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ZOË X. BATTERMAN, ADITYA JAMBHALE, STEVEN J. MILLER, AKASH L. NARAYANAN,
KISHAN SHARMA, ANDREW K. YANG, AND CHRIS YAO

Abstract. Zeckendorf [Ze] proved that every natural number n can be expressed uniquely
as a sum of non-consecutive Fibonacci numbers, called its Zeckendorf decomposition. Baird-
Smith, Epstein, Flint, and Miller [BEFM1] created the Zeckendorf game, a two-player game
played on partitions of n into Fibonacci numbers which always terminates at a Zeckendorf
decomposition, and proved that Player 2 has a winning strategy for n ≥ 3. Since their proof
was non-constructive, other authors have studied the game to find a constructive winning
strategy, and lacking success there turned to related problems. For example, Cheigh, Moura,
Jeong, Duke, Milgrim, Miller, and Ngamlamai [CMJDMMN] studied minimum and maximum
game lengths and randomly played games. We explore a new direction and introduce the
reversed Zeckendorf game, which starts at the ending state of the Zeckendorf game and flips
all the moves, so the reversed game ends with all pieces in the first bin. We show that Player
1 has a winning strategy for n = Fi+1 + Fi−2 and solve various modified games.

1. Introduction and Main Results

1.1. History. The Fibonacci numbers, which for uniqueness results in decompositions re-
quires us to define them by F1 = 1, F2 = 2, and Fn+1 = Fn + Fn−1, is a sequence with many
interesting properties which have been widely studied. With this choice of indexing, Zeck-
endorf [Ze] proved that every natural number n has a unique Zeckendorf decomposition, which
expresses n as the sum of distinct, non-adjacent Fibonacci numbers. Note the decomposition
would no longer be unique if we considered there to be two ones or a zero in the Fibonacci
sequence. An example of such a Zeckendorf decomposition is

2024 = 1597 + 377 + 34 + 13 + 3. (1.1)

Building upon this, Baird-Smith, Epstein, Flint and Miller in [BEFM1] and [BEFM2] created
the Zeckendorf game. The Zeckendorf game, which we will refer to as the forwards game, starts
with a natural number n. A game state consists of a partition of n into Fibonacci numbers,
constituents of which we call chips. We say the collection of Fi’s in this partition is the ith

bin, with its cardinality hi called the height of the bin. There are two types of moves.

(i) Combine: If hi > 0 and hi−1 > 0, then the move is

Fi−1 + Fi 7→ Fi+1, (1.2)

2F1 7→ F2.

In other words, we remove one chip from each of the ith and (i− 1)th bins and add a
chip to the (i+ 1)th bin.

This work was completed as part of the 2023 SMALL REU program at Williams College. It was supported
in part by NSF Grants DMS1561945 and DMS1659037, Williams College, and Churchill College, Cambridge.

DECEMBER 2024 1



THE FIBONACCI QUARTERLY

(ii) Split : If hi ≥ 2 with i > 2, then we have the move

2Fi 7→ Fi−2 + Fi+1, (1.3)

2F2 7→ F3 + F1.

Note that each of these moves keeps the total sum of the values of the chips constant at n.
The forwards game starts with n ones and proceeds until a player can’t make a move, in which
case the player who can’t move loses. This makes the Zeckendorf game a normal, impartial,
combinatorial game.1

The authors in [BEFM1] showed the game for n always terminates at n’s Zeckendorf de-
composition, and they showed, nonconstructively, Player 2 wins for all n ≥ 3. After this result
was published, many authors have investigated the properties of this game and various modifi-
cations of it such as possible game lengths, random games, etc; see [CDHK+6i], [CDHK+6ii],
[BCDD+15], [BEFM2], [CMJDMMN], [GMRVY], [LLMMSXZ], and [MSY].

We introduce another version of this game, the reversed Zeckendorf game, where the players
play with all the moves reversed and the starting and ending positions exchanged; for the
full definition, see §3. This game demonstrates a more complex winning structure than the
forwards game.2

1.2. Main Results. First, in §3, we analyze the reversed Zeckendorf game, look at its winning

structure, and make further conjectures. As in the literature, we denote the golden ratio 1+
√
5

2
by ϕ. Moveover, for brevity in proofs, we will say that a player “has a win” (respectively “has
a loss”) by which we mean “has a forced winning strategy” (respectively “the opponent has a
force winning strategy”). We state our main results.

Theorem 1.1. Player 1 has a winning strategy for the reversed Zeckendorf game when

n = Fi+1 + Fi−2. (1.4)

We have both a nonconstructive and constructive proof for this theorem. The noncon-
structive proof involves a strategy-stealing argument, and the constructive proof provides an
explicit strategy.

Conjecture 1.2. For the reversed Zeckendorf game, Player 2 has a winning strategy for
infinitely many n.

Conjecture 1.3. In the limit, the percent of the time Player 1 has a winning strategy for the
reversed Zeckendorf game is ϕ−1 ≈ .618.

Continuing in §3.1, we transfer results from [CMJDMMN] to get results about randomly
played reversed Zeckendorf games as well as bounds on how long the game can last. These
results are summarized here.

Theorem 1.4. Let Z(n) be the number of terms in the Zeckendorf decomposition of n.

(i) The shortest possible reversed Zeckendorf game is n− Z(n).
(ii) An upper bound on the longest possible reversed Zeckendorf game is

⌊ϕ2n− ZI(n)− 2Z(n) + ϕ− 1⌋, (1.5)

where ZI(n) is the sum across the indices of the Fibonacci numbers in the Zeckendorf decom-
position.

1The terms normal and impartial are defined in §2.
2Here, “winning structure” refers to when each player has a forced win.
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Theorem 1.5. For any integer Z ≥ 1 and z ∈ {0, 1, . . . , Z − 1}, we have

lim
N→∞

µN (game length equals z mod Z) = lim
N→∞

PN (game length equals z mod Z) =
1

Z
,

(1.6)
where µN and PN are two different probability measures, defined in §3.1, being placed on the
space of all possible games starting at the Zeckendorf decomposition of N .

In §4, we analyze winning strategies for different starting positions of the reversed Zeckendorf
game. That is, we assume the starting position is not at the Zeckendorf decomposition but at
some other partition of n into Fibonacci numbers. Specifically, we completely solve the game
when the starting position only involves ones, twos, and threes.

