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ABSTRACT. Let P (k) denote the largest size of a non-collinear point set in the plane admitting at most k
angles. We prove P (1) = 3, P (2) = 5 and P (3) = 5, and we characterize the optimal sets. We also leverage
results from [FHJ+23] in order to provide the general bounds of k+2 ≤ P (k) ≤ 6k, although the upper bound
may be improved pending progress toward the Weak Dirac Conjecture. It is surprising that P (k) = Θ(k) since,
in the distance setting, the best known upper bound on the analogous quantity is quadratic and no lower bound
is well-understood.
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1. INTRODUCTION

1.1. Background. In 1946, Erdős introduced the problem of finding asymptotic bounds on the minimum
number of distinct distances among sets of n points in the plane [Erd46]. The Erdős distance problem, as
it has become known, proved infamously difficult and was only finally (essentially) resolved by Guth and
Katz in 2015 [GK15].

The Erdős distance problem has also spawned a wide variety of related questions, including the problem
of finding maximal point sets with at most k distinct distances. Erdős and Fishburn determine maximal
planar sets with at most k distinct distances [EF96]. Recent results by Szöllősi and Östergård classify the
maximal 3-distance sets in R4, 4-distance sets in R3, and 6-distance sets in R2 [Xia12, SO20]. In [ELM+18,
BDP+21, BDP+20] point sets with a low number of distinct triangles in Euclidean space are investigated.
In [FHJ+23], a number of angle analogues of distinct distance problems are considered. Recently, new
connections to frame theory and engineering have renewed interest in few-distance sets [SO20].

Characterizing the largest possible point sets satisfying a given property in this way is a classic problem
in discrete geometry. As another example, Erdős introduced the problem of finding maximal point sets of all
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isosceles triangles in 1947 [EK47]. Ionin completely answers this question in Euclidean space of dimension
at most 7 [Ion09].

We study one variation of a related problem of Erdős and Purdy [EP95]. They asked about A(n), the
minimum number of distinct angles formed by n not-all-collinear points in the plane. Recently, [FHJ+23,
FKM+22] made partial progress on this problem, and the best known bounds are n/6 ≤ A(n) ≤ n− 2. We
consider the related problem of maximal planar point sets admitting at most k distinct angles in (0, π). We
ignore angles of 0 and π so as to align the convention in related research (see [PS92], for example), although
we provide results including the 0 angle as corollaries. We completely answer this question for k = 2 and
k = 3 and note that the work from [FHJ+23] immediately implies asymptotically tight linear bounds for
k > 3. In answering this question for k = 2 and k = 3, we systematically consider all possible triangles in
such configurations and then reduce to adding points in a finite number of positions by geometric casework.
We both find P (2) and P (3) and classify all optimal configurations.

1.2. Definitions and Results. By convention, we only count angles of magnitude strictly between 0 and
π. Our computations still answer the related optimal point configuration questions including 0 angles (see
Corollaries 3.1, 4.4). We begin by introducing convenient notation:

Definition 1.1. Let P ⊂ R2. Then

A(P) := #{|∠abc| ∈ (0, π) : a, b, c distinct, a, b, c ∈ P},

Now we define the quantity we are interested in studying.

Definition 1.2.

P (k) := max{#P : P ⊆ R2, not all points in P are collinear, A(P) ≤ k}.

We first provide general linear lower and upper bounds for P (k). In particular, we have the following
theorem.

Theorem 1.3. For all k ≥ 1,

2k + 3 ≤ P (2k) ≤ 12k

2k + 3 ≤ P (2k + 1) ≤ 12k + 6.

In the distance setting, the best known upper bound on the analogous parameter is the quadratic (2 +
k)(1 + k), and no lower bound is well-understood [SO20]. It is therefore interesting and surprising that we
find P (k) = Θ(k) in the angle setting. We prove Theorem 1.3 in Section 2.

Furthermore, we explicitly compute P (1), P (2), and P (3) and exhaustively identify all extremal point
configurations for each.

Proposition 1.4. We have P (1) = 3, and the equilateral triangle is the unique extremal configuration.

In order to have only a single angle, every triangle of three points in the configuration must be equilateral.
As this is impossible for point configurations that are not the vertices of an equilateral triangle, P (1) =
3. P (2) and P (3) are considerably less trivial quantities. We calculate P (2) and P (3) via exhaustive
casework, simultaneously characterizing all of the unique optimal point configurations up to rigid motion
transformations and dilation about the center of the configuration. We proceed by first considering sets of
three points and then characterize the additional points that may be added without determining too many
angles. We prove Theorem 1.5 in Section 3 and Theorem 1.6 in Section 4.

