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ABSTRACT. We compare theL-Function Ratios Conjecture’s prediction with number theory for the
family of quadratic twists of a fixed elliptic curve with prime conductor, and show agreement in the
1-level density up to an error term of sizeX−

1−�

2 for test functions supported in(−�, �); this gives
us a power-savings for� < 1. This test of the Ratios Conjecture introduces complications not seen
in previous cases (due to the level of the elliptic curve). Further, the results here are one of the key
ingredients in the companion paper [DHKMS2], where they areused to determine the effective matrix
size for modeling zeros near the central point for this family. The resulting model beautifully describes
the behavior of these low lying zeros for finite conductors, explaining the data observed by Miller in
[Mil3].

A key ingredient in our analysis is a generalization of Jutila’s bound for sums of quadratic characters
with the additional restriction that the fundamental discriminant be congruent to a non-zero square
modulo a square-free integerM . This bound is needed for two purposes. The first is to analyzethe
terms in the explicit formula corresponding to characters raised to an odd power. The second is to
determine the main term in the 1-level density of quadratic twists of a fixed form onGLn. Such an
analysis was performed by Rubinstein [Rub], who implicitlyassumed that Jutila’s bound held with
the additional restriction on the fundamental discriminants; in this paper we show that assumption is
justified.
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1. INTRODUCTION

One of the most important areas in modern number theory is thestudy of the distribution of the
zeros ofL-functions. These zeros encode crucial number theoretic information on subjects ranging
from the distribution of the primes (from simply the number of primes at mostx to biases in the
distribution of primes in various residue classes) to properties of class numbers to (conjecturally)
the geometric rank of the Mordell-Weil group of rational solutions of an elliptic curve. Further, the
observed behavior is similar to that found in nuclear physics and other disciplines, suggesting deep
connections between this branch of mathematics and other fields. The General Riemann Hypothesis
(GRH), often considered the most important open question inmathematics, is the conjecture that all
non-trivial zeros of theseL-functions have real part equal to1/2. As powerful as this conjecture is,
there are many problems in number theory where just knowing the real parts are1/2 is not enough,
and we need to know finer properties of the distribution of thezeros on the critical lineℜ(s) = 1/2.

As proofs of properties of these zeros have eluded researchers since Riemann’s seminal paper,
methods of modeling these zeros are indispensable in understanding and formulating appropriate
conjectures aboutL-functions. Many models have had various degrees of success. Perhaps the most
famous are those arising from Random Matrix Theory (see for example [KaSa1, KaSa2, KeSn1,
KeSn2, KeSn3] among others, and [FM] for some of the history of the interplay between nuclear
physics and number theory). Unfortunately, these models are only able to predict the main term be-
havior in the problems of interest, and in many situations the arithmetic of the family ofL-functions
only surfaces in lower order terms (see for instance [Mil2, Mil6, Yo1]). This often requires the arith-
metic to be added in an ad-hoc fashion. Another approach, which has the advantage of including the
arithmetic directly, is the hybrid model (see [GHK]), whereL-functions are modeled by the prod-
uct of a partial Hadamard product of zeros (which is expectedto be described by Random Matrix
Theory) and a partial Euler product (which is expected to provide the arithmetic).

In this work we discuss another method, theL-function Ratios Conjecture of Conrey, Farmer and
Zirnbauer [CFZ1, CFZ2]. We concentrate on the family of quadratic twists of a fixed elliptic curve
of prime conductor. The paper is organized as follows. We first describe the statistic of interest (the
one-level density), and then discuss the Ratios Conjecture’s prediction and its implications. The rest
of the paper is devoted to proving the conjecture. We calculate the number theory in §2, and show
for suitable test functions that it agrees with the Ratios’ prediction in §3. A key step in the analysis
is generalizing Jutila’s bound for character sums, which wedo in §4. In addition to being of use for
this problem, this result was also implicitly used by Rubinstein [Rub] in determining the main term
in the one-level density for twists of a fixedGLn form.

1.1. One-Level Density of Low Lying Zeros. Assuming GRH, the non-trivial zeros ofL-functions
lie on the critical line, and thus it makes sense to study the distribution of spacings. There is a
mix of theoretical and experimental evidence ([Mon, Hej, RS, Od1, Od2]) relating these normalized
spacings in the limit as we climb the critical line to the scaled spacings between eigenvalues of
random matrix ensembles as the matrix size tends to infinity.Initially this suggested that the Gaussian
Unitary Ensemble (GUE) of matrices was the correct (and only) model needed for number theory;
however, Katz and Sarnak showed that the classical compact groups (subgroups ofN × N unitary
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matrices) all have the samen-level correlations as the GUE asN → ∞. There is thus more to the
story, and we need a statistic which is sensitive to finer properties of theL-functions.

One such statistic is the one-level density of the low lying zeros of a family ofL-functions, which is
different for the scaling limits of the different classicalcompact groups. Fix a Schwartz test function
� such that̂� is supported in, say,(−�, �). Let L be related to the local rescaling near the central
point, so that normalized zeros nears = 1/2 have mean spacing one. For anL-functionL(s, f), its
one-level density is defined by

D(f, �) :=
∑

f

�

(
fL

�

)
; (1.1)

here1/2 + if runs over the non-trivial zeros of theL-function (which under GRH all have ∈ ℝ)
andL/� is the scaling factor (it is related to the logarithm of the analytic conductor).1 Using the
explicit formula (see for instance [Mes, RS]), we replace the sum of� at the scaled zeros with sums
of �̂ at the logarithms of the primes, weighted by the Fourier coefficients of theL-function. As� is
a Schwartz function, it vanishes rapidly as∣x∣ → ∞ and thus most of the contribution is from zeros
near the central point (relative to the local average spacing).

Ideally we would use a delta spike instead of a Schwartz test function to get a perfect picture at a
point; however, the delta spike has a Fourier transform of infinite support, which leads to weighted
prime sums we cannot evaluate. As eachL-function only has a bounded number of zeros within
the average spacing of the central point, it is necessary to average the one-level density over all
f in a family ℱ . This allows us to use results from number theory2 to determine the behavior on
average near the central point. The exact nature of just whatconstitutes a family is still being deter-
mined; standard examples includeL-functions attached to Dirichlet characters, cuspidal newforms,
and families of elliptic curves to name just a few.

We assume our family ofL-functionsℱ can be ordered by conductor, and denote byℱ(Q) all
elements of the family whose conductor is at mostQ. Thus the quantity of interest ends up being

D(ℱ , �) := lim
Q→∞

1

∣ℱ(Q)∣
∑

f∈ℱ(Q)

D(f, �) = lim
Q→∞

1

∣ℱ(Q)∣
∑

f∈ℱ(Q)

∑

f

�

(
fL

�

)
. (1.2)

In other words, we consider the limiting behavior of the average of the one-level densities as the
conductors grow. To date a large number of families have beeninvestigated (such as DirichletL-
functions, elliptic curves, cuspidal newforms, symmetricpowers, number fields, and convolutions of
such families, to name a few), and for suitably restricted test functions the main terms in the one-level
densities agree with the scaling limits of a classical compact group; see for example [DM1, DM2,
FI, Gao, Gü, HM, HR, ILS, Mil1, OS1, OS2, RR, Ro, Rub, Yo2].

1.2. The Ratios Conjecture. While Random Matrix Theory has successfully predicted the main
term of the one-level density of all families studied to date, it is insufficient as it is silent on lower
order terms. These terms are important for many reasons. Thefirst is that the arithmetic of the family
is often absent in the main term but present in lower order terms (see for instance [Mil2, Mil6, Yo1]).
For example, in [Mil6] lower order effects were found related to the torsion group of the family of

1Many works in the literature useL′/2�; as this is a companion paper to [HKS] we use their notation tofacilitate
calling their equations.

2The needed result depends of course on the family being studied. For DirichletL-functions one uses the orthogonality
of the characters, for elliptic curves one uses properties of sums of Legendre symbols, while for cuspidal newforms one
uses the Petersson formula.
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elliptic curveL-functions. Further, these lower order terms are important, as they control the rate
of convergence to the predicted limiting behavior. This work is motivated by the companion paper
[DHKMS2]. The authors there discuss a proposed model which explains the observed repulsion
found by Miller [Mil3] of zeros of elliptic curveL-functions near the central point. One of the two
main ingredients in the model is the first lower order term in the one-level density in elliptic curve
families, which is needed to determine the effective matrixsize. The Ratios’ prediction of this was
worked out in another companion paper, [HKS]; the purpose ofthis paper is to verify the Ratios’
prediction (at least for suitably restricted support).

TheL-function Ratios Conjecture of Conrey, Farmer and Zirnbauer [CFZ1, CFZ2] (see also [CS1]
for many worked out examples of the conjecture’s prediction) are formulas for the averages over fam-
ilies of L-functions of ratios of products of shiftedL-functions. Their “recipe” for performing these
calculations starts by using the approximate functional equation, where the error term is discarded,
to expand theL-functions in the numerator; theL-functions in the denominator are expanded via the
Mobius function. They then average over the family, and retain only the diagonal pieces. These are
restricted sums over integers, but are then completed and extended to sums over all integers; again
the error term introduced is ignored. These methods, far simpler to implement than rigorous anal-
ysis, have easily predicted the answers to many difficult computations, and have shown remarkable
accuracy. The resulting formulas make very detailed predictions on numerous problems, ranging
from moments to spacings between adjacent zeros and values of L-functions.

