q(k) is the kth term of the Pell-Lucas sequence given in Definition 1.2.

Proof. For a proof, see Appendix A.1.

Lemma 2.2. For the Fibonacci and Lucas numbers we have

4N−1∑
i=0

F (n+ i) = F (2N)L(n+ 2N + 1). (2.2)

Proof. For a proof, see Appendix A.2

Lemma 2.3. For the Fibonacci numbers, we have for all positive integers n

φn = F (n)φ+ F (n− 1) where φ =
1 +

√
5

2
.

Proof. We proceed by induction on n. When n = 1, the statement of the lemma is
φ = φ, which is trivially true. Similarly, n = 2 is true because φ2 = φ + 1 is true as
1+

√
5

2 is a root of the characteristic polynomial x2 − x− 1 = 0. Thus we may assume
the statement holds for all natural numbers less than n ≥ 3, and show it holds for n:

φn = φn−1 + φn−2

= (F (n− 1)φ+ F (n− 2)) + (F (n− 2)φ+ F (n− 2))

= (F (n− 1) + F (n− 2))φ+ (F (n− 2) + F (n− 3))

= F (n)φ+ F (n− 1),

which completes the proof.
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3. Some General Results

One of our main goals is to determine not only when the sum of consecutive terms in
a recurrence is a fixed multiple of a term of the recurrence, but further to determine
which term. In this section we consider the following sequence.

Definition 3.1. Let r be a non-negative integer. Consider a sequence {f(n)} of non-
negative integers recursively defined by

f(n) := rf(n− 1) + f(n− 2)

with initial conditions so that it is not identically zero (we call this a non-degenerate
sequence).

Not only is this a natural generalization of the Fibonacci numbers (which are just
the r = 1 case), but similar to how the Fibonacci numbers count various objects,
this sequence as well has a combinatorial interpretation. In [DHW] the authors show
that f(n) is the number of r-regular words over {1, 2, . . . , n} avoiding the patterns
122 and 213 (this means we cannot form a sub-word with three objects with this
relative ordering). Additionally, {f(n)} also makes a surprising appearance in elliptic
curve research. Recent work in [PiWa] shows under certain circumstances, there exists
a bijection between the set of integral points on elliptic curves of the form y2 =
(r2 + 4)x4 − 4 and the set of squares in {f(n)} with odd indices.
If we set

α :=
r +

√
r2 + 4

2
and β :=

r −
√
r2 + 4

2

then the generalized Binet formula (see [BBILMT, Le])) yields that there exist complex
numbers α and β such that f(n) = aαn + bβn.

Theorem 3.2. Fix any integer N > 0. If there is an integer C(N) such that for
every sufficiently large n there exists an integer index j(n;N) such that the following
equation holds:

N−1∑
i=0

f(n+ i) = C(N) · f(j(n;N)),

then there is an integer k(N) such that

j(n;N) = n+ k(N) and k(N) ∈
[
N

2
, N

]
.

Proof. Define

b :=
αN − 1

C(N)(α− 1)
and k(N) := logα b,

with α, β and f as above.
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Note that |α| > |β| and |β| < 1. Then by the generalized Binet’s formula

f(n) = aαn + bβn

and

lim
n→∞

|f(n)− aαn| = 0.

This implies that for any ε > 0 there exists a natural number M such that for all
n > M ,

|f(n)− aαn| < C(N) · ε
2N

. (3.1)

We choose M sufficiently large such that

|f(j(n;N))− aαj(n;N)| < ε

2
(3.2)

for all n > M .

Then ∣∣∣∣∣aαj(n;N) − 1

C(N)

N−1∑
i=0

aαn+i

∣∣∣∣∣
<
∣∣∣aαj(n;N) − f(j(n;N))

∣∣∣+ 1

C(N)

∣∣∣∣∣C(N) · f(j(n;N))−
N−1∑
i=0

aαn+i

∣∣∣∣∣
<

ε

2
+

1

C(N)

∣∣∣∣∣
N−1∑
i=0

f(n+ i)−
N−1∑
i=0

aαn+i

∣∣∣∣∣
<

ε

2
+
ε

2
= ε.

(3.3)

We now have

1

C(N)

N−1∑
i=0

αn+i = αn+logα b.

If k(N) ̸∈ N then consider m = min{n + k(N), j(n;N)}. The conditions on f imply
that it is an increasing sequence, therefore j(n;N) → ∞ as n→ ∞. Hence m→ ∞ as
n→ ∞. We also note that

∣∣∣∣∣aαj(n;N) − 1

C(N)

N−1∑
i=0

aαn+i

∣∣∣∣∣ = |a|αm
∣∣∣α|j(n;N)−n−k(N)| − 1

∣∣∣
≥ |a|αm

(
α|j(n;N)−n−k(N)| − 1

)
, (3.4)
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and since j(n;N) ∈ N we have j(n;N)−n− k(N) ̸∈ Z. Similarly, since α > 1 we have
α|j(n;N)−n−k(N)| − 1 > 0. Lastly, m → ∞ as n → ∞ and thus for large enough n, the
left hand side of (3.4) tends to infinity:

lim
n→∞

∣∣∣∣∣aαj(n;N) − 1

C(N)

N−1∑
i=0

aαn+i

∣∣∣∣∣ → ∞,

which contradicts (3.3), implying that k(N) ∈ N, and j(n;N) = n+ k(N).

We now prove that

k(N) ∈
[
N

2
, N

]
.

We begin by noting that

αN − 1

C(N)(α− 1)
= αk(N) =⇒ C(N) =

N−1∑
i=0

αi−k(N). (3.5)

Let k(N) < N
2 , then

C(N) = 1 +

k(N)∑
i=1

(
αi +

1

αi

)
+

N−1∑
i=2k(N)+1

αi−k(N).

Note that the coefficient of the irrational part of
N−1∑

i=2k(N)+1

αi−k(N) is a positive integer.

We now have

αi +
1

αi
= αi + (−β)i. (3.6)

Applying the binomial theorem to the above-mentioned equation gives the coefficient
of the irrational part in αi + (−β)i for i > 1 to be

⌊ i−1

2
⌋∑

j=1

(r2 + 4)(ri−2j+1 + (−r)i−2j+1) ≥ 0,

which implies that C(N) is irrational, resulting in a contradiction. Therefore
k(N) ≥ N/2.

Now, by induction we get the following inequality:

n+N−1∑
i=0

f(i) < f(n+N + 1),

which proves k(N) ≤ N .
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This implies that

j(n;N) ∈
[
n+

N

2
, n+N

]
.

Theorem 3.3. Given a non-degenerate sequence of non-negative integers recursively
defined by

f(n) := rf(n− 1) + f(n− 2),

where r ∈ N, if

3∑
i=0

f(n+ i) = C(N) · f(j(n;N))

then r = 2.

Proof. For a proof, see Appendix A.3.

Clearly, only looking at rational multiples of terms in the sequence is sufficient, because
the desired multiple can be written as a ratio of integers. The following theorem proves
why only looking at integer multiples of terms in the sequence is sufficient.

Theorem 3.4. Define {f(n)} by the recurrence relation

f(n) := rf(n− 1) + f(n− 2)

where r ∈ N, and choose initial conditions so that f is not identically zero. Then if the
sum of N > 1 consecutive terms of {f(n)} is a fixed rational constant times another
term in the sequence, then the rational constant is an integer.

Proof. Let d = gcd(f(0), f(1)). We notice that d | f(n) for all n ∈ N and therefore
consider the equivalent sequence h(n) := f(n)/d instead. Then

gcd(h(n), h(n+ 1)) = 1

for all n ≥ 1 since

gcd(h(n), h(n+ 1)) = gcd(h(n), rh(n) + h(n− 1))

= gcd(h(n), h(n− 1))

...

= gcd(h(0), h(1)).

8



Now suppose

N−1∑
i=0

f(n+ i) =
a

b
f(j(n;N)), (3.7)

where a, b ∈ Z and gcd(a, b) = 1. Dividing both sides by d, we get

N−1∑
i=0

h(n+ i) =
a

b
h(j(n;N)). (3.8)

From Theorem 3.2 we know that there exists M ∈ N such that j(n;N) = n + k(N)
for n > M . Applying (3.7) tells us that b | h(n + k(N)) for all n > M . However, if
b > 1 we reach the contradiction that gcd(f(n), f(n+1)) ̸= 1 for all n ∈ N. Therefore
b = 1, which completes our proof.