Theorem 1.5. We have P (2) = 5. Moreover, the unique optimal point configuration is four vertices in a
square with a fifth point at its center (see I in Figure 1).

Theorem 1.6. We have P (3) = 5. There are 5 unique optimal configurations, shown in Figure 1.
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FIGURE 1. Optimal Two and Three Angle Configurations. α = π
5 , β = 2π

5 , γ = 3π
5 .

2. GENERAL BOUNDS

Although one may in principle calculate P (k) for any k by extensive casework (as we later calculate
P (2), P (3)), it quickly becomes overwhelming. As such, we instead provide general bounds on P (k). In
[FHJ+23] the authors study the quantity A(n), the minimum number of angles admitted by a non-collinear
point set of n points in the plane. They show in Lemma 2.2 and Theorem 2.5 that n/6 ≤ A(n) ≤ n − 2,
noting that the lower bound may be improved up to as much as n/4−1, pending progress on the Weak Dirac
Conjecture. Since A(n) ≤ n− 2, then n ≥ A(n) + 2, and so we deduce that P (k) ≥ k + 2. Similarly, we
have P (k) ≤ 6k. Combining these bounds gives the desired result

Proposition 2.1. k + 2 ≤ P (k) ≤ 6k.

Notably, it is surprising that P (k) = Θ(k) since, in the distance setting, the best known upper bound on
the analogous quantity is quadratic, and no lower bound is well-understood.

3. PROOF OF THEOREM 1.5

Proof. In any point configuration with at least three points, there are triangles. For any point configuration
with at most two angles, all triangles must be isosceles. We divide into two cases based on whether or
not there is an equilateral triangle. Unless otherwise specified, when considering points belonging to some
region, we consider the interior of that region. Oftentimes the boundaries must be treated separately.

3.1. There is an equilateral triangle. We consider adding a fourth point in cases (Figure 2).
Case 1: p ∈ A.

Then ∠acp < π/3 and ∠cap > π/3, leading to more than two angles.
Case 2: p ∈ ab.

Then ∠bcp < π/3 and one of ∠cpb and ∠apc ≥ π/2, leading to more than two angles.
Case 3: p ∈ ac~

~

to the upper-right of a.
Then ∠cbp > π/3 and ∠cpb < π/3, again leading to more than two angles. The case for p ∈ bc~

~

to
the right of b follows by symmetry.
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FIGURE 2. Equilateral Triangle Regions

Case 4: p ∈ B.
In this case, ∠cbp > π/3 and ∠cpb < π/3, leading to more than two angles.

Case 5: p is in the interior of4abc.
In this case, one of ∠apb,∠bpc,∠cpa ≥ 2π/3 and ∠acp < π/3, leading to more than two angles.

Up to symmetry, these cases are exhaustive. Thus if there is an equilateral triangle in the configuration,
there can only be at most three points.

3.2. There is no equilateral triangle. Now, let a, b, and c be the vertices of an isosceles triangle with base
angle β and α the apex vertex. We reduce the number of possibilities for additional points by partitioning
the plane into regionsAi (Figure 3). Note that we may without loss of generality assume that no fourth point

FIGURE 3. Isosceles Triangle Regions.

is added within the interior of 4abc as we could then choose one of the resultant interior triangles as our
initial triangle. Also note that A1 and A′

1, A3 and A′
3, and ac~

~

and ab~

~

are equivalent up to symmetry.
Case 1: p ∈ A1.

In this case, ∠pab > α and ∠pcb > β. So, regardless of whether α or β is greater, adding p
introduces an additional angle. So, no additional points can be in A1 or A′

1.
Case 2: p ∈ A2.

In this case, ∠pcb and ∠pbc are greater than β, so both must be α to not add additional angles. But
then ∠cpb = π − 2α 6= β. Then, in order to not add additional angles, we must have 3α = π. But,
this implies4pcb is an equilateral triangle. Thus no points may be added in A2.

4



Case 3: p ∈ A3.
In this case, ∠bap > α and ∠abp > β, so there is an additional angle added regardless and no
additional points are possible.

Case 4: p ∈ A4.
In this case, ∠cap,∠bap < α, so both must equal β. Therefore, 2β = α, which implies β = π/4
and α = π/2. Moreover, since ∠acp and ∠abp are greater than β, they must both equal α = π/2.
So, the only possibility for an addable point in this case is for p to be the fourth vertex of the square
acpb.

