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ABSTRACT. Let τ(n) be Ramanujan’s tau function, defined by the discriminant mod-
ular form

∆(z) = q

∞∏
j=1

(1− qj)24 =

∞∑
n=1

τ(n)qn , q = e2πiz

(this is the unique holomorphic normalized cuspidal newform of weight 12 and level 1).
Lehmer’s conjecture asserts that τ(n) 6= 0 for all n ≥ 1; since τ(n) is multiplicative, it
suffices to study primes p for which τ(p) might possibly be zero. Assuming standard
conjectures for the twisted symmetric power L-functions associated to τ (including
GRH), we prove that if x ≥ 1050, then

#{x < p ≤ 2x : τ(p) = 0} ≤ 1.22× 10−5
x3/4√
log x

,

a substantial improvement on the implied constant in previous work. To achieve this,
under the same hypotheses, we prove an explicit version of the Sato-Tate conjecture
for primes in arithmetic progressions.

1. INTRODUCTION

Let q = e2πiz with Im(z) > 0, and let

f(z) =
∞∑
n=1

af (n)qn ∈ Snew
k (Γ0(N))

be a normalized cusp form of even weight k ≥ 2 and levelN such that f is an eigenform
of all Hecke operators and of all Atkin-Lehner involutions |k W (N) and |k W (Qp) for
all p | N . We call such a cusp form a newform (see [11, Section 2.5] for details). One
implication of Deligne’s proof of the Weil conjectures is that if p is prime then there
exists θp ∈ [0, π] such that

af (p) = 2p(k−1)/2 cos θp.

It is natural to consider the distribution of the angle θp in sub-intervals of [0, π]. The
Sato-Tate conjecture, now a theorem due to Barnet-Lamb, Geraghty, Harris, and Taylor
[1], gives us this distribution. Let π(x) for x > 0 denote the number of primes at most
x and Li(x) be the logarithmic integral of x.
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Theorem 1.1 (Sato-Tate Conjecture). Let f(z) ∈ Snew
k (Γ0(N)) be a non-CM newform.

If F : [0, π]→ C is a continuous function, then

lim
x→∞

1

π(x)

∑
p≤x

F (θp) =

∫ π

0

F (θ) dµST,

where dµST = 2
π

sin2 θ dθ is the Sato-Tate measure. Further, if we define

πf,I(x) := #{p ≤ x : θp ∈ I},
then we have

πf,I(x) ∼ µST(I)Li(x).

The error term in the Sato-Tate Conjecture has been studied thoroughly under various
hypotheses, including the cuspidality of the symmetric power lifts of the automorphic
representation associated to f and the generalized Riemann hypothesis (GRH) for the
associated L-functions [2, 8, 14]. In particular, Rouse and Thorner [14, Theorem 1.2]
(under the aforementioned cuspidality and GRH assumptions) proved that

|πf,I(x)− µST(I)Li(x)| ≤ 3.33x3/4 − 3x3/4 log log x

log x
+

202x3/4 log(N(k − 1))

log x

for all x ≥ 2, provided that N is squarefree. This saves a factor of
√

logNx over
the results in [2, 8]. By weighing the primes with a smooth test function and taking
I = [π

2
− ε, π

2
+ ε] (where ε depends on x), Rouse and Thorner [14, Theorem 1.3] also

showed that

#{p ≤ x : af (p) = 0} ≤ 9.3x3/4√
log x

+ explicit lower-order terms, x ≥ 3. (1.1)

In the case where f(z) = ∆(z) is the newform of weight 12 and level 1 whose Fourier
coefficients are given by the Ramanujan tau function τ(n), there is an important con-
jecture.

Conjecture 1.2. If n ≥ 1, then τ(n) 6= 0. Equivalently, if p is prime, then τ(p) 6= 0.

