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Abstract. An interesting open conjecture asks whether it is possible to walk
to infinity along primes, where each term in the sequence has one digit more than
the previous. We present different greedy models for prime walks to predict the
long-time behavior of the trajectories of orbits, one of which has similar behav-
ior to the actual backtracking one. Furthermore, we study the same conjecture
for square-free numbers, which is motivated by the fact that they have a strictly
positive density, as opposed to primes. We introduce stochastic models and an-
alyze the walks’ expected length and frequency of digits added. Lastly, we prove
that it is impossible to walk to infinity in other important number-theoretical
sequences or on primes in different bases.
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1. Introduction

1.1. Background. An interesting, open question is whether or not it is possible
to walk to infinity through primes, where each term in the sequence has one digit
more than the previous. If we drop the restriction that we can only add one digit
at a time, the answer is yes, and follows immediately from Dirichlet’s theorem for
primes in arithmetic progression. Specifically, given any prime p other than 2 or 5,
by adding enough digits to the left, we can ensure that our new number is prime.1

We consider appending one digit at a time, and, in order not to have Dirichlet’s
theorem available, we append digits to the right. For example, 3, 31, 317 are all
primes, but we cannot append a digit to the right of 317 and remain prime. How-
ever, if we started our sequence 3, 31, 311, then we could continue with 3119 (and
we can only append a 9 and nothing else to 311). We could go one step further, to
31193, but nothing else. Conversely, we could run the sequence backward: 31193,
3119, 311, 31, 3. In particular, a straightforward computation shows that the
longest such sequence starting with 3 is 3, 37, 373, 3733, 37337, 373379, 3733799,
37337999, which has length 8.

This leads to the notion of a right truncatable prime, which is a prime that
remains prime after removing the rightmost digits successively. It is known that
there are exactly 83 right truncatable primes, with the largest one being 73939133
[TP]. Notice that any right truncatable prime with d digits generates a prime
walk of length d, and thus 73939133 yields a prime walk of length 8. However, it
is possible to have longer walks if we do not require starting (or, if you take the
opposite viewpoint, ending) at a one-digit prime. For example,

{19, 197, 1979, 19793, 197933, 1979339, 19793393, 197933933, 1979339333}
is a walk with step sizes always one and it has length 9, while

{409, 4099, 40993, 409933, 4099339, 40993391, 409933919, 4099339193,

40993391939, 409933919393, 4099339193933}
is one of length 11. In particular, an exhaustive search shows that the above is
the longest prime walk with a starting point less than 1,000,000, tied with

{68041, 680417, 6804173, 68041739, 680417393, 6804173939, 68041739393,

680417393939, 6804173939393, 68041739393933, 680417393939333}.
On the other hand, some small primes do not have long walks, such as 11, whose
longest walk is {11, 113} while appending any digit to 53 yields a composite, hence
a prime walk starting at 53 always has length 1.

This suggests several questions.

1Given p, choose m so that 10m > p. As 10m and p are relatively prime, there are infinitely
many primes congruent to p modulo 10m, and thus we obtain the next prime in our sequence.
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• Is it possible to walk to infinity among the primes, where each prime in the
sequence is the result of appending one digit to the right of the previous?
From the last observation, we are no longer starting with a one-digit prime.
If there is an infinite prime walk in base 10, we eventually only append
digits 3 and 9.2

• What if, instead of appending just one digit, we append at most a bounded
number of digits to the right? More generally, what if the number of digits
we append in moving from pn to pn+1 is at most f(pn) for some function
f tending to infinity? Unlike the case of appending to the left, we cannot
immediately deduce the answer by appealing to Dirichlet’s theorem for
primes in arithmetic progressions.

1.2. Stochastic models. Like most problems in number theory, the above ques-
tions are easy to state but resist progress. We thus consider instead related random
problems to try and get a sense of what might be true. Such models have been
used elsewhere with great success, from suggesting there are only finitely many
Fermat primes to the veracity of the Twin Prime and Goldbach conjectures.

For example, recall the nth Fermat number is Fn = 22n + 1. The Prime Number
Theorem says that the number of primes up to x is about x/ log x, and thus one
often models a randomly chosen number of order x as being prime with probability
1/ log x. This is the famous Cramér model; while it is known to have some issues
(see [MS]), it gives reasonable answers for many problems. If we let {Xn} be
independent Bernoulli random variables where Xn = 1 with probability 1/ logFn,
then the expected number of Xn’s that are 1 (and thus the expected number of
Fermat primes) is

E

[
∞∑
n=0

Xn

]
=

∞∑
n=0

1

log(22n + 1)
≈

∞∑
n=0

1

log 2
· 1

2n
=

2

log 2
≈ 2.89, (1.1)

which is reasonably close to the number of known Fermat primes, five, coming
from n ∈ {0, 1, 2, 3, 4}.

As primes are difficult to work with, we ask related questions of other sequences,
such as square-free numbers. From our heuristic model and numerical explo-
rations, we do not believe one can walk to infinity through the primes by adding
a bounded number of digits to the right; however, we believe it is possible for
square-free numbers. For example, starting with 2, we can get a walk of length 17
just by always appending the smallest digit that yields a square-free number:

{2, 21, 210, 2101, 21010, 210101, 2101010, 21010101, 210101010, 2101010101,

21010101010, 210101010101, 2101010101010, 2101010101010102,

210101010101021, 2101010101010210, 21010101010102101}.
2 In base 10, we can never append a 5, save to the empty string. Consider primes exceeding

3. As 1 and 7 are both 1 modulo 3, if our number is prime, it must be either 1 or 2 modulo 3.
Thus, if our number is 1 modulo 3, we can append at most one 1 or one 7, at which point our
new number is now 2 modulo 3, and from this point onward, we can only use the digits 3 and 9.
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While the fraction of numbers at most x that are prime is approximately 1/ log x,
which tends to zero, the fraction which are square-free tends to 1/ζ(2) = 6/π2, or
about 60.79%. Thus, there are tremendously more square-free numbers available
than primes. In particular, once our number is large, it is unlikely that any digit
can be appended to create another prime. Thus it should be impossible to walk
to infinity among the primes by appending just one digit on the right. However,
for square-free numbers, we expect to have several digits that we can append and
stay square-free, leading to exponential growth in the number of paths.

Explicitly, we consider the following random processes. Given a sequence whose
last term is x, we want to assign an appropriate probability of being able to
append an additional digit to the right. We assume each term is independent of
the previous, and the probability that a digit can be appended to x is p(x). Thus
the probability will decrease as x increases for primes but is essentially constant
for square-free numbers. Furthermore, for prime walks, we present two different
models: the first one randomly selects a digit among 1, 3, 7, 9 and appends it
to the number, while the second (refined) random model first checks what digits
yield a prime number in the next step and then randomly selects one from the set.
We assume all numbers with the same number of digits are equally likely to be
in the sequence for simplicity. For the primes base 10, we cannot append a digit
that is even or a 5, whereas, for square-free numbers, we cannot append a digit
such that the sum of the digits is 9 or the last two digits are a multiple of 4. One
could consider more involved models taking these into account.

We approximate that if a number has k digits, the number of primes of k digits
in base b is

bk

log bk
− bk−1

log bk−1
=
bk−1

log b
·
(
b

k
− 1

k − 1

)
=
bk−1((k − 1)b− k)

k(k − 1) log b
≈ (b− 1) · bk−1

k log b
.

As there are (b− 1)bk−1 such numbers, we assume the probability that a k−digit
number is prime is 1/(k log b), and assume that the events of two distinct numbers
being prime are independent.

Our main focus is the expected value and distribution of lengths of walks among
these random primes and random square-free numbers. Such probabilistic models
have had remarkable success in modeling other problems, such as the 3x + 1
map and its generalizations; see [KL]. As remarked, this toy model has several
issues. In particular, we assume the numbers formed by appending the digits
under consideration are all independent in our desired sequence. However, this
yields a simple model with easily computed results on how long we expect to be
able to walk in the various sequences from different starting points.

1.3. Results. We compare the random model with observations of the actual
sequences. We present the two random models for prime walks and show that the
refined one is very close to the actual sequence. In particular, when considering
prime walks with starting point less than a million, the difference of expected
lengths of the walks between our refined greedy model and the real primes is 0.14,
less than 7% of the expected length of the real prime walks of 2.07.
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Furthermore, we note that the model becomes more precise as the starting
point increases, and the prime numbers become more sparse. As the starting
point increases, the number of primes from which we randomly choose to continue
decreases. Then, we also look at the frequency of the digits added at each step
and see that the refined model approximates the real world extremely well. Lastly,
while we discuss infinite prime walks, we extend our predictions for the case when
we are allowed to insert a digit anywhere, rather than only to the right, and verify
them using the Miller-Rabin probabilistic test.

On the other hand, when investigating square-free walks, we consider the results
of its random models, remark on the discrepancies in the frequencies of added
digits, and give the number-theoretic reasons.

Although we use stochastic models for prime and square-free walks, there are
some sequences and restrictive scenarios for which we can prove several results
regarding walks to infinity, for example, prime walks in base 2 and 5, perfect
squares, and Fibonacci numbers. In parallel, we also examine the behaviour of
prime walks in different number fields and plan to discuss it in a subsequent article.

The main results of the current study are as follows:
Prime walks

• The expected values of our models for prime walks in base 10 are given by
(2.6), (2.7), (2.9) and (2.10);
• Comparison of the two prime walk models and the actual primes can be

found in Tables 2, 3, 4, and 5;
• The expected values for prime walks obtained by inserting a digit anywhere

are presented in Tables 7 and 8;
• A proof that it is impossible to walk to infinity on primes in base 2 by

appending no more than 2 digits is given in Theorem 2.5, while Lemmas
2.6 and 2.7 show that it is impossible to walk to infinity on primes in base
4 and 5 by appending one digit to the right.

