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Abstract

An interesting open conjecture asks whether it is possible to walk to infinity along
primes, where at each step we add one more digit somewhere in the prime. We
present different greedy models for prime walks to predict the long-time behavior of
the trajectories of orbits, one of which has similar behavior to the actual backtrack-
ing one. Furthermore, we study the same conjecture for square-free numbers, which
is motivated by the fact that they have a strictly positive density, as opposed to the
primes. We introduce stochastic models and analyze the walks’ expected lengths
and the frequencies of the digits added. Lastly, we prove that it is impossible to
walk to infinity in other important number-theoretical sequences, such as perfect
squares or primes in different bases.
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1. Introduction

1.1. Background

This paper is motivated by a simple question: is it possible to walk to infinity along

the primes? By this we mean starting with a prime number, appending one digit

to it to form a new prime, and repeating endlessly. Note that if each time we are

appending to the left an unlimited number of digits, the answer would be positive:

one can prove this using Dirichlet’s theorem for primes in arithmetic progression:

given any prime p other than 2 and 5, choose some integer m so that 10m > p.

As 10m and p are relatively prime, there are infinitely many primes congruent to p

(mod 10m). Any such prime is obtainable by appending digits to the left of p. We

can then repeat this process to walk to infinity.

Another natural interpretation is to append one digit at a time, to the right.

This greatly reduces the likelihood of an infinite walk. For example, one may start

a walk as 3, 31, 317, and find that 317 cannot be extended further (by one digit to

stay a prime). In fact, starting with any one-digit prime, the longest “prime walk”

(via appending one digit a time to the right) always has length 8. For example, the

optimal walk sequence starting with 3 is

{3, 37, 373, 3733, 37337, 373379, 3733799, 37337999}.

To see this, we introduce the notion of a right truncatable prime, which is a prime

that remains prime after removing the rightmost digits successively. It is known that

there are exactly 83 right truncatable primes, with the largest one being 73939133

[2]. Every right truncatable prime with d digits corresponds to a prime walk of

length d starting with a one-digit prime (and vice versa), so the longest such walk

has length 8.

Without the one-digit starting-point restriction, it is possible to have longer

walks:

{19, 197, 1979, 19793, 197933, 1979339, 19793393, 197933933, 1979339333}

is a walk with step size 1 and length 9, while

{409, 4099, 40993, 409933, 4099339, 40993391, 409933919, 4099339193,
40993391939, 409933919393, 4099339193933}

is one of length 11. In particular, an exhaustive search shows that the above is the

longest prime walk with a starting point less than 1,000,000, tied with

{68041, 680417, 6804173, 68041739, 680417393, 6804173939, 68041739393,
680417393939, 6804173939393, 68041739393933, 680417393939333}.
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On the other hand, some small primes do not have long walks, such as 11, whose

longest walk is {11, 113}, and 53, which fails immediately as the numbers between

530 and 539 are all composite.

This discussion suggests two central questions.

� Is it possible to walk to infinity along the primes, where each prime in the

sequence is the result of appending one digit to the right of the previous?

From the last observation, we cannot do so by starting with a one-digit prime.

Some remainder analysis shows that if there is an infinite prime walk (in base

10), it eventually only appends 3’s and 9’s. To clarify, in view of remainders

modulo 2 and 5, we can never append an even number or a 5. Then consider

remainders modulo 3. As 1 and 7 are both congruent to 1 (mod 3), appending

them would increase the remainder by 1. Appending 3 or 9 would leave the

remainder unchanged. As we need to avoid 0 (mod 3) at all times, we can

append 1 or 7 at most once (twice when starting at 3, but 3 is already not a

promising starting point), and must only use 3’s and 9’s afterward.

� What if, instead of appending just one digit, we append at most a bounded

number of digits to the right? More generally, what if the number of digits we

append in moving from pn to pn+1 is at most f(pn) for some function f tending

to infinity? Unlike the case of appending to the left, we cannot immediately

deduce the answer by appealing to Dirichlet’s theorem for primes in arithmetic

progressions.

1.2. Stochastic models

Like most problems in number theory, the aforementioned questions are easy to

state but resist progress. We thus consider instead related random problems to try

and get a sense of what might be true. Such models have been used elsewhere with

great success, from suggesting there are only finitely many Fermat primes to the

veracity of the Twin Prime and Goldbach conjectures.

For example, recall the nth Fermat number is Fn = 22
n

+ 1. The prime number

theorem says that the number of primes up to x is about x/ log x, and thus one

often models a randomly chosen number of order x as being prime with probability

1/ log x. This is the famous Cramér model; while it is known to have some issues

[12, pp. 507–514], it gives reasonable answers for many problems. If we let {Zn} be

independent Bernoulli random variables where Zn = 1 with probability 1/ logFn,

then the expected number of Zn’s that are 1 (and thus the expected number of

Fermat primes) is

E

[ ∞∑
n=0

Zn

]
=

∞∑
n=0

1

log(22n + 1)
≈ 2.24507722, (1.1)
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which is reasonably close to the number of known Fermat primes, five, coming from

n ∈ {0, 1, 2, 3, 4}.
As primes lack much inherent structure, we ask related questions of other se-

quences, such as square-free numbers. From our heuristic model and numerical

explorations, we do not believe one can walk to infinity through the primes by

adding a bounded number of digits to the right; however, we believe it is possible

for square-free numbers. For example, starting with 2, we can get a really long

walk just by always appending the smallest digit that yields a square-free number.

The following sequence only shows the first 17 numbers obtained using this greedy

approach. We do not expect this sequence to terminate soon.

{2, 21, 210, 2101, 21010, 210101, 2101010, 21010101, 210101010, 2101010101,

21010101010, 210101010101, 2101010101010, 2101010101010102,

210101010101021, 2101010101010210, 21010101010102101, . . .}.

While the fraction of numbers at most x that are prime is approximately 1/ log x,

which tends to zero, the fraction which are square-free tends to 1/ζ(2) = 6/π2, or

about 60.79% (for more details, see Section 3.1). Thus, there are tremendously

more square-free numbers available than primes. In particular, once our number is

large, it is unlikely that any digit can be appended to create another prime. Thus,

it should be impossible to walk to infinity among the primes by appending just one

digit on the right. However, for square-free numbers, we expect to have several

digits that we can append and stay square-free, leading to exponential growth in

the number of paths.

Computationally, a bottleneck of investigating prime or square-free walks is the

hardness of factorization, which is necessary to determine whether the current num-

ber is prime/square-free. To overcome this difficulty, we describe fast, stochastic

models that approximate the actual walks.

Explicitly, we consider the following random processes: given a sequence whose

last term is x, we want to assign an appropriate probability of being able to append

an additional digit to the right. We assume each term is independent of the previous,

and the probability that a digit can be appended to x is p(x). Thus, the probability

will decrease as x increases for primes but is essentially constant for square-free

numbers. Furthermore, for prime walks, we present two different models: the first

one randomly selects a digit among 1, 3, 7, and 9 and appends it to the number,

while the second (refined) random model first checks what digits yield a prime

number in the next step and then randomly selects one from the set. We assume

all numbers with the same number of digits are equally likely to be in the sequence

for simplicity. For the primes base 10, we cannot append a digit that is even or a 5,

whereas, for square-free numbers, we cannot append a digit such that the sum of

the digits is 9 or the last two digits are a multiple of 4. One could consider more

involved models taking these into account.
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We approximate that if a number has k digits, the number of primes of k digits

in base b is

bk

log bk
− bk−1

log bk−1
=

bk−1

log b
·
(
b

k
− 1

k − 1

)
=

bk−1((k − 1)b− k)

k(k − 1) log b
≈ (b− 1) · bk−1

k log b
.