It appears Conjecture 1.2 was first pondered seriously by Lehmer [7]. Serre [16]
observed that if τ(p) = 0, then p = hM − 1, where M = 3094972416000 and h ≥ 1.
Moreover, h+1 is a quadratic residue modulo 23, and h ≡ 0, 30, or 48 (mod 49). This
implies that if τ(p) = 0, then p must lie in one of 33 possible residue classes modulo
M = 23 × 49 × 3094972416000 (via the Chinese Remainder Theorem). Moreover,
using well-known congruences for τ(n) and the computation of the mod 11, mod 13,
mod 17, and mod 19 Galois representations by Bosman [5], we know that τ(n) 6= 0
for n < 2.2798 . . . × 1016. Rouse and Thorner [14] used Bosman’s work to prove that
there are at most 1810 primes p < 1023 which satisfy Serre’s conditions and for which
τ12(p) ≡ 0 (mod 11× 13× 17× 19).

In this paper, we prove a variant of (1.1), stated as Theorem 2.3, where the primes
are restricted to an arithmetic progression a (mod q) with gcd(a, q) = 1. This relies on
standard conjectures regarding symmetric power L-functions, including their analytic
continuation and the generalized Riemann hypothesis (GRH); see Conjecture 2.1.

Our interest in such a result lies in the choice of the arithmetic progression. In par-
ticular, if x is large, then Theorem 2.3 enables us to substantially decrease the implied
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constant in (1.1) via Serre’s observation. This leads to the following corollary, which is
based on a standard conjecture about the behavior of the symmetric power L-functions.

Corollary 1.3. Assume Conjecture 2.1 (which includes GRH and other standard ana-
lytic hypotheses) with f = ∆. If x ≥ 1.2× 1036, then

#{x < p ≤ 2x : τ(p) = 0}

is bounded by

9.39×10−6
x3/4√
log x

−8.32×10−6
x3/4 log log x

(log x)3/2
+3.56×10−4

x3/4

(log x)3/2
+58.15

√
x log x.

If x ≥ 1050, then

#{x < p ≤ 2x : τ(p) = 0} ≤ 1.22× 10−5
x3/4√
log x

.

The rest of this paper is organized as follows. Section 2 gives an introduction to the
analytic theory of symmetric power L-functions twisted by Dirichlet characters, details
important assumptions in Conjecture 2.1 and states the main result in Theorem 2.3.
Next, Section 3 gives the proofs of Theorem 1.3 and Theorem 2.3, assuming Proposi-
tion 3.4. In Section 4, we give the explicit formula and Section 5 proves a bound for the
number of zeros on the critical line. Finally, in Section 6, we provide a proof of Propo-
sition 3.4. We assume the reader is familiar with the standard results and notation. For
reference see [6].

2. SYMMETRIC POWER L-FUNCTIONS AND THE MAIN RESULT

Let k, q andN be positive integers withN squarefree, k even, and gcd(N, q) = 1. Let
f ∈ Snew

k (Γ0(N)) be a non-CM newform, and let χ be a primitive Dirichlet character
with conductor q. Our main object of study will be symmetric power L-functions of f
twisted by primitive Dirichlet characters χ of conductor q satisfying gcd(N, q) = 1. If
we let αp = eiθp and βp = e−iθp for p - N , then the Dirichlet series associated to such
an L-function is given by

L(s,Symnf ⊗ χ) =
∏
p|N

Lp(s,Symnf ⊗ χ)
∏
p-N

n∏
j=0

(1− αjpβn−jp χ(p)p−s)−1.

We now assemble some standard desirable properties for the L-functions associated
to twisted symmetric power L-functions.

Conjecture 2.1. Let f and χ be as above. For each integer n ≥ 0, the following are
true.

(1) The conductor of L(s,Symnf ⊗ χ) is qSymnf⊗χ = Nnqn+1.
(2) The equation of the gamma factor of L(s,Symnf ⊗ χ) is

γ(s,Symnf ⊗ χ) =


∏(n+1)/2

j=1 ΓC(s+ (j − 1/2)(k − 1) + a) if n is odd,

ΓR(s+ r)
∏n/2

j=1 ΓC(s+ j(k − 1) + a) if n is even
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where ΓR(s) = π−s/2Γ(s/2),ΓC(s) = 2(2π)−sΓ(s), r = n
2

mod 2, and a =
1−χ(−1)

2
. (Γ(s) denotes the usual gamma function.)