Square-free walks

• The expected values of square-free walks given by our models are presented
in Tables 9 and 11, while Theorem 3.2 shows that almost surely there exists
an infinite random square-free walk from any starting point;
• Table 10 presents the frequencies of the digits of square-free walks, and

Remark 3.13 explains them;
• Theorems 3.7 and 3.8 give a tight bound on the expected value of the

length of square-free walks in base 2 and 10 respectively, while Theorem
3.17 does the same for fourth-power-free walks.

Walks on other sequences

• Lemma 4.1 shows that we can’t walk to infinity on perfect squares by
appending one digit to the right, while Lemma 4.3 gives a condition on the
terms of a walk to infinity on squares;
• Theorem 4.7 shows that walks on terms of the Fibonacci sequence con-

structed by appending one digit to the right have length at most 2, while
Theorems 4.9 and 4.11 yield similar results when we append exactly N,
respectively at most N digits at a time.



6 S. MILLER, F. PENG, T. POPESCU, J. SIKTAR, N. WATTANAWANICHKUL, AND POLYMATH

2. Modeling Prime Walks

2.1. Models. We now estimate the length of these random walks in base b, so
there are b digits we can append. If our number has k digits, then from §1.2, the
probability a digit yields a successful appending is approximately 1/(k log b), as
we are assuming all possible numbers are equally likely to be prime. For example,
if b = 10, we are not removing even numbers or 5 or numbers that make the sum
a multiple of 3. Thus, the probability that at least one of the b digits works is 1
minus the probability they all fail, or

1−
(

1− 1

k log b

)b
. (2.1)

The first stochastic model for primes is as follows. Each possible appended
number is independently declared to be a random prime with probability as de-
scribed above. Choose one digit uniformly at random and check if the obtained
number is prime; if it is not, stop and record the length; otherwise, continue the
process. This algorithm can be imagined as a greedy prime walk, as we are not
looking further down the line to see which of many possible random primes would
be best to choose to get the longest walk possible. We call this the greedy model.
Furthermore, note that we may easily improve the model in base 10 by appending
from {1, 3, 7, 9}. We discuss this improvement later and compare it to the initial
greedy model.

In order to compute the expected length of such a walk, starting at a one digit
random prime in base b, we count the probabilities in two different ways; note
that the expected length is just the infinite sum of the probabilities that we stop
at the nth step times n. For brevity, let An be the event that the walk has length
at least n, and Bn the event that the walk has length exactly n. It is obvious that
Bi, Bj are pairwise independent and that An = ∪∞i=nBi. Since the Bi’s are pairwise
independent, we have that

P[An] = P[∪∞i=nBi] =
∞∑
i=n

P[Bi].

Therefore, we have the following system of equations:

P[A1] = P[B1] + P[B2] + P[B3] + · · ·
P[A2] = P[B2] + P[B3] + · · · (2.2)

P[A3] = P[B3] + · · ·
...

Summing the above over all n we obtain

n∑
i=1

P[Ai] =
n∑
i=1

iP[Bi], (2.3)
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which implies
∞∑
n=1

P[walk has length at least n] =
∞∑
n=1

nP[walk has length exactly n]. (2.4)

Note that the sum on the right is the expected value of the walk in our greedy
model, while the sum on the left equals

∞∑
n=0

n−1∏
k=1

(
1−

(
1− 1

k log b

)b)
, (2.5)

where each term in the sum represents the probability that there is a random prime
with which we can extend the walk for the first n − 1 steps, without considering
the n−th step. In particular, the expected length in base 10 when starting with a
single digit is 4.690852. Furthermore, by multiplying by the approximate number
of primes with exactly r digits and dividing by the expected number of primes
with at most s digits, we get that the expected length of a walk with a starting
point at most s digits is about

1
bs

s log b

(
s∑
r=1

(b− 1)br−1

r log b

(
∞∑
n=0

n−1∏
k=r

(
1−

(
1− 1

k log b

)b)))

=
s(b− 1)

bs

(
s∑
r=1

br−1

r

(
∞∑
n=0

n−1∏
k=r

(
1−

(
1− 1

k log b)

)b)))
. (2.6)

We present in Table 1 the expected lengths as we vary the starting point and
base. As remarked earlier, one can view this model as a greedy random prime
walk because we always take another step if possible, with no regard to how many
steps we may be able to take afterward; thus, all decisions are local.

Note that the expected length of the walk in base 10 starting with a one-digit
number, 4.22, is different than the one we computed earlier, 4.69. This is because
we multiplied 4.69 by the approximation (b− 1)/b; i.e., 0.9. More importantly,
note that in base 10 we can only append {1, 3, 7, 9} and hope to stay prime since
primes greater than 5 are odd and not divisible by 5.

This suggests a simple improvement to the model base 10: we only allow the
four digits 1, 3, 7 and 9 to be appended on the right. Henceforth, we will only
use this improved version. To do this, we have to make a couple of changes in
the formula (2.6): replace the numerator of 1/(k log b) with 10/4 and, instead of
raising 1− 10/(4k log b) to the b (in this case 10), we raise it to the fourth power
as now there are only four options of digits to add. We shall call this the refined
greedy model, whose expected value is presented in Table 1 as 10’, and we note that
this is relatively close to the real expected length of the greedy model presented in
Table 2. Modifying our earlier analysis, we see that the formula for the expected
length of the greedy model in base 10 is

s(b− 1)

bs

(
s∑
r=1

br−1

r

(
∞∑
n=0

n−1∏
k=r

(
1−

(
1− 10

4k log b

)4
)))

. (2.7)
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Number of digits of starting point

1 2 3 4 5 6 7

B
as

e

2 5.20 9.90 11.62 11.45 10.40 9.08 7.79

3 5.05 7.75 7.60 6.53 5.40 4.49 3.80

4 4.87 6.55 5.86 4.79 3.92 3.29 2.85

5 4.71 5.79 4.92 3.96 3.25 2.78 2.45

6 4.57 5.27 4.34 3.48 2.89 2.49 2.22

7 4.46 4.89 3.95 3.17 2.65 2.31 2.08

8 4.37 4.59 3.67 2.95 2.49 2.19 1.98

9 4.29 4.36 3.45 2.79 2.37 2.09 1.91

10 4.22 4.17 3.28 2.66 2.28 2.20 1.85

10’ 4.54 4.55 3.55 2.83 2.38 2.09 1.90

Table 1. Expected length of prime walks given by our formula,
10’ is the refined greedy model.

While the greedy model is useful for computations, we turn our attention to
an improvement which better approximates the reality. The refined greedy model
can only append 1, 3, 7, 9 in base 10. We will show that this model approximates
the real world prime walks more accurately than the greedy algorithm in terms
of both the expected value of the walks (< 10% difference) and the frequency of
digits added.

2.2. Results and comparison of models. According to the random proba-
bilistic model of prime walks in §2.1, the expected length of a greedy prime walk,
starting with a single digit prime in base 10, is 4.69. We compare this heuristic
estimate with the primes.

We present the results of the greedy and refined greedy models in the following
tables, which show the results of our computer simulations. The refined greedy
model is rather close to the real data whereas the greedy one still predicts some
behaviors of the walks. The data for the actual primes is computed by the program
that exhaustively searches for the longest prime walk given a starting point. First,
let us observe how the number of digits of the starting point affects the expected
length of the models in Table 2.

We consider different starting points to eliminate small number bias. As a
result, the above table shows that the expected length of the walks decreases as
the starting point increases in both our random model and in the real world.

Furthermore, we analyze the frequency of digits added in the prime walks, both
for the actual primes and in our models. In particular, we remark that it was
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Start has x digits 1 2 3 4 5 6

greedy model 1.89 1.60 1.41 1.30 1.25 1.20

refined greedy model 4.33 3.37 2.76 2.37 2.08 1.90

primes 8.00 4.71 3.48 2.71 2.28 2.03

Table 2. Comparing the expected value of the walk lengths. The
refined greedy model is significantly closer to the actual value com-
pared to the greedy one.

Number of appended 1’s 3’s 7’s 9’s

random model 15.6% 33.0% 19.9% 31.3%

refined greedy model 11.8% 36.7% 14.2% 37.1%

primes 12.1% 40.2% 11.1% 36.5%

Table 3. Frequency of added digits in prime walks with starting
point less than 100,000.

Number of appended 1’s 3’s 7’s 9’s

random model 15.4% 32.7% 18.5% 33.2%

refined greedy model 12.5% 35.9% 14.7% 36.8%

primes 13.1% 38.8% 12.2% 35.6%

Table 4. Frequency of added digits in prime walks with starting
point less than 1,000,000.

expected that 3 and 9 appear more often than 1 and 7. This is because 1 and 7
can never be appended if we start with a prime that is 2 modulo 3, and at most
one number in our prime walk can be 2 modulo 3. We present the frequency of
digits in Table 4 when the starting point is less than 1,000,000. As expected, in
both our models and the real prime walks, the number of appended 3’s is very
close to the number of appended 9’s while the number of appended 1’s is very
close to the number of appended 7’s. One surprising result is that there appear
significantly more 7’s in the random models than in the real prime walks. We
observe how the starting point affects the frequency of the digits added in Table
3 and Table 4.

As mentioned above, we observe that the number of appended 3′s and 9′s is
larger than the number of appended 1′s and 7′s. This is due to the fact that by
modulo 3 considerations, we can only append 3 or 9 to a number 2 (mod 3). In
particular, this means that when starting with a prime 1 (mod 3), we can only
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Number of appended 1’s 3’s 7’s 9’s

random model 16.3% 32.3% 18.5% 32.8%

refined greedy model 12.7% 35.8% 14.8% 36.4%

primes 13.3% 38.6% 12.4% 35.5%

Table 5. Frequency of added digits in prime walks with starting
point greater than 100,000 but less than 1,000,000.