(1.2)

Since there are (b − 1)bk−1 numbers with exactly k digits in base b, we assume

the probability that a k−digit number is prime is 1/(k log b), and assume that the

events of two distinct numbers being prime are independent.

Our main focus is the expected value and distribution of lengths of walks under

these stochastic settings. Such probabilistic models have had remarkable success

in modeling other problems, such as the 3x + 1 map and its generalizations [6].

They also have several issues. In particular, we assume that the numbers formed

by appending the digits under consideration are all independent in our desired

sequence. However, this yields a simple model with easily computed results on how

long we expect to be able to walk in the various sequences from different starting

points.

In the rest of the paper, the expected walk length naturally refers to the expected

value of the length of the walk. Typically, there is either an explicit, finite collection

(or sample) of walks to empirically determine the expected length from, or a corre-

sponding model for a walk, under which the expected walk length can be computed

theoretically from the model’s definition.

1.3. Results

We compare the random model with observations of the actual sequences. We

present the two random models for prime walks and show that the refined one is

very close, in some sense, to the actual sequence. In particular, when considering

prime walks with starting point less than a million, the difference between the

experimental expected length for the careful greedy model and the real expected

value for the primes is 0.14, less than 7 percent of the expected length of the real

prime walks of 2.07.

Furthermore, we note that the model becomes more precise as the starting point

increases, and the prime numbers become more sparse. As the starting point in-

creases, the number of primes from which we randomly choose to continue decreases.

Then, we also look at the frequency of the digits added at each step and see that the

refined model approximates the real world extremely well. Lastly, while we discuss

infinite prime walks, we extend our predictions for the case where we are allowed

to insert a digit anywhere, rather than only to the right.

On the other hand, when investigating square-free walks, we present the ex-

perimental expected length of our random models. Furthermore, we remark on

the discrepancies in the frequencies of added digits, and give the number-theoretic

reasons for these discrepancies.
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Although we use stochastic models for prime and square-free walks, there are

some sequences and restrictive scenarios for which we can prove several results

regarding walks to infinity, for example, prime walks in base 2, 3, 4, 5, and 6, and

on perfect squares.

A related problem is the Gaussian Moat problem, which asks whether it is possi-

ble to walk to infinity on Gaussian primes with steps of bounded length. Extensive

research has been done on this. For example, Gethner, Wagon, and Wick in [5] and

Loh in [9] proved numerous results related to the problem. Some of the authors

of this article examined the behavior of prime walks in different number fields [8]

and proved that it is impossible to walk to infinity on primes in Z[
√
2] if the walk

remains within some bounded distance from the asymptotes y = ±x/
√
2.

The main results of the current study are summarized as follows.

Prime walks

� Expressions for the expected prime walk lengths under different models are

given by equations (2.5), (2.6).

� Comparisons of the two prime walk models and the actual primes can be found

in Tables 2, 3, 4, and 5.

� A proof that it is impossible to walk to infinity on primes in base 2 by ap-

pending no more than 2 digits is given in Theorem 2.7, while Lemma A.1

shows that it is impossible to walk to infinity on primes in bases 3, 4, 5, or 6

by appending one digit to the right.

Square-free walks

� The expected lengths of square-free walks given by our models are presented in

Tables 6 and 8, while Theorem 3.4 shows that there exists an infinite random

square-free walk from most starting points.

� Table 7 presents the frequencies of the digits added in square-free walks, and

Remark 3.12 explains why some digits appear more often than others.

� Theorems 3.8 and 3.9 give tight bounds on the theoretical expected lengths

of square-free walks in bases 2 and 10, respectively.

2. Initial models of prime walks

2.1. Models

We now estimate the length of these random walks in base b, so there are b digits

we can append. If our number has k digits, then from §1.2, the probability a digit
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yields a successful appending is approximately 1/(k log b), as we are assuming all

possible numbers are equally likely to be prime. For example, if b = 10, we are not

removing even numbers or 5 or numbers that make the sum a multiple of 3. Thus,

the probability that at least one of the b digits works is 1 minus the probability

they all fail, or

1−
(
1− 1

k log b

)b

. (2.1)

The first stochastic model for prime walks can be described as follows.

Algorithm 2.1 (Greedy Prime Walk in Base b). Each possible appended number

is independently declared to be a random prime with probability as described by the

reasoning used to deduce (2.1). Choose one of the admissible digits uniformly at

random and check if the obtained number is prime; if it is not, stop and record the

length; otherwise, continue the process.

This algorithm can be imagined as a greedy prime walk, as we are not looking

further down the line to see which of many possible random primes would be best to

choose to get the longest walk possible. We call this the greedy model. Furthermore,

note that we may easily improve the model in base 10 by appending from {1, 3, 7, 9}.
We discuss this improvement later in this section, and compare it to this initial

greedy model.

In order to compute the theoretical expected length of such a walk, starting at a

one-digit random prime in base b, we count the probabilities in two different ways;

note that the expected length is just the infinite sum of the probabilities that we

stop at the nth step times n. For brevity, let An denote the event that the walk

has length at least n, and Bn denote the event that the walk has length exactly n.

Since it is clear that the collection of events {Bi}∞i=1 is pairwise independent and

that An = ∪∞
i=nBi, it follows that

∞∑
n=1

P[walk has length at least n] =

∞∑
n=1

nP[walk has length exactly n]. (2.2)

Note that the sum on the right hand side of (2.2) is the expected walk length in

our greedy model, while the sum on the left equals

∞∑
n=0

n−1∏
k=1

(
1−

(
1− 1

k log b

)b
)
, (2.3)

where each term in the sum represents the probability that there is a random prime

with which we can extend the walk for the first n − 1 steps, without considering

the nth step. In particular, the expected length in base 10 when starting with a

single digit is 4.690852, however we are also interested in other bases. With that in
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mind, we denote by Ys,b the random variable indicating the length of a prime walk

with a chosen prime starting point with at most s digits in base b. Furthermore,

by multiplying by the approximate number of primes with exactly r digits and

dividing by the approximate number of primes with at most s digits, we get that

the theoretical expected length of a walk with a starting point at most s digits in

base b is

E[Ys,b] =
1
bs

s log b

(
s∑

r=1

(b− 1)br−1

r log b

( ∞∑
n=0

n−1∏
k=r

(
1−

(
1− 1

k log b

)b
)))

, (2.4)

which simplifies to

E[Ys,b] =
s(b− 1)

bs

(
s∑

r=1

br−1

r

( ∞∑
n=0

n−1∏
k=r

(
1−

(
1− 1

k log b

)b
)))

. (2.5)

Table 1 contains the expected lengths as we vary the starting point and base; one

can view this model as a greedy random prime walk because we always take another

step if possible, with no regard to how many steps we may be able to take afterward;

thus, all decisions are “local.”