A standard test of the Ratios Conjecture is to compare the Ratios Conjecture’s predictions for the
one-level density of a family ofL-functions with the corresponding rigorous calculation. Agreement
has been found for suitably restricted test functions for many families. See [CS1, GJMMNPP, Mil3,
Mil5, Mil6, MilMon], as well as [BCY, CS1, CS2] for agreementwith other statistics. In addition
to strengthening the credibility of the conjecture, these calculations provide insight into the signifi-
cance of the terms that arise in the number theoretic calculations whose corresponding terms in the
Ratios Conjecture’s predictions are more clearly understandable. For example, in [Mil5] the Ratios
Conjecture’s prediction allows the interpretation of a lower order term in the behavior of the family
of quadratic Dirichlet characters as arising from the non-trivial zeros of the Riemann zeta function.

Our primary object of study is the collection of quadratic twists of a fixed elliptic curve of prime
conductorM . The families associated to elliptic curves are of considerable importance, as they are
the best laboratories (see [Mil3]) to see the effect of multiple zeros on nearby zeros. By work of
C. Breuil, B. Conrad, F. Diamond. R. Taylor and A. Wiles [BCDT, TW, Wi], theL-function of an
elliptic curve agrees with that of a weight 2 cuspidal newform of levelN (where the integerN > 1
is the conductor of the elliptic curve). The Ratios’ prediction was computed in [HKS], and was one
of the key inputs in [DHKMS2] in explaining the observed repulsion of zeros near the central point
in families of elliptic curveL-functions (see [DHKMS1] for an analysis of random matrix quantities
relevant for the model and comparison). We perform the number theoretic calculations of the zero
statistics for the one-level density for this family, and compare our results to the Ratios Conjecture’s
prediction. For a similar case see [MilMor], which performed comparable calculations for the family
of quadratic twists of theL-function associated to Ramanujan’s tau function, and found agreement
with the Ratios’ prediction up to a power-savings error term. TheseL-functions are similar to our
elliptic curveL-functions but without the bad prime. The simpler case provided a useful guide for
performing the more complicated analysis found in this paper.

We first set some notation for the paper. We always denote our elliptic curve byE, which we
assume has prime conductorM and even functional equation. We consider the family of quadratic
twists,
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ℱ(X) = {0 < d ≤ X : d an even fundamental discriminant and�d(−M)!E = 1} (1.3)

and set

X∗ = ∣ℱ(X)∣, L = log

(√
MX

2�

)
. (1.4)

The Ratios Conjecture’s prediction for these lower order terms, computed in [HKS], has been
inputted in some of these models, but has not yet been verified. The main obstacle in verifying
the prediction, at least for suitably restricted test functions, is the presence of the levelM in the
Euler products in the prediction. This leads to more complicated formulas than in [Mil5], where we
studied just quadratic Dirichlet characters. While the resulting Euler products are harder to analyze
than other cases, we are still able to show agreement with a power savings.

Our main (number theory) result is the following:

Theorem 1.1. LetE be an elliptic curve with even functional equation and primeconductorM and
g an even Schwartz test function whose Fourier transformĝ is supported in(−�, �). The one-level
density of the family of even quadratic twists ofE by even fundamental discriminants at mostX is

1

X∗

∑

d∈ℱ(X)

∑

d

g

(
d

L

�

)

=
g(0)

2
+

1

2LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[
2 log

(√
M ∣d∣
2�

)
+

Γ′

Γ

(
1 + i

��

L

)
+

Γ′

Γ

(
1− i

��

L

)]
d�

+
1

L

∫ ∞

−∞

g(�)

(
−� ′

�

(
1 +

2�i�

L

)
+

L′
E

LE

(
sym2, 1 +

2�i�

L

)
−

∞∑

ℓ=1

(M ℓ − 1) logM

M(2+ 2�i�
L )ℓ

)
d�

− 1

L

∞∑

k=0

∫ ∞

−∞

g(�)
logM

M (k+1)(1+�i�
L

)
d� +

1

L

∫ ∞

−∞

g(�)
∑

p∤M

log p

(p+ 1)

∞∑

k=0

�(p2k+2)− �(p2k)

p(k+1)(1+ 2�i�
L

)
d�

+OM

(
X− 1−�

2 log6X
)
. (1.5)

Much of the work in determining the Ratios’ prediction was done in [HKS]. In this work we finish
the analysis, rewriting the expansion from [HKS] to facilitate comparisons with number theory.
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Theorem 1.2. Notation as in Theorem 1.1, the prediction from the Ratios Conjecture is

1

X∗

∑

d∈ℱ(X)

∑

d

g
(dL

�

)

=
1

2LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[
2 log

(√
M ∣d∣
2�

)
+

Γ′

Γ

(
1 +

i��

L

)
+

Γ′

Γ

(
1− i��

L

)]
d�

+
1

L

∫ ∞

−∞

g(�)

(
−� ′

�

(
1 +

2�i�

L

)
+

L′
E

LE

(
sym2, 1 +

2�i�

L

)
−

∞∑

ℓ=1

(M ℓ − 1) logM

M(2+ 2i��
L )ℓ

)
d�

− 1

L

∞∑

k=0

∫ ∞

−∞

g(�)
logM

M (k+1)(1+�i�
L

)
d� +

1

L

∫ ∞

−∞

g(�)
∑

p∤M

log p

(p+ 1)

∞∑

k=0

�(p2k+2)− �(p2k)

p(k+1)(1+ 2�i�
L

)
d�

− 1

LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[(√
M ∣d∣
2�

)−2i��/LΓ(1− i��
L
)

Γ(1 + i��
L
)

�(1 + 2i��
L

)LE(sym2, 1− 2i��
L

)

LE(sym2, 1)

×AE

(
− i��

L
,
i��

L

)]
d� +O(X−1/2+"); (1.6)

see §3 for a definition ofAE .

A mentioned above, the main difficulty in showing agreement between number theory and the
above prediction is the presence of the level of the ellipticcurve (which was not present in the
symplectic family studied in [Mil5]). By a careful analysisof the Euler products, we prove

Theorem 1.3. Notation as in Theorem 1.1, assuming GRH the Ratios Conjecture’s prediction agrees
with number theory forsupp(�̂) ⊂ (−�, �), up to error terms of sizeO(X−(1−�)/2).

2. THE NUMBER THEORY RESULT

The starting point of all one-level density investigationsis the explicit formula; modifying [Mes,
RS] (among others; see [HMM] for a proof) one finds the following:

Lemma 2.1. The one-level density for the family of quadratic twists by even fundamental discrimi-
nants of a fixed elliptic curveE with even functional equation and prime conductorM is

1

X∗

∑

d∈ℱ(X)

∑

d

g

(
d

L

�

)

=
1

2LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[
2 log

(√
M ∣d∣
2�

)
+

Γ′

Γ

(
1 + i

��

L

)
+

Γ′

Γ

(
1− i

��

L

)]
d�

− 2

2L

∑

d∈ℱ(X)

∞∑

k=1

∑

p

(�k
p + �k

p )�
k
d(p) log p

pk/2
ĝ

(
log pk

2L

)
, (2.1)

whereℱ(X), X∗, andL are as defined in Equations 1.3 and 1.4.
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We prove Theorem 1.1 by analyzing the expansion above. As theintegral term is also found in the
Ratios’ prediction, we need only study

S = − 2

2LX∗

∑

d∈ℱ(X)

∞∑

k=1

∑

p

(�k
p + �k

p )�
k
d(p) log p

pk/2
ĝ

(
log pk

2L

)
= Seven + Sodd, (2.2)

where

Seven = − 1

X∗

∑

d∈ℱ(X)

∞∑

k=1

∑

p

(�2k
p + �2k

p )�2
d(p) log p

pkL
ĝ

(
log pk

L

)

Sodd = − 1

X∗

∑

d∈ℱ(X)

∞∑

k=0

∑

p

(�2k+1
p + �2k+1

p )�d(p) log p

p(2k+1)/2L
ĝ

(
log p2k+1

2L

)
(2.3)

(note that�d(p) = �2k+1
d (p) for anyk ∈ ℕ). We splitSeven further by noting that

�2
d(p) =

{
1 if p ∤ d

0 if p∣d , (2.4)

and write
Seven = Seven,1 + Seven,2 (2.5)

with

Seven,1 = −
∑

p

∞∑

k=1

(�2k
p + �2k

p ) log p

pkL
ĝ

(
log pk

L

)

Seven,2 =
1

X∗

∑

d∈ℱ(X)

∞∑

k=1

∑

p∣d

(�2k
p + �2k

p ) log p

pkL
ĝ

(
log pk

L

)
. (2.6)

We prove Theorem 1.1 by analyzingSeven andSodd in a series of lemmata below, frequently
breaking these summands down further.

2.1. Analysis of Seven,1. We considerSeven,1 and have

Seven,1 = − 1

L

∑

p

∞∑

k=1

(�2k
p + �2k

p ) log p

pk
ĝ

(
log pk

L

)
= Seven,1,1 + Seven,1,2,

where

Seven,1,1 = − 1

L

∞∑

k=1

(�2k
M + �2k

M ) logM

Mk
ĝ

(
logMk

L

)

Seven,1,2 = − 1

L

∑

p∤M

∞∑

k=1

(�2k
p + �2k

p ) log p

pk
ĝ

(
log pk

L

)
. (2.7)

Lemma 2.2. We have

Seven,1,1 = − 1

L

∞∑

k=1

logM

M2k
ĝ

(
logMk

L

)
= − 1

L

∞∑

k=1

∫ ∞

−∞

g(�)
logM

M2k(1+�i�
L

)
d�. (2.8)
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Proof. ForM we have

�2k
M + �2k

M =
( !E

M1/2

)2k
= M−k. (2.9)

Using (2.9) and unwinding the Fourier transform gives the claim. □

Lemma 2.3. Notation as above,

Seven,1,2 =

g(0)

2
+

1

L

∫ ∞

−∞

g(�)

(
−� ′

�

(
1 +

2�i�

L

)
+

L′
E

LE

(
sym2, 1 +

2�i�

L

)
−

∞∑

ℓ=1

(M ℓ − 1) logM

M(2+ 2�i�
L )ℓ

)
d�.