Start has x digits 1 2 3 4 5 6

greedy model 2.83 1.94 1.64 1.45 1.34 1.28

refined greedy model 3.49 3.22 2.43 2.04 1.77 1.62

primes 8.00 3.81 2.64 2.12 1.81 1.64

Table 6. Expected value of the walks with starting point 2 mod-
ulo 3.

append 1 or 7 at most once in our walk, whereas there are no such constrains for
3, 9. We present our models when starting with 3, 9 in the following section.

2.3. Starting with 2 mod 3. In this subsection, we compare our models with
the primes when our starting number is 2 mod 3. This experiment is motivated
because we can only append 3 or 9 to such a prime while hoping to remain prime;
any other digit would lead to a composite number divisible by 2, 3, or 5. Therefore,
we refine our model only to append 3 or 9. In this case, the walks are shorter, but
the model predictions are closer to the primes. Note that the longest prime walk
with starting point 2 modulo 3 less than 1,000,000 has length 10, and is

{809243, 8092439, 80924399, 809243993, 8092439939, 80924399393, 809243993933,

8092439939333, 80924399393333, 809243993933339}.
Since there are now only two possible digits to append, instead of four, the ex-
pected length of the walk is given by

s(b− 1)

bs

(
s∑
r=1

br−1

r

(
∞∑
n=0

n−1∏
k=r

(
1−

(
1− 10

2k log b

)2
)))

. (2.8)

We compare our model (2.8) to the primes in Table 6. The refined greedy model
approximates the real world extraordinary well, especially as the initial number
increases. This is due to primes’ sparseness, as usually at most one of {1, 3, 7, 9}
can be appended as the number increases.
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2.4. Other walks along primes. Since the probability of a given number being
prime decreases the larger it gets, it seems quite reasonable, albeit extremely diffi-
cult to prove, that walking to infinity along the primes by appending or prepending
digits is impossible. We might consider other sequences. For example, is it possible
to walk to infinity along the primes by inserting digits anywhere? For some quick
intuition, we can estimate the probability that a number n is prime at 1/log n.
In base b, there are about logb n digits in n, so there are about b logb n possible
numbers reachable by adding digits anywhere to n. This means that the expected
number of primes reachable from n is about b logb n/log n = b/log b. This is quite
interesting because it does not depend on n, strongly suggesting that walks to
infinity are possible.

Now that we have an intuition on what may happen if we are allowed to append
a digit at a time anywhere, we follow the idea of §2.1 to create a model to find
the expected walk length of prime walks in this case.

Similar to (2.5), the expected value for the walk length for an m−digit number
can be written as

∞∑
n=1

n−1∏
k=m

(
1−

(
1− 1

k log b

)b(k+1)−1−k)
. (2.9)

Notice that the only difference between (2.5) and (2.9) is the exponent of 1 −
1/(k log b). The number b(k + 1) − 1 − k is obtained by considering how many
distinct numbers we could produce by adding a digit anywhere in the k-digit
number in base b. For example, adding another 4 right before of after the existing
4 in 3141 yields the same number, so we do not count that twice.

By computing this expression, we have the expected walk length for the basic
case at b = 10, k = 1, which is 61.57. This number is tremendously larger than an
expected value of 4.69 for appending on the right only. More interestingly, as the
base increases the expected value obtained by this expression diverges. Results
for different bases, b, and different starting lengths, k, are presented in Table 7.

Again, by multiplying by the approximate number of primes with exactly r
digits and dividing by the expected number of primes with at most s digits, we
get that the expected length of a walk with starting point at most s digits is about

s(b− 1)

bs

( s∑
r=1

br−1

r

( ∞∑
n=1

n−1∏
k=m

(
1−

(
1− 1

k log b

)b(k+1)−1−k)))
. (2.10)

The expected values for starting length up to some s for different bases b is
shown in Table 8. These values also respect the pattern seen in Table 7 that
higher bases have larger expected values. One example that we can confirm its
primality is the following walk in base 10 of length 17.

{ 7, 17, 137, 1637, 18637, 198637, 1986037, 19986037, 199860337, 1998660337,
19998660337, 199098660337, 1949098660337, 19490986560337, 194909865603317,

1949098656033817, 19490983656033817}.
Although the length 17 is not very large and does not suggest we can walk

to infinity, it is the longest example our code can find. However, to show the



12 S. MILLER, F. PENG, T. POPESCU, J. SIKTAR, N. WATTANAWANICHKUL, AND POLYMATH

Starting length

1 2 3 4 5 6 7 8 9 10
B

as
e

2 6.22 6.74 5.89 5.35 4.99 4.73 4.54 4.40 4.28 4.18

3 10.01 9.01 8.25 7.74 7.37 7.09 6.88 6.71 6.58 6.46

4 13.32 12.33 11.55 10.99 10.58 10.26 10.01 9.80 9.63 9.49

5 17.56 16.57 15.76 15.16 14.69 14.33 14.03 13.79 13.58 13.40

6 22.90 21.90 21.07 20.42 19.90 19.49 19.15 18.87 18.63 18.42

7 29.59 28.59 27.73 27.04 26.48 26.03 25.65 25.32 25.05 24.81

8 37.96 36.97 36.08 35.36 34.76 34.26 33.85 33.49 33.17 32.90

9 48.45 47.45 46.55 45.79 45.16 44.63 44.17 43.78 43.43 43.13

10 61.57 60.57 59.65 58.87 58.21 57.64 57.15 56.72 56.35 56.01

Table 7. Expected value for small starting lengths evaluated up
to n = 1000.

s

1 10 100

B
as

e

2 3.11 5.08 3.37

3 6.67 6.97 5.36

4 9.99 9.94 7.97

5 14.05 13.86 11.39

6 19.08 18.90 15.84

7 25.36 25.33 21.59

8 33.22 33.49 29.00

9 43.07 43.79 38.50

10 55.41 56.76 50.61

Table 8. Expected value for starting lengths up to s.

existence of a longer walk, we consider the Miller-Rabin probabilistic test, which
is extremely fast, even for very large numbers, but does not completely prove that
a number is prime. We then find many sequences of length 60, and much longer,
but cannot completely guarantee that they are valid. Nevertheless, we can be
quite confident, since the error is estimated at most 4−40.

2.5. Some proofs related to prime walks. As mentioned in the introduction,
it is possible to walk to infinity on primes by appending an unbounded number
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of digits to the left at each step. Dirichlet’s theorem on arithmetic progressions
states that given two positive coprime integers a and d, there are infinitely many
primes congruent to a (mod d). Thus given an initial prime p0 other than 2 or
5, we can take n such that 10n0 > p0, and find a prime p1 such that p1 ≡ p0
(mod 10n0). The congruence mod 10n0 corresponds to the left-appending of some
number of digits. This gives us the next step in our walk; we can now seek a prime
of the form p1 (mod 10n1), and the process continues indefinitely unto infinity.

We now show that this statement’s counterpart is also true, namely that it is
possible to walk to infinity on primes by appending an unbounded number of digits
to the right.

Theorem 2.1. Let p0 be a prime. Then there exists a sequence of infinitely many
primes p0, p1, ... such that for all i ≥ 1, pi is equal to 10ni · pi−1 + ki, for positive
integers ni and ki with ki < 10ni.

Proof. We can restate our goal as follows: given an arbitrary but fixed prime p,
we must show that there exists an n such that there is a prime between 10n · p
and 10n · p+ 10n − 1 = 10n(p+ 1)− 1; i.e., in the interval [p10n, (p+ 1)10n).

To do so, we note that for a given p, and for a fixed but arbitrary real r such
that 0 < r < 1, there exists an n such that

p < 10
1−r
r
n − 1. (2.11)

Moreover, given such an n, then it is possible to find a real, positive x such that

p10n = x− xr. (2.12)

Then, using first (2.11) and then (2.12), we have that

p10n < 10
n
r − 10n

x− xr < 10
n
r − 10n.

This second inequality implies that xr < 10n, for when xr = 10n, then x − xr =
10

n
r − 10n, and moreover, x− xr is strictly increasing (once it is positive).
Given that xr < 10n, then x− xr > x− 10n. This means that p10n > x− 10n,

and so

x < (p+ 1)10n. (2.13)

All that remains is finding an r such that there is always a prime in the interval
[x − xr, x]. Results of this nature are plentiful; most recently, Baker, Harman,
and Pintz show that a value of r = 0.525 suffices for x greater than some lower
bound x0. Because there exists a prime in the interval [x − x0.525, x] for x > x0,
then using our definitions above there must be a prime contained in the interval
[p10n, (p+1)10n). Note that in order to guarantee x > x0, it is necessary to choose
an n such that n > log10((x0 − xr0)/p) (and such that (2.11) holds as well).

That there is a prime in [p10n, (p + 1)10n) implies that there are n and k such
that p10n + k is prime, with k < 10n. This gives the next prime in our sequence,
which thus goes on infinitely. �

Definition 2.2. An “extended Cunningham chain” is the infinite sequence e1, e2, ...,
generated by an initial prime p and the relation ek = 2ek−1 + 1 (for k ≥ 1 and
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e0 = p). In other words, we have that

e0 = p,

e1 = 2p+ 1,

e2 = 4p+ 3,
...

ei = 2ip+ 2i − 1,
...

We show that such extended Cunningham chains, no matter their initial prime
p, contain a sequence of consecutive composite ei’s of arbitrarily length. To do so,
we begin with the following lemma.

Lemma 2.3. Given k ≥ dlog2(p+ 1)e+ 2, then 2k − (p+ 1) is not a power of 2.

Proof. Suppose that there exist k and n such that 2k − (p + 1) = 2n. Then it is
the case that 2k− 2n = p+ 1. Moreover, we have that 2k− 2n ≥ 2k− 2k−1 = 2k−1.
We can thus find a solution for n only if k < dlog2(p+ 1)e + 2, for if we take
k ≥ dlog2(p+ 1)e + 2, then 2k−1 ≥ 2dlog2(p+1)e+1 > p+ 1. We thus have that
p+ 1 = 2k − 2n ≥ 2k−1 > p+ 1, which is a contradiction. �

With this result in hand, we move on to the main theorem.