4. Pell numbers

In Theorem 1.6, we proved that the sum of 4N consecutive Pell numbers is a constant
integer multiple of the (2N + 1)st term. We generalize to other related partial sums.

4.1. Sum of 4N + 2 Consecutive Terms

Theorem 4.1. Let P (n) denote the nth Pell number. Fix any integer N > 0. There
is no integer C(N) such that for every n there exists an integer index j(n;N) such
that the following equation holds:

2N∑
i=0

P (n+ i) = C(N)P (j(n;N)).

We prove this theorem in greater generality. Consider sequences f(n) satisfying the
recurrence relation

f(n) := rf(n− 1) + f(n− 2),

such that f(0) = 0 and f(1) = 1 and r ≥ 2.

Theorem 4.2. Let f be as above, and fix any integer N > 0. There is no integer C(N)
such that for every n there exists an integer index j(n;N) such that the following
equation holds:

4N+1∑
i=0

f(n+ i) = C(N)f( j(n;N) ).

Proof. Define the sequence g(n) by g(0) = 2, g(1) = r and

g(n) := rg(n− 1) + g(n− 2). (4.1)
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Using induction on k, we find

f(n+ k) + (−1)kf(n− k) = g(k)f(n). (4.2)

Using (7.10) we get

n∑
k=0

f(n) =
1

r

(
f(n) + f(n+ 1)− 1

)
. (4.3)

Therefore, we have

4N+1∑
k=0

f(n+ k) =

n+4N+1∑
k=0

f(k)−
n−1∑
k=0

f(k)

=
1

r

[
f(n+ 4N + 1) + f(n+ 4N + 2)− f(n− 1) + f(n)

]
=

1

r

[
g(2N + 1)f(n+ 2N + 1) + g(2N + 1)f(n+ 2N)

]
= g(2N + 1)

f(n+ 2N + 1) + f(n+ 2N)

r
.

Further by induction on N we know that
g(2N + 1)

r
∈ N.

Now suppose the sum of 4N + 2 terms is a fixed multiple of another term. Then for
some t1 ≥ t2 ∈ N, the following equations hold:

sf(t1) = g(2N + 1)
f(n+ 2N + 2) + f(n+ 2N + 1)

r

sf(t2) = g(2N + 1)
f(n+ 2N + 1) + f(n+ 2N)

r
. (4.4)

Dividing both sides yields

f(n+ 2N + 1) + f(n+ 2N + 2)

f(n+ 2N) + f(n+ 2N + 1)
=

f(t1)

f(t2)
. (4.5)

Now for m a positive integer let

Tm := f(m) + f(m− 1).

Then Tm satisfies the following recurrence:

rTm−1 + Tm−2 = rf(m− 1) + rf(m− 2) + f(m− 2) + f(m− 3)

= f(m) + f(m− 1)

= Tm.

Using this recursion and induction it follows that

r <
Tm+1

Tm
≤ 3r

2
, (4.6)
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which implies that t1 > t2. If t1 ≥ t2 + 2 then

f(t2 + 2)

f(t2)
=

rf(t2 + 1) + f(t2)

f(t2)

=
r2f(t2) + rf(t2 − 1)

f(t2)
+ 1

> r2 + 1,

(4.7)

which leads to a contradiction as r ≥ 2 =⇒ r2 > 3r/2. Thus we must have t1 = t2+1.

Now we know that

f(n+ 2N + 2) < fn+2N+1 + fn+2N+2

=
rsft1
g2N+1

< fn+2N+3,
(4.8)

and therefore c = rs/g2N+1 cannot possibly equal 1. Lastly, we note that

gcd(Tm+1, Tm) = gcd(rTm + Tm−1, Tm)

= gcd(Tm, Tm−1).
(4.9)

Applying induction proves that this gcd is 1. The same argument shows that
gcd(fm+1, fm) = 1, but this contradicts the following statements:

sf(t2 + 1) =
g(2N + 1)

r
Tn+2N+2, (4.10)

sf(t2) =
g(2N + 1)

r
Tn+2N+1 (4.11)

and c > 1, (4.12)

which completes our proof.

Note that in the above proof the result does not hold for r = 1, which is the Fibonacci
sequence. We will prove that the sum of 4N + 2 consecutive Fibonacci numbers is a
fixed integer multiple of another Fibonacci number (see Theorem 5.1).

4.2. Sums of Odd Numbers of Consecutive Terms

Theorem 4.3. Let P (n) denote the nth Pell number. Fix any integer N > 0. There
is no integer C(N) such that for every n there exists an integer index j(n;N) such
that the following equation holds:

2N∑
i=0

P (n+ i) = C(N)P (j(n;N)).

Proof. Suppose that we can write the sum of any N consecutive Pell numbers as
C(N) times a Pell number for some positive integer C(N) where N is odd. Consider
the Pell sequence modulo C(N). By using the Pigeonhole Principle and the fact that
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two consecutive Pell numbers uniquely determine the terms before and after them we
see that {Pn,C(N)}n≥0 := {P (n) mod C(N)}n≥0 is periodic. The period is called the
Pisano Period and is denoted by π(C(N)).

Notice that π(1) = 1 and π(2) = 2. Now consider C(N) > 2. Since {Pn,C(N)}n≥0 is
not a constant sequence, therefore π(C(N)) ≥ 2, which implies that

Pc+π(C(N)),C(N) = Pc,C(N).

Now since (
2 1
1 0

)π(C(N))+1

=

(
P (π(C(N)) + 2) P (π(C(N)) + 1)
P (π(C(N)) + 1) P (π(C(N)))

)
, (4.13)

this implies that, with I2 the 2× 2 identity matrix,(
2 1
1 0

)π(C(N))

= I2 ∈ GL2 (Z/C(N)Z) . (4.14)

Taking the determinant, we get (−1)π(C(N)) = 1, which implies that π(C(N)) is even
for all C(N) > 2.

Now let N be an odd number, to emphasize this we change notation and write it
as 2N + 1. Suppose the sum of any 2N + 1 consecutive Pell numbers is C(N) times
another Pell Number. Then

2N+1−1∑
i=0

P (n+ i) ≡ 0 (mod C(N)), for n ≥ 0.

Replacing n by n+ 1 we get

P (n+ 2N + 1) ≡ P (n) (mod C(N)) for all n ≥ 0,

which implies that π(C(N)) | N . However, since π(C(N)) is even when C(N) ≥ 2,
this implies that C(N) = 1. Thus the sum of any 2N + 1 consecutive Pell numbers
must be equal to a Pell number. In other words,

2N+1−1∑
i=0

P (n+ i) = P (j(n;N))

for some integer j(n;N) and n ≥ 0. Notice that when N = 0, we obtain j(n;N) = n.
Now suppose 2N + 1 is an odd integer greater than 1. Then, we have

2N+1−1∑
i=0

P (n+ i) > P (n+ 2N + 1− 1).

12



However,

2N+1−1∑
i=0

P (n+ i) <

n+2N+1−1∑
i=0

P (i) < P (n+ 2N + 1)

where the last inequality can be proven by using induction based on the value of
n+ 2N + 1. We conclude that

P (n+ 2N + 1− 1) <

2N+1−1∑
i=0

P (n+ i) < P (n+ 2N + 1),

and hence the sum of 2N +1 consecutive Pell numbers is a fixed integer multiple of a
Pell Number if and only if N = 0.

We use a proof of a similar flavor in Section 7.5.

5. Fibonacci Numbers

We now prove similar results for the Fibonacci numbers. In particular, we show that
the sum of N consecutive Fibonacci numbers is equal to a fixed constant multiple of
a Fibonacci number if and only if N ≡ 2 (mod 4), N = 3, or N = 1.

5.1. Sum of 4N + 2 Consecutive Terms

Theorem 5.1. Let F (n) denote the nth Fibonacci number, and L(n) denote the nth

Lucas number. Fix any N > 0. The following equation

4N+1∑
i=0

F (n+ i) = L(2N + 1)F (n+ 2N + 2),

holds for all n.