Theorem 1.6. For any game starting with a ones, b twos, and c threes, we have the following
forced wins.

a b c Player having forced win
Even Even Even Player 2
Odd Odd Odd Player 1
Even Odd Even Player 1
Odd Even Odd Player 1
Odd Even Even a > c Player 2
Odd Even Even a < c Player 1
Even Even Odd a > c Player 1
Even Even Odd a < c Player 2
Even Odd Odd Player 1
Odd Odd Even Player 1

Finally, in §5, we conclude with a further modification of this game, which we call the build
up game, and we completely solve it. The proof involves Nim-like strategies—strategies that
involve forcing the opponent along game states associated to a fixed residue class modulo some
integer.

2. Reversed Games

Intuitively, two players playing a reversed game should look, if time is running backwards,
like the forwards game. As such, we want a move in the reversed game from a state A to
a state B to be legal if and only if moving from B to A is legal in the forwards game. To
formalize this, we add the assumption that the game is normal and impartial.

Definition 2.1. We say a game is normal and impartial when

(i) the allowable moves depend only on the position and not on player order, and
(ii) the last player to move wins.

We can consider a normal, impartial game as a game played on a directed graph. Players
take turns moving a game piece across the graph until a terminal node is reached (e.g., a node
where there are no moves).

Definition 2.2 (Reversed Game). Let G be the associated directed graph of a normal,
impartial game. Suppose that the graph has a unique loss node and unique starting node.
Then the reverse of that game is obtained by reversing all the edges in G and playing from the
loss node to the starting node. A player loses if they run out of moves.

DECEMBER 2024 3



THE FIBONACCI QUARTERLY

Remark 2.3. Under this definition, the reverse of a game is also normal and impartial.

Example 2.4. Consider the reversed game for standard Nim, where players take turns re-
moving 1, 2, or 3 from an natural number n ≡ 1 (mod 4), never going below 1, with the last
player to move winning. Note standard Nim is a normal, impartial game with starting node n
and ending node 1.

The reversed game would be played by starting at 1 and adding either 1, 2, or 3 (never going
above n), with the first person to make the number n winning.

This is transparently the same as Nim, with the same winning strategy for Player 2. Thus,
this game does not demonstrate any new behavior when reversed: The winning structure is
still the same as Player 2 always wins with the same strategy.

In general, reversed games do not exhibit the same winning structure or winning strategies.
As we will see, reversed Chomp has a similar winning structure but different winning strategy,
and the reversed Zeckendorf game has an entirely different winning structure.

2.1. Reversed Chomp. As a useful example of a reversed game, we solve the reversed Chomp
game. First, we introduce the game of Chomp. Chomp is a normal, impartial game played on
a rectangular board with N rows and M columns. Players take turns choosing a square on
the board and “eating” it, removing that square and all the squares both above and to the
right of it. The player forced to eat the “poisoned square” in the bottom left corner loses the
game. We consider the game played with two players and ignore the trivial game N = M = 1.

We can consider this game as played on a directed graph with a starting node representing
the full board and an ending node representing the poisoned square. It can be shown by
a “strategy-stealing argument” that for all N,M , Chomp is a win for Player 1. However,
constructing an explicit winning strategy proves difficult.

Consider reversed Chomp, which starts from the poisoned square and ends with the full
board. Without loss of generality, assume N ≥ M . When M = 1, Player 1 wins in one move.

We provide a constructive proof that M > 1 is always a win for Player 2 by giving the
following winning strategy.

(i) Case M = 2: Player 1 has three options for their first move: complete the bottom
row, complete the leftmost column, or partially complete the leftmost column. The
first two choices allow Player 2 to win in one move.

Suppose Player 1 partially completed the leftmost column to a height of 1 < h < N
squares. Then Player 2 can respond by filling in the other column to a height of h− 1.
The game has now been reduced to another game with 2 columns but with fewer rows
than we started with (see figure 1).

Player 1 is presented with the same three choices. Player 2 can continue responding
in the above manner until we reach the game with 2 rows and 2 columns. From this
position, regardless of Player 1’s choice, Player 2 wins in one move.

(ii) Case M > 2: Player 1 has four options for their first move: complete the bottom
row, complete the leftmost column, partially complete the bottom row, or partially
complete the leftmost column. The first two choices allow Player 2 to win in one
move.

If Player 1 partially completes the bottom row to a length of 1 < l < M squares,
then Player 2 can respond by filling in the leftmost l − 1 columns (see figure 2). This
reduces to a game with the same number of rows and fewer columns than we started
with. Similarly, if Player 1 partially completes the leftmost column to a height of
1 < h < N squares, then Player 2 can respond by filling in the bottom h − 1 rows
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X
≡

X

Figure 1. M = 2. Gray indicates move by Player 1, black indicates move by
Player 2

X
≡

X

Figure 2. M > 2, Player 1 partially completes bottom row.

X
≡

X

Figure 3. M > 2, Player 1 partially completes leftmost column.

which reduces to a game with the same number of columns but fewer rows (see Figure
3).

Either way, Player 1 is presented with the same four choices. Player 2 can continue
responding in this manner until the game is reduced to a state with either only 2 rows
or 2 columns. By the previous case, this is a win for Player 2.
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Remark 2.5. Along with the winning strategy, the winning structure for reversed Chomp is
also different than normal Chomp. Player 1 wins reversed Chomp for all N when M = 1.
This is an infinite number of games but not a positive proportion. In forward Chomp, Player
2 only wins a finite number of games, namely just the trivial game.

3. The Reversed Zeckendorf Game

Following our definition of the reversed game in Definition 2, we give an explicit construction
for the reversed Zeckendorf game.

The terminology is the same as in the forwards game (with the starting and ending positions
flipped, so we always start at the Zeckendorf decomposition of n) except we rename each move.

(i) Split : We remove one chip from the (i + 1)th bin and place one chip each in the ith

and (i− 1)th bins.

Fi+1 7→ Fi−1 + Fi, (3.1)

F2 7→ 2F1.

(ii) Combine: For i > 2, we have

Fi−2 + Fi+1 7→ 2Fi, (3.2)

F3 + F1 7→ 2F2.