Theorem 2.4. In every such extended Cunningham chain, given any n ∈ Z+,
there is i ∈ Z+ such that ei, ei+1, . . . , ei+n−1 are composite.

Proof. Set k = dlog2(p+ 1)e+2, and let us consider i = c·φ(2k−p−1)·φ(2k+1−p−
1) · · ·φ(2k+n−1−p−1), where c ∈ Z+ is arbitrary. Moreover, for each of 2k+j−p−1
(with 0 ≤ j ≤ n− 1), take an odd positive divisor dj | 2k+j − p− 1 that is greater
than 1. We can find such dj because we have chosen k via Lemma 2.3 such that
none of 2k+j − p− 1 are powers of 2. Because p+ 1 ≡ 2k+j (mod 2k+j − p− 1), it
is also the case that p+ 1 ≡ 2k+j (mod dj). Thus we have that

ei−(k+j) = 2i−(k+j)(p+ 1)− 1 ≡ 2i−(k+j)2k+j − 1 ≡ 2i − 1 (mod dj). (2.14)

However, as 2 is coprime with dj, Euler’s theorem gives 2φ(dj) ≡ 1 (mod dj).
Moreover, it is the case that φ(dj) | φ(2k+j−p−1), since dj | (2k+j−p−1). Hence
we have that

ei−(k+j) ≡ 2i − 1 ≡ 2c·φ(2
k−p−1)·φ(2k+1−p−1)···φ(2k+n−1−p−1) − 1

≡ (2φ(dj))Kj − 1 ≡ 0 (mod dj), (2.15)

such that Kj is an integer (Kj = c · [φ(2k − p− 1) · · ·φ(2k+n−1 − p− 1)]/φ(dj)).

We have thus show that ei−k, ei−k−1, ..., ei−(k+n−1) are composite. Notice that
with c sufficiently large, i can be made greater than k+ n− 1, allowing us to find
a subsequence of n composite elements for any n. Renaming the indices gives the
desired result. �

From here we can obtain the following corollary, which relates to the broader
problem of walking to infinity on primes.
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Theorem 2.5. It is impossible to walk to infinity on primes in base 2 by appending
no more than 2 digits at a time to the right.

Proof. Given one or two digits, we can append either 0, 1, 00, 01, 10, or 11. For
parity reasons, one cannot append any of 0, 00, or 10.

Appending 012 to a prime p gives 4p + 1. If p ≡ 2 (mod 3), then 4p + 1 is
divisible by 3 and thus not prime. Moreover, given p ≡ 2 (mod 3), then 2p + 1
and 4p + 3 are equivalent to 2 (mod 3) as well. Thus if p ≡ 2 (mod 3), we can
walk to infinity from that point onward only by appending 12 or 112.

If p ≡ 1 (mod 3), then 4p + 1 ≡ 2 (mod 3). This brings us to the above
case, now applied to 4p + 1. No matter the value of our initial prime p, we can
therefore append 01 at most once in our walk to infinity. It is thus sufficient to
consider the point at which we append only 1 or 11 to eternity. We can then apply
Theorem 2.4 with n = 2. Namely, continuously appending 1 to a prime in a base
2 creates a generalized Cunningham chain, which we know contains prime gaps of
size 2; hence there will be some point in the prime sequence for which 2p+ 1 and
4p+ 3 are both composite, and we can walk no further. �

Applying the ideas of the above results allows us to make observations in bases
4 and 5.

Lemma 2.6. It is impossible to walk to infinity on primes in base 4 by appending
a single digit at a time to the right.

Proof. We confine ourselves to considering only odd digits. Because 4 ≡ 1 (mod 3),
appending 1 to a prime p ≡ 2 (mod 3) gives 4p+1 ≡ 0 (mod 3), a composite. One
can thus append 1 at most a single time in walking to infinity, and so it suffices
to consider the infinite subsequence over which only 3’s are appended. Call the
elements of this subsequence p0, p1, .... Then, in similar fashion to the extended
Cunningham chains, these elements take the form

p1 = p1,

p2 = 4p1 + 3,

p3 = 16p1 + 15,
...

pi = 4i−1p1 + 4i−1 − 1,
...

But then

pp1 ≡ 4p1−1p1 + 4p1−1 − 1 ≡ 0 (mod p1), (2.16)

by Fermat’s little theorem. Hence pp1 is composite, and it is impossible to walk
to infinity by appending just one digit at a time. �

Finally, we apply a similar argument to base 5.

Lemma 2.7. It is impossible to walk to infinity on primes in base 5 by appending
a single digit at a time to the right.
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Proof. In base 5, parity mandates that we append either 2 or 4 at each step. If we
have a prime p ≡ 1 (mod 3), then 5p + 4 ≡ 0 (mod 3), and so we must append
a 2. Moreover, if p ≡ 1 (mod 3) then 5p + 2 ≡ 1 (mod 3) as well, so we must
append another 2, and so on until infinity.

If p1 ≡ 1 (mod 3), then we have that

pi = 5i−1p1 +
5i−1 − 1

2
. (2.17)

Then it is the case that 2pi ≡ 5i−1 − 1 (mod p1), and so 2pp1 is divisible by p1
according to Fermat’s little theorem. Therefore pp1 is composite.

On the other hand, if we have a p ≡ 2 (mod 3), then 5p+ 2 ≡ 0 (mod 3), so we
must append a 4. But 5p + 4 ≡ 2 (mod 3) when p ≡ 2 (mod 3), thus requiring
that we append 4’s unto infinity.

Given p1 ≡ 2 (mod 3), we find that

pi = 5i−1p1 + 5i−1 − 1. (2.18)

Fermat’s little theorem, therefore, allows us to conclude that pp1 is composite.
The exception is when p1 = 5, in which case we write pi = 5i−1p1 + 5i−1 − 1 =
5i−2(5p1 + 4) + 5i−2 − 1 = 5i−2p2 + 5i−2 − 1, and observe that pp2+1 is divisible by
p2.

Hence, no matter our initial prime, there must be a composite element in the
sequence produced by appending one digit to the right. �

In conclusion, the use of stochastic models suggests that there is no infinite prime
walk given adding one digit at a time to the right, but that it is likely to have ones if
we can add a digit anywhere. On the other hand, for other less restrictive problems,
namely, if we can walk to infinity given appending an unbounded number of digits
to the right and if appending a digit at a time in base 2, 4, and 5, we show the
former case is possible, but the latter is not.

3. Modeling Square-free Walks

3.1. Model. We now turn our attention to square-free walks whose density is pos-
itive, contrasting to a zero density sequence like primes. We thus expect that it is
possible to walk to infinity using square-free numbers. However, to verify our con-
jecture, one must append the digits carefully. For example, 231546210170694222
is a square-free number such that successively removing the rightmost digit always
yields a square-free number, but appending any digit to the right yields a non-
square-free one. We now present our model for estimating the length of square-free
walks.

Definition 3.1. A square-free integer is an integer that is not divisible by any
perfect square other than 1.

If Q(x) denotes the number of square-free positive integers less than or equal
to x, it is well-known (see for example [MT-B]) that

Q(x) ≈ x
∏

p prime

(
1− 1

p2

)
= x

∏
p prime

1

1 + 1
p2

+ 1
p4

+ · · ·
=

x

ζ(2)
=

6x

π2
. (3.1)
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Our first stochastic model for square-free numbers is defined as follows. Each
possible appended number is independently declared to be a square-free number
with probability p = 6/π2. Choose one digit uniformly at random and append it:
if the obtained number is not square-free, stop and record the length; otherwise,
continue the process. One can view this algorithm as a greedy square-free walk
because we are not looking further down the line to see which of many possible
random square-free would be best to choose to get the longest walk possible.
Henceforth, we will call this the greedy model. Still, comparing the greedy model
for square-free walks with that for prime walks, the square-free walks are longer
than prime walks. We present the comparison in Table 9.

Start has x digits 1 2 3 4 5 6

greedy square-free walk 2.81 2.76 2.72 2.71 2.71 2.70

greedy prime walk 2.83 1.94 1.64 1.45 1.34 1.28

Table 9. Comparing the expected value of the walks in base 10.

To gain more understanding in the behavior of square-free walks, we first find the
probability that the square-free walk is of length exactly k. Let X denote the
number of steps in our random square-free walk. Then

Pr[X = k] = pk(1− p) =
6k(π2 − 6)

π2k+2
. (3.2)

Since
∞∑
k=1

Pr[X = k] =
∞∑
k=0

(
pk − pk+1

)
= 1 (3.3)

and Pr[X = k] ≥ 0 for all k, this is a probability space; furthermore, X is a
geometric random variable. Using the fact that

∞∑
k=0

pk =
1

1− p
(3.4)

and differentiating, we obtain
∞∑
k=0

kpk−1 =
1

(1− p)2
⇒

∞∑
k=0

kpk(1− p) =
p

1− p
. (3.5)

Therefore, we find the expected walk length of square-free walks as

E[X] =
∞∑
k=0

k Pr[X = k] =
∞∑
k=0

kpk(1− p) =
p

1− p
=

6

π2 − 6
≈ 1.55. (3.6)

Similarly, we have that
∞∑
k=0

kpk =
p

(1− p)2
⇒

∞∑
k=0

k2pk(1− p) =
p(p+ 1)

(1− p)2
. (3.7)
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Therefore,

Var(X) = E[X2]− (E[X])2 =
p(p+ 1)

(1− p)2
− p2

(1− p)2

=
p

(1− p)2
=

6π2

(π2 − 6)2
≈ 3.95. (3.8)

Given a square-free number, let us now compute the probability that the longest
walk starting with it is at most k. Let Pi be the probability that the longest square-
free walk has length at most i. In particular, P1 is the probability that the longest
square-free walk has a length of exactly one, i.e., the walk is the starting point.
In other words, appending any digit yields a non-square-free number, so