(3) For each prime p | N , Lp(s,Symnf) = (1 − (−λpp1/2)nχ(p)p−s)−1, where
λp ∈ {−1, 1} is an eigenvalue of the Atkin-Lehner operator W (p) acting on the
f .

(4) Let

δn,χ =

{
1 if χ is trivial and n = 0,
0 otherwise.

The completed L-function

Λ(s,Symnf ⊗ χ) := (s(1− s))δχ,n(qSymnf⊗χ)
s
2γ(s,Symnf ⊗ χ)L(s,Symnf ⊗ χ)

is an entire function of order 1.
(5) There exists a complex number εSymnf⊗χ of modulus 1 such that for all s ∈ C,

we have Λ(s,Symnf ⊗ χ) = εSymnf⊗χΛ(1− s, Symnf ⊗ χ̄).
(6) The Generalized Riemann Hypothesis (GRH): Each zero of Λ(s,Symnf ⊗ χ)

has real part equal to 1
2
.

Remark 2.2. Since the initial submission of this article, it has been shown that there
exists a cuspidal automorphic representation of GLn+1(AQ) whose L-function equals
L(s, Symnf) (apart from at most finitely many Euler factors) for all n ≥ 1 (see [9],
[10]); this implies Parts (1)-(5) in Conjecture 2.1 for all n ≥ 1.

We now state our main result, an explicit version of the Sato-Tate conjecture for
primes in an arithmetic progression.

Theorem 2.3. Let f(z) =
∑∞

n=1 af (n)qn ∈ Snew
k (Γ0(N)) be a newform that satisfies

Conjecture 2.1, and let φ(t) be an infinitely differentiable smooth nonnegative test func-
tion with compact support satisfying φ(t) ≤ 2, supp(φ) ⊂ [1

2
, 5
2
]. Let φx(t) = φ(t/x),

let Φ(s) be the Mellin transform of φ, and let I = [α, β] ⊂ [0, π]. Define

Cn(φ) =
1

(2π)n−1

∫ ∞
−∞

∣∣φ(n)(e2πt)e(2n+1)πt
∣∣dt.

If x ≥ max{4.6× 107, 7500
(
ϕ(q) logϕ(q)

)2} then∣∣∣∣∣ ∑
p-N
θp∈I

p≡a (mod q)

log(p)φx(p)−
x

ϕ(q)
µST (I) ·

∫ ∞
−∞

φ(t)dt

∣∣∣∣∣
≤ x3/4√

ϕ(q) log x

(
2Φ(1) log x+

(√
C0(φ)C2(φ) + 3C0(φ)

)(
1.31 log x− 2.61 log log x

)
+ 16.21 + 378.9C0(φ) + 100.9C2(φ) + log(Nq(k − 1))

(
28.37C0(φ) + 4.06C2(φ) + .001

))
.

(2.1)
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3. PROOFS OF COROLLARY 1.3 AND THEOREM 2.3

3.1. Fourier Decomposition of the Indicator Function. In order to make the sum in
Theorem 2.3 more tractable, we would like to approximate an indicator function for
θp ∈ I ⊂ [0, π]. Let M be a positive integer, I = [α, β] ⊂ [0, π], and Un(x) be the n-th
Chebyshev polynomial of the second type defined by

Un(cos θ) =
sin ((n+ 1)θ)

sin θ
. (3.1)

Lemma 3.1 of [14] states that there exist trigonometric polynomials

F±I,M(θ) =
M∑
n=0

F̂±I,M(n)Un(cos θ)

which satisfy ∀x ∈ [0, π],

F−I,M(x) ≤ 1I(x) ≤ F+
I,M(x), (3.2)

|F̂±I,M(0)− µST (I)| ≤ 4

M + 1
, (3.3)

and
|F̂±I,M(n)| ≤ 4

M + 1
+

4

πn
, (3.4)

where 1I is the indicator function for the interval I . Additionally, we have the following
lemma.