(2.10)

Proof of Lemma 2.3.Let

ΛE(n) =

{
(�2ℓ

p + �2ℓ
p ) log p if n = pℓ, p ∤ M

0 otherwise.
(2.11)

We have

Seven;1,2 = − 1

L

∞∑

n=1

ΛE(n)

n
ĝ

(
log n

L

)
. (2.12)

We use Perron’s formula to re-writeSeven;1 as a contour integral. For any� > 0 set

I1 =
1

2�i

∫

ℜ(z)=1+�

g

(
(2z − 2) logA

4�i

) ∞∑

n=1

ΛE(n)

nz
dz; (2.13)

we will later takeA =
√
MX/2�, so thatlogA = L. We write z = 1 + � + iy and use (B.2)

(replacing� with g) to writeg(x+ iy) in terms of the integral of̂g(u). We have

I1 =
∞∑

n=1

ΛE(n)

n1+�

1

2�i

∫ ∞

−∞

g

(
y logA

2�
− i� logA

2�

)
e−iy lognidy

=
∞∑

n=1

ΛE(n)

n1+�

1

2�

∫ ∞

−∞

[∫ ∞

−∞

[
ĝ(u)e�u logA

]
e−2�i−y logA

2�
udu

]
e−iy logndy. (2.14)
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We letℎ�(u) = ĝ(u)e�u logA. Note thatℎ� is a smooth, compactly supported function andˆ̂ℎ�(w) =
ℎ�(−w). Thus

I1 =
∞∑

n=1

ΛE(n)

n1+�

1

2�

∫ ∞

−∞

ℎ̂�

(
−y logA

2�

)
e−iy logndy

=
∞∑

n=1

ΛE(n)

n1+�

1

2�

∫ ∞

−∞

ℎ̂�(y)e
−2�i−y log n

logA
2�dy

logA

=
∞∑

n=1

ΛE(n)

n1+�

1

logA
ˆ̂
ℎ�

(
− logn

logA

)

=
∞∑

n=1

ΛE(n)

n1+�

1

logA
ĝ

(
log n

logA

)
e� logn

=
1

logA

∞∑

n=1

ΛE(n)

n
ĝ

(
log n

logA

)
. (2.15)

By takingA =
√
MX/2� we find

Seven;1,2 = − 1

L

∞∑

n=1

ΛE(n)

n
ĝ

(
log n

L

)
= −I1. (2.16)

We now re-writeI1 by shifting contours; we will not pass any poles as we shift. For each� > 0
we consider the contour made up of three pieces:(1− i∞, 1− i�], C�, and[1− i�, 1 + i∞), where
C� = {z : z − 1 = �ei�, � ∈ [−�/2, �/2]} is the semi-circle going counter-clockwise from1− i� to
1 + i�. By Cauchy’s residue theorem, we may shift the contour inI1 fromℜ(z) = 1 + � to the three
curves above.

Before analyzing this integral, we rewrite
∑

nΛE(n)n
−z as the sum of logarithmic derivatives of

L-functions. From (3.15) and (3.16) of [ILS], we have

LE(sym
2, s) =

∏

p∤M

(
1−

�2
p

ps

)−1(
1− 1

ps

)−1(
1−

�2
p

ps

)−1∏

p∣M

(
1− 1

ps+1

)−1

, (2.17)

as�p�p = 1 for p ∤ M . Taking the logarithmic derivative yields

L′
E

LE
(sym2, s) = −

∑

p∤M

∞∑

ℓ=1

(�2ℓ
p + 1 + �2ℓ

p ) log p

psℓ
−
∑

p∣M

∞∑

ℓ=1

log p

p(s+1)ℓ

= −
∑

p∤M

∞∑

ℓ=1

(�2ℓ
p + �2ℓ

p ) log p

psℓ
−
∑

p∤M

∞∑

ℓ=1

log p

psℓ
−
∑

p∣M

∞∑

ℓ=1

log p

p(s+1)ℓ
, (2.18)
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so
∞∑

n=1

Λ(n)n−s =
∑

p∤M

∞∑

ℓ=1

(�2ℓ
p + �2ℓ

p ) log p

psℓ

= −
∑

p∤M

∞∑

ℓ=1

log p

psℓ
−
∑

p∣M

∞∑

ℓ=1

log p

p(s+1)ℓ
− L′

E

LE
(sym2, s)

=
� ′

�
(s)− L′

E

LE
(sym2, s) +

∑

p∣M

∞∑

ℓ=1

log p

psℓ
−
∑

p∣M

∞∑

ℓ=1

log p

p(s+1)ℓ

=
� ′

�
(s)− L′

E

LE
(sym2, s) +

∞∑

ℓ=1

(M ℓ − 1) logM

M (s+1)ℓ
. (2.19)

We use this in replacing
∑

n ΛE(n)n
−z in the integral definition ofI1 in (2.13). We find

I1 =
1

2�i

[∫ 1−i�

1−i∞

+

∫

C�

+

∫ 1+i∞

1+i�

g

(
(2z − 2) logA

4�i

)∑

n

ΛE(n)

nz
dz

]

=
1

2�i

[∫ 1−i�

1−i∞

+

∫

C�

+

∫ 1+i∞

1+i�

g

(
(2z − 2) logA

4�i

)

⋅
(
� ′

�
(z)− L′

E

LE
(sym2, z) +

∞∑

ℓ=1

(M ℓ − 1) logM

M (z+1)ℓ

)
dz

]
. (2.20)

The integral overC� is easily evaluated. Shimura [Sh] proved thatLE(sym
2, s) is entire, and thus

so too is its logarithmic derivative. Thus there is no contribution from the symmetric square piece
in the limit as� → 0. As �(s) has a pole ats = 1, � ′(s)/�(s) = −1/(s − 1) + ⋅ ⋅ ⋅ , and we must
multiply the contribution from the residue by−1 because of the pole. We get just minus half the

residue ofg
(

(2z−2) logA
4�i

)
, which yields the contribution from theC� piece is−g(0)/2.

We now take the limit as� → 0:

I1 = −g(0)

2
− lim

�→0

1

2�

[∫ −�

−∞

+

∫ ∞

�

g

(
y logA

2�

)

⋅
(
−� ′

�
(z) +

L′
E

LE
(sym2, z)−

∞∑

ℓ=1

(M ℓ − 1) logM

M (z+1)ℓ

)
dy

]
. (2.21)

As g is an even Schwartz function, the limit of the integral aboveis well-defined (for largey this
follows from the decay ofg, while for smally it follows from the fact that� ′(1 + iy)/�(1 + iy)

has a simple pole aty = 0 andg is even). We again takeA =
√
MX/2�, and change variables to

� = yL/2�. Thus

I1 = −g(0)

2
− 1

L

∫ ∞

−∞

g(�)

(
−� ′

�

(
1 +

2�i�

L

)
+

L′
E

LE

(
sym2, 1 +

2�i�

L

)

−
∞∑

ℓ=1

(M ℓ − 1) logM

M(2+ 2�i�
L )ℓ

)
d�

= −Seven,1,2, (2.22)
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which completes the proof of Lemma 2.3. □

2.2. Analysis of Seven,2.

Lemma 2.4. We have

Seven,2 =
1

L

∫ ∞

−∞

g(�)
∑

p∤M

log p

(p+ 1)

∞∑

k=0

�(p2k+2)− �(p2k)

p(k+1)(1+ 2�i�
L

)
d� +O(X1/2 log logX).

Proof. RecallSeven,2 is

Seven,2 =
1

LX∗

∑

d∈ℱ(X)

∞∑

k=1

∑

p∣d

(�2k
p + �2k

p ) log p

pk
ĝ

(
log pk

L

)
, (2.23)

and a change of order of summation gives

Seven,2 =
1

LX∗

∑

p

∞∑

k=1

(�2k
p + �2k

p ) log p

pk
ĝ

(
log pk

L

) ∑

d∈ℱ(X)
p∣d

1. (2.24)

From Lemma A.1 we find that

∑

d∈ℱ(X)
p∣d

1 =

{
X∗

p+1
+O(X1/2) if p ∤ M

0 if p∣M .
(2.25)

Using (2.25) in (2.24) yields

Seven,2 =
1

L

∑

p∤M

∞∑

k=1

(�2k
p + �2k

p ) log p

pk(p+ 1)
ĝ

(
log pk

L

)
+O(X1/2 log logX). (2.26)

Substituting

ĝ

(
log pk

L

)
=

∫ ∞

−∞

g(�)e−2�i� log pk

L d� =

∫ ∞

−∞

g(�)p−
2�i�
L

kd� (2.27)

into (2.26) yields

Seven,2 =
1

L

∑

p∤M

∞∑

k=1

(�2k
p + �2k

p ) log p

pk(p+ 1)

∫ ∞

−∞

g(�)p−
2�i�
L

kd� +O(X1/2 log logX)

=
1

L

∑

p∤M

∞∑

k=1

(�2k
p + �2k

p ) log p

pk(p+ 1)