Note that the theoretical expected length of the walk in base 10 starting with a

one-digit number, 4.22, is different than the one we computed earlier, 4.69. This is

because we multiplied 4.69 by the approximation factor (b− 1)/b; i.e., 0.9. More

importantly, note that in base 10 we can only append {1, 3, 7, 9} and hope to stay

prime since primes greater than 5 are odd and not divisible by 5.

This suggests a simple improvement to the model base 10: we only allow the

four digits 1, 3, 7, and 9 to be appended on the right. Henceforth, we will only

use this improved version. To do this, we have to make a couple of changes in the

formula (2.5): first, we replace the numerator of 1/(k log b) with 10/4, as we have

the same number of primes despite having less freedom; furthermore, instead of

raising 1− 10/(4k log b) to the bth power (in this case, 10), we raise it to the fourth

power as only 4 options are left. We shall call this the greedy model. The expected

walk length under this model is presented in Table 1 as 10’.

Denote by Ỹs,b the random variable denoting the length of walking according to

this modified algorithm. By modifying our earlier analysis, we obtain the formula

for the expected length of this model in base b to be

E[Ỹs,b] =
s(b− 1)

bs

(
s∑

r=1

br−1

r

( ∞∑
n=0

n−1∏
k=r

(
1−

(
1− b

ϕ(b)k log b

)ϕ(b)
)))

. (2.6)

where ϕ(n) denotes Euler’s totient function.

Our second model is the careful greedy model.

Algorithm 2.2 (Careful greedy algorithm). At each step, we check whether ap-

pending any of 1, 3, 7, or 9 to the right yields a prime. If there are multiple digits
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Maximum number of digits of starting point

1 2 3 4 5 6 7

B
a
se

2 5.20 9.90 11.62 11.45 10.40 9.08 7.79

3 5.05 7.75 7.60 6.53 5.40 4.49 3.80

4 4.87 6.55 5.86 4.79 3.92 3.29 2.85

5 4.71 5.79 4.92 3.96 3.25 2.78 2.45

6 4.57 5.27 4.34 3.48 2.89 2.49 2.22

7 4.46 4.89 3.95 3.17 2.65 2.31 2.08

8 4.37 4.59 3.67 2.95 2.49 2.19 1.98

9 4.29 4.36 3.45 2.79 2.37 2.09 1.91

10 4.22 4.17 3.28 2.66 2.28 2.20 1.85

10’ 4.54 4.55 3.55 2.83 2.38 2.09 1.90

Table 1: Expected length of prime walks given by our formula (2.4), 10’ is the blind
limited model; this latter model is described in more detail in Section 3.4.

that yield primes, the model selects one of them uniformly at random, and continues

the process.

This is a more refined version of Algorithm 2.1. Indeed, we first check whether

any of the numbers obtained after appending an admissable digit is prime; if there

are multiple, select one at random, and if there are none stop the process. Obviously,

this algorithm approximates the real-world data better than Algorithm 2.1, but this

comes at a computational cost, as at each step we have to check whether 4 numbers

are prime instead of just 1.

Lastly, in the primes model, we use backtracking to find the longest walk starting

at a prime.

While Table 1 presents the expected length of prime walks given by formulas (2.5)

and (2.6), Tables 2, 3, 4, 5, and 9 show the data obtained by computer simulations

on our previously described models. We note that this latter table records walks

based on the exact number of digits, rather than the maximum number, at the

start.

2.2. Results and comparison of models

According to the random probabilistic model of prime walks in §2.1, the expected

length of a greedy prime walk, starting with a single digit prime in base 10, is 4.69.
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We compare this heuristic estimate with the primes.

We present the results of our computer simulations for our blind unlimited and

careful limited models in Tables 2, 3, 4, and 5. The careful greedy model is rather

close to the real data whereas the greedy one still predicts some behaviors of the

walks. The data for the actual primes is computed by the program that exhaustively

searches for the longest prime walk given a starting point. First, let us observe how

the number of digits of the starting point affects the expected walk length of the

models in Table 2: it shows that the expected length of the walks decreases as the

starting point increases both theoretically and in our random model.

Start has r digits 0 1 2 3 4 5 6

Blind unlimited model 1.00 1.86 1.60 1.41 1.31 1.25 1.21

Careful limited model 4.77 5.01 3.41 2.79 2.38 2.09 1.88

Primes 8.00 8.00 4.71 3.48 2.71 2.28 2.03

Table 2: Comparison of the expected walk lengths

Furthermore, we analyze the frequency of digits added in the prime walks under

base 10, both for the actual primes and in our models. We originally hypothesized

that 3 and 9 appear more often than 1 and 7. This is because 1 and 7 cannot be

appended when we start with a prime that is 2 (mod 3). We present the frequency

of digits in Table 4 when the starting point is less than 1, 000, 000. As expected, in

both our models and the real prime walks, the number of appended 3’s is very close

to the number of appended 9’s while the number of appended 1’s is very close to the

number of appended 7’s. One surprising observation is that there are significantly

more 7’s in the random models than in the real prime walks. We observe how the

starting point affects the frequency of the digits added in Tables 3, 4, and 5.

As mentioned above, we observe that the number of appended 3’s and 9’s is larger

than the number of appended 1’s and 7’s. This is due to the fact that by modulo 3

considerations, we can only append 3 or 9 to a number 2 (mod 3) to keep it a prime.

In particular, when the starting number is 2 (mod 3), we must append 3’s and 9’s,

and when it is 1 (mod 3), we can append 1 or 7 at most once, and every other digit

appended must be 3 or 9.1 We present our model when starting with 2 (mod 3)

in the following section. Furthermore, this bias will be seen in our models: indeed,

if a number is composite after appending a digit, the digit will not be counted for.

As the probability of a number being prime immediately after appending 3 or 9 is

1Since appending 2, 5 or 8 is forbidden for being divisible by 2 or 5, appending a digit either
preserves the remainder modulo 3 (the case when appending 3 or 9), or increments it by 1 (the
case when appending 1 or 7). In a prime walk, the remainder must never be zero, hence leaving
at most one chance of appending 1 or 7 (combined) when the starting number is 1 (mod 3), and
no chance at all when it is 2 (mod 3).
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higher than that of being prime immediately after appending 1 or 7, the frequency

of 3’s and 9’s will be higher than that of 1’s and 7’s, as can be seen in Tables 3, 4,

and 5.

Number appended 1’s 3’s 7’s 9’s

Blind unlimited model 15.6% 33.0% 19.9% 31.3%

Careful limited model 11.8% 36.7% 14.2% 37.1%

Primes 12.1% 40.2% 11.1% 36.5%

Table 3: Frequency of added digits in prime walks with starting point less than
100, 000.

Number appended 1’s 3’s 7’s 9’s

Blind unlimited 15.4% 32.7% 18.5% 33.2%

Careful limited model 12.5% 35.9% 14.7% 36.8%

Primes 13.1% 38.8% 12.2% 35.6%

Table 4: Frequency of added digits in prime walks with starting point less than
1, 000, 000.

Number appended 1’s 3’s 7’s 9’s

Blind unlimited model 16.3% 32.3% 18.5% 32.8%

Careful limited model 12.7% 35.8% 14.8% 36.4%

Primes 13.3% 38.6% 12.4% 35.5%

Table 5: Frequency of added digits in prime walks with starting point greater than
100, 000 but less than 1, 000, 000.