Case 5: p ∈ bc~

~

.
If p is on bc~

~

between b and c, then ∠cap,∠bap < α. In order for these not to introduce additional
angles, they must both be equal to β. This implies β = π/4 and α = π/2 and p is the center of the
side bc. If p ∈ bc~

~

to the left of c (or by symmetry, right of b), ∠bap > α and thus ∠bap = β. Since
2β + α = π, β < π/2. But then ∠acp > π/2 > β > α, and hence we would have more than two
angles. Thus there is exactly one point possible on line bc~

~

, the centerpoint of the edge between b
and c.

Case 6: p ∈ ac~

~

.
If p is between a and c, then ∠cbp < β and thus ∠cbp = α. But, as before, β < π/2. Moreover,
one of ∠bpc or ∠bpa is at least π/2 > β > α. Thus there are too many angles in this case. If p is to
the bottom left of c, ∠apb < β and thus ∠apb = α. But, again, either ∠bca or ∠bcp > π/2 > β,
creating too many angles in this case. If p is on ac~

~

to the upper right of a, ∠pbc > β and thus equals
α. Then ∠pba < α and must equal β and thus 2β = α. This implies β = π/4 and α = π/2 and
4cbp is an isosceles right triangle with b the apex vertex, p on ac~

~

to the upper right of a, and a at
the center of side pc.

FIGURE 4. Compatible Points with the Right Triangle.

As such, in order to add additional points to an isosceles triangle point configuration without adding
additional angles, we must have α = π/2 and β = π/4. The four additional possible points are marked in
Figure 4.

5



FIGURE 5. Configurations of points in a convex quadrilateral defining at most three distinct
angles.

Note that ∠x4ax1,∠x4ax2 > π/2. So, x4 cannot be in the same point configuration as x1 or x2. The
same follows for x3. However, we may have both x1 and x2 or both x3 and x4, either of which give the
unique extremal configuration I in Figure 1. �

Corollary 3.1. One might also wish to include the trivial 0-angle in our count. In this case, P (2) = 4, and
the unique configuration is the square.

Proof. The only 5-point configuration no longer holds when we count the 0-angle. Figure 4 displays all
valid four point configurations which define only 2 angles excluding 0, as detailed in the proof of P (2). All
the shown points but x4 define a 0-angle, so the only valid 4 point configuration is the square. �

4. PROOF OF THEOREM 1.6

Lemma 4.1. Let ABCD be a convex quadrilateral defining three angles or fewer. Then, they form one of
the three configurations of Figure 5, where 1.a is a rectangle, 1.b is two attached equilateral triangles, and
1.c is four of the five vertices of a regular pentagon.

Proof. Assume we are not in case 1.a, so that the angles of the quadrilateral are not all π/2. In particular,
there is at least one obtuse angle, γ, and one acute angle, β. Any angle α formed by splitting β is less than β
and thus must be exactly β/2 so as not to create two additional angles for a total of four. These three angles
α = β/2, β, γ are then exactly the three angles in the configuration. Now we consider each of the four cases
of placing β and γ about the quadrilateral, with the first listed angle corresponding to vertex A, the second
to B, and so on and with A,B,C, and D in clockwise cyclic order.

Case γβγβ: Equal opposite angles implies the quadrilateral is a parallelogram. The fact that BD
bisects the two β angles implies that ABCD is in fact a rhombus. Thus, AC also bisects the γ
angles, implying that γ/2 = β. So, 6β = 2π and α = π/6, β = π/3, and γ = 2π/3 in this case.
Given that ABCD is a rhombus, the configuration in this case is similar to 1.b.

Case γγββ: Note that we have γ + β = π from the angle sum of the quadrilateral. This implies that
AB and CD are parallel. So, by analyzing the alternate interior angles given by the transversal AC,
we have γ = α + (γ − α), where α = ∠CAB and γ − α = ∠CAD. Thus, γ − α = β and
3β/2 = γ, so α = π/5, β = 2π/5, and γ = 3π/5. Then by considering isosceles triangles DAB
and ABC, we see that segments DA,AB, and BC are all of equal length. Thus, the configuration
is similar to 1.c in this case.