Theorem 1.1. Player 1 has a winning strategy for the reversed Zeckendorf game when

n = Fi+1 + Fi−2. (1.4)

We present two proofs, one constructive and the other nonconstructive.

Proof. (Nonconstructive) By way of contradiction, suppose Player 2 has a winning strategy.
If Player 1 chose to combine for their first move, Player 2 has a forced win starting at the
state 2Fi. There is only one move in this position, which means Player 2 has a forced win
with Player 1 starting at the state Fi + Fi−1 + Fi−2.

However, Player 1 could choose to instead split the (i+ 1)th bin, which makes it Player 2’s
turn at the state Fi+Fi−1+Fi−2. Now, Player 1 can steal the strategy from Player 2 to have
a forced win in the starting state, a contradiction. □

Remark 3.1. The constructive proof relies on Lemma 4.1. As a corollary of this lemma, we
have a constructive proof for why the game state 2Fi is a win for whoever goes second. Before
that, Player 1 starts with combining to bring the game into this situation.

The next natural question is whether or not the same can be said of Player 2.

Conjecture 1.2. For the reversed Zeckendorf game, Player 2 has a winning strategy for
infinitely many n.

To investigate this conjecture, we directly computed which player had a forced winning
strategy for n ≤ 129 (see Appendix A.1). The code for computing which player has a forced
winning strategy is listed in Appendix B and has a algorithmic complexity of O(exp(

√
n). For

n = 129, the program took close to 2 hours.
Figure 4 shows the proportion Player 2 wins. We plot n versus the percent of games won

by Player 2 in games 2 through n.
For the first n ≤ 129, the average number of Player 1 wins is 80/129 ≈ .620. The average

number of wins seems to stabilize computationally. Combining these two together, we are led
to the following conjecture.
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Figure 4. Percent of games ≤ n won by Player 2

Conjecture 1.3. In the limit, the percent of the time Player 1 has a winning strategy for the
reversed Zeckendorf game is ϕ−1 ≈ .618.

This is a natural conjecture due to the connection between the Fibonacci numbers and the
golden ratio. Work on determining the winner is provided in §4.

3.1. Other Facts. We gather various results about the reversed Zeckendorf game which follow
from already-known facts about the forwards game. Since we have merely reversed the arrows
in the forward game tree to produce the reversed game, many properties about the forwards
game extend immediately as corollaries. One property that extends is the lengths of games.
From [BEFM1] for the lower bound and [CMJDMMN] for the upper bound, we have the
following.

Theorem 1.4. Let Z(n) be the number of terms in the Zeckendorf decomposition of n.

(i) The shortest possible reversed Zeckendorf game is n− Z(n).
(ii) An upper bound on the longest possible reversed Zeckendorf game is

⌊ϕ2n− ZI(n)− 2Z(n) + ϕ− 1⌋, (1.5)

where ZI(n) is the sum across the indices of the Fibonacci numbers in the Zeckendorf decom-
position.

Theorems 1.8 and 1.9 from the paper [CMJDMMN] also transfer.
Finally, we have results on randomly played games with one subtlety. The paper discusses

two different probability measures put on the space of all possible games with a fixed n. One
of them simply assigns the same probability to each game (denoted µn), as well as assigning

DECEMBER 2024 7



THE FIBONACCI QUARTERLY

each game according to the probability of playing it if each player picked a random move each
turn, uniformly from the possible moves (denoted Pn).

Now, the first measure µ assigns the same probability to each game as its corresponding
flipped game in the reversed version. As such, statements about this probability measure
easily translate as a corollary. However, the measure Pn requires more work than deducing
the result for the reversed game from the original game. In this case, modifications and checks
are required throughout Section 4 of their paper until Lemma 4.5. In the end, the main result
still holds.

Theorem 1.5. For any integer Z ≥ 1 and z ∈ {0, 1, . . . , Z − 1}, we have

lim
N→∞

µN (game length equals z mod Z) = lim
N→∞

PN (game length equals z mod Z) =
1

Z
,

(1.6)
where µN and PN are two different probability measures, defined in §3.1, being placed on the
space of all possible games starting at the Zeckendorf decomposition of N .

This theorem works for a more general setting than that of the two player game. The game
can be modified to Z many players, wherein the players take turns in sequence and the last
player who moves wins. The theorem can then be interpreted as saying that in the Z player
game, where each player chooses their move uniformly at random from their possible choices,
any given player will win approximately 1/Z percent of the time.

For the specific case of two players and an even n, we have the following.

Theorem 3.2. For the Reversed Zeckendorf Game player on an even n,

Pn(game length equals 1 mod 2) =
1

2
. (3.3)

Proof. Equivalently, we can show that each player, playing randomly on each turn, each has
a 1/2 probability of winning.

At some point, every game will have the h3 = 1 and hi = 0 for all i > 3. Furthermore, we
can continue to the move that gets rid of the three. We have

n = h1 + 2h2 + 3. (3.4)

Since n is even, this means h1 > 0, so at the final turn h3 = 1, the player has 2 choices: (i)
combine a one and a three or (ii) split the three.

Once there are no threes (i.e., h3 = 0), the game only has one option, namely splitting the
two until there are no moves left. The winner is determined by the parity of the second bin.
However, (i) will yield the height of bin 2 equals h2 + 2 and (ii) will yield the height of bin 2
equals h2 + 1.

There is an equal chance the player will lose or win, and nothing that came before or after
matters. We conclude the probability either player wins is 1/2, as desired. □

4. Other Starting Positions

A natural modification of the reversed Zeckendorf game is to alter the starting position.
Instead of starting at the Zeckendorf decomposition, we instead specify a starting position
and start the game from there. In fact, such problems are often tractable as the starting
and ending positions are well-understood. Contrast this with applying the same idea to the
forwards game: In this case, we would still be headed towards the Zeckendorf decomposition,
which can vary as n changes.
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Lemma 4.1. If the starting position of the reversed Zeckendorf game has all bins of even
height, then Player 2 has a winning strategy.
Proof. The proof uses a “copycat” strategy that is, if Player 1 does a move, Player 2 plays the
exact same move. We must show the following:

(i) if Player 1 makes a move, then Player 2 can also make that move, and
(ii) after Player 2 moves, all the bins are of even height.