Proof. A straightforward induction yields

F (n+ k) + (−1)kF (n− k) = L(k)F (n),

and therefore we get

4N+1∑
i=0

F (n+ i) = F (n+ 4N + 3)− F (n+ 1)

= L(2N + 1)F (n+ 2N + 2),

(5.1)

which completes the proof.
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5.2. Sum of 4N Consecutive Terms

Theorem 5.2. Let F (n) denote the nth Fibonacci number. Fix any integer N > 0.
There is no integer C(N) such that for every n there exists an integer index j(n;N)
such that the following equation holds:

4N−1∑
i=0

F (n+ i) = C(N)F (j(n;N)).

Proof. From Lemma 2.2 we have

4N−1∑
i=0

F (n+ i) = F (2N)L(n+ 2N + 1) = F (2N)(F (n+ 2N) + F (n+ 2N + 2)).

Now setting Tm = F (m) + F (m + 2) and repeating the proof of the 4N + 2 case for
Pell numbers gives us the desired result.

5.3. Sums of Odd Numbers of Consecutive Terms

We note that any Fibonacci number is one times itself and the sum of any three
consecutive Fibonacci numbers is two times the third term. We prove that these are
the only solutions for odd cases with the following theorem.

Theorem 5.3. Let F (n) denote the nth Fibonacci number. Fix any integer N ≥ 2.
There is no integer C(N) such that for every n there exists an integer index j(n;N)
such that the following equation holds:

2N∑
i=0

F (n+ i) = C(N) · F (j(n;N)).

Proof. The proof of Theorem 3.2, specifically, (3.5) tells us that if the sum of N
consecutive Fibonacci numbers is C(N)-times another Fibonacci number, then

b =
(φN − 1)

C(N)(φ− 1)
=

N−1∑
i=0

φi

C(N)
= φγ for some γ ∈ N.

Using an argument of a similar flavor to that in Section 4.2, we deduce that C(N)
must either be 1 or 2. Now, Lemma 2.3 tells us that

b =

φ
N−1∑
i=1

F (i) +
N−2∑
i=1

F (i) + 1

C(N)
=

(F (N + 1)− 1)φ+ F (N)

C(N)
, (5.2)

where C(N) is either 1 or 2. Since for n ≥ 3, b ≥ α, we let b = αm where m ≥ 1. Thus,
we get

(F (N + 1)− 1)φ+ F (N)

C(N)
= F (m)φ+ F (m− 1),
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which implies that

F (m− 1) =
F (N)

C(N)
and F (m) =

F (N + 1)− 1

C(N)
.

We now consider the case C(N) = 2. Note that C(N) = 1 is trivially not possible, the
proof is left as an exercise to the reader.1

Case: C(N) = 2.

If C(N) = 2 then Carmichael’s Theorem [Ca] tells us that for n > 13, F (n)
has a prime factor not present in the previous Fibonacci numbers. Therefore, we only
need to check the cases where n ≤ 13. Checking for the smaller cases we realize that
N = 3 is the only case where F (N)/2 is another Fibonacci number.

6. A result about general Lucas sequences

Theorem 1.6 shows that

4N−1∑
i=0

P (n+ i) = 2P (2N)P (n+ 2N). (6.1)

This can be interpreted as saying that for all positive integers M ≡ −1 (mod 4), and
all positive integers n, there is a positive integer m such that

P (m) |
M∑
i=0

P (n+ i) and
1

P (m)

M∑
i=0

P (n+ i) = O(1).

Indeed, to see this write N = (M + 1)/4, and take m = n + 2N . Then the amount
O(1) above is in fact the constant 2P (2N) ∈ Z. A similar formula holds for Fibonacci
numbers by Theorem 5.1. Namely,

4N+1∑
i=0

F (n+ i) = L(2N + 1)F (n+ 2N + 2). (6.2)

This again implies that for all M ≡ 1 (mod 4) and all positive integers n there is a
positive integer m such that

F (m) |
M∑
i=0

F (n+ i) and
1

F (m)

M∑
i=0

F (n+ i) = O(1).

Indeed, for this just write M = 4N + 1 and take m = n + 2N + 2. Other results
obtained so far show that such formulas do not exist for even M ’s (see Theorems 4.1
and 5.3).

1Hint: if C(N) = 1, we see that if m ̸= 3 then m = N + 1 leads to a contradiction, therefore m = 3 and thus
N = 1.
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We take a Lucas sequence {U(n)}n≥0 of recurrence U(n+ 2) = rU(n+ 1) + sU(n),
where r, s are nonzero coprime integers. We assume that the characteristic equation
X2 − rX − s = 0 has two distinct roots α, β such that α/β is not a root of 1. In
particular, ∆ := r2 + 4s ̸= 0. Then

U(n) = aαn + bβn holds for all n ≥ 0.

The above formula is called the Binet formula and it applies to any nondegenerate
linearly recurrent sequence having the characteristic equation X2 − rX − s = 0, and
the coefficients a, b above can be calculated in terms of U(0), U(1). Since we restrict
our investigation to Lucas sequences, for us (U(0), U(1)) = (0, 1), (2, r) depending on
whether we look at Lucas sequences of first or second kind, respectively. So, our Binet
formula has

(a, b) :=

(
1

α− β
,

−1

α− β

)
, or (a, b) := (1, 1).

With this formalism we state the following theorem.

Theorem 6.1. Assume that there is an infinite sequence of positive integers {Nj}j≥1

such that for each N := Nj, there is a constant K := Kj and infinitely many positive
integers n such that for each one of them there exists a positive integer m with

U(m) |
N∑
i=0

U(n+ i) and

∣∣∣∣∣ 1

U(m)

N∑
i=0

U(n+ i)

∣∣∣∣∣ ≤ K.

Then either s = −1 or all three conditions s = 1, r ∈ {±1,±2} and N is odd hold.
Conversely, if either s = −1 or both s = 1 and r ∈ {±1,±2}, then the above sequences
{Nj}j≥1 and constants Kj exist.

Proof. For a proof, see Appendix A.4.

7. Generalized Pell and Fibonacci Numbers

We adapt our previous results to a generalization of the Pell numbers that satisfies a
(k + 1)st order recursion, where k ∈ N. We also conjecture that for k > 1, the sum
of N consecutive generalized Pell numbers is a fixed integer multiple of another term
of the sequence if and only if N = 2k + 2. Finally, we prove similar properties for a
generalization of the Fibonacci numbers.

7.1. Definition

In [Ki] the authors consider the following generalization of the Pell numbers (we slightly
modify their notation as we start our indexing at n = 0).

Definition 7.1. Generalized Pell (k, i)-numbers are the solutions to the following

16



recursion with given initial conditions:

P i
k(n) = 2P i

k(n− 1) + P i
k(n− k − 1) (7.1)

with P i
k(0) = P i

k(1) = · · · = P i
k(i) = 0

and P i
k(i+ 1) = P i

k(i+ 2) = · · · = P i
k(k) = 1

where 0 ≤ i ≤ k − 1. (k ∈ N).

7.2. Sum of 2k + 2 Consecutive Terms

Applying the following formula from [Ki, §4, Theorem 19], we get

n∑
i=0

P k−1
k (i) =

1

2

(
−1 +

k∑
i=0

P k−1
k (n− i+ 1)

)
(7.2)

where n ≥ k − 1. We prove a result similar to Theorem 1.6 for the generalized Pell
sequence.

Theorem 7.2. For n ≥ k we have

2k+1∑
i=0

P k−1
k (n+ i) = 4P k−1

k (n+ 2k). (7.3)

Proof. For an algebraic proof, see Appendix A.5. For a tiling argument see Theorem
7.7.

Now, setting k = 1 in Theorem 7.3, we obtain the following corollary.

Corollary 7.3. The sum of any four consecutive Pell numbers is four times the third
of the Pell numbers:

3∑
i=0

P (n+ i) = 4P (n+ 2). (7.4)

We also obtain the following result.