∫ ∞

−∞

g(�)p−
2�i�
L

kd� +O(X1/2 log logX)

=
1

L

∫ ∞

−∞

g(�)
∑

p∤M

log p

(p+ 1)

∞∑

k=1

(�2k
p + �2k

p )

pk(1+
2�i�
L

)
d� +O(X1/2 log logX). (2.28)

Forp ∤ M we have

�2k
p + �2k

p = �(p2k)− �(p2k−2), (2.29)
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thus

Seven,2 =
1

L

∫ ∞

−∞

g(�)
∑

p∤M

log p

(p+ 1)

∞∑

k=1

�(p2k)− �(p2k−2)

pk(1+
2�i�
L

)
d� +O(X1/2 log logX)

=
1

L

∫ ∞

−∞

g(�)
∑

p∤M

log p

(p+ 1)

∞∑

k=0

�(p2k+2)− �(p2k)

p(k+1)(1+ 2�i�
L

)
d� +O(X1/2 log logX). (2.30)

□

2.3. Analysis of Sodd. We now analyzeSodd by applying Theorem 4.1, which generalizes Jutila’s
bound. In the sums below,M is an odd prime andd is an even fundamental discriminant congruent
to a non-zero square moduloM . We modify the analysis ofSodd from [Mil4], where theSodd term
is now

Sodd = − 1

X∗

∑

d∈ℱ(X)

∞∑

k=0

∑

p

(�2k+1
p + �2k+1

p )�d(p) log p

p(2k+1)/2L
ĝ

(
log p2k+1

2L

)
, (2.31)

with thed-sum over fundamental discriminants such thatd equals a non-zero square moduloM . If
p ∤ M then�2k+1

p + �2k+1
p = �E(p

2k+1) − �E(p
2k−1), provided we set�E(p

−1) = 0; if p∣M then
�p = 0, �p = �E(p) and therefore�2k+1

p = �E(p)
2k+1. Thus we may re-write our sum as

Sodd = − 1

X∗

∞∑

k=0

∑

p∤M

(�E(p
2k+1)− �E(p

2k−1)) log p

p(2k+1)/2L
ĝ

(
log p2k+1

2L

) ∑

d∈ℱ(X)
d≡□ ∕=0 mod M

�d(p)

− 1

X∗

∞∑

k=0

∑

p∣M

�E(p)
2k+1 log p

p(2k+1)/2L
ĝ

(
log p2k+1

2L

) ∑

d∈ℱ(X)
d≡□ ∕=0 mod M

�d(p). (2.32)

Lemma 2.5. We have

Sodd = − 1

L

∫ ∞

−∞

g(�)

[
∞∑

k=0

logM

M
2k+1

2
(2+2�i�

L
)

]
d� + OM

(
X− 1−�

2 log6X
)
. (2.33)

Proof. We writeSodd asSodd(p ∤ M) + Sodd(p∣M). We first analyzeSodd(p∣M), the contribution
from M . As d = □ ∕≡ 0 mod M , �d(M) =

(
d
M

)
= 1. Thed-sum is justX∗, and hence these terms

contribute

−
∞∑

k=0

�E(M)2k+1 logM

M (2k+1)/2L
ĝ

(
logM2k+1

2L

)
. (2.34)
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We apply Cauchy-Schwartz toSodd(p ∤ M), and from Theorem 4.1 (our generalization of Jutila’s
bound) find

∣Sodd(p ∤ M)∣ ≤ 1

X∗

⎛
⎜⎝

∞∑

ℓ=0

∑

p2ℓ+1≤X�

p∤M

∣∣∣∣
log p

p(2ℓ+1)/2 logX
ĝ

(
log p2ℓ+1

logX

)∣∣∣∣
2

⎞
⎟⎠

1/2

⋅

⎛
⎜⎝

∞∑

ℓ=0

∑

p2ℓ+1≤X�

(p,M)=1

∣∣∣∣∣∣∣

∑

d≤X
d≡□ ∕=0 mod M

�d(p)

∣∣∣∣∣∣∣

2⎞
⎟⎠

1/2

≪ 1

X∗

(
∑

n≤X�

1

n

)1/2

⋅X 1+�
2 log5X

≪ X− 1−�
2 log6X ; (2.35)

thus there is a power savings if� < 1.
We substitute for̂g((logM2k+1)/2L) its expansion as an integral, and find

Sodd = − 1

L

∫ ∞

−∞

g(�)

[
∞∑

k=0

�E(M)2k+1 logM

M
2k+1

2
(1+2�i�

L
)

]
d� + OM

(
X− 1−�

2 log6X
)
. (2.36)

Forp∣M we have

�E(p) = !E/p
1/2 ⇒ �E(M)2k+1 =

!E

M
2k+1

2

=
1

M
2k+1

2

(2.37)

since our elliptic curveE has even functional equation. Thus

Sodd = − 1

L

∫ ∞

−∞

g(�)

[
∞∑

k=0

logM

M
2k+1

2
(2+2�i�

L
)

]
d� + OM

(
X− 1−�

2 log6X
)
. (2.38)

□

2.4. Proof of Theorem 1.1.

Proof of Theorem 1.1.The proof of (1.5) follows by collecting the above lemmata and noticing that
from equation (2.8) forSeven,1,1 and equation (2.33) forSodd we have

Seven,1,1 + Sodd = − 1

L

∞∑

k=1

∫ ∞

−∞

g(�)
logM

M2k(1+�i�
L

)
d�

− 1

L

∫ ∞

−∞

g(�)

[
∞∑

k=0

logM

M
2k+1

2
(2+2�i�

L
)

]
d� +OM

(
X− 1−�

2 log6X
)

= − 1

L

∞∑

k=0

∫ ∞

−∞

g(�)
logM

M (k+1)(1+�i�
L

)
d� +OM

(
X− 1−�

2 log6X
)
. (2.39)

□
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3. THE RATIOS CONJECTURE’ S PREDICTION

The purpose of this section is to prove Theorem 1.3, specifically that if supp(�̂) ⊂ (−�, �) then
the Ratios’ prediction agrees with number theory up to errors of sizeO(X−(1−�)/2). The starting
point in the analysis is the following expansion for the Ratios Conjecture’s prediction:

Theorem 3.1 (Theorem 2.3 and equation (3.11) in [HKS]). With notation as in Theorem 1.1, the
prediction from the Ratios Conjecture for the one-level density of the familyℱ(X) of even qua-
dratic twists of an elliptic curve L-functionLE(s) of even functional equation by even fundamental
discriminants at mostX is

1

X∗

∑

d∈ℱ(X)

∑

d

g
(dL

�

)

=
1

2LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[
2 log

(√
M ∣d∣
2�

)
+

Γ′

Γ

(
1 +

i��

L

)

+
Γ′

Γ

(
1− i��

L

)
+ 2
[
− � ′(1 + 2i��

L
)

�(1 + 2i��
L

)
+

L′
E(sym2, 1 + 2i��

L
)

LE(sym2, 1 + 2i��
L

)
+ A1

E

(i��
L

,
i��

L

)

−
(√

M ∣d∣
2�

)−2i��/LΓ(1− i��
L
)

Γ(1 + i��
L
)

�(1 + 2i��
L

)LE(sym2, 1− 2i��
L

)

LE(sym2, 1)
×AE

(
− i��

L
,
i��

L

)]]
d�

+O(X−1/2+"). (3.1)

whereAE is defined in(3.2)and d
d�
AE(�, )∣�==r = A1

E(r, r).

Much of the expansion above is already found in our number theory result, Theorem 1.1. The
proof of Theorem 1.3 is thus reduced to determining the contribution from theAE andA1

E terms,
which we now proceed to do in the lemmata below. We first deriveuseful expressions for these
pieces and the related quantities that arise in the analysis. Similar to [Mil4], the proof is completed
by bounding the contribution of the resulting Euler productby shifting contours.

3.1. Analysis of A1
E . Before determining the contribution ofA1

E we first obtain a useful expansion
for it. The Euler productAE(�, ) is given by

AE(�, )

= Y −1
E (�, )×

∏

p∣M

(
∞∑

m=0

(
�(pm)!m

E

pm(1/2+�)
− �(p)

p1/2+

�(pm)!m+1
E

pm(1/2+�)

))
×

∏

p∤M

(
1 +

p

p + 1

(
∞∑

m=1

�(p2m)

pm(1+2�)
− �(p)

p1+�+

∞∑

m=0

�(p2m+1)

pm(1+2�)
+

1

p1+2

∞∑

m=0

�(p2m)

pm(1+2�)

))
(3.2)

where

YE(�, ) =
�(1 + 2)LE(sym2, 1 + 2�)

�(1 + � + )LE(sym2, 1 + � + )
. (3.3)

Note that

AE(r, r) = 1. (3.4)
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RewritingAE(�, ) gives

AE(�, ) =
∏

p∣M

(
1− 1

p1+2

)(
1− �(p)2

p1+2�

)(
1− 1

p1+�+

)−1(
1− �(p)2

p1+�+

)−1

×
(

∞∑

m=0

(
�(pm)!m

E

pm(1/2+�)
− �(p)

p1/2+

�(pm)!m+1
E

pm(1/2+�)

))

∏

p∤M

(
1− 1

p1+2

)(
1− �(p2)

p1+2�
+

�(p2)

p2(1+2�)
− 1

p3(1+2�)

)(
1− 1

p1+�+

)−1

×
(
1− �(p2)

p1+�+
+

�(p2)

p2(1+�+)
− 1

p3(1+�+)

)−1

×
(
1 +

p

p + 1

(
∞∑

m=1

�(p2m)

pm(1+2�)
− �(p)

p1+�+

∞∑

m=0

�(p2m+1)

pm(1+2�)
+

1

p1+2

∞∑

m=0

�(p2m)

pm(1+2�)

))
.