Lemma 3.1. Assume M ≥ 8 and let C = 32(1/3 + 1/π). Then the following inequali-
ties hold:

M∑
n=1

|F̂±I,M(n)| ≤ 2

π
logM +

21

5
(3.5)

M∑
n=1

n|F̂±I,M(n)| ≤ CM

16
(3.6)

M∑
n=1

(n+ 1)|F̂±I,M(n)| ≤ CM

16
+

2

π
logM + π. (3.7)

Proof. The desired bounds for F−I,M(θ) are proved in [3, Lemma 5.1]; the bounds for
F+
I,M(θ) are proved similarly. �

3.2. Proof of Theorem 2.3. Consider the Fourier expansion∑
p-N
θp∈I

p≡a (mod q)

φx(p) log p =
1

ϕ(q)

∑
χ(q)

χ(a)
∑
p-N

1I(θp)χ(p)φx(p) log p (3.8)

of the sum in Theorem 2.3. It will later become convenient to instead consider this sum
over primitive characters, hence, we introduce the following lemma which bounds the
error from passing to a sum over primitive characters.
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Lemma 3.2. If χ is a Dirichlet character modulo q induced by the primitive Dirichlet
character χ′, then∣∣∣ ∑

p-N
θp∈I

p≡a (mod q)

φx(p) log p− 1

ϕ(q)

∑
χ(q)

χ(a)
∑
p-N

1I(θp)χ
′(p)φx(p) log p

∣∣∣ ≤ max
t∈R
|φ(t)| log q.

Proof. The two terms differ only at p|q, where the contribution from the first term
is zero, and the contribution from the second term is bounded in absolute value by
φx(p) log p. Therefore∣∣∣ ∑

p-N
θp∈I

p≡a (mod q)

φx(p) log p− 1

ϕ(q)

∑
χ(q)

χ(a)
∑
p-N

1I(θp)χ
′(p)φx(p) log p

∣∣∣ ≤∑
p|q

φx(p) log p.

The result now follows. �

Before we prove Theorem 2.3, we first give a useful preliminary bound.

Lemma 3.3. Let I = [a, b] ⊂ [0, π] be a subinterval, and let M ≥ 2. Then∣∣∣ ∑
p-N
θp∈I

p≡a mod q

φx(p) log(p)− x

ϕ(q)
µST (I)

∫ ∞
−∞

φ(t)dt
∣∣∣

is bounded above by

Φ(1)x

ϕ(q)
· 4

M
+

1

ϕ(q)

∑
χ(q)

M∑
n=0

|F̂±I,M(n)|
∣∣∣∑
p-N

Un(cos θp)χ
′(p)φx(p) log(p)− δn,χΦ(1)x

∣∣∣
+ max

t∈R
|φ(t)| log q.

Proof. By Lemma 3.2, we have∣∣∣ ∑
p-N
θp∈I

p≡a mod q

φx(p) log(p)− x

ϕ(q)
µST (I)

∫ ∞
−∞

φ(t)dt
∣∣∣

≤
∣∣∣ 1

ϕ(q)

∑
χ(q)

χ(a)
∑
p-N

1I(θp)χ
′(p)φx(p) log(p)− x

ϕ(q)
µST (I)

∫ ∞
−∞

φ(t) dt
∣∣∣+ max

t∈R
|φ(t)| log q.

Next we use (3.2) and (3.3) to deduce∣∣∣∑
p-N

1I(θp)
1

ϕ(q)

∑
χ(q)

χ(a)χ′(p)φx(p) log p− x

ϕ(q)
µST (I)

∫ ∞
−∞

φ(t) dt
∣∣∣

≤ max
±

∣∣∣∑
p-N

F±I,M(θp)
1

ϕ(q)

∑
χ(q)

χ(a)χ′(p)φx(p) log p− x

ϕ(q)
µST (I)

∫ ∞
−∞

φ(t) dt
∣∣∣

≤ Φ(1)x

ϕ(q)
· 4

M
+

1

ϕ(q)

∑
χ(q)

M∑
n=0

|F̂±I,M(n)|
∣∣∣∑
p-N

Un(cos θp) log(p)χ′(p)φx(p)− δn,χΦ(1)x
∣∣∣,
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as desired. �

Now, we define

Cn(φ) =
1

(2π)n−1

∫ ∞
−∞

∣∣φ(n)(e2πt)e(2n+1)πt
∣∣dt. (3.9)

Theorem 2.3 then follows from the following proposition, which we prove in Section
6.4.