Case γγγβ: Diagonal BD bisects the angle β. Then, since the sum of the angles of 4BCD and
4ABD are both π and β 6= γ, we must have ∠ABD = ∠DBC = β. The diagonal AC must
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then also bisect angles ∠DAB and ∠DCB or else yield more than three distinct angles. But then,
3β = π = 4β from the angle sums of4ACD and4ABC, a contradiction.

Case βββγ: By an analogous argument as in the previous case, we must have that diagonal BD
bisects the angle γ at D and ∠ABD = ∠DBC = β. But then, 4α = π = 6α by looking at the
angle sums of4ABD and4BCD, a contradiction.

�

To handle the configurations without convex quadrilaterals, we will make use of the following proposi-
tion.

Proposition 4.2. Let A,B,C,D be points such that D is contained in the interior of 4ABC and the
configuration induces at most three distinct angles. Then,4ABC must be equilateral and D must be in the
center of4ABC.

Proof. Note that ∠ADB > ∠ACB > ∠ACD. This is similarly true of ∠BDC,∠BAC,∠BAD and of
∠ADC,∠ABC,∠ABD. Symmetry and the maximum of three distinct angles then allows the completion
of all angles in the configuration, finishing the proof. See Figure 6. �

FIGURE 6. Resultant Triangular Configuration

Lemma 4.3. Let A,B,C,D, and E be five points such that their convex hull is 4ABC, no four of them
form a convex quadrilateral, and the configuration induces at most 3 distinct angles. Then, there is only one
possible configuration.

2.a) The stereographic projection of the points of a regular pentagon onto a line, III of Figure 1.

Proof. We proceed by casework on the number of points in the interior of4ABC.
No points in the interior of4ABC: If neither D nor E are in the interior of4ABC then, since the

convex hull of the five points is4ABC, D and E must both be on the edges of4ABC. If they are
not on the same side of the triangle, then the quadrilateral formed by D, E, and the ends of the edge
which neither D nor E lie on is convex, yielding a contradiction.

Now, suppose without loss of generality thatD andE lie onAB with the order of the points being
A,D,E, and thenB. Three distinct angles are immediately induced in this case. Namely,∠ACD =
α < ∠ACE = β < ∠ACB = γ. Since the difference between each pair of angles is also induced
by this configuration, we have that β = 2α and γ = 3α. Since ∠ADC > ∠AEC > ∠ABC, we
have ∠ADC = γ,∠AEC = β, and ∠ABC = α. This is similarly true of ∠CEB,∠CDB, and
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∠CAB by symmetry. Thus, the angle sum of 4ACB implies 5α = π and thus α = π/5, β =
2π/5, and γ = 3π/5. So, in this case the points are configuration 2.a).

One point in the interior of4ABC: Suppose without loss of generality that D is the point along an
edge of4ABC, say AB. Then, E is in the interior of4ABC. Now E must be on CD or else one
of ADEC or BCED is a convex quadrilateral.

Now, from Proposition 4.2,4ABC must be equilateral and E must be the center of the triangle.
This induces angles of π/6, π/3, 2π/3. However, D and E form a right angle, yielding more than
three distinct angles. Hence, there are no valid configurations in this case.

Both points in the interior of4ABC: From Proposition 4.2, 4ABC must be equilateral and both
D and E must be the center of the triangle, a contradiction.

�

Now we exhaustively check the points that may be added to the configurations given by Lemmas 4.1 and
4.3. All valid configurations of five points inducing at most five distinct angles arise from either adding a
point to a configuration from Lemma 4.1 or the configuration given in 4.3. This is because the convex hull
of the configuration must have at least three vertices (by definition of P (k)) and, if the convex hull has five
vertices, any four of the vertices forms a convex quadrilateral.

1.a): Consider adding a point to configuration 1.a, with the angles formed by the vertices of the rec-
tangle being α < β < γ with α+ β = γ = π/2. Label the vertices of the rectangle shown in 1.a of
Lemma 4.1 as A, B, C, and D starting from the top left as A and proceeding clockwise. Then, if a
point E is added in the exterior of ABCD, it will form an obtuse angle with one edge of the angle
being a side of the rectangle. For example, if E is added below CD, then ∠BCE is obtuse. If E
is added to edge AB, then ∠DEB is obtuse. It will similarly induce an obtuse angle if it is added
to any other edge. Finally, if E is added to the interior of ABCD, then the only way E may be
added without inducing an obtuse angle is if all the segments from E to the vertices of the rectangle
form angles of π/2 with each other at E. However, this would imply that the diagonals of ABCD
intersect at E at a right angle, implying that ABCD is a square.