We find

d

d�
AE(�, )

=AE(�, )

(
∑

p∣M

log p

[
2�(p)2

p1+2�

1− �(p)2

p1+2�

−
1

p1+�+

1− 1
p1+�+

−
�(p)2

p1+�+

1− �(p)2

p1+�+

+

−
∑∞

m=0

(
m�(pm)!m

E

pm(1/2+�) − m�(p)

p1/2+

�(pm)!m+1
E

pm(1/2+�)

)

∑∞
m=0

(
�(pm)!m

E

pm(1/2+�) − �(p)

p1/2+

�(pm)!m+1
E

pm(1/2+�)

)
]

∑

p∤M

log p

[ 2�(p2)
p1+2� − 4�(p2)

p2(1+2�) +
6

p3(1+2�)

1− �(p2)
p1+2� + �(p2)

p2(1+2�) − 1
p3(1+2�)

−
1

p1+�+

1− 1
p1+�+

+
− �(p2)

p1+�+ + 2�(p2)

p2(1+�+) − 3
p3(1+�+)

1− �(p2)
p1+�+ + �(p2)

p2(1+�+) − 1
p3(1+�+)

+

p
p+1

(
−
∑∞

m=1
2m�(p2m)

pm(1+2�) + �(p)
p1+�+

∑∞
m=0

(2m+1)�(p2m+1)

pm(1+2�) − 1
p1+2

∑∞
m=0

2m�(p2m)

pm(1+2�)

)

(
1 + p

p+1

(∑∞
m=1

�(p2m)

pm(1+2�) − �(p)
p1+�+

∑∞
m=0

�(p2m+1)

pm(1+2�) +
1

p1+2

∑∞
m=0

�(p2m)

pm(1+2�)

))
])

.
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Specializing to� =  = r we find that

d

d�
AE(�, )∣�==r = A1

E(r, r)

=
∑

p∣M

log p

[
2�(p)2

p1+2r

1− �(p)2

p1+2r

−
�(p)2

p1+2r

1− �(p)2

p1+2r

−
1

p1+2r

1− 1
p1+2r

−
∞∑

m=0

�(pm+1)!m+1
E

p(m+1)(1/2+r)

]

+
∑

p∤M

log p

[ 2�(p2)
p1+2r − 4�(p2)

p2(1+2r) +
6

p3(1+2r)

1− �(p2)
p1+2r +

�(p2)

p2(1+2r) − 1
p3(1+2r)

+
− �(p2)

p1+2r +
2�(p2)

p2(1+2r) − 3
p3(1+2r)

1− �(p2)
p1+2r +

�(p2)

p2(1+2r) − 1
p3(1+2r)

−
1

p1+2r

1− 1
p1+2r

−
∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)
+

1

p+ 1

∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)

]
. (3.5)

Next, we identity terms in (3.5) involving the logarithmic derivatives of�(s) andLE(sym2, s). Sim-
ple calculations show

� ′(1 + 2r)

�(1 + 2r)
= −

∑

p

log p

1
p1+2r

1− 1
p1+2r

(3.6)

and

L′
E(sym2, 1 + 2r)

LE(sym2, 1 + 2r)
= −

∑

p∣M

log p

�(p)2

p1+2r

1− �(p)2

p1+2r

−
∑

p∤M

log p

�(p2)
p1+2r − 2�(p2)

p2(1+2r) +
3

p3(1+2r)

1− �(p2)
p1+2r +

�(p2)

p2(1+2r) − 1
p3(1+2r)

. (3.7)

Also note that
� ′(1 + 2r)

�(1 + 2r)
= − �̃ ′(1 + 2r)

�̃(1 + 2r)
(3.8)

where

�̃(s) = �−1(s); (3.9)

similarly we have

L′
E(sym2, 1 + 2r)

LE(sym2, 1 + 2r)
= −L̃′

E(sym2, 1 + 2r)

L̃E(sym2, 1 + 2r)
(3.10)

where

L̃E(sym2, 1 + 2r) = L−1
E (sym2, 1 + 2r). (3.11)

Using (3.6) and (3.7) in (3.5) yields

A1
E(r, r) = −2

L′
E(sym2, 1 + 2r)

LE(sym2, 1 + 2r)
+

L′
E(sym2, 1 + 2r)

LE(sym2, 1 + 2r)
+

� ′(1 + 2r)

�(1 + 2r)

−
∑

p∣M

log p

∞∑

m=0

�(pm+1)!m+1
E

p(m+1)(1/2+r)

+
∑

p∤M

log p
[
−

∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)
+

1

p+ 1

∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)

]
.
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Hence

A1
E(r, r) = −L′

E(sym2, 1 + 2r)

LE(sym2, 1 + 2r)
+

� ′(1 + 2r)

�(1 + 2r)
−
∑

p∣M

log p

∞∑

m=0

�(pm+1)!m+1
E

p(m+1)(1/2+r)

+
∑

p∤M

log p
[
−

∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)
+

1

p+ 1

∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)

]
. (3.12)

Lemma 3.2 (Contribution ofA1
E). We have

1

LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

A1
E

(
i��

L
,
i��

L

)
d�

=
1

L

∫ ∞

−∞

g(�)

⎛
⎝−

∑

p∣M

log p

∞∑

m=0

1

p(m+1)(1+r)

+
∑

p∤M

log p

p+ 1

∞∑

k=0

�(p2k+2)− �(p2k)

p(k+1)(1+ 2i��
L

)
−

∞∑

ℓ=1

(M ℓ − 1) logM

M (2r+2)ℓ

⎞
⎠ d�. (3.13)

Proof. The sign"f of a modular formf of weightk and levelM is (see equation (3.5) of [ILS])

"f = ik�(M)�(M)
√
M. (3.14)

In our case we denote"f with !E . As k is 2 andM is a prime,ik = i2 = −1 and�(M) = −1, so

!E = (−1)(−1)�(M)
√
M ⇒ �(M) =

!E√
M

. (3.15)

In particular we obtain forp∣M that

�(pm+1)!m+1
E =

(
!E

p1/2

)m+1

!m+1
E = p−(m+1)/2, (3.16)

and forp∣M we have

�(p) =
!E

p1/2
. (3.17)

Hence in (3.12) we have

−
∑

p∣M

log p

∞∑

m=0

�(pm+1)!m+1
E

p(m+1)(1/2+r)
= −

∑

p∣M

log p

∞∑

m=0

1

p(m+1)(1+r)
. (3.18)
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Collecting terms, we find

A1
E(r, r) = −L′

E(sym2, 1 + 2r)

LE(sym2, 1 + 2r)
+

� ′(1 + 2r)

�(1 + 2r)

−
∑

p∣M

log p
∞∑

m=0

1

p(m+1)(1+r)
−
∑

p∤M

log p
∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)

+
∑

p∤M

log p

p + 1

∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)

= −
∑

p∣M

log p

∞∑

m=0

1

p(m+1)(1+r)
+
∑

p∤M

log p

p+ 1

∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)
+B(r, r),

(3.19)

whereB(r, r) is the sum of the first pair of terms and the fourth term. Expanding the logarithmic
derivatives3 (see Equation (2.18), etc.) and using the identity�(p2m)− �(p2m−2) = �2m

p + �2m
p , we

have

B(r, r) = −L′
E(sym2, 1 + 2r)

LE(sym2, 1 + 2r)
+

� ′(1 + 2r)

�(1 + 2r)
−
∑

p∤M

log p
∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)

=
∑

p∤M

∞∑

ℓ=1

(�2ℓ
p + �2ℓ

p ) log p

p(1+2r)ℓ
+
∑

p∤M

∞∑

ℓ=1

log p

p(1+2r)ℓ
+
∑

p∣M

∞∑

ℓ=1

log p

p((1+2r)+1)ℓ

−
∑

p

∞∑

ℓ=1

log p

p(1+2r)ℓ
−
∑

p∤M

log p

∞∑

m=1

�2k
p + �2k

p

pm(1+2r)

=
∑

p∤M

log p

∞∑

ℓ=1

�2ℓ
p + �2ℓ

p − �2ℓ
p − �2ℓ

p + 1− 1

p(1+2r)ℓ

−
∑

p∤M

∞∑

ℓ=1

log p

p(1+2r)ℓ
+
∑

p∣M

∞∑

ℓ=1

log p

p((1+2r)+1)ℓ

=−
∞∑

ℓ=1

(M ℓ − 1) logM

M (2r+2)ℓ
. (3.20)

This calculation implies that

A1
E(r, r) = −

∑

p∣M

log p

∞∑

m=0

1

p(m+1)(1+r)
+
∑

p∤M

log p

p+ 1

∞∑

m=0

�(p2m+2)− �(p2m)

p(m+1)(1+2r)

−
∞∑

ℓ=1

(M ℓ − 1) logM

M (2r+2)ℓ
. (3.21)

3If Re(r) > 0 the series converge and the cancelation is justified; the result holds for allr by analytic continuation.
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We are concerned with the term

1

LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

A1
E

(
i��

L
,
i��

L

)
d� (3.22)

from the Ratios’ prediction. Using (3.21) yields (3.13), completing the proof. □

3.2. Analysis of AE. Recapping our analysis to date, we have shown the Ratios’ prediction is

1

X∗

∑

d∈ℱ(X)