Proposition 3.4. Assume the hypotheses of Theorem 2.3. If n ≥ 1, then

∣∣∣∑
p-N

Un(cos θp) log(p)χ(p)φx(p)− δn,χΦ(1)x
∣∣∣

≤ 2
√
x

((√
C0(φ)C2(φ) + 3C0(φ)

)(
(n+ 8) log(n) + (n+ 1)

(1

7
+ log(Nq(k − 1))

)
+

9

2
+

36

n

)
+
√
C0(φ)C2(φ)

(
n

2
+ 7 +

24

n

)
+ C2(φ)

(
1 +

8

n

)
+ 2(n+ 1)

)
+ 2(n+ 1) logN. (3.10)

Additionally, a bound for the case when n = 0 is given by (6.12).

We now prove Theorem 2.3 assuming Proposition 3.4.

Proof of Theorem 2.3. Choose M = 2x1/4/
√
ϕ(q) log x. We first show that when

x ≥ max{4.6 × 107, 7500(ϕ(q) logϕ(q))2}, M ≥ 8. For all ϕ(q) ≤ 24, the bound
follows by direct computation with x ≥ 4.6 × 107. Otherwise, we have that x ≥
7500(ϕ(q) logϕ(q))2, and therefore

M ≥
18.61

√
logϕ(q)√

8.93 + 2 logϕ(q) + 2 log logϕ(q)
. (3.11)

This expression evaluates to 8.006 for ϕ(q) = 28, noting that ϕ(q) will never take on
the values 25, 26, and 27. Because this lower bound is increasing in ϕ(q) and M is
increasing in x, it follows that for all x ≥ max{4.6×107, 7500(ϕ(q) logϕ(q))2}, ϕ(q),
we have M ≥ 8, allowing us to apply Lemma 3.1.

Next we substitute Proposition 3.4 into the inner sum in the bound from Lemma 3.3.
We can then apply Lemma 3.1 and equation (3.2) to bound the resulting sum. We also
use logM + 1 as an upper bound for the M th harmonic sum, π2/6 as an upper bound
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for
∑M

n=1
1
n2 , and logM as an upper bound for log n. This gives

M∑
n=0

|F̂±I,M(n)|
∣∣∣∑
p-N

Un(cos θp) log(p)χ′(p)φx(p)− δn,χΦ(1)x
∣∣∣

≤
(CM

16
+

2 logM

π
+ π
)[

2
√
x
((√

C0(φ)C2(φ) + 3C0(φ)
)

· (logM +
1

7
+ log(Nq(k − 1))) +

√
C0(φ)C2(φ)

2
+ 2
)

+ 2 logN

]
+

(
2

π
· logM +

21

5

)
· 2
√
x

[(√
C0(φ)C2(φ) + 3C0(φ)

)
·
(

7 logM +
9

2

)
+

13

2

√
C0(φ)C2(φ) + C2(φ)

]
+

(
4

M

(
logM + 1

)
+

4

π
· π

2

6

)
· 2
√
x
(

60
√
C0(φ)C2(φ) + 108C0(φ) + 8C2(φ)

)
+
√
x
(√

C0(φ)C2(φ)
(
42.96 + 2 log(Nq(k − 1))

)
+
(
72.8 + 6 log(Nq(k − 1))

)
C0(φ)

+ 23.56C2(φ) + 3.983
)

+ 2 logN.

