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ABSTRACT. One of the greatest difficulties encountered by all in their first proof intensive class is
subtly assuming an unproven fact in a proof. The purpose of this note is to describe a specific instance
where this can occur, namely in results related to unique factorization and the concept of the greatest
common divisor.

The Fundamental Theorem of Arithmetic states that every integer exceeding 1 can be written
uniquely as a product of prime powers. There are may ways to prove this important theorem, and
many applications. One of the most important consequences of unique factorization is in studying
the Riemann zeta function, defined by

�(s) =
∞∑
n=1

1

ns

if the real part of s exceeds 1. If this is your first time seeing this function, it shouldn’t be clear
at all why it is worth studying, or why the Clay Mathematics Institute [Cl] is offering one million
dollars for a proof about the location of its zeros! This turns out to be one of the most important
functions in number theory. The reason is that unique factorization implies that we may rewrite the
zeta function as a product: if the real part of s exceeds 1 then we also have

�(s) =
∏

p prime

(
1− 1

ps

)−1
;

see Chapter 3 of [MT-B]. This relationship is the starting point of many investigations. The reason
is that the integers are built up from the primes, and the distribution and properties of the primes
are difficult and mysterious. The integers, however, are quite well understood. For example, it is
not immediately apparent what the next prime after the prime 17483 is (it is 17489); however, it is
quite easy to find the next integer after 17483! The equivalence of the sum and the product allow
us to transfer information from the integers to information of the primes.

The point of all of this is that unique factorization is a very important property, one which needs
to be carefully proved. This note grew out of some conversations between the two authors over
passages in the second named author’s upcoming book on real analysis [Si]. Specifically, we saw
how easy it was to implicitly assume results in arguments and proofs. The purpose here is to discuss
not just the proof of unique factorization and similar results, but also to highlight how easy it is to
subtly assume a fact when trying to prove basic statements.

There are two steps in the proof of the Fundamental Theorem of Arithmetic: (1) we first prove
every integer at least two can be written as a product of prime powers, and then (2) prove that (up
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to reordering the factors, of course) there is only one way to do so. Thus, we first show existence
and then uniqueness.

Existence is straightforward from the definition of primality. Recall an integer n ≥ 2 is prime
if it is only divisible by 1 and itself; 1 is called a unit, and all other positive integers are called
composite. We declare 1 to be a unit and not a prime as otherwise unique factorization cannot hold;
for example, 6 = 2 ⋅ 3 = 12011 ⋅ 2 ⋅ 3. One way to prove the existence of a decomposition is by
strong induction. Strong induction is similar to regular induction. Both first require us to show
our statement P (n) is true for n = 1 (or another fixed integer r, depending on your counting). In
normal induction one then shows that if P (n) is true implies P (n + 1) is true, and concludes that
P (n) is true for all n ≥ r. In strong induction, one shows that if p(k) is true for all k ≤ n implies
P (n+ 1) is true, and concludes that P (n) is true for all n ≥ r.

Proof of existence of factorization into primes. Clearly 2 is a product of prime powers, as 2 is prime.
We now assume all integers k with 2 ≤ k ≤ n can be written as a product of prime powers. Con-
sider the integer n + 1. Either it is a prime (and we are done) or it is divisible by a prime. In the
latter case, say p divides n + 1, which we write as p∣(n + 1). We can then write n + 1 as pm for
some m < n; by the induction assumption, m can be written as a product of primes since it is at
most n, completing the proof. □

We now turn to the more interesting part of the proof, namely the uniqueness. A common ap-
proach is to use the fact that if a prime p divides a product ab, then either p∣a or p∣b. Once we have
this, the rest of the proof follows quickly.

Proof of uniqueness of factorization, given a prime divides a product implies the prime divides a factor.
We proceed by contradiction. If unique factorization fails, then there must be some smallest integer,
say n, where it first fails. Thus, we look at the smallest number with two distinct factorizations:

n = pr11 ⋅ ⋅ ⋅ p
rℓ
ℓ = qs11 ⋅ ⋅ ⋅ q

sℓ
ℓ .

We claim that pk must divide both sides. It clearly divides the first product, and by our assumption
it must divide the second. Why? We constantly group terms. We first write the second product as(

qs11 ⋅ ⋅ ⋅ q
sℓ−1
ℓ

)
⋅ qℓ.

Either pk∣qℓ, or since we are assuming a prime cannot divide a product without dividing at least
one factor, then pk must divide the term in parentheses. Arguing along these lines eventually leads
us to pk dividing some qj , and thus pk = qj . If we now look at n/pk, we still have two distinct
factorization; however, this contradicts the minimality of n, which we assumed was the smallest
integer that had two factorizations. This completes the proof. □

We have thus reduced the proof of unique factorization to a prime divides a product if and only
if it divides at least one term. As elementary as this sounds, this must be proved, especially as
generalizations fail! For example, consider the ring

ℤ[
√
−5] = {a+ b

√
−5 : a, b ∈ ℤ}.