We defer a more in-depth discussion of the case where our starting number is 2

(mod 3) to Appendix A.1. In the meantime, we use the stochastic prime walks pre-

sented thus far to motivate the results of the next subsection, which give conditions

on which prime walks are impossible.

2.3. Main results for prime walks

As mentioned in the introduction, it is possible to walk to infinity on primes by

appending an unbounded number of digits to the left at each step. We now show
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that this statement’s counterpart is also true, namely that it is possible to walk to

infinity on primes by appending an unbounded number of digits to the right.

Theorem 2.3. Let p0 be a prime. Then there exists a sequence of infinitely many

primes p0, p1, . . . such that for all i ≥ 1, pi is equal to 10ni · pi−1 + ki, for positive

integers ni and ki with ki < 10ni .

Proof. We can restate our goal as follows: given a fixed prime p, we must show that

there exists an n such that there is a prime in the interval [p10n, (p+1)10n). To do

so, we note that for a given p and any fixed r ∈ [0, 1], there exists an n such that

p < 10
1−r
r n − 1. (2.7)

Moreover, given such an n, it is then possible to find x > 0 such that

p10n = x− xr. (2.8)

Then, using first (2.7) and then (2.8), we have that

p10n < 10
n
r − 10n

x− xr < 10
n
r − 10n.

The second inequality implies that xr < 10n, for when xr = 10n, then x − xr =

10
n
r − 10n, and moreover, x− xr is strictly increasing (once it is positive).

Given that xr < 10n, then x− xr > x− 10n. This means that p10n > x− 10n,

and so

x < (p+ 1)10n. (2.9)

All that remains is finding an r such that there is always a prime in the interval

[x − xr, x]. Results of this nature are plentiful; most recently, Baker, Harman,

and Pintz showed that a value of r = 0.525 suffices for x greater than some lower

bound x0 [3]. Since there exists a prime in the interval [x − x0.525, x] for x > x0,

then by our previous definitions there must be a prime contained in the interval

[p10n, (p+1)10n). Note that in order to guarantee x > x0, it is necessary to choose

an n such that n > log10((x0 − xr
0)/p) (and such that (2.7) holds as well).

That there is a prime in [p10n, (p+ 1)10n) implies that there exist n and k such

that p10n + k is prime, with k < 10n. This gives the next prime in our sequence,

which thus goes on infinitely.

Now we define the extended Cunningham Chain, which ultimately serves as a

tool for proving that one cannot walk to infinity on primes in base 2 when appending

up to only 2 digits at a time to the right.
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Definition 2.4. An extended Cunningham chain is the infinite sequence e1, e2, . . .,

generated by an initial prime p and the relation ek = 2ek−1 + 1 (for k ≥ 1 and

e0 = p). In other words, we have that

e0 = p,

e1 = 2p+ 1,

e2 = 4p+ 3,

...

ei = 2ip+ 2i − 1,

...

We show that extended Cunningham chains, no matter their initial prime p,

contain a sequence of consecutive composite ei’s of arbitrarily length. To do so, we

begin with the following lemma.

Lemma 2.5. If k ≥ ⌈log2(p+ 1)⌉+ 2, then 2k − (p+ 1) is not a power of 2.

Proof. Suppose that there exist k and n such that 2k − (p+1) = 2n. Then it is the

case that 2k − 2n = p + 1. Moreover, we have that 2k − 2n ≥ 2k − 2k−1 = 2k−1.

We can thus find a solution for n only if k < ⌈log2(p+ 1)⌉ + 2, for if we take

k ≥ ⌈log2(p+ 1)⌉ + 2, then 2k−1 ≥ 2⌈log2(p+1)⌉+1 > p+ 1. We thus have that

p+ 1 = 2k − 2n ≥ 2k−1 > p+ 1, which is a contradiction.

The next result illustrates the power of Cunningham Chains, which in turn is

used to prove the main result of this section.

Theorem 2.6. In any extended Cunningham chain {ek}∞k=1, given any n ∈ Z+,

there exists i ∈ Z+ such that {ei, ei+1, . . . , ei+n−1} are composite.

Proof. Set k = ⌈log2(p+ 1)⌉+2, and let us consider i = c·ϕ(2k−p−1)·ϕ(2k+1−p−
1) · · ·ϕ(2k+n−1−p−1), where c ∈ Z+ is arbitrary. Moreover, for each of 2k+j−p−1

(with 0 ≤ j ≤ n− 1), take an odd positive divisor dj | 2k+j − p− 1 that is greater

than 1. We can find such dj because we have chosen k via Lemma 2.5 such that

none of 2k+j − p− 1 are powers of 2. Because p+ 1 ≡ 2k+j (mod 2k+j − p− 1), it

is also the case that p+ 1 ≡ 2k+j (mod dj). Thus we have that

ei−(k+j) = 2i−(k+j)(p+ 1)− 1 ≡ 2i−(k+j)2k+j − 1 ≡ 2i − 1 (mod dj). (2.10)

However, as 2 is coprime with dj , Euler’s theorem gives 2ϕ(dj) ≡ 1 (mod dj).

Moreover, it is the case that ϕ(dj) | ϕ(2k+j −p−1), since dj | (2k+j −p−1). Hence

we have that

ei−(k+j) ≡ 2i − 1 ≡ 2c·ϕ(2
k−p−1)·ϕ(2k+1−p−1)···ϕ(2k+n−1−p−1) − 1

≡ (2ϕ(dj))Kj − 1 ≡ 0 (mod dj), (2.11)
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such that Kj is an integer (Kj = c · [ϕ(2k − p− 1) · · ·ϕ(2k+n−1 − p− 1)]/ϕ(dj)).

We have thus shown that {ei−k, ei−k−1, . . . , ei−(k+n−1)} are composite. Notice

that with c sufficiently large, i can be made greater than k + n− 1, allowing us to

find a sub-sequence of n composite elements for any n. Renaming the indices gives

the desired result.

Using this result we can prove that appending 2 digits at a time to the right is

insufficient to walk to infinity on primes in base 2.

Theorem 2.7. It is impossible to walk to infinity on primes in base 2 by appending

no more than 2 digits at a time to the right.

Proof. Since we are appending at most 2 digits in base 2, the allowed blocks are

02, 12, 002, 012, 102, and 112. Avoiding even numbers, we are left with 12, 012 and

112.

Appending 012 to a prime p gives 4p+1. If p ≡ 2 (mod 3), then 4p+1 is divisible

by 3 and is thus not prime. Moreover, given p ≡ 2 (mod 3), then 2p+1 and 4p+3

are equivalent to 2 (mod 3) as well. Thus if p ≡ 2 (mod 3), we can walk to infinity

from that point onward only by appending 12 or 112.

If p ≡ 1 (mod 3), then 4p+1 ≡ 2 (mod 3). This brings us to the above case, now

applied to 4p+1. No matter the value of our initial prime p, we can therefore append

012 at most once in our walk to infinity. It is thus sufficient to consider the point at

which we append only 12 or 112 to eternity. We can then apply Theorem 2.6 with

n = 2. Namely, continuously appending 1 to a prime in base 2 creates a generalized

Cunningham chain, which we know contains prime gaps of size 2; hence there will

be some point in the prime sequence for which 2p+1 and 4p+3 are both composite,

and we can walk no further.