∑

d

g
(dL

�

)

=
1

2LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[
2 log

(√
M ∣d∣
2�

)
+

Γ′

Γ

(
1 +

i��

L

)
+

Γ′

Γ

(
1− i��

L

)]
d�

+
1

L

∫ ∞

−∞

g(�)

(
−� ′

�

(
1 +

2�i�

L

)
+

L′
E

LE

(
sym2, 1 +

2�i�

L

)
−

∞∑

ℓ=1

(M ℓ − 1) logM

M(2+ 2i��
L )ℓ

)
d�

− 1

L

∞∑

k=0

∫ ∞

−∞

g(�)
logM

M (k+1)(1+�i�
L

)
d� +

1

L

∫ ∞

−∞

g(�)
∑

p∤M

log p

(p+ 1)

∞∑

k=0

�(p2k+2)− �(p2k)

p(k+1)(1+ 2�i�
L

)
d�

− 1

LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[(√
M ∣d∣
2�

)−2i��/LΓ(1− i��
L
)

Γ(1 + i��
L
)

�(1 + 2i��
L

)LE(sym2, 1− 2i��
L

)

LE(sym2, 1)

×AE

(
− i��

L
,
i��

L

)]
d� +O(X−1/2+"). (3.23)

Comparing (3.23) and the one-level density from number theory (Theorem 1.1), we see that we have
agreement in all but two terms – first, the constantg(0)/2; second, a term from (3.23) requiring
analysis, namely

− 1

LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[(√
M ∣d∣
2�

)−2i��/LΓ(1− i��
L
)

Γ(1 + i��
L
)

�(1 + 2i��
L

)LE(sym2, 1− 2i��
L

)

LE(sym2, 1)
(3.24)

× AE

(
− i��

L
,
i��

L

)]
d�.

The proof of Theorem 1.3 is thus reduced to proving

Lemma 3.3. The contribution from theAE term to the Ratios’ prediction, given by(3.24), equals
g(0)/2 plus an error term bounded byO(X− 1−�

2 ).

Before proving Lemma 3.3 we first derive a useful expansion. We consider the following term
from (3.24):

T (�) :=
�(1 + 2i��

L
)LE(sym2, 1− 2i��

L
)

LE(sym2, 1)
× AE

(
− i��

L
,
i��

L

)
. (3.25)

Our goal is to replace this with a uniformly convergent Eulerproduct times� (1 + 2i��/L), with
the residue at� = 0 readily computable. We lets > 1 be a free parameter. From the expansion of
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AE(�, ) in (3.2) we have

T (�) =

(
(�(s)× V∤

(
− i��

L
s,
i��

L
s
)
× V∣

(
− i��

L
s,
i��

L
s
)) ∣∣∣∣∣

s=1

(3.26)

where (see [HKS], equations (2.17) and (2.18)) we introduced the following to improve convergence:

V∤(�, ) =
∏

p∤M

(
1 +

p

p+ 1

(
∞∑

m=1

�(p2m)

pm(1+2�)
− �(p)

p1+�+

∞∑

m=0

�(p2m+1)

pm(1+2�)
+

1

p1+2

∞∑

m=0

�(p2m)

pm(1+2�)

))

V∣(�, ) =
∏

p∣M

(
∞∑

m=0

(
�(pm)!m

E

pm(1/2+�)
− �(p)�(pm)!m+1

E

pm(1/2+�)+1/2+

))
. (3.27)

From [HKS], equation (2.31) we have

V∤(�, ) =
∏

p∤M

(
1 +

�(p2)

p1+2�
− �(p2) + 1

p1+�+
+

1

p1+2
+ ⋅ ⋅ ⋅

)
, (3.28)

where the⋅ ⋅ ⋅ indicate terms that converge like1/p2 when� and are small.
In (3.26) the contribution from the lone bad primeM is readily managed, and does not affect the

convergence or divergence of the product. We are left with

T̃ (�) :=

(
�(s)× V∤

(
− i��

L
s,
i��

L
s
)) ∣∣∣∣∣

s=1

=

(
∏

p

(
1 +

�(p2)

p1−2 i��
L

s
− �(p2) + 1

p
+

1

p1+2 i��
L

s
+ ⋅ ⋅ ⋅

)(
1 +

1

ps
+ ⋅ ⋅ ⋅

)) ∣∣∣∣∣
s=1

=

(
∏

p

(
1 +

�(p2)

p1−2 i��
L

s
− �(p2) + 1

p
+

1

p1+2 i��
L

s
+

1

ps

+
�(p2)

p1+s−2 i��
L

s
− �(p2) + 1

p1+s
+

1

p1+s+2 i��
L

s
+ ⋅ ⋅ ⋅

)) ∣∣∣∣∣
s=1

=

(
∏

p

(
1 +

�(p2)

p1−2 i��
L

s
− �(p2)

p
+

1

p1+2 i��
L

s
− 1

p

(
1− 1

ps−1

)
+ ⋅ ⋅ ⋅

))∣∣∣∣∣
s=1

.

(3.29)

Note that the(1/p) (1− 1/ps−1) term goes to0 ass → 1. Also note that (cf. [HKS], (2.32) and
(2.33))

LE(sym2, 1− 2i��/L) =
∏

p

(
1 +

�(p2)

p1−2 i��
L

+ ⋅ ⋅ ⋅
)
, (3.30)

and

1

LE(sym2, 1)
=
∏

p

(
1− �(p2)

p
+ ⋅ ⋅ ⋅

)
, �

(
1 + 2

i��

L

)
=
∏

p

(
1 +

1

p1+2 i��
L

+ ⋅ ⋅ ⋅
)
. (3.31)
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Thus

T (�) = K(�)× LE(sym2, 1− 2i��/L)

LE(sym2, 1)
× �

(
1 + 2

i��

L

)
(3.32)

whereK(�) is a convergent Euler product that converges uniformly in the region of interest and
equals 1 when� = 0 (the last claim follows from analyzing our above expansion at � = 0 and
comparing with the expressions in §3.1). In particular, we know thatK(�) =

∏
p (1 +O(1/p2)); if

there were any higher order terms, we would have a term of higher order that1/p2 in the expansion
of T̃ (�) besides those already accounted for, which does not occur.

Proof of Lemma 3.3.Instead of analyzing (3.24), it suffices to show

R(g,X) =− 1

LX∗

∫ ∞

−∞

g(�)
∑

d∈ℱ(X)

[(√
M ∣d∣
2�

)−2i��/LΓ(1− i��
L
)

Γ(1 + i��
L
)

× LE(sym2, 1− 2i��/L)

LE(sym2, 1)
×K(�)× �

(
1 + 2

i��

L

)]
d�

is g(0)/2 +O(X− 1−�
2 ). Recall from (1.4) that

L = log

(√
MX

2�

)
. (3.33)

By Lemma A.2

∑

d∈ℱ(X)

(√
Md

2�

)− 2�i�
L

= X∗e−2�i�

(
1− 2�i�

L

)−1

+O(X1/2 logX). (3.34)

TheO(X1/2) term yields a contribution of sizeO(X−1/2), which is negligible. Thus it suffices to
study the main term, which we denoteR1(g,X).

We replace� with � − iw L
2�

with w = 0 (we will shift the contour in a moment). Thus

R1(g;X) = − X∗

LX∗

∫ ∞

−∞

g

(
� − iw

L

2�

)
e−2�i(�−iw L

2� )
Γ(1− w

2
− i��

L
)

Γ(1 + w
2
+ i��

L
)

⋅ LE(sym2, 1− w − 2i��/L)

LE(sym2, 1)
⋅K(�) ⋅ �

(
1 + w + 2

i��

L

)]
d�. (3.35)

We now shift the contour tow = 3/2. Remembering we are assuming the GRH for�(s) and
LE(sym2, �) (so that if�(�) = 0 or LE(sym2, s) = 0 then either� = 1

2
+ i for some ∈ ℝ or � is

a negative even integer), there are two different residue contributions as we shift, arising from

∙ the pole of�
(
1 + w + 2�i�

L

)
atw = � = 0;

∙ the zeros ofLE (sym2, 1− w − 2i��/L) whenw = 1/2 and� =  L
2�

.

We claim the contribution from the pole of�
(
sym2, 1 + w + 2�i�

L

)
atw = � = 0 is g(0)/2. As

the pole of�(s) is 1/(s− 1), sinces = 1 + 2�i�
L

the1/� term from the zeta function has coefficient
L
2�i

. We lose the factor of1/2�i when we apply the residue theorem, there is a minus sign outside
the integral and another from the direction we integrate (wereplace the integral from−� to � with
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a semi-circle oriented clockwise; this gives us a minus signas well as a factor of1/2 since we only
have half the contour), and everything else evaluated at� = 0 is g(0) (rememberK(0) = 1).

We now analyze the contribution from the zeros ofLE(sym2, s) as we shiftw to 3/2. The
contributions from the non-trivial zeros arise whenw = 1/2, and we sum over� =  L

2�
with

LE(sym2, 1
2
+ i) = 0. Theexp

(
−2�i(� − iw L

2�
)
)

term isO(exp(−L/2)) = O(X−1/2), and the
K-piece is bounded as it is uniformly convergent in this region.