We observe that the first product in this bound gives some terms of order
√
xM and

some terms of order
√
xM logM . Substituting in M = 2x1/4/

√
ϕ(q) log x will give

their contributions to the final bound. We next bound all the remaining lower order
terms by terms of order x3/4/

√
ϕ(q) log x. We replace instances of 1/M with 1/8 and

log(M)/M with log(8)/8, and then multiply all the constant terms by
√
x/
√

4.7 · 107.
The remaining lower order terms are all of order

√
x(logM)`, ` ∈ {0, 1, 2}. Let

L = max{4.6× 107, 7500
(
ϕ(q) logϕ(q)

)2}
be the lower bound on x as in Theorem 2.3, and let

ML = 2L1/4/
√
ϕ(q) logL

be M evaluated at x = L. Because x1/4/(
√

log x(logM)`) is increasing in x, we have
that
√
x(logM)` is bounded by

√
x(logM)`

(
x1/4/(

√
log x(logM)`)

L1/4/(
√

logL(logML)`)

)
=

x3/4√
ϕ(q) log x

(√
ϕ(q) logL

L1/4

)
(logML)`.

A simple calculation gives that for all ϕ(q),
√
ϕ(q) logL/L1/4 ≤ .2499 (it achieves this

value when ϕ(q) = 24) and that for all ϕ(q) ≥ 24, (logML)` ≤ 2.578`.1 Lastly, we
observe that since L is fixed for ϕ(q) ≤ 24, (

√
ϕ(q) logL/L1/4)(logML)` is increasing

in ϕ(q) over this domain. Therefore any bound on (
√
ϕ(q) logL/L1/4)(logML)` for

ϕ(q) = 24 will also suffice for ϕ(q) < 24. Consequently, we have that

√
x(logM)` ≤ x3/4√

ϕ(q) log x
(.2499)(2.578)`.

12.578 upper bounds the limit of the right hand side of (3.11) as ϕ(q) goes to infinity.
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This gives the contributions to our final bound from the sum in the bound of Lemma
3.3.

A similar argument gives

max
t∈R
|φ(t)| log q ≤ .00025

x3/4√
ϕ(q) log x

.

Lastly, we observe that

Φ(1)x

ϕ(q)
· 4

M
= 2Φ(1)

x3/4
√

log x√
ϕ(q)

,

and collecting these terms gives the desired bound. �

3.3. Proof of Corollary 1.3. We now prove Corollary 1.3 by introducing some addi-
tional results. We make the choice of test function φ as

φ(y) =

{
exp(4

3
+ 1

(y−1/2)(y−5/2)) if 1/2 < y < 5/2

0 otherwise,
(3.12)

which is a pointwise upper bound for the indicator function for [1, 2]. As in [14], we
define IM = [π

2
(1− 1

2M
), π

2
(1 + 1

2M
)], and note that µST (IM) < 1

M
. Note that log p

log x
≥ 1

for x < p ≤ 2x and that Φ(1) ≤ 1.684. Direct substitution into the bound of Lemma
3.3 yields the following lemma.

Lemma 3.5. If M is a positive integer, then

#{x < p ≤ 2x : p ≡ a (mod q), θp ∈ IM} (3.13)

is bounded above by

5Φ(1)x

ϕ(q)M log x
+

1

ϕ(q) log x

∑
n≤M

|F̂+
I,M (n)|

∑
χ mod q
χ′ induces χ

∣∣∣∑
p

Un(cos θp)φx(p)χ′(p) log(p)− δn,χΦ(1)x
∣∣∣

+
2 log q

log x
.

Given this choice of φ, we compute the constants C0(φ) and C2(φ) as defined in
equation (3.9) and use Proposition 3.4 to prove Corollary 1.3.

Proof of Corollary 1.3. Let f(z) = ∆(z) denote the discriminant modular form. By
the work of Serre [16], if τ(p) = 0 then p is in one of 33 possible residue classes
modulo q = 23 × 49 × 3094972416000. Thus we have N = 1, k = 12, and q =
23× 49× 3094972416000.