Applying the ideas of the above results allows us to make observations in bases

3, 4, 5, and 6; the analogous results and their proofs can be found in Section A.

The Section A.2 also discusses the inability to create walks on the (very sparse)

Mersenne primes.

In conclusion, the use of stochastic models suggests that there is no infinite prime

walk given by adding one digit at a time to the right, but that it is likely to have

one if we can add a digit anywhere.

3. Modeling square-free walks

3.1. Model

We now turn our attention to square-free walks, whose density is positive, in contrast

to sequences that have density zero like primes. Due to this difference, we expect
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that we can construct a square-free walk to infinity. Before discussing the details,

we precisely define the square-free integers.

Definition 3.1. A square-free integer is an integer that is not divisible by any

perfect square other than 1.

If Q(x) denotes the number of square-free positive integers less than or equal

to x, it is well-known [11] that

Q(x) ≈ x
∏

p prime

(
1− 1

p2

)
= x

∏
p prime

1

1 + 1
p2 + 1

p4 + · · ·
=

x

ζ(2)
=

6x

π2
. (3.1)

In this setting, each possible appended number is independently declared to be a

square-free number with probability p = 6/π2. We now present our first model for

estimating the length of square-free walks.

Algorithm 3.2 (Blind Unlimited Square-Free Walk). Choose one digit uniformly

at random from the set {0, 1, . . . , 9} and append it: if the obtained number is not

square-free, stop and record the length; otherwise, continue the process.

We present the experimental expected lengths under this model, starting with

different number of digits, in Table 6. Akin to Table 9 we opt to provide data based

on the exact number of digits in the starting number, rather than the maximal

possible number.

Start has exactly r digits 0 1 2 3 4 5 6

Blind unlimited square-free walk 1.68 2.79 2.76 2.72 2.71 2.71 2.71

Table 6: Experimental expected lengths of the square-free walks in base 10.

To gain more understanding of the behavior of square-free walks, we first find

the probability that the square-free walk is of length exactly k, where the number

of starting digits is fixed.

Lemma 3.3. Let Xm denote the length of our random square-free walk, starting

with exactly m digits. Then the theoretical expected value of Xm is

E[Xm] ≈

{
1.55 m = 0

2.55 m ≥ 1.
(3.2)

Proof. This proof is standard via the technique of differentiating identities, but

we present it anyway for the sake of completeness. Note that, for all k ≥ 0 and

positive m, Xm = k corresponds to k − 1 successful appendings followed by an un-

successful one. However, X0 = k corresponds to k successful ones and 1 unsuccessful
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one. Thus, we have that

Pr[X0 = k] = pk(1− p) = Pr[Xm = k + 1], (3.3)

and so X is a geometric random variable. Using the fact that

∞∑
k=0

pk =
1

1− p
(3.4)

and differentiating term by term (which is permissible due to absolute convergence),

we obtain

∞∑
k=0

kpk−1 =
1

(1− p)2
⇒

∞∑
k=0

kpk(1− p) =
p

1− p
. (3.5)

Therefore, we find

E[X0] =

∞∑
k=0

kPr[X0 = k] =

∞∑
k=0

kpk(1− p) =
p

1− p
=

6

π2 − 6
≈ 1.55.

(3.6)

E[Xm] = 1 +

∞∑
k=0

kPr[Xm − 1 = k] = 1 +

∞∑
k=0

kpk(1− p) ≈ 2.55. (m ≥ 1)

(3.7)

Let us now compute the probability that the longest walk starting with a given

square-free number is at most k. Let Pi be the probability that the longest square-

free walk has length at most i. In particular, P1 is the probability that the longest

square-free walk has a length of exactly one, i.e., the walk is the starting point. In

other words, appending any digit yields a non-square-free number, so

P1 = (1− p)10 =
(π2 − 6)10

π20
≈ 8.58357× 10−5. (3.8)

Now, consider the probability that the longest square-free walk has length at

most 2; indeed, there are 10 possible cases where exactly i digits work in the first

appending, i.e., 0 ≤ i ≤ 9. Then, by using (3.8) and the Binomial Theorem we have

that

P2 = P1 +

(
10

1

)
(1− p)9pP1 +

(
10

2

)
(1− p)8(pP1)

2 + · · ·+
(
10

10

)
p10P 10

1

=

(
10

0

)
(1− p)10 +

(
10

1

)
(1− p)9pP1 + · · ·+

(
10

10

)
p10P 10

1

= (1− p+ pP1)
10 ≈ 8.59501× 10−5. (3.9)
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To compute P3, let i denote the number of digits that we can append in the first

step while remaining square-free. Then, there are 10i possible numbers after the

second appendage. Like P2, we consider cases when there are exactly 0 ≤ k ≤ 10i

numbers work. Note that, when i = 0 or j = 0, we have a walk of length 1, 2

respectively, so such cases are included in P2. Therefore, by (3.8) and (3.9), we

have that

P3 = P2 +

10∑
i=1

(
10

i

)
pi(1− p)10−i

(
10i∑
k=1

(
10i

k

)
(1− p)10i−k(pP1)

k

)

= P2 +

10∑
i=1

pi(1− p)10−i
(
((1− p) + pP1)

10i − (1− p)10i
)

= P2 +

10∑
i=1

pi(1− p)10−i
(
P i
2 − P i

1

)
= P2 +

10∑
i=1

pi(1− p)10−iP i
2 −

10∑
i=1

pi(1− p)10−iP i
1

= P2 +
(
(1− p+ pP2)

10 − (1− p)10)− ((1− p+ pP1)
10 − (1− p)10

)
= (1− p+ pP2)

10 ≈ 8.59502× 10−5. (3.10)

The next step is to compute Pk for an arbitrary k ∈ N+, which can be done by

induction. Suppose that, for 2 ≤ m ≤ k, we have Pk = (1− p+ pPk−1)
10. Similar

to the idea used to compute P2 and P3, we have that

Pk+1

= Pk +

10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1=1

(
10ak−2

ak−1

)
pak−1(1− p)10ak−2−ak−1

10ak−1∑
ak=1

(
10ak−1

ak

)
pak(1− p)10ak−1−akpak

1

= Pk +

10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1

(
10ak−2

ak−1

)
pak−1(1− p)10ak−2−ak−1

(
(1− p+ pP1)

10ak−1 − (1− p)10ak−1
)

= Pk +

10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1

(
10ak−2

ak−1

)
pak−1(1− p)10ak−2−ak−1

(
P

ak−1

2 − P
ak−1

1

)
. (3.11)
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By repeating the same procedure as in calculating P3, we are able to reduce the

expression (3.11) to

Pk+1 = Pk +

10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

(
P a1

k − P a1

k−1

)
= Pk + (1− p+ pPk)

10 − (1− p+ pPk−1)
10

= (1− p+ pPk)
10, (3.12)

which holds true for any positive integer k ≥ 1.

We now prove that Pk approaches some constant as k → ∞. Using (3.12), we

have that

Pk = (1− p+ pPk−1)
10 ≥ 0.