Theorem 7.4. For 0 ≤ i ≤ k − 1 we have

2k+1∑
j=0

P i
k(n+ j) = 4P i

k(n+ 2k). (7.5)

Proof. In [Ki, §2, Corollary 2] the authors prove for n > k that

P k−1−j
k (n) = P k−1

k (n) +

j−1∑
i=0

P k−1
k (n− k + i). (7.6)

This along with Theorem 7.3 gives the result.
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7.2.1. Conjecture

The partial sum formula of Pell numbers, along with the identity

P (n+ k) + (−1)kP (n− k) = Q(k)P (n), k ∈ N ∪ {0} (7.7)

proven in Lemma 2.1, can be used to give an alternate proof of Theorem 1.6. Although
we have a similar partial sum formula for P k−1

k , there is no obvious way to extend this
partial sum to a general property of adding consecutive generalized Pell numbers to
get a multiple of another generalized Pell number for arbitrary k > 1. For k > 1, we
haven’t been able to find N ̸= 2k + 2 such that the sum of N consecutive generalized
Pell-(k, i) numbers is an integer multiple of another generalized Pell-(k, i), suggesting
the following conjecture.

Conjecture 1. Fix any integer N > 0. There exists an integer C(N) such that for
every n there exists an integer index j(n;N) such that

N∑
i=0

P i
k(n+ i) = C(N) · P i

k (j(n;N))

holds if and only if N = 2k + 2.

7.3. Sum of Odd Number of Consecutive Terms

The same argument given for the classical Pell numbers (4.3) can be generalized for
the sequence {P k−1

k (n)}n≥0 where k is an odd natural number. This is because from
[Ki, §2,Theorem 2] we have the following equality:

2 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


n

=


P k−1
k (n+ p+ 1) P k−1

k (n+ 1) · · · P k−1
k (n+ p− 1) P k−1

k (n+ p)

P k−1
k (n+ p) P k−1

k (n) · · · P k−1
k (n+ p− 2) P k−1

k (n+ p− 1)

P k−1
k (n+ p− 1) P k−1

k (n− 1) · · · P k−1
k (n+ p− 3) P k−1

k (n+ p− 2)
...

...
. . .

...
...

P k−1
k (n+ 1) P k−1

k (n− p+ 1) · · · P k−1
k (n− 1) P k−1

k (n)

 .

Since

det


2 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

 = (−1)k = −1,

we obtain the following theorem.
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Theorem 7.5. Fix any integer N > 0. There is no integer C(N) such that for every
n there exists an integer index j(n;N) such that the following equation holds:

2N∑
i=0

P k−1
k (n+ i) = C(N) · P k−1

k (j(n;N)).

Proof. The proof follows from the discussion above and from the proof of the odd
case for the classical Pell numbers.

We now prove the following stronger theorem for the generalized Pell sequence.

Theorem 7.6. Fix any odd integer N > 0, and even integer k ≥ 0. Suppose that there
exists an integer C(N) such that for every n there exists an integer index j(n;N ; k)
such that the following equation holds:

N−1∑
i=0

P k−1
k (n+ i) = C(N)P k−1

k (j(n;N ; k)).

Then

i) 2 ∤ C(N) and
ii) N > 2k + 2.

Proof. i) By induction we know that an : = P k−1
k (n) (mod 2) is of the form

an =

{
1, if (k + 1) | (n+ 1)
0, otherwise.

Let N = q(2k + 2) + r. Since N is odd, we have 1 ≤ r ≤ 2k + 1. Now take any
n such that n ≥ k + 1 and (k + 1) | n. We now prove that 2 ∤ C(N). Define

Sn,N :=
q(2k+2)∑
i=−r+1

P k−1
k (n+ i) if r ≤ k + 1,

Sn,N :=
N−1∑
i=0

P k−1
k (n+ i) if r > k + 1.

Using the explicit form of an we conclude that Sn,N is odd in both cases, and
therefore C(N) must be odd.

ii) By the same argument, we know that π(p) | N where p is any prime dividing
C(N). Similarly, using the previous argument, we also know that p > 3. Now
since

P k−1
k (0) = P k−1

k (1) = · · · = P k−1
k (k − 1) = 0,

and P k−1
k (k) = 1, we must have

P k−1
k (π(p)) ≡ P k−1

k (π(p) + 1) ≡ · · · ≡ P k−1
k (k − 1) ≡ 0 (mod p).
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However, we know that

P k−1
k (k + i) = 2i for 1 ≤ i ≤ k,

and since k ≥ 2, we have

P k−1
k (2k + 1) = 2k+1 + 1

P k−1
k (2k + 2) = 2k+2 + 4

P k−1
k (2k + 3) = 2k+3 + 12.

Now as p > 2, we know that π(p) > 2k. We notice that if π(p) = 2k + 1, then
p | 2k+1 + 1 and p | 2k+2 + 4 which implies p | 2: a contradiction. Similarly, if
p = 2k + 2, then p | 2k+2 + 4 and p | 2k+3 + 12 which implies p | 4 which is also
a contradiction. Therefore, π(p) > 2k + 2 which implies N > 2k + 2.

7.4. Tilings and Generalized Pell Sequence

In [BSP] the authors proved certain properties related to the Pell numbers using tilings
of an n×1 board. We generalized some of the properties for P k−1

k (n). Let us first define
a sequence (pk,n)n≥0 such that

pk,n := P k−1
k (n+ k). (7.8)

It is not difficult to see that pk,n counts the number of tilings of an n× 1 board using
black 1× 1 squares, white 1× 1 squares and grey (k + 1)× 1 polyominoes.

Theorem 7.7. We have

pk,(k+1)n+r+1 =


2

n∑
m=0

pk,m(k+1)+r, 0 ≤ r < k

2

n∑
m=0

pk,m(k+1)+r + 1, r = k.

(7.9)

Proof. Firstly, assume that r < k. Now, consider the tiling of a [(k+1)n+ r+1]× 1
board, with the cells on the board numbered from left to right 1 to (k + 1)n+ r + 1.
Let t be the location of the last 1× 1 cell in the tiling. Black or white squares cannot
cover the cells to the right of t, so they must be covered by (k + 1)× 1 polyominoes.
Therefore, t is of the form (k + 1)m+ r + 1. In this case, the number of tilings of the
board is 2pk,mk (accounting for the fact that cell t can be covered by either black or
white 1× 1 squares), proving the identity.

Now, let us assume that r = k. We can still cover the board with black and
white squares as well as grey polyominoes as we discussed in the previous case,

yielding 2
n∑

m=0
pk,m(k+1)+r tilings of the board. However, since the length of the board

is now (k+1)(n+1), it is possible the board can be covered without black and white
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squares altogether. We add this new case to the total number of tilings, proving the
second identity.

Note that (7.2) also follows from this result. An alternate proof using matrices is
given in [Ki, §4, Theorem 19], which can be generalized further.

Definition 7.8. Define the sequence {fk(n)} as follows:

fk(n) := afk(n− 1) + bfk(n− k − 1) a, b ∈ N
with fk(0) = fk(1) = · · · = fk(k − 1) = 0 and fk(k) = 1 where k ∈ N.

Definition 7.9. Define the sequence {pk,n} as follows:

pk,n := fk(n+ k) for n ∈ N ∪ {0}.

Theorem 7.10. We have

pk,(k+1)n+r+1 =


a

n∑
m=0

bn−mpk,m(k+1)+r, 0 ≤ r < k

a
n∑

m=0
bn−mpk,m(k+1)+r + 1, r = k.

(7.10)

Proof. Analogous to the proof of Theorem 7.7.

7.5. Generalized Fibonacci sequence

Define the order-k generalized Fibonacci sequence by

fk(n) :=

k∑
i=1

fk(n− i) (7.11)

with fk(1) = fk(2) = · · · = fk(k − 1) = 0 and fk(k) = 1.

Its generating matrix (see [KiTa]) is given by
1 1 . . . 1 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

 . (7.12)

A similar argument to the generalized Pell case in Section 7.3 tells that the Pisano
Period for fk(n) is even modulo n whenever n > 2 and k is even, and yields the
following Theorem.

Theorem 7.11. Let Fk(n) denote the nth order-k Fibonacci number where k is even.
Fix any N > 0. There is no integer C(N) such that for every n there exists an integer
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index j(n;N) such that the following equation holds:

2N∑
i=0

Fk(n+ i) = C(N) · Fk( j(n;N) ).