P1 = (1− p)10 =
(π2 − 6)10

π20
≈ 8.5835× 10−5. (3.9)

Now, consider the probability that the longest square-free walk has length at
most 2. Indeed, there are 10 possible cases where exactly i digits work in the first
appending, i.e., 0 ≤ i ≤ 9. Then, by using (3.9) we have that

P2 = P1 +

(
10

1

)
(1− p)9pP1 +

(
10

2

)
(1− p)8(pP1)

2 + · · ·+
(

10

10

)
p10P 10

1

=

(
10

0

)
(1− p)10 +

(
10

1

)
(1− p)9pP1 + · · ·+

(
10

10

)
p10P 10

1

=
10∑
i=0

(
10

i

)
(1− p)10−i

(
pP1

)i
= (1− p+ pP1)

10 ≈ 8.5950× 10−5.(3.10)

To compute P3, let i denote the number of digits that we can append in the
first step while staying square-free. Then, there are 10i possible numbers after the
second appending. Like P2, we consider cases when there are exactly 0 ≤ k ≤ 10i
numbers work. Note that, when i = 0 or j = 0, we have a walk of length 1, 2
respectively, so such cases are included in P2. Therefore, by (3.9) and (3.10), we
have that

P3 = P2 +
10∑
i=1

(
10

i

)
pi(1− p)10−i

( 10i∑
k=1

(
10i

k

)
(1− p)10i−k(pP1)

k
)

= P2 +
10∑
i=1

pi(1− p)10−i
(
((1− p) + pP1)

10i − (1− p)10i
)

= P2 +
10∑
i=1

pi(1− p)10−i
(
P i
2 − P i

1

)
= P2 +

10∑
i=1

pi(1− p)10−iP i
2 −

10∑
i=1

pi(1− p)10−iP i
1

= P2 + ((1− p+ pP2)
10 − (1− p)10)− ((1− p+ pP1)

10 − (1− p)10)
= (1− p+ pP2)

10 ≈ 8.5950× 10−5. (3.11)
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The next step is to compute Pk which can be done by induction. Suppose that,
for 2 ≤ m ≤ k, Pk = (1 − p + pPk−1)

10. Similar to the idea of computing P2 and
P3, we have that

Pk+1

= Pk +
10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1=1

(
10ak−2
ak−1

)
pak−1(1− p)10ak−2−ak−1

10ak−1∑
ak=1

(
10ak−1
ak

)
pak(1− p)10ak−1−akpak1

= Pk +
10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1

(
10ak−2
ak−1

)
pak−1(1− p)10ak−2−ak−1

(
(1− p+ pP1)

10ak−1 − (1− p)10ak−1
)

= Pk +
10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1

(
10ak−2
ak−1

)
pak−1(1− p)10ak−2−ak−1

(
P
ak−1

2 − P ak−1

1

)
. (3.12)

By repeating the same procedure as in calculating P3, we are able to reduce the
above expression to

Pk+1 = Pk +
10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

(
P a1
k − P

a1
k−1
)

= Pk + (1− p+ pPk)
10 − (1− p+ pPk−1)

10

= (1− p+ pPk)
10, (3.13)

which holds true for any positive integer k ≥ 1.
We now prove that Pk approaches some constant as k → ∞. Using (3.13), we

have that

Pk = (1− p+ pPk−1)
10 ≥ 0.

Furthermore, if Pk−1 ≤ 1/2, then

Pk ≤
(

1− p+
p

2

)10
=

(
1− 3

π2

)10

< 0.710 <
1

2
.

Then, by induction, when the base case is P1 ≈ 8.5835× 10−5 (from (3.9)), we
have that Pk ≤ 1/2 for any k ≥ 1. Lastly, note that P2 > P1, and using strong
induction and (3.13), we get that

Pk+1 = (1− p+ pPk)
10 ≥ (1− p+ pPk−1)

10 = Pk.



20 S. MILLER, F. PENG, T. POPESCU, J. SIKTAR, N. WATTANAWANICHKUL, AND POLYMATH

In other words,
(
Pk
)
k≥1 is an increasing sequence. By the monotone convergence

theorem, we get that there exists l ∈ [0, 1/2] such that

lim
k→∞

Pk = l.

Sending k →∞ in (3.13), we get that

l = (1− p+ pl)10.

Using Mathematica, we see that the only rational root in the range [0, 1/2] is

l ≈ 8.5950× 105. (3.14)

The limit of Pk, or l, stands for the probability that, starting at some fixed number
x, there is a bounded limit N , which can be very large, that no square-free walk
can exceed length N . That is, if the limit of Pk is as small as 8.5950 × 105, it
implies the following theorem.

Theorem 3.2. Given we append one digit at a time, the probability that there is an
infinite random square-free walk from any starting point is as least 1−l ≈ 0.99991.
In other words, almost always there is such a walk from any starting point.

Remark 3.3. While this implies with high probability that we can always walk
to infinity on square-free numbers, there exist square-free numbers such that you
cannot. For example, 231546210170694222 is a square-free number, but if we
append any digit to the right we get a non-square-free number. In particular, if
we delete any number of digits to the right we get a square-free number as well,
so this proves we can reach a stopping point when starting with 2 and append
digits to the right randomly. Furthermore, our example implies that the walk is
not constructive, i.e., if we start with a square-free walk and append a digit at
random that yields a new square-free number, we might reach a point where we
couldn’t move forward.

3.2. Results. From §3.1, according to the greedy model of square-free walks, the
expected length of square-free walks is 6/(π2 − 6) in any base. In reality, however,
this is not always the case.

Dropping the probabilistic assumption about the square-free numbers, a random
square-free walk is to start with the empty string, randomly append digits to it,
and stop when the number is not square-free. We let Eb denote the expected
length of such a walk in base b, and SF the set of square-free numbers.

We first introduce some notations.

Definition 3.4 (Right Truncatable Square Free). We set RTSFb to be the set of
square-free numbers base b such that if we successively remove the rightmost digit,
each resulting number is still square-free. Equivalently, let bk−1 ≤ x < bk. Then,
x ∈ RTSFb if and only if for all ` ∈ {0, 1, . . . , k−1} we have bx/b`c is square-free.

Definition 3.5. Define

Lb,k :=
∣∣RTSFb ∩ [bk−1, bk)

∣∣ . (3.15)

Thus Lb,k counts the number of right-truncatable square-free numbers with ex-
actly k digits in base b.
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Lemma 3.6. We have

Eb =
∞∑
k=1

Lb,k
bk

. (3.16)

Proof. The proof follows from identical reasoning as that in proving the equivalent
formula, (2.4), for the primes. �

Theorem 3.7. We have E2 satisfies the following bounds:

2.31435013 <
636163720502

238
≤ E2 ≤

636163930777

238
< 2.31435090. (3.17)

Proof. A straightforward calculation yields {L2,n}1≤n≤40 = (1, 2, 3, 5, 7, ..., 168220).
Let

S1 :=
40∑
i=1

L2,i

2i
=

318081860251

237
, (3.18)

S2 :=
∞∑
i=41

L2,i

2i

and note that

S1 + S2 = E2. (3.19)

Moreover, let LO2,k =
∣∣RTSF2 ∩ [2k−1, 2k)∩ (2Z+ 1)

∣∣ be the number of odd right
truncatable square-free binary numbers of length-k binary numbers, and similarly
LE2,k =

∣∣RTSF2 ∩ [2k−1, 2k)∩ 2Z
∣∣ the even ones. By modulo 4 considerations, we

have that LO2,k+1 ≤ LO2,k + LE2,k and LE2,k+1 ≤ LO2,k.

S2 =
LO2,41 + LE2,41

241
+
∞∑
i=41

LO2,i+1 + LE2,i+1

2i+1
≤

LO2,41 + LE2,41
241

+
∞∑
i=41

2LO2,i + LE2,i
2i+1

=
LO2,41 + LE2,41

241
+
S2

2
+
LO2,41
242

+
∞∑
i=41

LO2,i+1

2i+2

≤
3LO2,41 + 2LE2,41

242
+
S2

2
+
∞∑
i=41

LO2,i + LE2,i
2i+2

≤
5LO2,40 + 3LE2,40

242
+

3S2

4
.

Thus, we have

S2 ≤
5LO2,40 + 3LE2,40

240
≤ 5L2,40

240
=

210275

238
. (3.20)

As clearly S2 ≥ 0,
40∑
i=1

L2,i

2i
≤ E2 =

40∑
i=1

L2,i

2i
+ S2. Substituting the numerical

results from (3.18) yields the bound. �

Although we do not use the base b = 2 model for square-free walks anywhere
else, it is listed here since the proof of this theorem can be adapted to other bases.
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Theorem 3.8. 2.63297479 ≤ E10 ≤ 2.720303756.

Proof. The proof is similar to that of Theorem 3.7. We use

{L10,n}1≤n≤8 = (6, 39, 251, 1601, 10143, 64166, 405938, 2568499), (3.21)

and the inequalities
LO10,k+1 ≤ 5LO10,k + 5LE10,k

and
LE10,k+1 ≤ 3LO10,k + 2LE10,k.

�

As stated earlier, the same proof can be adapted for any base b = 3, . . . , 9. This
method fails for larger bases due to computational reasons.

3.3. Discussion of the behaviors of square-free walks. We first introduce
some notation. Given a number x and a digit i in base b, xi = b · x + i; in other
words, we append i to the right of x. The following are some remarks relating to
some behaviors of square-free walks.

Remark 3.9. The fact that E10 > 6/(π2 − 6) was expected, since we know that xi
is more likely to be square-free if x is square-free. This is due to the fact that if x is
square-free, then x 6≡ 0 mod p2 for every prime p. In particular, this implies that
[x0, x9] can be any segment of Z/p2Z except [0, 9], hence the chance that xi 6≡ 0
(mod p2),∀i ∈ [0, 9] is slightly bigger. Notice that this behavior is consistent for
any base b.