If these are both the case, then Player 1 will have to move on a position where there are only
ones and twos. At this point, there will be an even number of twos, so the game from here on
is deterministic; both players will split twos until there are no twos left. Since the parity of
the twos is even, this means it will be Player 1’s turn when there are no twos left, so they lose.

Consider Player 1 making a split move so that

hi 7→ hi − 1,

hi−1 7→ hi−1 + 1, and

hi−2 7→ hi−2 + 1.

Since hi is even, then hi − 1 is odd. Thus, hi − 1 ≥ 1 > 0. This means Player 2 can legally
make the same splitting move with the net effect of

hi 7→ hi − 2,

hi−1 7→ hi−1 + 2, and

hi−2 7→ hi−2 + 2,

with all the other bins unchanged, so all the heights are still even. We can do a similar
argument for the combine move which proves (1) and (2). □

We also solve the game when the starting position consists only of ones, twos, and threes.
We denote the starting position with a ones, b twos, and c threes as the ordered triple (a, b, c)
from this point on. We will also often use the notation that an O or E in the place of the
element of the tuple means that the corresponding variable is odd or even respectively (i.e.,
(E,E,E) means that a, b and c are all even). Further, O′ and E′ mean that the corresponding
variable is odd or even, but independent from the previous O and E.

Theorem 1.6. For any game starting with a ones, b twos, and c threes, we have the following
forced wins.

a b c Player having forced win
Even Even Even Player 2
Odd Odd Odd Player 1
Even Odd Even Player 1
Odd Even Odd Player 1
Odd Even Even a > c Player 2
Odd Even Even a < c Player 1
Even Even Odd a > c Player 1
Even Even Odd a < c Player 2
Even Odd Odd Player 1
Odd Odd Even Player 1

Proof. The first case is a corollary of Lemma 4.1, since all the bins have even height. The next
three cases follow from the first case as Player 1 simply splits the 3, splits the 2, or combines
the 1 and the 3 respectively to bring the game state into all three bins being even.
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The next few cases are a bit more work. We show the (Odd, Odd, Even) case, where a > c,
and put the rest in Appendix A.2.

For this case, we assume a is odd and b and c are even with a > c. We show Player 2 wins
by force.

First, assume Player 1 splits one of the threes. This gives the game state

(a+ 1, b+ 1, c− 1). (4.1)

Since c is even, we have c− 1 ≥ 1. This allows Player 2 to split another three, yielding

(a+ 2, b+ 2, c− 2). (4.2)

Note that we have a + 2 > c − 2. Moreover, a − 2 is odd while b + 2 and c − 2 remain even.
By induction, Player 2 wins.

Next, assume Player 1 splits one of the twos. This yields the game state

(a+ 2, b− 1, c). (4.3)

Since b is even, we have b− 1 ≥ 1. This allows Player 2 to split another two, yielding

(a+ 4, b− 2, c). (4.4)

Note we have a+ 4 > c. Moreover, a+ 4 is odd while b− 2 and c remain even. By induction,
Player 2 wins.

Finally, assume Player 1 combines a one and a three. This yields the game state

(a− 1, b+ 2, c− 1). (4.5)

Since c is even, we have c − 1 ≥ 1. Moreover, since a > c by assumption, we have a > 1. In
particular, Player 2 is able to perform another combine, leading to

(a− 2, b+ 4, c− 2). (4.6)

Note a− 2 > c− 2. Moreover, all parities are preserved. By induction, Player 2 wins. □

Remark 4.2. We summarize two key points in the above proof.

(i) The method in the above Theorem is constructive, so following it carefully provides a
winning strategy.

(ii) The last two cases appear to not depend on whether a > c or a < c, but the strategy to
win changes in those cases.

5. The Build Up Game

We move on to the Build Up 1-2-3 game. In this game, two players, say Player 1 and Player
2, take turns putting down a 1, 2 or 3 until their sum equals exactly n, generating an ordered
triple (a, b, c). After reaching exactly n, the players start playing the reverse Zeckendorf game
on this ordered triple and start with the player who did not move last. Whoever wins this
reversed Zeckendorf game wins the whole game. We solved this game.

Theorem 5.1. For n ̸= 4,

n = 4 =⇒ Player 1 wins, (5.1)

n odd =⇒ Player 1 wins, (5.2)

n ̸= 4 even =⇒ Player 2 wins. (5.3)
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Proof. Using Theorem 1.6, we know who wins in each ordered triple. We provide a constructive
proof in which we split the game into cases mod 4. We consider residue classes modulo 4 since
any player may play 4 minus what was played previously and thus preserve parity modulo 4.
This will be referred to as nimming down. An extra property is that the number of ones and
threes put down is the same, and the number of twos is even.

For n ≡ 0 (4) and n ≥ 8, Player 2 should nim down until there is 8 left to play. From here,
there are two cases.

(1) Player 1 is left to play on (E,E′, E):
(i) If Player 1 puts down a 1 or a 3, then Player 2 puts down the other, leaving

(E + 1, E′, E + 1).
(a) If Player 1 puts down a 1 or a 3, then Player 2 puts down the other, leaving

player 1 to start on (E + 2, E′, E + 2), so Player 2 wins.
(b) If Player 1 puts down a 2, then Player 2 puts down a 1, forcing Player 1 to

put down a 1. Player 2 then starts on (E +3, E′ +1, E +1), which is a win
for Player 2.

(ii) If Player 1 puts a 2 down, Player 2 puts down a 1, leaving Player 1 to play on
(E + 1, E′ + 1, E), with 5 total left to play.
(a) If Player 1 puts down a 1 or a 3, Player 2 puts down the other, forcing Player

1 to put down a 1. This leaves Player 2 to start on (E + 3, E′ + 1, E + 1),
which is a win for Player 2.

(b) If Player 1 puts down a 2, then Player 2 puts down a 2, and Player 1 is
forced to put down a 1. Player 2 then starts on (E + 2, E′ + 3, E), which is
a win for Player 2.