Proof. The proof of the theorem is analogous to Theorem 4.3. For further details, see
Appendix A.6.
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Appendix A. Proofs

A.1. Proof of Lemma 2.1

Proof. We proceed by induction on k, noting that the two base cases are k = 0 and
k = 1. When k = 0, we have

P (n+ 0) + (−1)0P (n− 0) = 2P (n) = Q(0)P (n). (A1)

When k = 1, we have

P (n+1)+ (−1)1P (n− 1) = [2P (n)+P (n− 1)]−P (n− 1) = 2P (n) = Q(1)P (n).
(A2)

Now, we assume that

P (n+ k − 1) + (−1)k−1P (n− k + 1) = Q(k − 1)P (n) (A3)

and

P (n+ k − 2) + (−1)k−2P (n− k + 2) = Q(k − 2)P (n). (A4)

Using the recurrence relation (1.3), we have

P (n+ k) = 2P (n+ k − 1) + P (n+ k − 2).

Rearranging (A4), we get

P (n−k+2) = 2P (n−k+1)+P (n−k) =⇒ P (n−k) = P (n−k+2)−2P (n−k+1).

Thus,

P (n+ k) + (−1)kP (n− k)

= 2P (n+ k − 1) + P (n+ k − 2) + (−1)k(P (n− k + 2)− 2P (n− k + 1)). (A5)

Rearranging the right-hand side of (A5) yields

2(P (n+ k− 1)+ (−1)k−1P (n− k+1))+ (P (n+ k− 2)+ (−1)k−2P (n− k+2)). (A6)

We apply the inductive hypotheses (A3) and (A4) along with Definition 1.2 to this
expression to conclude

2Q(k − 1)P (n) +Q(k − 2)P (n) = (2Q(k − 1) +Q(k − 2))P (n)

= Q(k)P (n).
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A.2. Proof of Theorem 2.2

Proof. We use induction and the following well-known properties of the Fibonacci
and Lucas Numbers [Ko, §5.3, §5.8]:

(i) F (n− 1)F (n+ 1)− F (n)2 = (−1)n. (A7)

(ii) F (n+ k) = F (n)F (k − 1) + F (n+ 1)F (k). (A8)

(iii) F (n− 1) + F (n+ 1) = L(n). (A9)

(iv)

n−1∑
i=0

F (i) + 1 = F (n+ 1). (A10)

(v)

k∑
i=0

F (n+ i) = F (n+ k + 2)− F (n+ 1). (A11)

We now prove Lemma 2.2. First, begin by noting that for n = 0, we have

4N−1∑
i=0

F (i) = F (4N + 1)− 1 (Using (A10))

= F (2N)F (2N + 2) + F (2N − 1)F (2N + 1)− 1 (Using (A8))

= F (2N)(F (2N + 2) + F (2N)) (Using (A7)

= F (2N)L(2N + 1). (Using (A9))

Now, by our induction hypothesis,
4N−1∑
i=0

F (m+ i) = F (2N)L(m+ 2N + 1) holds for

all m < n+ 1. We now expand
4N−1∑
i=0

F (n+ 1 + i) using the following manipulations:

4N−1∑
i=0

F (n+ 1 + i) = F (n+ 4N + 2)− F (n+ 2) (Using (A11))

= F (n+ 4N + 1) + F (n+ 4N)− (F (n+ 1) + F (n))

(Using (1.1))

= F (n+ 4N + 1)− F (n+ 1) + (F (n+ 4N)− F (N))

(Rearranging terms)

=

4N−1∑
i=0

F (n+ i) +

4N−1∑
i=0

F (n− 1 + i)

(Using (A11))

= F (2N)(L(n+ 2N + 1) + L(n+ 2N)

(Induction hypothesis)

= F (2N)L(n+ 2N + 2) (Using Definition 1.3),
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which yield the desired result.

A.3. Proof of Theorem 3.3

Proof. From the proof of Theorem 3.2 we have C(N) =
3∑

i=0
αi−k(N) for C(N) a

positive integer, where 2 ≤ k(N) ≤ 4. Therefore, the only possible values for k(N)
are 2, 3, 4. We now do casework based on the value of k(N).

Case 1: k(N) = 2. We have

C(N) =
1

α2
+

1

α
+ 1 + α

= 1 +
2r2 + 4− 2r

√
r2 + 4

4
+

√
r2 + 4− r

2
+
r +

√
r2 + 4

2

= 1 +
r2 + 2

2
+

(
2− r

2

)√
r2 + 4.

Since r is an integer and there is no Pythagorean triple with 2 as one of the terms,
therefore

√
r2 + 4 is irrational. Thus for C(N) to be an integer, we must have 2−r

2 = 0,
therefore r = 2.

Case 2: k(N) = 3. We have

C(N) =
1

α3
+

1

α2
+

1

α
+ 1

=
(r2 + 4)

√
r2 + 4− 3r(r2 + 4) + 3r2

√
r2 + 4− r3

8

+
2r2 + 4− 2r

√
r2 + 4

4
+

√
r2 + 4− r

2

=
−4r3 + 4r2 − 16r + 8

8
+

(
4r2 + 4− 4r + 4

8

)√
r2 + 4

=
−r3 + r2 − 4r + 2

2
+

(
r2 − r + 2

2

)√
r2 + 4.

Since C(N) is an integer, we must have r2 − r + 2 = 0. Since this equation has no
integer roots, no such r exists.

Case 3: k(N) = 4. We have

C(N) =
1

α4
+

1

α3
+

1

α2
+

1

α
(A12)

=
r4 − r3 + 5r2 − 3r = 4

2
+

(
−r3 + r2 − 3r + 1

2

)√
r2 + 4.

Since C(N) is an integer, we must have −r3 + r2 − 3r + 1 = 0. As this has no integer
roots, so no such r exists.
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A.4. Proof of Theorem 6.1

We label the roots in such a way that |α| ≥ |β|. In particular, |α| > 1. Suppose for
now that β ̸= ±1 and we shall return to this case later. We take an N and calculate

N∑
i=0

U(n+ i) =

N∑
i=0

(aαn+i + bβn+i) = a

(
αN+1 − 1

α− 1

)
αn + b

(
βN+1 − 1

β − 1

)
βn.

Let us give upper and lower bounds for the size of
∑N

i=0 U(n + i). First, when is it
zero?

Lemma A.4.1. We have that

N∑
i=0

U(n+ i) ̸= 0

for N > 29.

Proof. Assume that
∑N

i=0 U(n+ i) = 0. Then

a(αN+1 − 1)αn = −b(βN+1 − 1)βn.

Since a/b = ±1, we get that

(αN+1 − 1)αn = η(βN+1 − 1)βn for some η ∈ {±1}.

This gives

αn+N+1 − ηβn+N+1 = αn − ηβn.

In both cases η = 1 and η = −1, this shows that the n+N +1th member of the Lucas
sequence of the first or second kind equals the nth member of the same sequence.
But recall that members of Lucas sequences have primitive divisors, which are prime
numbers p which divide the term of index say m but no term of index smaller than
m, at least when m > 30 by results of Bilu, Hanrot and Voutier [BHV]. Thus, we get
that n+N + 1 ≤ 30 in contradiction with N > 29.

Since now we know that
∑N

i=0 U(n+ i) is not zero, we then get∣∣∣∣∣
N∑
i=0

U(n+ i)

∣∣∣∣∣ = |a|
∣∣∣∣αN+1 − 1

α− 1

∣∣∣∣ |α|n ∣∣∣∣1 + ( b(βN+1 − 1)(α− 1)

a(αN+1 − 1)(β − 1)

)(
β

α

)n∣∣∣∣
≫N |α|n−C1(N) logn, (A.413)

where in the left–hand side above we applied a lower bound for a linear form in
logarithms of algebraic numbers2. Here, C1(N) is a constant depending both on N

2For functions f(x) and g(x), we write f(x) ≫ g(x) if there exists a constant C > 0 such that f(x) ≥ C · g(x)
for all sufficiently large x.
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and on the Lucas sequence {U(m)}m≥0. Now we want that U(m) |
∑N

i=0 U(n+ i) and
the co-factor to be bounded. We get

|α|m ≫ |U(m|) ≫ |
N∑
i=0

U(n+ i)| ≫N |α|n−C1(N) logn,

getting m ≥ n−C2(N) log n. The constant C2(N) depends also on the bound on the
co-factor

1

U(m)

N∑
i=0

U(n+ i).