Furthermore, if Pk−1 ≤ 1/2, then

Pk ≤
(
1− p+

p

2

)10
=

(
1− 3

π2

)10

< 0.710 <
1

2
.

Then, by induction, when the base case is P1 ≈ 8.5835 × 10−5 (from (3.8)), we

have that Pk ≤ 1/2 for any k ≥ 1. Lastly, note that P2 > P1, and using strong

induction and (3.12), we get that

Pk+1 = (1− p+ pPk)
10 ≥ (1− p+ pPk−1)

10 = Pk.

In other words,
(
Pk

)
k≥1

is an increasing sequence. By the Monotone Convergence

Theorem [1, Theorem 2.4.2], we get that there exists l ∈ [0, 0.5] such that

lim
k→∞

Pk = l. (3.13)

Sending k → ∞ in (3.12), we get that

l = (1− p+ pl)10.

Using Mathematica, we see that the only rational root in the range [0, 0.5] is

l ≈ 8.59502× 10−5. (3.14)

The limit l stands for the probability that, starting at some fixed number x, there

is a bounded limit N , which can be very large, such that no square-free walk can

exceed length N . That is, if the limit of Pk is as small as 8.59502× 10−5, it implies

the following theorem.

Theorem 3.4. Given we append one digit at a time, the theoretical probability

that there is an infinite random square-free walk from any starting point is as least

1− l ≈ 0.99991. In other words, there is such a walk from almost any starting point.
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Remark 3.5. Although Theorem 3.4 suggests that stochastically, the probability of

walking to infinity on square-free numbers is high, there exist square-free numbers

that can’t be extended. For example, 231546210170694222 is a square-free number,

such that if we append any digit to the right we get a non-square-free number.

In particular, if we delete any number of digits to the right we get a square-free

number as well, so this proves we can reach a stopping point when starting with 2

and append digits to the right randomly. Furthermore, our example implies that

the walk is not constructive, i.e., if we start with a square-free walk and append a

digit at random that yields a new square-free number, we may reach a point where

we could not move forward.

3.2. Quantitative Results

From §3.1, according to the blind unlimited model of square-free walks, the expected

length of square-free walks is 6/(π2 − 6) in any base. In reality, however, this is not

always the case.

Dropping the probabilistic assumption about the square-free numbers, we assume

that a random square-free walk starts with the empty string, then randomly selected

digits are appended to the right, and the process stops when the number obtained

is not square-free. We let Eb denote the theoretical expected length of such a walk

in base b, and SF the set of square-free numbers. We supplement this notation with

another definition.

Definition 3.6 (Right Truncatable Square Free). We denote by RTSFb the set of

square-free numbers base b such that if we successively remove the rightmost digit,

each resulting number is still square-free. Equivalently, let bk−1 ≤ x < bk. Then,

x ∈ RTSFb if and only if for all ℓ ∈ {0, 1, . . . , k − 1} we have ⌊x/bℓ⌋ is square-free.

We also define

Lb,k :=
∣∣RTSFb ∩ [bk−1, bk)

∣∣ . (3.15)

This quantity counts the number of right-truncatable square-free numbers with

exactly k digits in base b.

Lemma 3.7. We have

Eb =

∞∑
k=1

Lb,k

bk − bk−1
. (3.16)

Proof. The proof follows from the same reasoning used to prove (2.2).

Theorem 3.8. We have E2 satisfies the following bounds:

2.31435013 <
636163720502

238
≤ E2 ≤ 636163930777

238
< 2.31435090. (3.17)
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Proof. A straightforward calculation yields (L2,n)1≤n≤40 = (1, 2, 3, 5, 7, . . . , 168220).

Let

S1 :=

40∑
i=1

L2,i

2i
=

318081860251

237
, (3.18)

S2 :=

∞∑
i=41

L2,i

2i

and note that

S1 + S2 = E2. (3.19)

Moreover, let LO
2,k =

∣∣RTSF2 ∩ [2k−1, 2k) ∩ (2Z+ 1)
∣∣ be the number of odd right

truncatable square-free binary numbers of length-k binary numbers, and similarly

LE
2,k =

∣∣RTSF2 ∩ [2k−1, 2k) ∩ 2Z
∣∣ the even ones. By modulo 4 considerations, we

have that LO
2,k+1 ≤ LO

2,k + LE
2,k and therefore, we have LE

2,k+1 ≤ LO
2,k.

S2 =
LO
2,41 + LE

2,41

241
+

∞∑
i=41

LO
2,i+1 + LE

2,i+1

2i+1
≤

LO
2,41 + LE

2,41

241
+

∞∑
i=41

2LO
2,i + LE

2,i

2i+1

=
LO
2,41 + LE

2,41

241
+

S2

2
+

LO
2,41

242
+

∞∑
i=41

LO
2,i+1

2i+2

≤
3LO

2,41 + 2LE
2,41

242
+

S2

2
+

∞∑
i=41

LO
2,i + LE

2,i

2i+2

≤
5LO

2,40 + 3LE
2,40

242
+

3S2

4
.

Thus, we have

S2 ≤
5LO

2,40 + 3LE
2,40

240
≤ 5L2,40

240
=

210275

238
. (3.20)

As clearly S2 ≥ 0,
40∑
i=1

L2,i

2i ≤ E2 =
40∑
i=1

L2,i

2i + S2. Substituting the numerical

results from (3.18) yields the bound.

Although we do not use the base b = 2 model for square-free walks elsewhere in

this paper, the proof is outlined here since it can be adapted to other bases.

Theorem 3.9. 2.63297479 ≤ E10 ≤ 2.720303756.

Proof. The proof is similar to that of Theorem 3.8, using

(L10,n)1≤n≤8 = (6, 39, 251, 1601, 10143, 64166, 405938, 2568499) (3.21)
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and the inequalities

LO
10,k+1 ≤ 5LO

10,k + 5LE
10,k;

LE
10,k+1 ≤ 3LO

10,k + 2LE
10,k.

(3.22)

3.3. Additional remarks on the behavior of square-free walks

We first introduce some notation. Given a number x and a digit i in base b, we

denote xi = b · x + i; in other words, we append i to the right of x. The following

are some remarks relating to the behavior of square-free walks.

Remark 3.10. The fact that E10 > 6/(π2 − 6) was expected, since we know that xi

is more likely to be square-free if x is square-free. This is because if x is square-free,

then x ̸≡ 0 (mod p2) for every prime p. In particular, this implies that [x0, x9] can

be any segment of Z/p2Z except [0, 9], hence the chance that xi ̸≡ 0 (mod p2) for

all p is slightly bigger. Notice that this behavior is consistent for any base b.

Numerical evidence of these observations is provided in a Python program2. In

particular, it yields that when x ∈ {1, 2, . . . , 1,000,000} is square-free, the probabil-

ity of xi also being square-free is around 0.631, and when x ∈ {1, 2, . . . , 1,000,000}
is not square-free, the probability of xi being square-free is around 0.571. As x

increases, we expect the two probabilities to decrease, but they still have a small

difference.

Remark 3.11. We also explored how the starting point affects the length of the

walk. Like in the prime walks, the experimental expected length of the square-free

walk decreases as the starting point increases since small numbers have a bigger

chance of being square-free. This is shown in Table 6. Note that the expected

length of around 2.71 (when the starting point increases) is inside the interval given

by Theorem 3.9.