(2) Player 1 is left to play on (O,E,O):
(i) If Player 1 puts down a 1, then Player 2 puts down a 2, so Player 1 plays on

(O + 1, E + 1, O), with a total of 5 left to play.
(a) If Player 1 puts down a 1 or 3, then Player 2 puts down the other, forcing

Player 1 to put down a 1. This leaves Player 2 to start on (O+3, E+1, O+1),
which is a win for Player 2.

(b) If Player 1 puts down a 2, then Player 2 puts down a 2, forcing Player 1 to
put down a 1. Player 2 starts on (O+2, E+3, O), which is a win for Player
2.

(ii) If Player 1 puts down a 2 or 3, then Player 2 puts down the other, so Player 1
plays on (O,E + 1, O + 1) with 3 total left.
(a) If Player 1 puts down a 3, then Player 2 starts the game on (O,E+1, O+2),

which is a win for Player 2.
(b) If Player 1 puts down a 1 or 2, then Player 2 puts down the other. Player 1

then starts the game on (O + 1, E + 2, O + 1), which is a win for Player 2.

The other three cases are very similar. These, as well as the winning strategy for small values
of n, have been included in the appendix. □

6. Further Directions and Conclusions

There are numerous directions for future work.

(i) While the authors believe Conjecture 1.3 is very much out of reach, Conjecture 1.2 can
be proven by finding a family of Zeckendorf decompositions where Player 2 can force
a win.
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(ii) More generally, one might study other reversed games to see if any other games reveal
such a complex winning structure upon reversal.

(iii) Future work could also try to solve the Reversed game for a larger family of starting
positions, perhaps ones closer to the Zeckendorf decomposition.

(iv) Other modifications of the game can be considered, including a “stagnant one” varia-
tion, where all chips with value one are removed from the game (or equivalently, any
move requiring a one cannot be played).

We conclude with a final, bold conjecture.

Conjecture 6.1. The winning strategy for the forward Zeckendorf games is dependent upon
who wins the reverse Zeckendorf game.

This is a potential explanation of why a constructive proof of why Player 2 always wins the
forwards game has remained elusive.
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Appendix A. Additional Details

A.1. Table of Wins for Reverse Zeckendorf Game. The following table lists which player
wins for the starting number n as well as the number of vertices and edges of the associated
directed graph. A grayed square means Player 2 wins while a white one means Player 1 wins.

n Result Edges Vertices

2 1 2

3 2 3

4 4 4

5 7 6

6 11 8

7 16 10

8 24 14

9 32 17

10 45 22

11 59 27

12 77 33

13 100 41

14 126 49

15 158 59

16 198 71

17 241 83

18 297 99

19 358 115

20 430 134

21 516 157

22 610 180

23 722 208

24 849 239

25 990 272

26 1158 312

27 1339 353

28 1548 400

29 1785 453

30 2043 509

31 2341 573

32 2667 642

33 3028 717

n Result Edges Vertices

34 3440 803

35 3881 892

36 4381 993

37 4930 1102

38 5528 1219

39 6199 1350

40 6924 1489

41 7721 1640

42 8606 1808

43 9552 1983

44 10606 2178

45 11743 2386

46 12979 2609

47 14339 2854

48 15796 3113

49 17387 3393

50 19119 3697

51 20970 4017

52 23001 4367

53 25171 4737

54 27517 5134

55 30064 5564

56 32777 6016

57 35719 6504

58 38879 7025

59 42252 7575

60 45909 8171

61 49794 8797

62 53971 9466

63 58458 10183

64 63222 10936

65 68351 11744
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n Result Edges Vertices

66 73811 12599

67 79627 13502

68 85874 14471

69 92480 15486

70 99552 16568

71 107083 17715

72 115060 18921

73 123593 20207

74 132622 21559

75 142212 22987

76 152437 24506

77 163215 26094

78 174701 27782

79 186852 29558

80 199697 31425

81 213356 33405

82 227747 35478

83 242990 37664

84 259136 39973

85 276121 42386

86 294140 44939

87 313108 47613

88 333117 50421

89 354284 53384

90 376512 56478

91 399993 59735

92 424730 63154

93 450710 66727

94 478155 70492

95 506942 74422

96 537240 78543

97 569148 82871

n Result Edges Vertices

98 602577 87383

99 637787 92122

100 674725 97075

101 713458 102247

102 754214 107677

103 796847 113331

104 841620 119251

105 888582 125442

106 937699 131890

107 989279 138644

108 1043215 145681

109 1099679 153022

110 1158887 160703

111 1220686 168686

112 1285449 177031

113 1353148 185727

114 1423848 194777

115 1497885 204232

116 1575109 214059

117 1655815 224299

118 1740180 234978

119 1828092 246065

120 1920015 257632

121 2015842 269652

122 2115775 282150

123 2220148 295175

124 2328793 308687

125 2442154 322751

126 2560320 337374

127 2683290 352543

128 2811589 368337

129 2945040 384715

A.2. Proof of Theorem 1.6.
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Theorem 1.6. For any game starting with a ones, b twos, and c threes, we have the following
forced wins.

a b c Player having forced win
Even Even Even Player 2
Odd Odd Odd Player 1
Even Odd Even Player 1
Odd Even Odd Player 1
Odd Even Even a > c Player 2
Odd Even Even a < c Player 1
Even Even Odd a > c Player 1
Even Even Odd a < c Player 2
Even Odd Odd Player 1
Odd Odd Even Player 1

Proof. For the (O,E,E) case, where a < c, we show Player 1 wins by force.
Player 1 wins by performing a combine with a one and a three, yielding the game state

(a− 1, b+ 2, c− 1). (A.1)

Note a−1 < c−1. This also yields the (E,E,O) case with Player 2 on move. By work above,
the player on move loses which means Player 1 wins.

For the (E,E,O) and a > c case, we show Player 1 wins by force.
Player 1 wins by combining a one and a three. This gives the game state

(a− 1, b+ 2, c− 1). (A.2)

Then, a−1 is odd, b+2 is even, and c−1 is even. Moreover, we have a−1 > c−1. Therefore,
by the (O,E,E) proof, the player on move loses. Since Player 2 is on move, then Player 1
wins.