In case the roots α, β of {U(m)}m≥0 are real, Baker’s method is not necessary since
|α| > |β| and the above argument shows that in fact m ≥ n−O(1). Furthermore,

|α|m−C2 logm ≪ |Um| ≤

∣∣∣∣∣
N∑
i=0

Un+i

∣∣∣∣∣ ≪N |α|n

(for the left–hand inequality see Theorem 3.1 on page 64 in [ST]), which in turn gives
m ≤ n+C3(N) log n. This shows thatm = n+O(log n). Let us record this as a lemma.

Lemma A.4.2. If N > 29, and Um |
∑N

i=0 Un+i is such that the co-factor remains
bounded, then

m = n+O(log n).

The constant implied by the O-symbol above depends on the sequence {U(m)}m≥0, the
bound on the co-factor and the number N .

Next, let D := U(m) and let us write down the congruences

n∑
i=0

U(n+ i) ≡ 0 (mod D), U(m) ≡ 0 (mod D).

This we rewrite as

a

(
αN+1 − 1

α− 1

)
αn ≡ −b

(
βN+1 − 1

β − 1

)
βn (mod D), aαm ≡ −bβm (mod D).

Since a = ±b and a, b are reciprocals of algebraic integers, we can simplify by a the
above relations getting(

αN+1 − 1

α− 1

)
αn ≡ η

(
βN+1 − 1

β − 1

)
βn (mod D), αm ≡ ηβm (mod D),

where η := −b/a ∈ {±1}. Since α, β are coprime as algebraic integers (that is the
ideals generated by them in OK, where K := Q(α) are coprime since r and s are
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coprime integers), we get that β is invertible modulo D. Thus, we get(
αN+1 − 1

α− 1

)
(α/β)n ≡ η

(
βN+1 − 1

β − 1

)
(mod D), (α/β)m ≡ η (mod D).

Let D1 := gcd(αN+1 − 1, D) as an ideal of OK, and let D2 := D/D1. We then get

(α/β)2n ≡ γ (mod D2), γ :=

(
(βN+1 − 1)(α− 1)

(αN+1 − 1)(β − 1)

)2

,

(α/β)2m ≡ 1 (mod D2). (A.414)

Clearly,

|NK/Q(D1)| ≤ |NK/Q(α
N+1 − 1)| = ON (1).

Recall the following lemma.

Lemma A.4.3. If γ and α/β are not multiplicatively dependent, then (A.414) shows
that

NK/Q(D2) = exp(ON (
√
n)).

Proof. The proof is standard and can be found in many places. Put X := max{n,m}.
Note that X = O(n). By the pigeon hole principle there are integers u, v not both zero
with |u| ≤

√
X, |v| ≤

√
X such that |un+mv| = O(

√
X). Exponentiating in (A.414)

the first equation to u and the second to v and multiplying them we get

(α/β)2nu+2mv ≡ ±γu (mod D2).

Thus, D2 divides one of (α/β)|2nu+2mv| ± γ|u| or (α/β)|2nu+2mv|γ|u| ± 1. None of these
expressions is 0 if γ and α/β are multiplicatively independent (indeed, such expressions
being 0 and (α/β) and γ being multiplicatively independent first forces u = 0, then
2un + 2vm = 0, so also v = 0, which is not allowed), and their norms are rational
numbers whose denominator and numerator are of size exp(O(

√
X)) = exp(O(

√
n)).

In conclusion, if γ and α/β are multiplicatively independent, then

|α|n−C3(N) logn ≤ |Um| ≤ |NK/Q(D1D2)| ≤ |NK/Q(D1)||NK/Q(D2)|
≤ exp(ON (

√
n)),

and this is false for any fixed N > 29 and large n. So, γ and α/β are multiplicatively
dependent.

Lemma A.4.4. If γ and α/β are multiplicatively dependent, then s = ±1. Further-
more, if s = 1 then N is odd.

Proof. Assume that γ and α/β are multiplicatively dependent. Then γu = (α/β)v

for some integers u, v not both 0. If u = 0, then (α/β)v = 1 for some nonzero integer
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v which makes α/β a root of 1 and this is not allowed. Thus, u ̸= 0. We get(
αN+1 − 1

βN+1 − 1

)u

=

(
α

β

)v (α− 1

β − 1

)u

. (A.415)

Let S be the set of S-units with respect to the finite set of valuations ν of K such that
ν is either infinite or one of

|α− 1|ν , |β − 1|ν , |α|ν , |β|ν

is not equal to 1. Equation (A.415) signals (αN+1 − 1)/(βN+1 − 1) = s0 for some
s0 ∈ S. This gives

αN+1 − s0β
N+1 + s0 = 1, (A.416)

which is an S-unit equations in three terms. This has only finitely many solutions N
which are nondegenerate. The degenerate solutions correspond to the following.

(i) αN+1 = 1. In this case also βN+1 = 1, so (α/β)N+1 = 1, which is impossible.
(ii) αN+1 + s0 = 0. Then s0 = −αN+1 and 1 = −s0βN+1 = (αβ)N+1 = (−s)N+1.

Thus, s ∈ {±1} and N + 1 is even when s = 1.
(iii) αN+1 − s0β

N+1 = 0. Then also 1 = s0 = (α/β)N+1 and this is not allowed.

Thus, the only possibilities are s = −1 or both s = 1 and N odd.
It remains to show that if s = 1, only r = ±1 and r = ±2 work. Note that if the
Lucas sequence of roots (α, β) satisfies the above properties, so will the ones of roots
(−α,−β) as the ratio α/β does not change. Thus, in case s = 1 we assume that α > 1,
so r is positive.
We take another look at γ. When s = −1, we have β = 1/α so

γ =

(
(βN+1 − 1)(α− 1)

(αN+1 − 1)(β − 1)

)2

=

(
(1/αN+1 − 1)(α− 1)

(αN+1 − 1)(1/α− 1)

)2

= α−2N ,

which of course is multiplicatively dependent over α/β = α2.
Assume next that s = 1. Since N + 1 is even, then

γ2 =

(
(1/αN+1 − 1)(α− 1)

(αN+1 − 1)(−1/α− 1)

)2

= α−2N

(
α− 1

α+ 1

)2

.

So, we want

γ1 :=
α− 1

α+ 1

to be multiplicatively dependent with α/β = −α2. The above number is

(r − 2 +
√
r2 + 4)/2

(r + 2 +
√
r2 + 4)/2

.
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The numbers (r ± 2) +
√
r2 + 4)/2 are algebraic integers of norms

((r ± 2)2 − (r2 + 4))/4 = ±r.

So, if r is odd, they have odd norms. Their greatest common divisor (as ideal) divides
(α + 1) − (α − 1) = 2, but the norms of α ± 1 are coprime to 2. Hence, α ± 1 are
coprime. This shows that since their ratio is a unit, each one of them is a unit. Thus,
α + 1 and α are both units and are larger than 1. But letting δ be the fundamental
unit in K = Q(α), all units larger than 1 are of the form

1, δ, δ2, . . . ,

and δ ≥ (1 +
√
5)/2. Thus, since δ3 − δ2 ≥ δ > 1, the only possibility is δ2 = α + 1

and δ = α, giving δ2 = δ + 1, so δ = α = (1 +
√
5)/2. This corresponds to r = 1.

Assume next that r is even and write r = 2r0. Then α±1 = r0±1+
√
r20 + 1. Suppose

that r0 is even. Then

α± 1

2
=

r0 ± 1 +
√
r20 + 1

2

are algebraic integers which are consecutive (their difference is 1) and their ratio is a
unit. So, each one of them is a unit. Thus, we arrive again at a quadratic field in which
we have two units larger than 1 which are (r0 ± 1 +

√
r20 + 1)/2 whose difference is 1.

This gives

r0 + 1 +
√
r20 + 1

2
=

1 +
√
5

2
,

and this is impossible. Finally, suppose that r0 is odd. Look at the numbers

α± 1√
2

=
r0 ± 1 +

√
r20 + 1√

2
.