In ℤ[
√
−5] we have 2 ⋅ 3 = (1 +

√
−5)(1 −

√
−5) and neither 2 nor 3 divide either factor on the

right. For a more interesting example of a situation where unique factorization fails (though this
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one requires more background), consider the ring of trigonometric polynomials, namely functions
of the form

a0 +
n∑

k=1

ak cos(kx) +
n∑

k=1

bk sin(kx)

where ai, bi are real numbers and nmay be any non-negative integer (if n = 0 the sum is considered
vacuous). Hale Trotter [Tr] observed that unique factorization fails here, as the Pythagorean formula
implies

sinx sinx = (1− cosx) ⋅ (1 + cos x),

and sinx divides neither 1− cosx nor 1 + cos x.
How can we prove a prime dividing a product divides at least one of the factors? The standard

approach in many books is to use the Euclidean algorithm, or Bézout’s identity, which follows from
it; our conversations began in an attempt to see what was the minimum amount of machinery needed
to prove this innocuous sounding claim. Bézout’s identity (see for instance Chapter 1 of [MT-B])
states that given any two integers a and b there are integers x and y such that xa + yb = gcd(a, b),
where gcd(a, b) is the greatest common divisor of a and b. Recall the greatest common divisor is
defined as the largest integer which divides both a and b.

How does this help us? Assume p∣ab but p divides neither a nor b. We then apply Bézout’s
identity to p and a, noting that gcd(p, a) = 1. Thus there are integers x, y with xp + ya = 1.
Multiplying both sides by b we find xpb + yab = b. Since p divides p and ab we see p divides the
left hand side, which implies p divides the right hand side, namely b.

In discussing Bézout’s identity, we were struck with how absurd it felt to have to spend time
proving the following fact: if d = gcd(a, b) and k∣a and k∣b then k∣d. Clearly any factor of both a
and b must divide their greatest common divisor, right? Unfortunately, this is not immediate from
the definition of the gcd. The gcd is the largest number dividing both – one must show every other
divisor also divides this! Because of our intuition on the integers, it seems ridiculous to think that
we could have k∣a, k∣b without k∣gcd(a, b), but we must prove this if we want to use the identity.

Fortunately, it turns out to be relatively simple to prove that every divisor divides the greatest
common divisor, assuming we have a proof of unique factorization!

Proof that k∣a, k∣b implies k∣gcd(a, b) (assuming unique factorization). By unique factorization, there
are unique decompositions of a and b as products of prime powers, say

a = 2r1 ⋅ 3r2 ⋅ ⋅ ⋅ prℓℓ , b = 2s1 ⋅ 3s2 ⋅ ⋅ ⋅ psℓℓ ,
where ri, si are non-negative integers. Let

ti = min(ri, si), d = 2t1 ⋅ 3t2 ⋅ ⋅ ⋅ ptℓℓ .
We leave it as an exercise to the reader to show that d is the greatest common divisor of a and b. If
now k∣a and k∣b, then writing

k = 2u1 ⋅ 3u2 ⋅ ⋅ ⋅ puℓ
ℓ ,

we see that k∣a implies ui ≤ ri (the largest power of pi dividing a), and similarly k∣b implies
ui ≤ si. Thus ui ≤ min(ri, si) = ti, so k∣d. □

We have just seen another application of unique factorization – it allows us to justify using the
name greatest common divisor! We thus return to the question of proving that if p∣ab then p∣a or
p∣b, as for the purpose of proving unique factorization we only need this, and not the far stronger
statement that is Bézout’s identity.
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As the purpose of this article is to highlight techniques, we give two different proofs emphasizing
different perspectives. In both proofs we do use one step which is similar to a key part of the proof
of the Euclidean algorithm: if a > p and p does not divide a then there is an integer n ≥ 1 and an
integer r ∈ {1, . . . , p−1} such that a = np+r. To see this, just keep removing multiples of p from
a until we are left with something between 1 and p− 1, and since we are removing p each time we
cannot fall from a number exceeding p to a number 0 or less, as that would requiring removing at
least p + 1. It is important to note that in our arguments below, we are not using any results about
the greatest common divisor, which is used in the standard proof of the Euclidean algorithm. Both
proofs appeal to the following: if there is a set of non-negative integers having a certain property,
then there is a smallest element of that set.

First proof that p∣ab implies p∣a or p∣b. From our arguments before, we know it suffices to show
that if a and p are relatively prime, then there exist integers x and y such that xp + ya = 1.
(Remember we then multiplied by b to find xpb+ yab = b; if we assume p∣ab and p does not divide
a, then since p divides the left hand side we find p divides the right hand side, namely b.)