For the (E,E,O) and a < c case, we show Player 2 wins by force.
First, assume Player 1 combines a one and a three. This gives the game state

(a− 1, b+ 2, c− 1). (A.3)

Since Player 1 was able to combine a one and a three, then a ≥ 2 which implies c > 2. We
have a− 1, c− 1 ≥ 1, and so Player 2 may perform another combine to get

(a− 2, b+ 4, c− 2). (A.4)

The point is that a − 2 < c − 2 and all parities are preserved. Eventually, Player 1 will run
out of ones and threes to combine and is forced to either split a three or a two. Both of these
cases are covered next, and are wins for Player 2. (Informally, the main idea in this case is to
force Player 1 to run out combines, upon which they will be forced to perform a split. We will
show that all splits are losing for Player 1, and so Player 2 forces a win by running Player 1
out of combines.)

Assume Player 1 splits one of the twos. This gives the game state

(a+ 2, b− 1, c). (A.5)

Now, if a + 3 > c − 1, Player 2 wins by splitting one of the threes. (Since c is odd, a three
exists.) This yields the game state

(a+ 3, b, c− 1). (A.6)

At this point, a+ 3 is odd, b is even, and c− 1 is even. Moreover, we have a+ 3 > c− 1. By
work above, the player on move loses. Since Player 1 is on move, Player 2 wins.
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On the other hand, if a+3 < c− 1 (i.e., a+4 < c), Player 2 should copy Player 1 and split
another two. Note that a two exists; since b is even and Player 1 was able to split a two, we
must have b ≥ 2. This forces b− 1 ≥ 1, and so a two is available. This yields the game state

(a+ 4, b− 2, c). (A.7)

The upshot is the number of ones is increasing, and so Player 2 will eventually be able to
reduce to the situation analyzed in the a + 3 > c − 1 case. The parities are preserved and
a+ 4 < c. Therefore, Player 2 wins.

Finally, assume Player 1 splits one of the threes. This yields the game state

(a+ 1, b+ 1, c− 1). (A.8)

If c = 1, then c− 1 = 0. Since a < c, we get a = 0. The point is that we have the game state
(1, b + 1, 0) with Player 2 on move. The only option for both players at this point is to keep
splitting twos. Since b+ 1 is odd, Player 1 will run out of splits first, and so Player 2 wins.

Now, assume c > 1. If a+ 3 > c− 1, Player 2 wins by splitting a two, yielding the position

(a+ 3, b, c− 1). (A.9)

Note a+ 3 is odd, b is even, and c is even. Since a+ 3 > c− 1, then earlier work implies the
player on move loses. As Player 1 is on move, Player 2 wins.

Finally, if a+ 3 < c− 1, Player 2 wins by splitting a three, yielding the position

(a+ 2, b+ 2, c− 2). (A.10)

All parities are preserved, and a+ 2 < c− 2 since a+ 3 < c− 1. By induction, Player 2 wins.
In all cases, we have shown Player 2 has a forced win.
For the (E,O,O) case, we show Player 1 wins by force.
The winning strategy depends on the number of ones versus the number of threes. First,

assume a+ 2 > c; that is, there is a large number of ones. Player 1 wins by splitting a three,
yielding

(a+ 1, b+ 1, c− 1). (A.11)

Note a + 1 is now odd, while b + 1 and c − 1 are even. Furthermore, we have a + 1 > c − 1
since a + 2 > c. By earlier work, the player on move loses. Since Player 2 is on move, then
Player 1 wins.

On the other hand, we assume a+ 2 < c; that is, there is a small number of ones. Player 1
wins by splitting a two, yielding the game state

(a+ 2, b− 1, c). (A.12)

Note a+ 2 is even, b− 1 is even, and c is odd. Moreover, we have a+ 2 < c. By earlier work,
the player on move loses. Since Player 2 is on move, then Player 1 wins.

In either case, we have exhibited a winning strategy for Player 1, and so Player 1 wins by
force.

For the (O,O,E) case, we assume a and b are odd and c is even. We show Player 1 wins
by force.

As before, the winning strategy depends on the number of ones versus the number of threes.
First, assume a+ 2 < c. Player 1 wins by splitting a three, yielding

(a+ 1, b+ 1, c− 1). (A.13)

Note a+1 and b+1 are now even, while c− 1 is odd. Furthermore, we have a+1 > c− 1 due
to a+2 < c. By earlier work, the player on move loses. As Player 2 is on move, Player 1 wins.
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Finally, assume a+ 2 > c. Player 1 wins by splitting a two, yielding the game state

(a+ 2, b− 1, c). (A.14)

Note a+ 2 is odd, b− 1 is even, and c is even. Moreover, we have a+ 2 > c. By earlier work,
the player on move loses. As Player 2 is on move, Player 1 wins.

In either case, we have exhibited a winning strategy for Player 1, and so Player 1 wins by
force. □

A.3. Proof of Theorem 5.1.

Theorem 5.1. For n ̸= 4,

n = 4 =⇒ Player 1 wins, (5.1)

n odd =⇒ Player 1 wins, (5.2)

n ̸= 4 even =⇒ Player 2 wins. (5.3)

Proof. For n ≡ 1 (4) and n ≥ 9, Player 1 puts down a 3, and then nims down to 6. At this
point, the board is either (O,E,O + 1) or (E,E′, E + 1).

(1) If Player 2 puts down a 1, the game state is either (O+1, E,O+1) or (E+1, E′, E+1).
(i) In the case of (O+1, E,O+1), Player 1 puts down a 2 leaving (O+1, E+1, O+1).

(a) If Player 2 puts down a 1 or 2, then Player 1 puts down the other. Player
2 then starts on (O + 2, E + 2, O + 1), which is a win for Player 1.

(b) If Player 2 puts down a 3, then Player 1 starts on (O+1, E+1, O+2) which
is a win for Player 1.

(ii) In the case of (E+1, E′, E+1), Player 1 puts down a 3, leaving (E+1, E′, E+2).
(a) If Player 2 puts down a 1, then player 1 is forced to put down a 1. Player

2 then starts on (E + 3, E′, E + 2), which is a win for Player 1.
(b) If Player 2 puts down a 2, then Player 1 starts on (E + 1, E′ + 1, E + 2),

which is a win for Player 1.
(2) If Player 2 puts down a 2 or 3, then Player 1 puts down the other, forcing Player 2 to

put down a 1. Player 1 then starts on (O + 1, E + 1, O + 2) or (E + 1, E′ + 1, E + 2),
both of which are wins for Player 1.