Their norms divide (
r20 ± 2r0 + 1− (r20 + 1)

2

)2

= r20,

so they have odd norms. This shows that (α+ 1)2/2 and (α− 1)2/2 are coprime and
their ratio is a unit so each one of them is a unit. In particular,

α+ 2 + 1/α

2
and

α− 2 + 1/α

2

are both units which differ by 2. Since r is even, we get that α ≥ 1 +
√
2. The case

r = 2 gives us what we want. The case r ≥ 6 gives α > 6, so (α − 2 + 1/α)/2 > 2.
Thus, putting again δ for the fundamental unit in Q(α) we get that (α + 2 + 1/α)/2
and (α− 2 + 1/α)/2 are among

δ, δ2, δ3, . . .
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and their difference is 2. Since δ3 − δ2 = δ2(δ − 1) ≥ (1 +
√
2)2(1 +

√
2 − 1) > 2, we

get that δ2 − δ = 2, which has no quadratic solution δ. This finishes the proof.
It remains to deal with the converses. Theorems 1.6 and 5.1 do it for the case
s = 1 and r = 1, 2 for the Lucas sequence of the first kinds (Fibonacci and Pell
numbers). Similar formulas exist with Lucas numbers and Lucas-Pell numbers (so
the Lucas sequences of the second kind which are companions of the Fibonacci
and Pell numbers, respectively). Namely, with {L(n)}n≥0 and {Q(n)}n≥0 given by
L(0) = Q(0) = 2, L(1) = 1, Q(1) = 2, we get

4N+1∑
i=0

L(n+ i) = L(2N + 1)L(2N + n+ 2)

and

4N−1∑
i=0

Q(n+ i) = 2P (2N)Q(2N + n).

We also need to deal with r = −1,−2. That is, when r = −1, − 2, we get U(n) =
(−1)nF (n) and U(n) = (−1)nP (n) for the Lucas sequences of the first kind. We get
the identities

4N+1∑
i=0

(−1)n+iF (n+ i) = L(2N + 1)((−1)2N+n−1F (2N + n− 1))

and

4N−1∑
i=0

(−1)n+iP (n+ i) = 2P (2N)((−1)2N+n−1P (2N + n− 1)).

These formulas are not unexpected since (−1)nF (n) = F (−n). In particular, the above
two formulas follow right–away from (6.2) and (6.1) if one allows the index n to be
negative in formulas (6.2) and (6.1). Similar formulas exist with the Lucas numbers
of the second kind when s = 1 and r = −1, − 2. To see the case s = −1, note that
for the case of the Lucas sequence of the first kind the sum is

N∑
i=0

U(n+ i) =
1

α− β

((
αN+1 − 1

α− 1

)
αn −

(
βN+1 − 1

β − 1

)
βn
)
.

Using β = 1/α this can be rewritten as

N∑
i=0

U(n+ i) =
1

α− β

(
αN+1 − 1

α− 1

)(
αn − α−n−N

)
.

Taking N to be even this becomes(
αN/2+1 − α−N/2

α− 1

)(
αn+N/2 − βn+N/2

α− β

)
=

(
αN/2+1 − α−N/2

α− 1

)
U(n+N/2),
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and one checks easily that the expression multiplying U(n+N/2) is both an algebraic
integer and Galois invariant (it does not change by replacing α with 1/α) so rational,
hence it is an integer. A similar argument works for Lucas sequences of the second
kind.

We still need to look at the case β = ±1. In this case α is an integer. When β = 1,
the congruences become(

αN+1 − 1

α− 1

)
αn ≡ η(N + 1) (mod D), αm ≡ η (mod D).

The number γ now becomes

γ :=

(
(N + 1)(α− 1)

αN+1 − 1

)2

.

We aim to determine when this is multiplicatively dependent on α. This occurs only
for finitely many values of N , because for N > 5, the term αN+1 − 1 possesses a
primitive prime factor p such that p ≡ 1 (mod N + 1), which does not simplify with
the numerator N + 1. Consequently, if N > max{5, |α|}, the numbers γ and α are
multiplicatively independent. The case where β = −1 follows similarly and is left as
an exercise for the reader.

A.5. Proof of Theorem 7.3

Proof. Let

Sn =

n∑
i=0

P k−1
k (i). (A17)

Note that the first k − 1 terms in this sum are 0.

We proceed by induction on n, starting at n = k for the base case. Shifting
indices on (A17) for n = k gives

2k+1∑
i=0

P k−1
k (k + i) =

3k+1∑
i=k

P k−1
k (i) = S3k+1.

Noting that the first k − 1 terms of Sn are all zero, we find

S3k+1 = S3k + 2P k−1
k (3k) + P k−1

k (2k)

= S2k−1 + 2P k−1
k (2k) +

3k−1∑
i=2k+1

P k−1
k (i)︸ ︷︷ ︸

(A18)

+3P k−1
k (3k).
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Now, we consider

S := S2k−1 + 2P k−1
k (2k) +

3k−1∑
i=2k+1

P k−1
k (i). (A18)

Since the first k − 1 terms of the sum in (A17) are zero,

S2k−1 =

2k−1∑
i=0

P k−1
k (i)

=

2k−1∑
i=k

P k−1
k (i)

= P k−1
k (k) +

2k−1∑
i=k+1

P k−1
k (i).

Then, applying recursion (7.1) to (A18), we find

S =

2k−1∑
i=k+1

P k−1
k (i) + P k−1

k (2k + 1) +

3k−1∑
i=2k+1

P k−1
k (i)

=

2k−1∑
i=k+1

P k−1
k (i) + 2P k−1

k (2k + 1) +

3k−1∑
i=2k+2

P k−1
k (i)

=

2k−1∑
i=k+2

P k−1
k (i) + 2P k−1

k (2k + 1) + P k−1
k (k + 1) +

3k−1∑
i=2k+2

P k−1
k (i)

...

= 2P k−1
k (3k − 1) + P k−1

k (2k − 1) = P k−1
k (3k), (A19)

where the final reduction of S results from alternatively removing terms indexed by
the lower bounds of each of the summations and then applying recursion (7.1). Thus
we have S3k+1 = S + 3P k−1

k (3k) = 4P k−1
k (3k), proving the base case.

Now, by the induction hypothesis we have

2k+1∑
i=0

P k−1
k (n− 1 + i) = 4P k−1

k (n+ 2k − 1), (A20)

and by (7.2) we have

2k+1∑
i=0

P k−1
k (n− 1 + i) =

n+2k∑
i=0

P k−1
k (i)−

n−2∑
i=0

P k−1
k (i)

=
1

2

(
k∑

i=0

P k−1
k (n+ 2k + 1− i)−

k∑
i=0

P k−1
k (n− 1− i)

)
. (A21)
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Combining (A20) and (A21) we get

k∑
i=0

P k−1
k (n+ 2k + 1− i)−

k∑
i=0

P k−1
k (n− 1− i) = 8P k−1

k (n+ 2k − 1). (A22)

Furthermore, we have

2k+1∑
i=0

P k−1
k (n+ i) =

1

2

(
k∑

i=0

P k−1
k (n+ 2k + 2− i)−

k∑
i=0

P k−1
k (n− i)

)

=
1

2

(
P k−1
k (n+ 2k + 2)− P k−1

k (n+ k + 1) + 8P k−1
k (n+ 2k − 1)

+ P k−1
k (n− k − 1)− P k−1

k (n)
)

=
1

2

(
2P k−1

k (n+ 2k + 1) + 8P k−1
k (n+ 2k − 1)− 2P k−1

k (n− 1)
)

=
1

2

(
2P k−1

k (n+ 2k + 1)− 2P k−1
k (n+ k) + 2P k−1

k (n+ k)

− 2P k−1
k (n− 1) + 8P k−1

k (n+ 2k − 1)
)

=
1

2

(
4P k−1

k (n+ 2k) + 4P k−1
k (n+ k − 1) + 8P k−1

k (n+ 2k − 1)
)

= 4P k−1
k (n+ 2k). (A23)

We obtain the last equation by using

P k−1
k (n+ k − 1) + 2P k−1

k (n+ 2k − 1) = P k−1
k (n+ 2k). (A24)

Now, consider

2k+1∑
i=0

P k−1
k (n+ i) =

1

2


k∑

i=0

P k−1
k (n+ 2k + 2− i)︸ ︷︷ ︸

s1 (A26)

−
k∑

i=0

P k−1
k (n− i)︸ ︷︷ ︸
s2 (A27)

 . (A25)

We have the following explicit formulas for s1 and s2:

s1 = P k−1
k (n+ 2k + 2)− P k−1

k (n+ k + 1) +

k∑
i=0

P k−1
k (n+ 2k + 1− i), (A26)

s2 = P k−1
k (n)− P k−1

k (n− k − 1) +

k∑
i=0

P k−1
k (n− i− 1). (A27)