We prove a slightly more general version than we need: if a and b are relatively prime (which
means the largest integer dividing both is 1), then there are integers x and y with xa+ yb = 1. We
give a non-constructive proof that demonstrates the existence of x and y.

First set
A = {xa+ yb : x, y ∈ ℤ} ∩ {1, 2, 3, 4, . . . }.

Thus A is the set of positive integer values assumed as we vary x and y over all integers. As a ∈ A,
clearly A is non-empty and thus it has a smallest element, which we denote by k. This means k can
be written as k = x0a+ y0b for some integers x0, y0.

To complete the proof, we must show that k = 1. We do this by first showing that k divides
every element of A. Suppose that this were not the case. Then there would exist a smallest element
of A that k does not divide. As this element is in A, there must be integers x1 and y1 such that it
equals x1a+ y1b. Let n be the largest natural number such that nk < x1a+ y1b < (n+ 1)k. Why
must there be such an n? The reason is we just keep adding multiples of k until we first exceed our
number x1a+ y1b. It must be the case that

0 < (x1a+ y1b)− nk < k.

Why? If the middle expression equals 0 then we would have x1a+y1b = qk, which means k divides
x1a + y1b and contradicts our assumption that x1a + y1b is the smallest element in A not divisible
by k. A similar argument shows that it cannot equal k.

Since k = x0a+ y0b, we see that

x1a+ y1b− k = (x1 − x0)a+ (y1 − y0)b.
As this number is positive and of the form xa + yb, we see it is in A. Further, it is strictly smaller
than k, which contradicts k being the smallest element of A. Thus our assumption that there is an
element in A not divisible by k is false, and all elements of A are divisible by k.

The proof is completed by looking at good choices for elements ofA. If we take x = 1 and y = 0
we find a ∈ A, while taking x = 0 and y = 1 gives b ∈ A. Thus k∣a and k∣b. As a and b have no
common factors, there is only one possibility: k = 1. Equivalently, our choice of x0 and y0 gives

1 = x0a+ y0b,

which is exactly what we wished to show. □
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Second proof that p∣ab implies p∣a or p∣b. We proceed by contradiction.
(1) Let p be the smallest prime such that there is a product ab with p∣ab but p divides neither a

nor b.
(2) Assuming such a prime p exists, let a and b be such that the product ab is smallest among

all products of integers where p divides the product but not the factors; if there are several
decompositions giving the same smallest product, for definiteness take the one where a is
smallest.

(3) We now show a, b < p. Clearly a, b ∕= p. Assume a > p (a similar argument holds if
b > p). By our discussion above we can write a = np + r with 0 < r < p. This gives
ab = (np+r)b = nbp+rb. As p∣ab, subtracting gives p∣rb; however, rb < ab, contradicting
the minimality of the product ab. Thus a, b < p.

(4) As all integers have a prime decomposition, we write

a ⋅ b = qa,1 ⋅ ⋅ ⋅ qa,ℓ ⋅ qb,1 ⋅ ⋅ ⋅ qb,m.
As we are assuming p∣ab, we may write ab = np, so

np = qa,1 ⋅ ⋅ ⋅ qa,ℓ ⋅ qb,1 ⋅ ⋅ ⋅ qb,m.
We have assumed that p is the smallest prime such that there is a product where p divides
the product but divides neither factor. As the factors of a are at most a < p (and those of b
are at most b < p), by induction each factor qa,i and qb,j divides either n or p. As p is prime,
its only divisors are itself and 1. None of the divisors qa,1, . . . , qb,m can divide p as we have
assumed p divides neither a nor b (and if say qa,1∣p then we would find qa,1 = p and thus
p∣a).

(5) Thus each factor divides n, so

n = ñqa,1 ⋅ ⋅ ⋅ qa,ℓ ⋅ qb,1 ⋅ ⋅ ⋅ qb,m = ñab.

As ab = np, we find
n = nñp,

which implies ñp = 1, which is impossible as p ≥ 2. We have thus found a contradiction,
and therefore there cannot be a smallest prime which divides a product without dividing at
least one factor.

□

This completes our proof that a prime dividing a product must divide a factor, which is what we
needed to prove unique factorization. Our hope in this note was twofold. The first was to highlight
innocuous looking statements, stressing the need for careful proofs. It’s very easy to be misled by
notation. For example, the greatest common divisor of two numbers is actually just the greatest
(i.e., largest) divisor of the numbers; we’ve inserted the word common, but we must justify its
inclusion. The second was to see exactly how deep certain results are, specifically, exactly how
much of certain results we need for our arguments.
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