For n ≡ 2 (4) and n ≥ 6, Player 2 nims down until there is 6 left. The game state is either
(O,E,O) or (E,E′, E).

(1) If Player 1 puts down a 1, then Player 2 is to move on (O+ 1, E,O) or (E +1, E′, E),
with 5 total left.
(i) In the case of (O + 1, E,O), Player 2 puts down a 3, leaving (O + 1, E,O + 1),

with a total of 2 left to play.
(a) If Player 1 puts down a 1, Player 2 is forced to put down a 1. Player 1 then

starts on (O + 3, E,O + 1), which is a win for Player 2.
(b) If Player 1 puts down a 2, Player 2 starts on (O+1, E +1, O+1), which is

a win for Player 2.
(ii) In the case of (E + 1, E′, E), Player 2 puts down a 2, leaving (E + 1, E′ + 1, E).

(a) If Player 1 puts down a 1 or 2, then Player 2 puts the other down. Player
1 then starts on (E + 2, E′ + 2, E), which is a win for Player 2.

(b) If Player 1 puts down a 3, then Player 2 starts on (E + 1, E′ + 1, E + 1),
which is a win for Player 2.
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(2) If Player 1 puts down a 2 or a 3, then Player 2 puts down the other, forcing Player 1
to play a 1. Player 2 then starts on (O + 1, E + 1, O + 1) or (E + 1, E′ + 1, E + 1),
both of which are wins for Player 2.

For n ≡ 3 (4), Player 1 puts down a 2, and then nims down to 1, upon which Player 2 puts
down a 1. Player 1 then starts on an ordered triple (a, b, c) with b odd since nimming down
preserves the parity of twos and there is a single 2 put down at the start. In all cases where
b is odd, the player that starts wins, so Player 1 wins.

For n = 1, Player 1 puts down a 1. Player 2 then loses as they cannot move on (1, 0, 0).
For n = 2, if Player 1 puts down a 1, Player 2 must do the same, and so Player 2 wins as

Player 1 cannot move on (2, 0, 0). If Player 2 puts down a 2, Player 2 starts on (1, 1, 0), and
therefore Player 2 wins.

For n = 4, Player 1 puts down a 3, forcing Player 2 to put down a 1. Player 1 starts on
(1, 0, 1), a winning position for Player 1.

For n = 5, Player 1 puts down a 2.

(i) If Player 2 puts down a 3, then Player 1 starts on (0, 1, 1), a win for Player 1.
(ii) If Player 2 puts down a 1 or a 2, then Player 1 puts down the other. Player 2 then

starts on (1, 2, 0), which is a win for Player 1.

□

Appendix B. Code

The program we used to brute force solve who has a winning strategy is listed below. It
was coded in Jupyter Notebook, but it can be run by any program that can run python. The
computation complexity is about O(exp(

√
n)), with the program taking about 2 hours for

n = 129 and about 24 hours for n = 144.

import networkx as nx

from matplotlib import pyplot as plt

from networkx.drawing.nx_agraph import graphviz_layout

def is_game_a_loss(current_state ):

"""

Input: A list representing the current state of the game

Output: Boolean

Returns True if the game is over (i.e., is a

loss for the player next to move)

Returns False if the game is not over.

"""

return sum(current_state [1:]) == 0

def combine(current_state ):

"""

Input: A list representing the current state of the game

Output: A list of lists , where each list is a possible

next state of the game

Finds all the potential combine moves in the current
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state and creates the next states after the combine move

"""

future_states = []

for i, val in enumerate(current_state ):

tmp = list(current_state ).copy()

if i >= 3 and val and current_state[i-3]:

tmp[i] -= 1

tmp[i-3] -= 1

tmp[i-1] += 2

future_states.append(tuple(tmp))

if len(current_state) > 2:

if current_state [0] and current_state [2]:

tmp = list(current_state ).copy()

tmp [0] -= 1

tmp [2] -= 1

tmp [1] += 2

future_states.append(tuple(tmp))

return set(future_states)

def split(current_state ):

"""

Input: A list representing the current state of the game

Output: A list of lists , where each list is a possible next

state of the game

Finds all the potential split moves in the current state and creates

the next states after the split move

"""

if is_game_a_loss(current_state ):

return "An Error Has Occurred"

future_states = []

for i, val in enumerate(current_state ):

tmp = list(current_state ).copy()

if i == 0: continue

if i == 1 and val:

tmp [1] -= 1

tmp [0] += 2

future_states.append(tuple(tmp))

elif val:

tmp[i] -= 1

tmp[i-1] += 1

tmp[i-2] += 1

future_states.append(tuple(tmp))

return set(future_states)

def nearestSmallerEqFib(n):

"""
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Input: integer n

Output: tuple , where the first entry is the greatest Fibonacci

number smaller than n and the second is the index of

that Fibonacci number

"""

# Corner cases

if (n == 0):

return "404: BROKEN"

elif n == 1:

return (1,n)

# Finds the greatest Fibonacci Number smaller

# than n.

f1 , f2 , f3 = 0, 1, 1

index = 0

while (f3 <= n):

index += 1

f1 = f2;

f2 = f3;

f3 = f1 + f2;

return (f2 , index);

def int_to_zeck(n):

"""

Input: integer n

Output: tuple that represents the Zeckendorf decomposition of n

"""

arr = []

while (n>0):

f_i , i = nearestSmallerEqFib(n);

arr.append(i)

n = n-f_i

arr2 = [0] * max(arr)

for i in arr:

arr2[i-1] += 1

return tuple(arr2)

def Fibonacci(n):

"""

Input: integer n

Output: integer F_n , the n-th Fibonacci number (where F_2 = 2)

"""

if n == 0:

return 1

# Check if n is 1,2
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# it will return 1

elif n == 1:

return 1

else:

return (Fibonacci(n-1) + Fibonacci(n-2))

def zeck_to_int(zeck_tuple ):

"""

Input: a tuple representing the Zeckendorf decomposition of a number n

Output: the integer n

"""

tot = 0

for i, val in enumerate(zeck_tuple ):

tot += val * Fibonacci(i+1)

return tot

def game_solver(number , draw_graph = False , graph_labels = False):