Assume first x ≥ 1.2 × 1036, and pick M = 7.0 × 10−8x1/4/
√

log x, so that in
particular we have M ≥ 8. We can then apply the bound given in Proposition 3.4 to
bound the inner sum in Lemma 3.5. Summing over n, we obtain that (3.13) is bounded
by

2.843× 10−7
x3/4√
log x

−2.524× 10−7
x3/4 log log x

(log x)3/2
+ 1.076× 10−5

x3/4

(log x)3/2
+ 1.762

√
x log x.
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Since π/2 ∈ IM , this is an upper bound on #{x < p ≤ 2x : τ(p) = 0, p ≡ amod q}.
We then multiply by 33 to get the first bound in Corollary 1.3. When x ≥ 1050, we
absorb the lower order terms into the leading term and obtain a bound of

1.22× 10−5
x3/4√
log x

(3.14)

completing the proof. �

4. THE MELLIN TRANSFORM

In this section we obtain an explicit formula for ψSymnf⊗χ by pushing a contour inte-
gral and evaluating contributions from the residues and zeros. We define the numbers
ΛSymnf⊗χ(j) by

−L
′

L
(s,Symnf ⊗ χ) =

∞∑
j=1

ΛSymnf⊗χ(j)

js
, Re(s) > 1.

Let Un be the n-th Chebyshev polynomial of the second type as in (3.1). A simple
computation shows that for any integer j, we have that

ΛSymnf⊗χ(j) =


Un(cos(mθp))χ(j) log(p) if j = pm for some p - N and m ≥ 1,

tm,n,pp
−mn/2 log(p) if j = pm for some p | N and m ≥ 1,

0 otherwise,
(4.1)

where |tm,n,p| ≤ 1. We observe via inversion that∑
n

ΛSymnf⊗χ(n)φx(n) =
1

2πi

∫ 2+i∞

2−i∞
−L

′

L
(s,Symnf ⊗ χ)Φx(s)ds. (4.2)

Then, by pushing the contour from (4.2) to negative infinity and accounting for
residues as in the proof of Lemma 3.3 of [13], we can rewrite this integral as a sum
over the zeros of L(s,Symnf ⊗ χ):∑

n

ΛSymnf⊗χ(n)φx(n) = δn,χΦx(1)−
∑
ρ

Φx(ρ). (4.3)

The δn,χΦx(1) term results from the residue of order 1 at s = 1, which only occurs for
the 0-th power symmetric L-function twisted by the trivial character.

5. BOUNDING THE NUMBER OF ZEROS ON THE CRITICAL LINE

Recall the definition of Λ(s, Symnf ⊗ χ) in Conjecture 2.1. By the Hadamard fac-
torization theorem, there exist constants aSymnf⊗χ and bSymnf⊗χ such that

Λ(s,Symnf ⊗ χ) = eaSymnf⊗χ+bSymnf⊗χs
∏
ρ

(
1− s

ρ

)
es/ρ,
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where ρ ranges over the zeros of Λ(s,Symnf ⊗ χ). After taking the logarithmic deriv-
ative of each side, we obtain the identity

−L
′

L
(s,Symnf⊗χ) =

1

2
log(Nnqn+1)+

γ′

γ
(s,Symnf⊗χ)−bSymnf⊗χ−

∑
ρ

( 1

s− ρ
+

1

ρ

)
.

(5.1)
Before producing a bound, we establish the following lemmas.

Lemma 5.1. If s = σ + it and σ > 1, then∣∣∣∣L′L (s,Symnf ⊗ χ)

∣∣∣∣ ≤ −(n+ 1)
ζ ′

ζ
(σ). (5.2)

Proof. Since |ΛSymnf⊗χ(x)| ≤ (n+ 1)Λ(x) and |χ(x)| ≤ 1 we have∣∣∣∣L′L (s,Symnf ⊗ χ)

∣∣∣∣ ≤ ∞∑
j=1

∣∣∣∣ΛSymnf⊗χ(j)

js

∣∣∣∣ ≤ (n+ 1)
∞∑
j=1

Λ(j)

jσ
≤ −(n+ 1)

ζ ′

ζ
(σ).

�

Lemma 5.2. If <(s) ≥ 2 and =(s) = T then

<
(γ′
γ

(s,Symnf⊗χ)
)
≤ n+ 1

2

(
log(k−1)+log(n+|T |+3)−1

)
+

7

2
log(n+|T |+3).