Remark 3.10. A computer program yields that when x ∈ {1, 2, . . . , 1,000,000} is
square-free, the probability of xi is also square-free is around 0.5944, and when
x ∈ {1, 2, . . . , 1,000,000} is not square-free, the probability of xi being square-free
is around 0.5669. Note that both these values are larger than 6/π2. This is because
small numbers have a larger chance of being square-free. Furthermore, when x is
smaller, i.e. x ∈ {1, 2, . . . , 10n}, n < 6, these probabilities are even larger. As x
increases, we expect the two probabilities to decrease, but they still have a small
difference.

Remark 3.11. We also explore how the starting point affects the length of the
walk. As in the prime walks, the expected value of the walk’s length decreases
as the starting point increases since small numbers have a bigger chance of being
square-free. This is shown in Table 9. Note that the expected length of around 2.71
(when the starting point increases) is inside the interval given by Theorem 3.8.

Remark 3.12. We also consider the frequency of the digits added in our square-
free walk and how this changes when we vary the walk’s starting point. The result
is shown in Table 10.

Remark 3.13. We make the following observations based on the frequency of the
digits in base 10.

• Odd digits appear more often than even digits. This is because if x is
square-free, then it cannot be a multiple of 4, hence even digits appear less.
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• The frequencies of 2 and 6 are less than 0, 4, and 8. This is because if x and
xi are square-free and i is even, then if x is odd, by modulo 4 considerations
i is 0, 4, or 8, and if x is even, then i is 2 or 6. However, x is almost twice
more likely to be odd; hence the frequency of 0, 4, 8 is bigger than 2 and 6.
• 5 appears less than any other odd digit. Similar to the above, x5 is not

square-free if x ends with 2 or 7.
• 9 appears more often than any other digit. This is because if x is square-

free, then x 6≡ 0 (mod 9), hence x9 6≡ 0 (mod 9).
• As the starting point increases, the frequencies stabilize.

Remark 3.14. By looking at the last digit, we can make informed decisions on
what digit to append at each step to increase the chance the number is square-free
using the Remark 3.13.

Number of digits of starting point

1 2 3 4 5 6

D
ig

it
ad

d
ed

0 10.1% 7.4% 7.6% 7.5% 7.5% 7.5%

1 14.0% 13.6% 13.2% 13.4% 13.4% 13.4%

2 8.4% 5.5% 5.3% 5.3% 5.3% 5.3%

3 13.5% 13.5% 13.4% 13.4% 13.4% 13.3%

4 5.1% 8.1% 8.0% 8.0% 8.0% 8.0%

5 12.1% 10.8% 10.9% 10.8% 10.8% 10.8%

6 8.3% 5.5% 5.4% 5.3% 5.3% 5.3%

7 13.4% 13.5% 13.2% 13.3% 13.3% 13.3%

8 4.9% 7.4% 8.0% 8.0% 8.0% 8.0%

9 9.7% 14.2% 14.5% 14.6% 14.6% 14.6%

Table 10. Comparing the frequency of the digits of square-free
walks in base 10.

3.4. Refined greedy model. Lastly, we present an alternative to the greedy
square-free walk. As stated in Remark 3.13, odd digits appear most frequently.
Using this, we created a different model: if we start with an odd square-free
number not divisible by 5, we can always append 0 to get a square-free number,
since the initial number is not divisible by 2 or 5. Then randomly append one
of 1, 3, 7, 9. If the number is square-free, repeat the process, otherwise stop and
record the length. Using (3.1), we get that the probability that a random odd
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integer, non-divisible by 5, is square-free is

p =
∏

p prime 6=2,5

(
1− 1

p2

)
=

1

ζ(2)
· 1

1− 1
4

· 1

1− 1
25

=
25

3π2
.

Let X denote the number of steps in our refined square-free walk. Note that
the number of steps can only be even, since appending 0 to an odd, non-divisible
by 5 number yields a square-free number. Therefore, we have that

P[X = 2k] = pk(1− p) =
25k

3kπ2k
· 3π2 − 25

3π2
=

25k(3π2 − 25)

3k+1π2k+2
.

Analogously to (3.6), we have that

E[X] =
2p

1− p
=

50

3π2 − 25
≈ 10.84,

which is a lot larger than the expected value in the normal model computed in
(3.6). We present the comparison in Table 11.

Start has x digits 1 2 3 4 5 6

greedy square-free walk 2.81 2.76 2.72 2.71 2.71 2.70

refined greedy square-free walk 11.44 9.92 9.79 9.48 9.14 8.80

Table 11. Comparing the expected value of greedy square-free
models the walks in base 10.

3.5. Higher-power-free walks. In general, by following the same procedure as
in (3.1), Qn(x), the number of nth-power-free numbers less than or equal to x, is
approximately x/ζ(n). Thus, the probability any number x is an n-power-free is
1/ζ(n).

It is known that the special values ζ(2n) can be computed as follows:

ζ(2n) = (−1)n+1B2n(2π)2n

2(2n)!
.

However, there is no known closed formula for ζ(2n+ 1), but, according to [WK],
the approximation of ζ(3) is 1.20205 . . . . Hence, we obtain the following proba-
bilities.

0.831905 . . . ≤ P [x = cube-free] ≤ 0.831912 . . . ,

P [x = fourth-power-free] = 90/π4 = 0.92393 . . . .

Since there is no significant change in dealing with cube-free compared with
fourth-power-free, we focus only the fourth-power-free sequence due to its precise
representation 90/π2. Similar to 3.1, letting X4 denote the number of steps in our
random fourth-power-free walks, we obtain the expected length and its variance.

E[X4] =
90

π4 − 90
= 12.14723 . . . ,
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Var(X4) = E[X2]− (E[X])2 =
p

(1− p)2
=

90π4

(π4 − 90)2
= 159.7026.

Then, we observe if there is any subtle difference in the expected length of
random fourth-power-free walks in difference bases: base 2 and base 10.

Definition 3.15. RT4Fb to be the set of fourth-power-free numbers base b such
that if we successively remove the rightmost digit, each resulting number is still
square-free.

Definition 3.16. Lb,k as in definition 3.4, Lb,k := |RT4Fb ∩ [bk−1, bk)|.

Theorem 3.17. Let Eb denote the expected length of fourth-free walks in base b.

10.002745850302745 ≤ E2 ≤ 13.0679694,

and
5.081603865 ≤ E10 ≤ 15.02018838.

Proof. Following Theorem 3.7, and obtain Eb =
∞∑
k=1

Lb,k
bk

. Given S1,b =
m∑
k=1

Lb,k
bk

and S2,b =
∞∑

k=m+1

Lb,k
bk

, we use Eb = S1,b + S2,b to estimate Eb. The accuracy of

Eb depends on the number of terms, m, of the sum S1,b we are able to compute.
Considering walks in base 2 and given E denotes even and O denotes odd, we

find the following inequalities.

(1) LE2,k+4 ≤ LO2,k+3 + LO2,k+2 + LO2,k+1,

(2) LO2,k+1 ≤ LO2,k + LE2,k.

Given that Ai = L2,m+i/2
m+i, the relationships above give us a lower and an upper

bound of E2,
S1,2 ≤ E2 ≤ S1,2 + A0 + 4A1 + 8A2 + 16A3. (3.22)

Similarly, for base 10, the following relationships can be found.

(1) LO10,k+1 ≤ 5LO10,k + 5LE10,k
(2) LE10,k+3 ≤ 3LO10,k+2 + 2LE10,k+2 + 13LO10,k+1 + 12LE10,k+1 + 63LO10,k + 62LE10,k.

Also, given that Bi = L10,m+i/10m+i, we find a lower and an upper bound of E10,

S1,10 ≤ E10 ≤ S1,10 +
B0

125
+

52B1

125
+

24B2

5
+ 16B3. (3.23)

Substituting the numerical values S1,2 =
36∑
k=1

L2,k

2k
≈ 10.002745850302745 in (3.22)

and S1,10 =
7∑

k=1

L10,k

10k
≈ 5.081603865 in (3.23) yields the bounds. �

Nevertheless, Theorem 3.17 does not help us distinguish E2 and E10 for fourth-
power-free walks, but this is a computational issue that can be fixed. One way to
do is to compute S1,2 and S1,10 up to a larger m, more precisely, when m ≈ 110 in
base 2 and m ≈ 50 in base 10. Another way is to observe the difference between
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the limits of L2,k+1/L2,k and L10,k+1/L10,k, as k approaches∞, and go from there.
For whichever approach, we expect E2 < E10 as we have for square-free walks.
Note that, as the exponent n gets larger, the probability that a number is nth-
power-free, 1/ζ(n), approaches 1. Hence, the existence of a walk to infinity exists
in nth-power-free is even more likely as n gets larger. In such a case, there is
nothing much to investigate, so we turn our attention to other sequences whose
asymptotic density is 0 just like primes.

4. Walks on Other Sequences

4.1. Perfect squares. Similar to how we model prime and square-free walks, the
density of perfect squares is approximately 1/

√
n because the number of perfect

squares less than n is about
√
n. Then, the asymptotic density of perfect squares

is 0, just like primes, because as n approaches ∞, 1/
√
n goes to 0. Although,

for sufficiently large n, 1/
√
n < 1/ log n < 6/π2 implies that perfect squares are

sparser than primes and square-frees, this sequence is still a good choice to study
because it has an explicit pattern, (n2)n∈N. Hence, we seek to investigate if perfect
squares have any walk to infinity in this section.

Lemma 4.1. It is impossible to walk to infinity on perfect squares by appending
a bounded, odd number of digits to the right.