From (3) of Lemma B.1 we have

g

(

L

2�
− i

1

2

L

2�

)
≪ X�/2(� 2 + 1)−B (3.36)

for anyB > 0. From (4) of Lemma B.1, we see that the ratio of the Gamma factors is bounded by
a power of∣� ∣. Finally, the zeta function in the numerator isO(1). Thus the contribution from the
critical zeros ofLE(sym2, s) is bounded by

∑



LE (sym2, 12+i)=0

X−1/2X�/2

∫
d�

(� 2 + 1)B
≪ X− 1−�

2 (3.37)

for sufficiently largeB. Thus there is a power savings in this term so long as� < 1; note, however,
that wedo not obtain square-root cancellation in this error term forany support. This is very different
than [Mil4], and is due to the different ratio ofL-functions arising in this case, leading to a more
complicated Euler product.

The proof is completed by a standard argument showing that the integral overw = 3/2 is neg-
ligible. Arguing as above shows the integral is bounded byO(X−3/2+3�/2). It suffices to obtain
polynomial in� bounds forLE(sym2,−1/2 − 2�i�/L); see for instance [IK]. This completes the
proof of Lemma 3.3, which also finishes the proof of Theorem 1.3. □

Remark 3.4. We sketch an alternate start of the proof of the above lemma. One difficulty is that
R1(g;X) is defined as an integral and there is a pole on the line of integration. We may write

�(s) = (s− 1)−1 +
(
�(s)− (s− 1)−1

)
. (3.38)

For uss = 1 + 2�i�
L

, so the first factor is justL
2�i�

. As g(�) is an even function, the main term of the
integral of this piece is

∫ ∞

−∞

g(�)
e−2�i�

2�i�
d� =

∫ ∞

−∞

g(�)

(
e−2�i�

4�i�
− e2�i�

4�i�

)
d�

= −
∫ ∞

−∞

g(�)
sin(2��)

2��
d� = −g(0)

2
, (3.39)

where the last equality is a consequence ofsupp(ĝ) ⊂ (−1, 1). The other terms from the(s− 1)−1

factor and the terms from the�(s)− (s− 1)−1 piece are analyzed in a similar manner as the terms in
the proof of Lemma 3.3.

Remark 3.5. The proof of Lemma 3.3 follows from shifting contours and keeping track of poles of
ratios of Gamma, zeta andL-functions. Arguing as in Remark 2.3 of [Mil3] we can prove a related
result with significantly less work, specifically, agreement up to any power of the logarithm.
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4. GENERALIZING JUTILA ’ S BOUND

In these notes we generalize Jutila’s bound, and show how it may be applied to analyze the con-
tribution from odd powers of primes to the 1-level density offamilies of quadratic twists of a fixed
GLn form. While we are most interested in the case when the fixed form is an elliptic curve of prime
conductor, we prove our bound in greater generality as this may be of use to other researchers. In
particular, this result was implicitly assumed by Rubinstein [Rub] in his analysis of the main term in
the 1-level density of quadratic twists of a fixed form.

Recall Jutila’s bound (see (3.4) of [Ju3]) is

∑

1<n≤N
n non−square

∣∣∣∣∣∣

∑

0<d≤X
d fund. disc.

�d(n)

∣∣∣∣∣∣

2

≪ NX log10N, (4.1)

where thed-sum is over even fundamental discriminants at mostX. For many applications we need
to modify it further. LetM be a square-free integer. We often need to restrict thed-sum to be over
d relatively prime toM that are congruent to a non-zero square moduloM . We have�d(n) =

(
d
n

)
,

where
(
d
n

)
is the Kronecker symbol. We can encode the restriction on thed-sum by noting

1

2

(
�d(M)2 + �d(M)

)
=

{
1 if d is a non-zero square moduloM and(d,M) = 1

0 otherwise;
(4.2)

if instead we wanted to detectd a non-square moduloM we would use�d(M)2 − �d(M).

Theorem 4.1 (Generalization of Jutila’s bound). LetM be a square-free positive integer. Then

∑

1<n≤N,(n,M)=1
n non−square

⎛
⎜⎝

∑

d≤X,(d,M)=1
d≡□ ∕=0 mod M

�d(n)

⎞
⎟⎠

2

≪ NM2X log10(NM). (4.3)

The same bound holds if instead we restrict thed-sum to be over non-squares moduloM .

Proof. In all sums below,d andd′ denote an even fundamental discriminant. LettingS(N,M,X)
denote our sum of interest, we find

S(N,M,X) =
∑

1<n≤N,(n,M)=1
n non−square

⎛
⎜⎝

∑

d≤X,(d,M)=1
d≡□ ∕=0 mod M

�d(n)

⎞
⎟⎠

2

=
1

4

∑

1<n≤N,(n,M)=1
n non−square

(
∑

d≤X

�d(n)�d(M)2 +
∑

d≤X

�d(n)�d(M)

)2

= S1(N,M,X) + S2(N,M,X) (4.4)
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(using the estimate(a + b)2 ≤ 4a2 + 4b2), where

S1(N,M,X) =
∑

1<n≤N,(n,M)=1
n non−square

(
∑

d≤X

�d(n)�d(M)2

)2

S2(N,M,X) =
∑

1<n≤N,(n,M)=1
n non−square

(
∑

d≤X

�d(n)�d(M)

)2

. (4.5)

The first sum,S1(N,M, x), is easily estimated using Jutila’s bound. Note that�d(n)�d(M
2) =

�d(nM
2), and ifn is not a square at mostN thennM2 is not a square at mostNM2. Thus

S1(N,M,X) ≪ NM2X log10(NM2) ≪ NM2X log10(NM) (4.6)

(while Jutila’s bound is over all square-freen, as it is a sum of squares we can restrict the sum
overn). The second sum is handled similarly, using�d(n)�d(M) = �d(nM). As M is prime and
(n,M) = 1, nM is not a square at mostNM . Thus

S2(N,M,X) ≪ NMX log10(NM). (4.7)

We therefore find
S(N,M,X) ≪ NM2X log10(NM). (4.8)

□

Remark 4.2. Not surprisingly, we restrict ton relatively prime toM in Theorem 4.1; ifn = M then
sinced ≡ □ ∕= 0 mod d, �d(n) would equal 1 and these terms would contribute on the order ofX2

to the sum.

Remark 4.3. Rubinstein [Rub] calculated the main term in the 1-level density for the family of
quadratic twists of a fixed form onGLn, where the fundamental discriminants used in twisting were
additionally restricted so that the family had constant sign. In his work he implicitly assumed that Ju-
tila’s bound (which was the key arithmetic ingredient in thenumber theory calculations of the 1-level
density for the family of quadratic characters) still held when the fundamental discriminants were
further restricted as above; Theorem 4.1 justifies this assumption, and almost suffices to complete
the analysis. Unlike our present work, where we are attempting to determine all lower order terms
up to square-root cancelation, in [Rub] the goal is just to show agreement between the main term and
the predictions from random matrix theory. Thus we do not need to identify the term corresponding
to the1/L term from (2.33). We thus simply follow the argument in [Rub]and trivially bound the
contribution from primes dividingM (which we now assume is just square-free and not necessarily
prime).

APPENDIX A. SUMS OVER FUNDAMENTAL DISCRIMINANTS

We generalize the calculations in Appendix B of [Mil4] to handle our family, which has the added
restriction of requiring our even fundamental discriminantsd to be a non-zero square modulo a prime
M . We can encode the restriction on thed-sum by noting

1

2

(
�d(M)2 + �d(M)

)
=

{
1 if d is a non-zero square moduloM and(d,M) = 1

0 otherwise;
(A.1)

if instead we wanted to detectd a non-square moduloM we would use�d(M)2 − �d(M).
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Lemma A.1. Letd denote an even fundamental discriminant at mostX, and set

X∗ =
∑

d≤X
d=□ ∕≡0 mod M

1 (A.2)

for an odd primeM . Then4

X∗ =
3

�2
X ⋅ M

2(M + 1)
+O(X1/2) (A.3)

and forp ≤ X1/2 we have

∑

d≤X,p∣d
d=□ ∕≡0 mod M

1 =

{
X∗

p+1
+O(X1/2) if p ∤ M

0 if p∣M .
(A.4)

Proof. We first prove the claim forX∗, and then indicate how to modify the proof whenp∣d. We
could show this by recognizing certain products as ratios ofzeta functions or by using a Tauberian
theorem; instead we shall give a straightforward proof suggested to us by Tim Browning (see also
[OS1]).