We now note that the RHS of A26 and A27 are particularly amenable to manipulation,
and therefore turn our attention towards 1

2 (s1 − s2).
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Thus, we have

1

2
(s1 − s2) =

1

2

(
P k−1
k (n+ 2k + 2)− P k−1

k (n+ k + 1) + 8P k−1
k (n+ 2k − 1)

+ P k−1
k (n− k − 1)− P k−1

k (n)
)

=
1

2

(
2P k−1

k (n+ 2k + 1) + 8P k−1
k (n+ 2k − 1)− 2P k−1

k (n− 1)
)

=
1

2

(
2P k−1

k (n+ 2k + 1)− 2P k−1
k (n+ k) + 2P k−1

k (n+ k)

− 2P k−1
k (n− 1) + 8P k−1

k (n+ 2k − 1)
)

=
1

2

(
4P k−1

k (n+ 2k) + 4P k−1
k (n+ k − 1) + 8P k−1

k (n+ 2k − 1)
)

= 4P k−1
k (n+ 2k). (A28)

A.6. Proof of Theorem 7.11

Proof. Let the sum of any 2N + 1 consecutive terms in the kth Fibonacci sequence
be C(N) times another integer in the Fibonacci Sequence. An argument similar to
Theorem 4.3 rules out the cases C(N) > 2. Therefore, we just need to take care of the
cases when C(N) = 1, 2.

Case 1: C(N) = 1.

By induction on r > 2k + 1, we have

r∑
n=0

fk(n) < fk(r + 2), (A29)

which implies

2N∑
i=0

fk(n+ i) ≤
n+2N∑
i=0

fk(i) < fk(n+ 2N + 2).

From the definition of the order-k generalized Fibonacci sequence, for 2N > k + 1 we
have

fk(n+ 2N + 1) <

2N∑
i=0

fk(n+ i),

and thus C(N) ̸= 1.

Case 2: C(N) = 2.
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Define

λk := lim
n→∞

fk(n+ 1)

fk(n)
.

We now note that [KuSi, §11, Theorem 9] states λk + λ−k
k = 2, which implies that

λk < 2 and hence for n > 2k + 1 we have fk(n + 1)/fk(n) < 2. Applying (A29) thus
implies

r∑
n=0

fk(n) < fk(r + 2) < 2fk(r + 1). (A30)

Now since, 2N > k + 1, from the definition of the order-k generalized Fibonacci
sequence we have

fk(n+ 2N) <

2N−1∑
i=0

fk(n+ i) =⇒ 2fk(n+ 2N) <

2N∑
i=0

fk(n+ i).

Lastly, we have

2fk(n+ 2N) <

2N∑
i=0

fk(n+ i) <

n+2N∑
i=0

fk(i) < 2fk(n+ 2N + 1), (A31)

which implies C(N) ̸= 2, completing the proof.

Appendix B. Computational Experiments

The computational experiments for the paper were carried out in the Wolfram and
Python Languages. The GitHub repository can be accessed from
https://github.com/navvye/Polymath-Pell-Numbers.

Appendix C. Thanks

We thank the 2023 Polymath Jr REU for creating the opportunity for this work,
Stephanie Reyes for numerous comments throughout the research and for numerous
technical conversations regarding the paper, and the participants of the 21st Interna-
tional Fibonacci Conference for discussions on this topic related to our presentation.
This work was partially supported by NSF Grant DMS2313292.

References

[OEIS] OEIS Foundation Inc. (2025), The Pell numbers, Entry A000129 in The
On-Line Encyclopedia of Integer Sequences, https://oeis.org/A000108.

36

https://github.com/navvye/Polymath-Pell-Numbers
https://oeis.org/A000108


[BHV] Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of
Lucas and Lehmer numbers. With an appendix by M. Mignotte, J. Reine
Angew. Math. 539 (2001), 75–122.

[BBILMT] O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. J. Miller and P.
Tosteson, The Average Gap Distribution for Generalized Zeckendorf De-
compositions, the Fibonacci Quarterly 51 (2013), 13–27. https://arxiv.
org/abs/1208.5820.

[BSP] A. Benjamin, S. Plott and J. Sellers, Tiling Proofs of Recent Sum Identi-
ties Involving Pell numbers, Annals of Combinatorics 12 (2008), 271–278.
https://doi.org/10.1007/s00026-008-0350-5.

[Br] B. Bradie, Extensions and Refinements of Some Properties of Sums In-
volving Pell numbers, Missouri J. Math. Sci. 22 (2010), no. 1, 37–43,
https://doi.org/10.35834/mjms/1312232719.

[Ca] R. D. Carmichael, On the Numerical Factors of the Arithmetic Forms αn±
βn, Annals of Mathematics 15 (1913–1914), no. 1, 30–48. https://doi.
org/10.2307/1967797.

[DHW] E. Downing, E. Hartung and A. Williams, Pattern Avoidance for Fibonacci
Sequences using k-Regular Words, preprint (2023). https://arxiv.org/
pdf/2312.16052.

[Ki] E. Kilic, The generalized Pell (p, i)-numbers and their generalized Binet
formulas, combinatorial representations, sums, Chaos, Solitons & Fractals
40 (2009), no. 4, 2047–2063. https://doi.org/10.1016/j.chaos.2007.
09.081.

[KiTa] E. Kilic and D. Tasci, On the generalized Order-k Fibonacci and Lucas
Numbers, Rocky Mountain Journal of Mathematics 36 (2006), no. 6, 1915–
1926. https://doi.org/10.1216/rmjm/1181069352.

[Ko] T. Koshy, Fibonacci and Lucas Numbers with Applications, 2nd Edition,
Johm Wiley & Sons,Inc., 2017.

[KuSi] A. D. Kumar and R. Sivaraman, Analysis of Limiting Ratios of Special
Sequences, Mathematics and Statistics 10 (2022), no. 4, 825–832, https:
//doi.org/10.13189/ms.2022.100413.

[Le] C. Levesque, On mth Order Linear Recurrences, Fibonacci Quarterly
23 (1985), no. 4, 290–293, https://www.fq.math.ca/Scanned/23-4/

levesque.pdf.
[PiWa] D. L. Pincus and L. C. Washington, On the Field Isomorphism Problem for

the Family of Simplest Quartic Fields, preprint (2024). https://arxiv.
org/abs/2406.10414.

[ST] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cam-
bridge Tracts in Mathematics, 87, Cambridge University Press, Cam-
bridge, 1986.

37

https://arxiv.org/abs/1208.5820
https://arxiv.org/abs/1208.5820
https://doi.org/10.1007/s00026-008-0350-5
https://doi.org/10.35834/mjms/1312232719
https://doi.org/10.2307/1967797
https://doi.org/10.2307/1967797
https://arxiv.org/pdf/2312.16052
https://arxiv.org/pdf/2312.16052
https://doi.org/10.1016/j.chaos.2007.09.081
https://doi.org/10.1016/j.chaos.2007.09.081
https://doi.org/10.1216/rmjm/1181069352
https://doi.org/10.13189/ms.2022.100413
https://doi.org/10.13189/ms.2022.100413
https://www.fq.math.ca/Scanned/23-4/levesque.pdf
https://www.fq.math.ca/Scanned/23-4/levesque.pdf
https://arxiv.org/abs/2406.10414
https://arxiv.org/abs/2406.10414

	Introduction
	Motivation and Results

	Identities and Preliminary Results
	Some General Results
	Pell numbers
	Sum of 4N+2 Consecutive Terms
	Sums of Odd Numbers of Consecutive Terms

	Fibonacci Numbers
	Sum of 4N+2 Consecutive Terms
	Sum of 4N Consecutive Terms
	Sums of Odd Numbers of Consecutive Terms

	A result about general Lucas sequences
	Generalized Pell and Fibonacci Numbers
	Definition
	Sum of 2k+2 Consecutive Terms
	Conjecture

	Sum of Odd Number of Consecutive Terms
	Tilings and Generalized Pell Sequence
	Generalized Fibonacci sequence

	Proofs
	Proof of Lemma 2.1
	Proof of Theorem 2.2
	Proof of Theorem 3.3
	Proof of Theorem 6.1
	Proof of Theorem 7.3
	Proof of Theorem 7.11

	Computational Experiments
	Thanks