Proof. Suppose some infinite sequence of squares s21, s
2
2, ... exists, subject to the

following relationship:
102ni−1s2i + ki = s2i+1, (4.1)

such that each ni is a positive integer less than or equal to some upper bound N ,
and each ki is a nonnegative integer such that ki < 102ni−1. Then, it is also the
case that

102ni+1−1s2i+1 + ki+1 = s2i+2, (4.2)

with ki+1 < 102ni+1−1. Using (4.1) to substitute for si+1, we have that

102ni+1+2ni−2s2i + 102ni+1−1ki + ki+1 = s2i+2

102ni+1−1ki + ki+1 = (si+2 + 10ni+1+ni−1si)(si+2 − 10ni+1+n1−1si).

Neither ki nor ki+1 can be equal to 0, for otherwise (4.1) would have an integer
of the form 102ni−1s2i be a perfect square, which is impossible (and similarly for
(4.2)). Therefore si+2 − 10ni+1+ni−1si is non-zero and so si+2 > 10ni+1+ni−1si,
implying that si+2 + 10ni+1+ni−1si > 2 · 10ni+1+ni−1si. Thus

102ni+1−1ki + ki+1 = (si+2 + 10ni+1+ni−1si)(si+2 − 10ni+1+ni−1si)

> (2 · 10ni+1+ni−1si)(1) = 2 · 10ni+1+ni−1si. (4.3)

But because ki < 102ni−1 and ki+1 < 102ni+1−1, it is also the case that

102ni+1−1ki + ki+1 < 102ni+1+2ni−2 + 102ni+1−1, (4.4)

and so combining (4.3) with (4.4) yields

2 · 10ni+1+ni−1si < 102ni+1+2ni−2 + 102ni+1−1. (4.5)

Since our sequences of squares is infinite, one can choose an arbitrarily large si,
while the values of ni and ni+1 are bounded. Therefore it is possible to find an
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si such that this inequality does not hold. Hence, such an infinite sequence of
squares does not exist. �

We can apply a similar argument to the case of appending a bounded, even
number of digits. First, however, we observe that it is possible to walk to infinity
in such a manner.

Lemma 4.2. It is possible to walk to infinity on perfect squares by appending a
bounded, even number of digits to the right.

Proof. Let s2 be a perfect square. Then 102s2, 104s2, 106s2, ... are all perfect
squares. Thus, appending 00 to the right at each step allows us to walk to infinity
on squares. �

This existence proof can be generalized to show that after a certain point, only
0’s can be appended to obtain the next square in the sequence.

Lemma 4.3. Let s21, s
2
2, ... be an infinite sequence of squares such that s2i is gen-

erated by appending an even, bounded number of digits to s2i−1. Let the number of
digits appended at each step be no greater than 2N . Then for s2i ≥ 102N/4, it is
the case that s2i+1/s

2
i = 102n, for some positive integer n ≤ N .

Proof. Given, s21, s
2
2, ..., we have that

102nis2i + ki = s2i+1 (4.6)

such that each ni is a positive integer less than or equal to some upper bound N ,
and each ki is a nonnegative integer such that ki < 102ni . Then

ki = (si+1 + 10nisi)(si+1 − 10nisi). (4.7)

For a given i, either ki = 0 or it does not. If it does, then we have 102nis2i = s2i+1,
which corresponds to appending 2ni zeros to the right. Otherwise, if ki 6= 0, then
si+1 > 10nisi, so si+1 + 10nisi > 2 · 10nisi. This means that

ki = (si+1 + 10nisi)(si+1 − 10nisi)

> (2 · 10nisi)(1) = 2 · 10nisi.

But at the same time, ki < 102ni , so it must be the case that

102ni > 2 · 10nisi. (4.8)

For large enough si, this is false, because ni is bounded. In particular, we arrive
at a contradiction once si ≥ 10ni/2. Because ni ≤ N , this means that ki cannot
be nonzero once

s2i ≥
102N

4
. (4.9)

Once this condition is attained, we must have ki = 0 and s2i+1/s
2
i = 102ni , as

desired. �

The natural next question is to consider the general case: appending any number
of bounded digits, even or odd.
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Suppose we have squares s2i , s
2
i+1, ..., s

2
i+j+2, for some positive integer j, subject

to the following relationships:

102n1−1s2i + k1 = s2i+1,

102m1s2i+1 = s2i+2,

102m2s2i+2 = s2i+3,

...

102mjs2i+j = s2i+j+1,

102n2−1s2i+j+1 + k2 = s2i+j+2,

such that n1, n2,m1,m2, ...,mj are positive integers less than or equal to some
upper bound N , and k1 and k2 are nonnegative integers with k1 < 102n1−1, k2 <
102n2−1. In other words, we append an odd number of digits to s2i , then repeatedly
append an even number of 0’s for j steps, and then append another odd number
of digits.

Substituting for s2i+j+1 in terms of s2i+j, then s2i+j in terms of s2i+j−1, etc., gives

102(n1+n2+m1+···+mk−1)s2i + 102(n2+m1+···+mj)−1k1 + k2 = s2i+j+2. (4.10)

Using difference of squares and the same bounding techniques as in Lemmas 4.1
and 4.3, we find that

2 · 10n1+n2+m1+···+mj−1si < 102(n2+m1+···+mj)−1k1 + k2, (4.11)

and using the fact that k1 < 102n1−1 and k2 < 102n2−1, we have that

2 · 10n1+n2+m1+···+mj−1si < 102(n1+n2+m1+···+mj−1) + 102n2−1. (4.12)

While it is still the case that we can choose arbitrarily large si, we can also
guarantee that the right side of the inequality remains larger; while each mi is
bounded, j is not, and so given an si, the value of the sum m1 + · · ·+mj can be
chosen to satisfy the inequality.

This observation shows that we cannot rule out the possibility that there are
always steps on our walk to infinity in which we append an odd number of digits.
On the other hand, neither does it prove that there exists a walk containing
infinitely many such odd steps. We can conclude that these odd steps must grow
increasingly sparse as the squares grow larger, but the question of whether there
could be infinitely many remains open.

Although the answer to the most general case is not complete, determining the
existence of infinite walks on perfect squares turns out to be simpler than primes
and square-frees due to its discernible pattern. With this observation, we turn our
attention to another well-known sequence with zero density and evident pattern,
Fibonacci numbers.

4.2. Fibonacci Numbers. The Fibonacci sequence is one of the most famous
number theory sequences with a great number of remarkable properties and ap-
plications (see [Kos]) while its definition is not complicated.

Definition 4.4 (Fibonacci numbers). Let Fn be the n-th Fibonacci number and
F0 = 0, F1 = 1. For n ≥ 2, Fn = Fn−1 + Fn−2.
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Based on Definition 4.4, it is known that the ratio of any consecutive Fibonacci
numbers is approximately the golden ratio, about 1.618, so the number of Fi-
bonacci numbers less than n is about log1.618 n. Thus, the density of Fibonacci
numbers is around log1.618 n/n, which is even less than 1/

√
n, the density of per-

fect squares, and hence less than the density of primes. With this low density and
the recurrence relation that depends on the two previous terms, we speculate no
walks to infinity in the Fibonacci sequence and present our proof in this section.

First, we establish some relations between any two Fibonacci with k order apart,
i.e., Fm and Fm+k, to help prove our claim.

Lemma 4.5. For all m, k ∈ N, Fk+1Fm ≤ Fm+k ≤ Fk+2Fm.

Proof. Let m be any positive integer. We show that the statement is true for all
k ∈ N by strong induction.

For the base cases k = 1 and k = 2, by Definition 4.4 and the fact that the
Fibonacci sequence is increasing, Fm ≤ Fm+1 ≤ 2Fm holds, and 2Fm ≤ Fm+2 ≤
3Fm follows by adding Fm throughout the prior inequality.

For the inductive step, suppose that for all k with 2 ≤ k ≤ r ∈ N, Fk+1Fm ≤
Fm+k ≤ FkFm. We have FrFm ≤ Fm+r−1 ≤ Fr+1Fm and Fr+1Fm ≤ Fm+r ≤
Fr+2Fm from our supposition. Then combining both inequalities above gives us

Fr−1Fm + FrFm ≤ Fm+r−1 + Fm+r ≤ FrFm + Fr+1Fm,

which is, by Definition 4.4, equivalent to

Fr+1Fm ≤ Fm+r+1 ≤ Fr+2Fm.

�

Lemma 4.6. For all m > k ∈ N, k > 2, Fm+k = (Fk+2−Fk−2)Fm+(−1)k+1Fm−k.

Proof. Let ϕ = 1+
√
5

2
be the golden ratio. Computing the two sides, we have that

ϕ4 − 1 =
√

5ϕ2. (4.13)

Furthermore, Binet’s formula tells us that

Fn =
ϕn + (−ϕ)−n√

5
. (4.14)

By (4.14), we have that Fm+k = ϕm+k+(−ϕ)−m−k
√
5

, and

(Fk+2 − Fk−2)Fm + (−1)k+1Fm−k

=
(ϕ4 − 1)(ϕk−2 + (−ϕ)−k−2)(ϕm + (−ϕ)−m)

5
+ (−1)k+1 (ϕm−k + (−ϕ)k−m)√

5
.
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Now, by (4.13), we get that the above expression is equal to

ϕ2(ϕk−2 + (−ϕ)−k−2)(ϕm + (−ϕ)−m)√
5

+ (−1)k+1 (ϕm−k + (−ϕ)k−m)√
5

=
ϕm+k + (−ϕ)−m−k + ϕm−k(−1)−k + ϕk−m(−1)−m√

5
− (−1)kϕm−k + (−1)mϕk−m√

5

=
ϕm+k + (−ϕ)−m−k√

5
= Fm+k.

�

Lemmas 4.5 and 4.6 imply the following theorem.

Theorem 4.7. It is impossible to construct an infinite walk on the Fibonacci
sequence by appending exactly one digit at a time. In particular, all such walks
have length at most 2.