Remark 3.12. We also consider the frequency of the digits added in our square-free

walk and how this changes when we vary the walk’s starting point. The results are

shown in Table 7, and we also make the following related, qualitative observations.

� Odd digits appear more often than even digits. This is because if x is square-

free, then it cannot be a multiple of 4, hence even digits appear less.

� The frequencies of 2 and 6 are less than 0, 4, and 8. This is because if x and

xi are square-free and i is even, then if x is odd, by modulo 4 considerations i

is 0, 4, or 8, and if x is even, then i is 2 or 6. However, x is almost twice more

likely to be odd; hence the frequency of 0, 4, and 8 is bigger than that of 2

and 6.
2This script is available at

https://replit.com/@TudorPopi/non-square-free-greater-square-free\#main.py
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� We have that 5 appears less often than any other odd digit. Similar to the

above, x5 is not square-free if x ends with 2 or 7.

� We have that 9 appears more often than any other digit. This is because if x

is square-free, then x ̸≡ 0 (mod 9), hence x9 ̸≡ 0 (mod 9).

� As the starting point increases, the frequencies stabilize.

Remark 3.13. By looking at the last digit, we can make informed decisions on what

digit to append at each step to increase the chance the number is square-free using

the Remark 3.12.

Number of digits of starting point

1 2 3 4 5 6

D
ig
it
ad

d
ed

0 10.1% 7.4% 7.6% 7.5% 7.5% 7.5%

1 14.0% 13.6% 13.2% 13.4% 13.4% 13.4%

2 8.4% 5.5% 5.3% 5.3% 5.3% 5.3%

3 13.5% 13.5% 13.4% 13.4% 13.4% 13.3%

4 5.1% 8.1% 8.0% 8.0% 8.0% 8.0%

5 12.1% 10.8% 10.9% 10.8% 10.8% 10.8%

6 8.3% 5.5% 5.4% 5.3% 5.3% 5.3%

7 13.4% 13.5% 13.2% 13.3% 13.3% 13.3%

8 4.9% 7.4% 8.0% 8.0% 8.0% 8.0%

9 9.7% 14.2% 14.5% 14.6% 14.6% 14.6%

Table 7: Comparing the frequency of the digits of blind unlimited square-free walks
in base 10.

3.4. Blind limited model

Lastly, we present an alternative to the blind unlimited square-free walk. As stated

in Remark 3.12, odd digits appear most frequently. This observation inspires a

different model: if we start with an odd square-free number not divisible by 5, we

can always append 0 to get a square-free number, since the initial number is not

divisible by 2 or 5. Then, randomly append one of 1, 3, 7, and 9. If the number

is square-free, repeat the process, otherwise stop and record the length. Using

(3.1), we get that the probability that a random odd integer, non-divisible by 5, is
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square-free is

p =
∏

p prime ̸=2,5

(
1− 1

p2

)
=

1

ζ(2)
· 1

1− 1
4

· 1

1− 1
25

=
25

3π2
.

Algorithm 3.14 (Blind Limited Square-Free Walk). Start with an odd square-free

number not divisible by 5, then append 0 to it. Choose one digit uniformly at random

from the set {1, 3, 7, 9} and append it to the right; if the resulting number is still

square-free, append another 0 and repeat the process.

Let X denote the length of the blind limited square-free walk, starting with the

empty string. This is different from starting with one digit: with a 1-digit start,

the starting point is 1, 3 or 7 with 1/3 probability each, whereas this time our first

append is 1, 3, 7 or 9 with 1/4 probability each, so it has 1/4 chance not surviving

the first step due to 9 not being square-free.

In estimating the theoretical expected value of Z we assume that the result

of every appending will be square-free with probability p, and all the events are

independent. Note that Z is always even, since we append a 0 at every second

digit. Therefore, the theoretical probability is

P[X = 2k] = pk(1− p) =
25k

3kπ2k
· 3π

2 − 25

3π2
=

25k(3π2 − 25)

3k+1π2k+2
.

Analogously to (3.6), we have that

E[X] =
2p

1− p
=

50

3π2 − 25
≈ 10.84,

which is a lot larger than the expected walk length in the original model computed

in (3.6). We present the experimental comparison in Table 8. The value 11.12 is

close to the theoretical 10.84, which indicates that square-free numbers have good

uniformity. Observe that the earlier comment suggests that the expected length

with 1-digit starts should be 4/3 times that with the empty-string start, and this is

confirmed by the experimental values.

Start: exactly r digits 0 1 2 3 4 5 6

Greedy sq-free walk 1.68 2.79 2.76 2.72 2.71 2.71 2.71

Alternative sq-free walk 11.12 14.82 13.24 13.37 13.47 13.49 13.50

Table 8: Comparing the expected walk lengths of greedy square-free models in base
10.
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4. Conclusion

In the exploration to find a walk to infinity along some number theory sequences,

given we append a bounded number of digits, we have established several results

for different sequences. We chose to study prime and square-free walks in part be-

cause the primes have zero density, whereas the square-free numbers have a positive

density. Where we could not prove exact results, we used stochastic models that

approximated the corresponding “true” values fairly well.

Our stochastic models motivated a conjecture that there is no walk to infinity

for primes, a sequence of zero density with no discernible pattern in its occurrence,

while a walk to infinity exists for square-free numbers, whose density is a positive

constant. We verified this conjecture for these and other sequences, namely perfect

squares and primes in smaller bases; indeed, it is impossible to walk to infinity on

primes in base 2 if appending up to 2 digits at a time, or in bases 3, 4, 5, or 6 if

appending 1 digit at a time. Lastly, we found a way to append an even bounded

number of digits indefinitely for perfect squares.

Stochastic models give us a strong inclination to determine whether we can walk

to infinity along certain number theoretic sequences. The results presented in this

paper suggest simple speculation that small density leads to the absence of the

walks to infinity. However, as we mainly observe sequences based on their density,

it remains to be determined how much other factors, such as the sequence’s pattern

or structure, may contribute as well. As one possible case study, one could consider

walks on the Carmichael numbers, which were recently shown to have the property

that the ratio of consecutive Carmichael numbers converged to 1; see [7]. Another

option is to give more flexibility in where digits are appended; this paper only

discussed fixed-position models, where we either append digits only to the left, or

only to the right. Allowing digits to be appended to either side, or even in the

middle, generates a new set of conjectures to be studied.
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Appendix A Impossibility of Walks

We demonstrate that it is impossible to walk to infinity in bases 3, 4, 5, and 6.

Lemma A.1. The following statements hold.

B1 It is impossible to walk to infinity on primes in base 3 by appending a single

digit at a time to the right.

B2 It is impossible to walk to infinity on primes in base 4 by appending a single

digit at a time to the right.

B3 It is impossible to walk to infinity on primes in base 5 by appending a single

digit at a time to the right.

B4 It is impossible to walk to infinity on primes in base 6 by appending a single

digit at a time to the right.

Proof. Proof of B1: First, note that we can only append a 2 in base 3, as ap-

pending a 0 would yield a number divisible by 3, while appending a 1 would yield

an even number. Therefore, at each step we can only append a 2. Let p1, p2, . . . be

the sequence formed by appending 2 at each step. We have that

p1 = p1,

p2 = 3p1 + 2,

p3 = 9p1 + 8,

...

pi = 3i−1p1 + 3i−1 − 1,

...