So, the only valid configurations require that ABCD form a square. Moreover, if ABCD form
a square, we can still not induce any obtuse angles. This is because the other two angles in any
triangle with an obtuse angle could not both be π/4 (and cannot be π/2), yielding more than three
distinct angles. Thus, the only extremal configuration in this case is adding a fifth point E as the
centerpoint of a square, I of Figure 1.

1.b): In configuration 1.b), the angles are all determined: α = π/6, β = π/3, and γ = 2π/3. Let the
points A, B, C, and D be in clockwise order around the configuration such that AC is the segment
dividing the two equilateral triangles. In order to not contradict Lemma 4.1, any added point must
be in the interior of the rhombus (no point may be added to decrease the number of vertices in the
convex hull since ABCD is a parallelogram). In order for E to not yield any angles smaller than α,
E must be in the center of 4ABC or 4CDA. However, in either case, this yields a new angle of
π/2. So, no points may be added in this case.

1.c): As in 1.b), the angles in 1.c) are all determined: α = π/5, β = 2π/5, and γ = 3π/5. Label
the points ABCD clockwise starting from the top left as in the diagram of 1.c in Lemma 4.1. In
order to not violate Lemma 4.1, any added point must be in the interior of ABCD, must result in
a triangular convex hull, or must be outside of ABCD and have every convex quadrilateral in the
configuration an instance of 1.c). In the former case, in order to not add an angle smaller than α,
E must be added at the intersection of AC and BD. In the second case, E must be added at the
intersection of AD~

~

and BC~

~

. In the last case, the configuration with the added point cannot have a
convex hull of a quadrilateral, as that quadrilateral could not be an instance of 1.c). Thus, it must be
a pentagon. In order to guarantee that every convex quadrilateral in the configuration is a copy of
1.c), it must be regular. All three configurations (II, IV, and V of Figure 1) are valid, but are not
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mutually compatible as adding multiple of these points would form an angle of magnitude less than
α.

2.a): As in Lemma 4.3, suppose that the convex hull of the configuration is4ABC with D and E on
AB such that the points are in the order A, D, E, and then B.

If another point were added to this configuration, either the convex hull would remain a triangle
or there would be four points which form a convex quadrilateral. In the former case, no point could
be in the interior of a triangle, as that would force the angles to be as in Proposition 4.2, which they
are not. Thus, an additional added point would have to be placed on an existing edge. It could not
be placed on AB, as it would split an angle of α. If it were placed on AC or BC it would form
a convex quadrilateral with C, D, and E. Given the induced values of the angles in this case, that
quadrilateral would have to be similar to configuration 1.c). However, from the prior casework, no
configuration containing a similar copy of 1.c) may have more than five points. Hence, the only
extremal configuration in this case is III of Figure 1.

Therefore, P (3) = P (2) = 5, with five optimal configurations as in Figure 1.

Corollary 4.4. One might also wish to include the trivial 0-angle in our count. In this case, P (3) = 5, but
the square with the center-point and the pentagon are now the only valid configurations.

Proof. Since this is a more restricted setting, the set of valid five-point configurations be a subset of the
configurations identified above. By direct inspection, the square with the center-point and the pentagon are
the only of the five in Figure 1 which define only three angles. All the others define three angles greater than
zero and also the 0-angle by collinearity. �

5. FUTURE WORK

While it seems possible to compute P (k) by exhaustive casework for higher values of k, the casework
quickly becomes overwhelming. Additionally, while it is potentially possible to repeat such methods in
higher dimensions, the visualization of the proofs played a crucial role in this analysis.

Future work may tighten our upper bound on P (k). However, we make the following conjecture.

Conjecture 5.1. The lower bound on P (k) in Theorem 1.3 is tight. Namely, P (2k) = 2k + 3 and P (2k +
1) = 2k + 3 for all k ≥ 1.

Therefore, we believe that future work should improve the upper bound of P (n) ≤ 6n, either via progress
towards the Weak Dirac Conjecture (which would still fall short of our conjecture) or by some other means.
Alternatively, future research may find a more efficient method of constructing viable point sets without the
need for the exhaustive search we perform.

It is also an open problem to investigate P (k) with point sets in more than two dimensions. Low an-
gle configurations using variations of Lenz’s construction, as in [FHJ+23], may yield insight into optimal
structures in higher dimensions.
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[Erd46] P. Erdős, On Sets of Distances of n Points, The American Mathematical Monthly 53(5) (1946), 248-250.
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