Proof. Starting with some Fibonacci number Fm ≥ 1, if we append d ∈ {0, 1, 2, . . . , 9},
the newly appended number is 10Fm + d. From Lemmas 4.5 and 4.6, we have the
following relations:

5Fm ≤ Fm+4 ≤ 8Fm ≤ Fm+5 ≤ 13Fm ≤ Fm+6 ≤ 21Fm, (4.15)

and

For all, m > 5 ∈ N, Fm+5 = 11Fm + Fm−5. (4.16)

From (4.15), since 10Fm+dmust be a Fibonacci number and 8Fm ≤ 10Fm ≤ 13Fm,
10Fm + d is either Fm+5, or Fm+6 in some odd cases.

• If 10Fm + d = Fm+6, we have that 10Fm + d > 13Fm and thus d > 3Fm.
Since d is a single-digit number, the possible values of Fm are 1 and 2.

• If 10Fm+d = Fm+5, (4.16) tells us that if m > 5, 10Fm+d = 11Fm+Fm−5,
so d = Fm + Fm−5. Again, since 0 ≤ d ≤ 9, Fm ≤ 9. As m > 5, the only
possible value is Fm = 8. For other cases when m ≤ 5, we have to manually
check it.

From both cases, we conclude that any walks must start from some Fm = 1, 2, 3, 5,
or 8. This fact gives us that there are only 5 possible walks of length 2, namely,
1→ 13, 2→ 21, 3→ 34, 5→ 55, and 8→ 89. �

Now, let us apply the same technique to a more general case when we are allowed
to appended exactly N digits at a time. By appending exactly N digits, we also
include appending as 0’s leading numbers, for example, 001 or 0000002123.

Lemma 4.8. There is no k such that Fk+2−Fk−2 = 10N , for all natural numbers
N and k, where k ≥ 2.

Proof. Based on [SU] where the first 300 Fibonacci numbers are listed, F61 ≡ F1

(mod 10) and F62 ≡ F2 (mod 10). Then, by the Fibonacci definition, we prove by
induction that for any positive integer n, F60+n ≡ Fn (mod 10).
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The periodic property tells us that if we cannot find a pair of Fibonacci,
Fk+2, Fk−2, where 2 ≤ k ≤ 62, such that Fk+2 − Fk−2 ≡ 0 (mod 10), then there
exists no k such that Fk+2−Fk−2 ≡ 0 (mod 10); as a result, it is impossible to have
Fk+2 − Fk−2 = 10N . This is because if there is no such a pair when 2 ≤ k ≤ 62,
neither does when 2 + 60m ≤ k ≤ 62 + 60m, where m ∈ Z+. Hence there are no
possible pairs for any integer k > 2.

Going through the list on [SU], there exists no such a pair in the first 62 Fi-
bonacci numbers which completes our proof. �

Lemma 4.8 then serves as a tool to draw a conclusion for some cases in the
following theorem.

Theorem 4.9. It is impossible to construct an infinite walk on the Fibonacci
sequence by appending exactly N digits at a time, where N is a fixed positive
integer. In particular, any appendable step in the walk must be of length at most
8/7 · (10N − 1).

(Note: In this case, an appendable step refers to a step in a walk such that we
can append some N -digit number and still get a Fibonacci. When a step is not
appendable, the walk terminates.)

Proof. In any walk, let N be a fixed positive integer and Fm be the starting number
in the walk. Similar to Theorem 4.7 the next step in the walk can be written as

10NFm + d, where 0 ≤ d ≤ 10N − 1.

By Lemma 4.5, we know there exists k such that

Fk+1Fm ≤ Fm+k ≤ Fk+2Fm, (4.17)

when Fk+1 ≤ 10N and Fk+2 > 10N . Again, while the most likely case is when
10NFm + d = Fm+k, there are two unlikely cases: 10NFm + d < Fk+1Fm and
10NFm + d > Fk+2Fm. We start with the last two atypical cases.

Case 1: 10NFm + d < Fk+1Fm. (4.17) fails because Fk+1 ≤ 10N and d is positive.

Case 2: 10NFm + d > Fk+2Fm. Since 2 · 10N ≥ Fk+2 > 10N and 0 ≤ d ≤ 10N − 1,
we have that

10NFm + d ≥ (10N + 1)Fm,

meaning that any appendable Fm in the walk must be ≤ d ≤ 10N − 1.
Now we consider the most common case.

Case 3: 10NFm + d = Fm+k. From Lemma 4.6, we have

10NFm + d = (Fk+2 − Fk−2)Fm + (−1)k+1Fm−k (4.18)

d = (Fk+2 − Fk−2 − 10N)Fm + (−1)k+1Fm−k

10N − 1 ≥ (Fk+2 − Fk−2 − 10N)Fm + (−1)k+1Fm−k ≥ 0.

Thus, Fk+2 − Fk−2 ≥ 10N ; otherwise, (4.18) would not hold. If Fk+2 − Fk−2 ≥
10N + 2, we obtain that

10N − 1 ≥ 2Fm + (−1)k+1Fm−k ≥ Fm.
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Hence, any appendable Fm in the walk must be ≤ 10N − 1. However, it is more
complicated when Fk+2 − Fk−2 is 10N or 10N + 1.

If Fk+2 − Fk−2 = 10N , from Lemma 4.8, we know that this case is not possible.
On the other hand, if Fk+2 − Fk−2 = 10N + 1, from (4.18) and ≤ d ≤ 10N − 1,

we have

10NFm + d = (10N + 1)Fm + (−1)k+1Fm−k

10N − 1 ≥ Fm + (−1)k+1Fm−k ≥ 0.

If k is odd, it is clear that Fm has to be ≤ 10N − 1 just like the result we have
had so far.

If k is even, we have 10N−1 ≥ Fm−Fm−k ≥ 0. Therefore, Fm ≤ 10N−1+Fm−k,
so if we can approximate an upper bound of Fm−k in terms of Fm, we can find
a bound for Fm. We know that k ≥ 5 because when N = 1, k = 5 by Theorem
4.7. Then, Fm−k ≤ Fm−5 ≤ Fm/8 by using the bounding technique in Lemma 4.5.
Therefore, we have that Fm−k ≤ Fm/8, so 10N−1 ≥ 7Fm/8, or Fm ≤ 8/7·(10N−1).

Thus, since the bound 8/7 · (10N − 1) is greater than 10N + 1, we conclude that
any appendable step in the walk must be less than 8/7 · (10N − 1). This implies
no walks to infinity on the Fibonacci sequence, given we append exactly N digits
each time. �

Corollary 4.10. The implication of Theorem 4.9 is that any appendable step in a
walk must contain at most log(8/7 · (10N − 1)) ≈ 0.058 +N = N + 1 digits, given
we append exactly N digits each time. Since any number at most 8/7 · (10N − 1)
will contain at least N + 1 digits after appended by N digits one time, the walk
must be at most of length 3.

Theorem 4.11. Given we can append at most N digits each time and the start-
ing number contains N1 ≥ 2 digits, the length of the longest walk is at most
blog2

N
N1−1c+ 2. If N1 = 1, the length of the longest walk is at most blog2

N
N1
c+ 2.

Proof. Given that we start with a Fibonacci number A1 that has N1 digits. Clearly,
10N1−1 ≤ A1 ≤ 10N1−1. From Theorem 4.9, 8/7 ·(10N1−2−1) ≤ 10N1−1 ≤ A1 tells
us that we cannot append 0, 1, . . . , N1− 2 digits to A1. Thus, we can only append
N1−1 digits or above in the first appending. Notice that after the first appending,
the newly appended number, A2, now contain at least N1 + N1 − 1 = 2N1 − 1.
Then, by the same analysis, 102N1−1 ≤ A1 tells us that we can only append 2N1−2
or above number of digits in the second appending. Repeating the process above,
we are required to append at least 2M−1(N1 − 1) digits at the M -th step. Hence,
we can determine the largest M as follows.

2M−1(N1 − 1) ≤ N

M ≤ log2

N

N1 − 1
+ 1.

Therefore, the length of the longest walk is at most blog2
N

N1−1c + 2 when in-
cluding the starting number. Notice that this formula does not work for N1 = 1
since we do not want to append N0− 1 = 0 digit in the first time. Still, by similar
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analysis, we obtain that blog2
N
N1
c + 2 is the length of the longest walk starting

with a single-digit number. �

By exploiting several special relations among Fibonacci numbers, we conclude
that there is no walk to infinity on the Fibonacci sequence, given we append at
most N digits at a time to the right. In addition, the length blog2

N
N1−1c + 2 in

Theorem 4.11 suggests us that the length of any walk on Fibonacci is relatively
small compared to N , which is a fixed positive integer.

5. Conclusion

In the exploration to find a walk to infinity along some number theoretical
sequences given we append a bounded number of digits, we establish several results
for different sequences. Our study choices depend on their density: from the least
to the highest one, we study Fibonacci, perfect squares, primes, and N th-power-
free. Where we couldn’t prove anything concrete, we used stochastic models that
approximate the real world fairly well in the ranges we study.

Utilizing some stochastic models leads us to a conjecture that there are no
walks to infinity for primes, a sequence of zero density with no discernible pattern
in its occurrence, but that it is very likely to have one for square-free numbers
whose density is a positive constant. Additionally, we provide the answers to
this question for other sequences, namely perfect squares, Fibonacci numbers, and
primes in smaller bases. We show that it is impossible to walk to infinity on primes
in base 2, 4, or 5 if appending 1 or 2 digits at a time. Similarly, we obtain that
the answer is no for Fibonacci with any bounded step size. Lastly, we find a way
to append an even bounded number of digits indefinitely for perfect squares.

Stochastic models give us a strong inclination to determine whether we can walk
to infinity along some number theory sequence. The results presented in this paper
suggest simple speculation that small density leads to the absence of the walks
to infinity. However, as we mainly observe sequences based on their density, it
remains to be determined how much other factors, such as the sequence’s pattern
or structure, may contribute as well.
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