We first assume thatd ≡ 1 mod 4, so we are considering even fundamental discriminants{d ≤
X : d ≡ 1 mod 4, �(d)2 = 1, d = □ ∕≡ 0 mod M}; it is trivial to modify the arguments below ford
such thatd/4 ≡ 2 or 3 modulo4 and�(d/4)2 = 1. Let�4(n) be the non-trivial character modulo 4:
�4(2m) = 0 and

�4(n) =

{
1 if n ≡ 1 mod 4

0 if n ≡ 3 mod 4.
(A.5)

We have

S(X) =
∑

d≤X, d=□ ∕≡0 mod M

�(d)2=1, d≡1 mod 4

1

=
∑

d≤X
2∣∖d

�(d)2 ⋅ 1 + �4(d)

2

�d(M)2 + �d(M)

2

=
1

4

∑

d≤X
(2M,d)=1

�(d)2 +
1

4

∑

d≤X

�(d)2
[
�4(d)

(
�d(M)2 + �d(M)

)
− �4(d)

2�d(M)
]

= S1(X) + S2(X). (A.6)

By Möbius inversion

∑

m2∣d

�(m) =

{
1 if d is square-free

0 otherwise.
(A.7)

4We chose to writeX∗ to facilitate comparison with the cardinality of the corresponding family from [Mil4], where
we did not impose the constraint thatd equal a non-zero square moduloM .
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Thus

S1(X) =
1

4

∑

d≤X
(2M,d)=1

∑

m2∣d

�(m)

=
1

4

∑

m≤X1/2

(2M,m)=1

�(m) ⋅
∑

d ≤ X/m2

(2M,d)=1

1

=
1

4

∑

m≤X1/2

(2M,m)=1

�(m)

(
X

m2

�(2M)

2M
+O(1)

)

=
X

8

M − 1

M

∞∑

m=1
(2M,m)=1

�(m)

m2
+O(X1/2)

=
1

8

M − 1

M

6

�(2)
⋅
(
1− 1

22

)−1(
1− 1

M2

)−1

⋅X +O(X1/2)

=
1

�2

M

M + 1
X +O(X1/2) (A.8)

(because we are missing the factors corresponding to2 andM in 1/�(2) above). To make this
comparable to the sum from [Mil4] (where we did not have the condition thatd = □ ∕≡ 0 mod M)
we may rewrite the above as

S1(X) =
2

�2
X ⋅ M

2(M + 1)
. (A.9)

Arguing in a similar manner showsS2(X) = O(X1/2); this is due to the presence of a non-principal
character in each of the three sums of modulus at most8M (we use quadratic reciprocity to replace
�d(M) with a character of conductor at most8M). For example, let� denote any of the three
non-principal characters in the expansion ofS2(X). Such a term contributes

1

4

∑

m≤X1/2

�(m2)�(m)
∑

d≤X/m2

�(d) ≪ X1/2 (A.10)

(because we are summing� at consecutive integers, and thus this sum is at most8M).
A similar analysis shows that the number of even fundamentaldiscriminantsd ≤ X with d/4 ≡ 2

or 3 modulo4 is 1
�2X ⋅ M

2(M+1)
+O(X1/2). Thus

∑

d≤X,d=□ ∕≡0 mod M
d an even fund. disc.

1 = X∗ =
3

�2
X

M

2(M + 1)
+O(X1/2). (A.11)

We may trivially modify the above calculations to determinethe number of even fundamental
discriminantsd ≤ X with p∣d for a fixed primep. We first assumep ≡ 1 mod 4. In (A.6) we replace
�(d)2 with �(pd)2, d ≤ X with d ≤ X/p, (2M, d) = 1 with (2Mp, d) = 1. As d andp are now
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relatively prime (after this change of variables),�(pd) = �(p)�(d) and the main term becomes

S1;p(X) =
1

4

∑

d≤X/p
(2Mp,d)=1

∑

m2∣d

�(m)

=
1

4

∑

m≤(X/p)1/2

(2Mp,m)=1

�(m) ⋅
∑

d ≤ (X/p)/m2

(2Mp,d)=1

1

=
1

4

∑

m≤(X/p)1/2

(2Mp,m)=1

�(m)

(
X/p

m2
⋅ �(2Mp)

2Mp
+O(1)

)

=
(p− 1)(M − 1)X

8Mp2

∞∑

m=1
(2Mp,m)=1

�(m)

m2
+O(X1/2)

=
1

8

6

�(2)
⋅
(
1− 1

22

)−1(
1− 1

p2

)−1(
1− 1

M2

)−1
(p− 1)(M − 1)X

Mp2

+ O(X1/2)

=
2X

(p+ 1)�2

M

2(M + 1)
+O(X1/2) =

2X∗/3

p+ 1
+O(X1/2), (A.12)

and the cardinality of this piece is reduced by(p+1)−1 (note above we used#{n ≤ Y : (2p, n) = 1}
= p−1

2p
Y + O(1)). A similar analysis as before shows thatS2;p(X) = O(X1/2); the case of even

fundamental discriminantsd with d/4 ≡ 2 or 3 modulo4 follows analogously.
We need to trivially modify the above arguments ifp ≡ 3 mod 4 (if p = M these arguments are

not applicable, although in this case the result is clearly zero as we are only consideringd = □ ∕≡
0 mod M , and suchd are never divisible byM). If for instance we required ≡ 1 mod 4 then instead
of using the factor�(d)2(1+�4(d))/2 we use�(pd)2(1−�4(d))/2, and the rest of the proof proceeds
similarly.

It is a completely different story ifp = 2. Note if d ≡ 1 mod 4 then 2neverdividesd, while
if d/4 ≡ 2 or 3 modulo 4 then 2alwaysdividesd. There are3X/�2 ⋅ M

2(M+1)
+ o(X1/2) even

fundamental discriminants at mostX, andX/�2 M
2(M+1)

+O(x1/2) of these are divisible by 2. Thus,
if our family is all even fundamental discriminants, we do get the factor of1/(p + 1) for p = 2, as
one-third (which is1/(2 + 1) of the fundamental discriminants in this family are divisible by2. □

In our analysis of the terms from theL-functions Ratios Conjecture, we shall need a partial sum-
mation consequence of Lemma A.1.

Lemma A.2. Letℱ(X) denote all even fundamental discriminants congruent to a non-zero square
moduloM that are at mostX, and setX∗ =

∑
d∈ℱ(X) 1. Let z = � − iw L

2�
with w ∈ [0, 1/2] and

L = log(
√
MX/2�). Then

∑

d∈ℱ(X)

(√
Md

2�

)− 2�iz
L

= X∗e−2�iz

(
1− 2�iz

L

)−1

+O(X1/2−w logX). (A.13)
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Proof. Note

∑

d∈ℱ(X)

(√
Md

2�

)− 2�iz
L

=
∑

d∈ℱ(X)

exp

(
−2�iz

√
M/2�

L

)
exp

(
−2�iz

L
log d

)

= exp

(
−2�iz + 2�iz

logX

L

) ∑

d∈ℱ(X)

d−2�iz/L. (A.14)

We now analyze
∑

d∈ℱ(X) d
−2�iz/L. By Lemma A.1 we have

∑

d∈ℱ(u)

1 =
3u

�2

M

2(M + 1)
+O(u1/2). (A.15)

Therefore by partial summation we have
∑

d∈ℱ(X)

d−2�iz/L =
(
X∗ +O(X1/2)

)
X− 2�iz

L

−
∫ X

1

(
3u

�2

M

2(M + 1)
+O(u1/2)

)
u− 2�iz

L
−2�iz

L

du

u
.

(A.16)

Asw ∈ [0, 1/2], the error terms contribute at mostO(X1/2−w logX) (we need to add thelogX as if
w = 1/2 the integral of the error islogX); further, we may absorb the lower boundary term of the
integral in theO(X1/2−w logX) error term, and we find

∑

d∈ℱ(X)

d−2�iz/L

= X∗ exp

(
−2�iz logX

L

)
+

3

�2

M

2(M + 1)

X1− 2�iz
L

1− 2�iz
L

+O(X1/2−w logX)

= X∗ exp

(
−2�iz logX

L

)
+X∗ exp

(
−2�iz logX

L

)
+

2�iz

L

∞∑

�=0

(
2�iz

L

)�

+ O(X1/2−w logX)

= X∗ exp

(
−2�iz logX

L

)(
1− 2�iz

L

)−1

+O(X1/2−w logX). (A.17)

Substituting yields the claim. □

APPENDIX B. SCHWARTZ FUNCTION EXPANSIONS

Let � be an even Schwartz function and�̂ be its Fourier transform (̂�(�) =
∫
�(x)e−2�ix�dx); we

often assumesupp(�̂) ⊂ (−�, �) for some� < ∞. We set

H(s) = �

(
s− 1

2

i

)
. (B.1)



AN ELLIPTIC CURVE TEST OF THEL-FUNCTIONS RATIOS CONJECTURE 29

While H(s) is initially define only whenℜ(s) = 1/2, because of the compact support of�̂ we may
extend it to all ofℂ:

�(x) =

∫ ∞

−∞

�̂(�)e2�ix�d�

�(x+ iy) =

∫ ∞

−∞

�̂(�)e2�i(x+iy)�d�

H(x+ iy) =

∫ ∞

−∞

[
�̂(�)e2�(x−

1
2
)
]
⋅ e2�iy�d�. (B.2)

Note thatH(x + iy) is rapidly decreasing iny (for a fixedx it is the Fourier transform of a nice
function, and thus the claim follows from the Riemann-Lebesgue lemma).

The following result is useful in expanding some terms in theRatios’ prediction.

Lemma B.1. Let supp(ĝ) ⊂ (−�, �) ⊂ (−1, 1) andL = log(
√
MX/2�).

(1) For w ≥ 0, g
(
� − iw L

2�

)
≪ X�w

(
� 2 + (w L

2�
)2
)−B

for anyB ≥ 0.
(2) For 0 < a < b we have∣Γ(a± iy)/Γ(b± iy)∣ = Oa,b(1).

Proof. (1): Asg(�) =
∫
ĝ(�)e2�i��d�, we have

g(� − iy) =

∫ ∞

−∞

ĝ(�)e2�i(�−iy)�d�

=

∫ ∞

−∞

ĝ(2n)(�)(2�i(� − iy))−ne2�i(�−iy)�d�

≪ e2�y�(� − iy))−2n; (B.3)

the claim follows by takingy = wL/2�.
(2): As ∣Γ(x− iy)∣ = ∣Γ(x+ iy)∣, we may assume all signs are positive. The claim follows from

the definition of the Beta function:

Γ(a+ iy)Γ(b− a)

Γ(b+ iy)
=

∫ 1

0

ta+iy−1(1− t)b−a−1 = Oa,b(1). (B.4)

□
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