"""

Input: an integer n (or a tuple representing a zeckendorf decomposition)

Output: a tuple of the number , its zeckendorf decomposition , the winner ,

the number of edges , and vertices

Also can draw the graph of the game

"""

# Checks whether the input is a tuple or an integer , and

# converts it to the zeckendorf decomposition if the latter

if type(number) is tuple:

initial_state = number

number = zeck_to_int(number)

else:

initial_state = int_to_zeck(number)

edges = []

current_states = [initial_state]

calculated_states = []

# Continually loops through the list of possible

# states to generate the next states for the game

while True:

future_states = []

for current_state in current_states:

if current_state in calculated_states:

continue
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next_states = set()

if is_game_a_loss(current_state ): continue

next_states = next_states.union(split(current_state ))

next_states = next_states.union(combine(current_state ))

edges += (( current_state , state) for state in next_states)

future_states += next_states.copy()

calculated_states += [current_state]

future_states = set(future_states)

# If there are no states left to be calculated ,

# we must be at the end node , i.e., game is over

if len(future_states) == 0:

break

current_states = future_states.copy()

# Initializes the graph of the game

G = nx.DiGraph ()

for edge in set(edges):

G.add_edge(edge[0], edge [1])

# Sets the initial win/loss state for the vertices , all are set to False

# (i.e., not calculated) except the end node , which is a loss

data = dict()

for node in G.nodes:

if is_game_a_loss(node):

data[node] = "L"

else:

data[node] = False

"""

Goes through the game tree in reverse

and calculates the state of each vertex

If any vertex leads to one that is a loss ,

that vertex is automatically a win

If all the child nodes of a vertex are a win ,

then that vertex is a loss

"""

not_done = True

while not_done:

for node in G.nodes:

if data[node]: continue

children_states_L = [data[node] == "L"

for node in G.neighbors(node)]

children_states_W = [data[node] == "W"

for node in G.neighbors(node)]

if any(children_states_L ):
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data[node] = "W"

elif all(children_states_W ):

data[node] = "L"

not_done = not all(data[node] for node in G.nodes)

# Colors the vertices based on whether they are wins or losses

color_map = []

for node in G.nodes:

if sum(node [1:]) == 0:

color_map.append ("black ")

elif data[node] == "W":

color_map.append ("green ")

elif data[node] == "L":

color_map.append ("red")

if node == initial_state:

if data[node] == ’W’: winner = 1

else: winner = 2

# Draws the graph

if draw_graph:

plt.figure(3,figsize =(20 ,20))

pos=graphviz_layout(G, prog=’dot ’)

nx.draw_networkx(G, pos , node_color=color_map , with_labels=graph_labels)

return (number , "". join([str(i) for i in initial_state ]),

winner , len(G.edges), len(G.nodes))

# Example: should output a 5-tuple (7, ’0101’, 1, 16, 10)

# and a graph representing the game

game_solver (7, True , True)

DECEMBER 2024 23



THE FIBONACCI QUARTERLY

References

[BCDD+15] E. Boldyriew, A. Cusenza, L. Dai, P. Ding, A. Dunkelberg, J. Haviland, K. Huffman, D. Ke, D.
Kleber, J. Kuretski, J. Lentfer, T. Luo, S. J. Miller, C. Mizgerd, V. Tiwari, J. Ye, Y. Zhang,
X. Zheng, and W. Zhu, Extending Zeckendorf’s Theorem to a Non-constant Recurrence and the
Zeckendorf Game on this Non-constant Recurrence Relation, Fibonacci Quarterly 58 (2020), no.
5, 55–76.

[BEFM1] P. Baird-Smith, A. Epstein, K. Flint and S. J. Miller, The Zeckendorf Game, Combinatorial and
Additive Number Theory III, CANT, New York, USA, 2017 and 2018, Springer Proceedings in
Mathematics & Statistics 297 (2020), 25–38.

[BEFM2] P. Baird-Smith, A. Epstein, K. Flint and S. J. Miller, The Generalized Zeckendorf Game, Pro-
ceedings of the 18th International Conference on Fibonacci Numbers and Their Applications,
Fibonacci Quarterly 57 (2019), no. 5, 1–14.

[CDHK+6i] A. Cusenza, A. Dunkelberg, K. Huffman, D. Ke, D. Kleber, S. J. Miller, C. Mizgerd, V. Tiwari,
J. Ye and X. Zheng, Winning Strategy for the Multiplayer and Multialliance Zeckendorf Games,
Fibonacci Quarterly 59 (2021), 308–318.

[CDHK+6ii] A. Cusenza, A. Dunkelberg, K. Huffman, D. Ke, D. Kleber, M. McClatchey, S. J. Miller, C.
Mizgerd, V. Tiwari, J. Ye, X. Zheng, Bounds on Zeckendorf Games, Fibonacci Quarterly 60
(2022), no. 1, 57–71.

[CMJDMMN] Justin Cheigh, Guilherme Zeus Dantas E Moura, Ryan Jeong, Jacob Lehmann Duke, Wyatt
Milgrim, Steven J. Miller, Prakod Ngamlamai, Towards The Gaussianity Of Random Zeckendorf
Games, preprint. https://arxiv.org/abs/2210.11038

[GMRVY] Diego Garcia-Fernandezsesma, Steven J. Miller, Thomas Rascon, Risa Vandegrift, and Ajmain
Yamin, The Accelerated Zeckendorf Game, to appear in Fibonacci Quarterly

[LLMMSXZ] R. Li, X. Li, S. J. Miller, C. Mizgerd, C. Sun, D. Xia, Z. Zhou, Deterministic Zeckendorf Games,
Fibonacci Quaterly 58 (2020), no. 5, 152-160.

[MSY] Steven J. Miller, Eliel Sosis, and Jingkai Ye, Winning Strategies for the Generalized Zeckendorf
Game, Fibonacci Quaterly, Conference Proceedings: 20th International Fibonacci Conference:
60 (2022), no.5, 270–292

[Ze] E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci
ou de nombres de Lucas, Bulletin de la Société Royale des Sciences de Liège 41 (1972), pages
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