Therefore, we have that

pp1
≡ 3p1−1p1 + 3p1−1 − 1 ≡ 0 (mod p1), (A.1)

by Fermat’s little theorem. Hence pp1 is composite, and it is impossible to walk to

infinity on primes in base 3 by appending just one digit at a time.

Proof of B2: We confine ourselves to considering only odd digits. Since 4 ≡ 1

(mod 3), appending 1 to a prime p ≡ 2 (mod 3) gives 4p + 1 ≡ 0 (mod 3), a

composite. One can thus append 1 at most a single time in walking to infinity, and

so it suffices to consider the infinite subsequence over which only 3’s are appended.

Denote the elements of this subsequence as p1, p2, . . .. Then, in a similar fashion to
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the extended Cunningham chains, these elements take the form

p1 = p1,

p2 = 4p1 + 3,

p3 = 16p1 + 15,

...

pi = 4i−1p1 + 4i−1 − 1,

...

But then

pp1
≡ 4p1−1p1 + 4p1−1 − 1 ≡ 0 (mod p1), (A.2)

by Fermat’s little theorem. Hence pp1 is composite, and thus it is impossible to

walk to infinity on primes in base 4 by appending just one digit at a time.

We shall now apply a similar argument to base 5.

Proof of B3: In base 5, parity mandates that we append either 2 or 4 at each

step. If we have a prime p ≡ 1 (mod 3), then 5p+ 4 ≡ 0 (mod 3), and so we must

append a 2. Moreover, if p ≡ 1 (mod 3) then 5p + 2 ≡ 1 (mod 3) as well, so we

must append another 2, and so on until infinity.

If p1 ≡ 1 (mod 3), then we have that

pi = 5i−1p1 +
5i−1 − 1

2
. (A.3)

Then it is the case that 2pi ≡ 5i−1 − 1 (mod p1), and so 2pp1 is divisible by p1
according to Fermat’s little theorem. Therefore pp1

is composite.

On the other hand, if we have a p ≡ 2 (mod 3), then 5p+ 2 ≡ 0 (mod 3), so we

must append a 4. But 5p+4 ≡ 2 (mod 3) when p ≡ 2 (mod 3), thus requiring that

we append 4’s unto infinity.

Given p1 ≡ 2 (mod 3), we find that

pi = 5i−1p1 + 5i−1 − 1. (A.4)

Fermat’s little theorem, therefore, allows us to conclude that pp1
is composite.

The exception is when p1 = 5, in which case we write pi = 5i−1p1 + 5i−1 − 1 =

5i−2(5p1 + 4) + 5i−2 − 1 = 5i−2p2 + 5i−2 − 1, and observe that pp2+1 is divisible by

p2.

Hence, regardless of our initial prime, there must be a composite element in the

sequence produced by appending one digit to the right.

Lastly, the same argument can be used for base 6.

Proof of B4: By parity and modulo 3 considerations, we can only append 1 or 5

at each step. However, note that 1 can be appended at most 3 times, as 6p+1 ≡ p+1
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(mod 5). Assume that we have reached a point where we can only append 5 and

let p1 be this prime. Let p1, p2, . . . be the sequence formed by appending 5 at each

step. We have that

p1 = p1,

p2 = 6p1 + 5,

p3 = 36p1 + 35,

...

pi = 6i−1p1 + 6i−1 − 1,

...

By Fermat’s little theorem, we have that 6p1−1 ≡ 1 (mod p1). Therefore, we have

that

pp1
≡ 6p1−1p1 + 6p1−1 − 1 ≡ 0 (mod p1), (A.5)

and so pp1
is composite. Therefore, it is impossible to walk to infinity on primes in

base 6 by appending just one digit at a time.

A.1 Starting with 2 (mod 3)

In this subsection, we compare our models with the primes when our starting num-

ber is 2 (mod 3). The motivation is that we can only append 3 or 9 to such a prime

while hoping to remain prime; any other digit would lead to a composite number

divisible by 2, 3, or 5. Therefore, we refine our model to only append 3 or 9. In

this case, the walks are shorter, but the model predictions are closer to the primes.

Note that the longest prime walk with starting point 2 (mod 3) less than 1,000,000

has length 10, and is

{809243, 8092439, 80924399, 809243993, 8092439939, 80924399393, 809243993933,

8092439939333, 80924399393333, 809243993933339}.

Since there are now only two possible digits to append, instead of the four that

appeared in equations (2.5) and (2.6), the theoretical expected length of the walk

is given by

9s

10s

(
s∑

r=1

10r−1

r

( ∞∑
n=0

n−1∏
k=r

(
1−

(
1− 10

2k log 10

)2
)))

. (A.6)

We compare our model (A.6) to the primes in Table 9. The careful greedy model

approximates the real world extraordinarily well, especially as the initial number

increases. This is due to the sparsity of the primes, as usually at most one of

{1, 3, 7, 9} can be appended as the number increases.
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Start has exactly r digits 1 2 3 4 5 6

Greedy model 3.34 1.95 1.64 1.45 1.34 1.28

Careful greedy model 5.25 3.22 2.43 2.04 1.77 1.62

Primes 8.00 3.81 2.64 2.12 1.81 1.64

Table 9: Expected length of the prime walks with starting point 2 (mod 3); note
the empty string would not be a meaningful start.

A.2 Walking on Mersenne Primes

In this subsection, we study walks on Mersenne Primes. Recall the following defi-

nition:

Definition A.2. A Mersenne prime is a prime of the form Mn = 2n − 1, n ∈ N.

A necessary (but not sufficient) condition for Mn to be prime is that n is prime.

We now prove the following result on Mersenne Primes:

Theorem A.3. The only nontrivial walk on Mersenne primes is 3 → 31, i.e. if

Mq = 10Mp + i, then p = 2, q = 5, i = 1.

Proof. Let Mq = 10Mp+ i be a Mersenne prime walk, where p and q are prime and

i ∈ {0, 1, . . . , 9}. We have that

Mq = 10Mp + i ⇒ 2q − 1 = 10(2p − 1) + i ⇒ 9− i = 5 · 2p+1 − 2q (A.7)

Taking both sides (mod 2), we see that i must be odd. We now consider the

remaining possible values of i.

� If i = 1, then 8 = 5 · 2p+1− 2q: for q ≤ 5, it is easy to check that the only pair

that works is (p, q) = (2, 5). If q > 5, then p = 2 since the right hand side of

(A.7) is divisible by 8 but not by 16. But then the right-hand side of (A.7) is

negative, whereas the left-hand side is positive, which is a contradiction.

� If i = 3 or i = 7 then the left-hand side of (A.7) is divisible by 2 but not by

4. Since 8 divides 5 · 2p+1 (as p ≥ 2), we must have that q = 1, which is false

since q is prime.

� If i = 5, the left-hand side is divisible by 4 but not by 8. Since 8 divides 5·2p+1

(as p ≥ 2), we must have that q = 2. But then 8 = 5 · 2p+1, which obviously

has no integer solutions.

Therefore, the only nontrivial walk on Mersenne Primes is 3 → 31.

Remark A.4. Another interesting future direction would be to study walks on per-

fect numbers.
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