(5.3)

Proof. In Lemma 5.3 of [14], the above bound is proven for the gamma factors of
L(s,Symnf). However, the assumed form of the gamma factors of L(s,Symnf) differs
from our gamma factors only in the real parts of the inputs (see Conjecture 1.1 of [14]).
Note, however that the above bound does not rely on <(s), except that it be at least 2.
Hence, the bound follows immediately from Lemma 5.3 of [14]. �

We are now ready to obtain a bound for the vertical distribution of zeros.

Theorem 5.3. Let nSymnf⊗χ(T ) = #{ρ = 1/2 + iγ : L(ρ,Symnf ⊗ χ) = 0, T ≤ γ ≤
T + 3}. Then

nSymnf⊗χ(T ) ≤ 3(n+ 1)

2

(
log
(
Nq(k−1)

)
+log(n+|T |+9/2)+

1

7

)
+

21

2
log(n+|T |+9/2).

(5.4)

Proof. Fix s0 = 2 + i(T + 3/2). Following the arguments in Lemma 5.4 of [14], we
have that∑
ρ

<
( 1

s0 − ρ

)
=

1

2
log(Nnqn+1)+<

(γ′
γ

(s0,Symnf⊗χ)
)

+<
(L′
L

(s0,Symnf⊗χ)
)
,

(5.5)
where the sum is over the nontrivial zeros ρ of L(s,Symnf ⊗ χ). We first note that
1
2

log (Nnqn+1) ≤ n+1
2

log (Nq). Next we note

<
(L′
L

(s0,Symnf ⊗ χ)
)
≤
∣∣∣∣L′L (s0,Symnf ⊗ χ)

∣∣∣∣ ≤ −(n+ 1)
ζ ′

ζ
(2) ≤ n+ 1

2
(1.14)
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by Lemma 5.1 and a direct computation. Summing these estimates with Lemma 5.2,
we obtain∑
ρ

<
( 1

s0 − ρ

)
≤ (n+ 1)

2

(
log
(
Nq(k−1)

)
+log(n+|T |+9/2)+

1

7

)
+

7

2
log(n+|T |+9/2).

(5.6)
Lastly, we note that for all ρ satisfying T ≤ γ ≤ T + 3

<
(

1

s0 − ρ

)
= <

(
1

3
2

+ i(T + 3
2
− γ)

)
=

3
2

3
2

2
+ (T − γ + 3

2
)2
≥ 1

3
.

Thus it follows that

nSymnf⊗χ(T ) ≤ 3
∑
ρ

<
(

1

s0 − ρ

)
≤ 3(n+ 1)

2

(
log
(
Nq(k − 1)

)
+ log(n+ |T |+ 9/2) +

1

7

)
+

21

2
log(n+ |T |+ 9/2)

(5.7)

as desired. �

6. EXPLICIT FORMULA

We have thus shown the explicit formula∑
n

ΛSymnf⊗χ(n)φx(n) = δn,χΦx(1)−
∑
ρ

Φx(ρ),

where the sum is over the zeros of L(s,Symnf ⊗ χ). We now proceed to obtain an
upper bound on the sum over zeros and use this to complete the proof of Proposition
3.4.

6.1. Preliminaries. Let ρ = 1
2

+iγ denote a nontrivial zero of L(s,Symnf⊗χ). Then,
the following lemma gives a useful upper bound on |Φx(ρ)|.

Lemma 6.1. We have

|Φx(ρ)| ≤
√
xmin

{
C0(φ),

C1(φ)

|γ|
,
C2(φ)

|γ|2
, . . .

}
. (6.1)

Proof. From [13], we have

|Φx(ρ)| =
√
x
∣∣ĥ(−γ)

∣∣, (6.2)

where h(t) = 2πφ(e2πt)eπt. Trivially, we have∣∣ĥ(−γ)
∣∣ =

∣∣∣2π ∫ ∞
−∞

φ(e2πt)e(1+2iγ)πtdt
∣∣∣ ≤ 2π

∫ ∞
−∞

∣∣φ(e2πt)eπt
∣∣dt = C0(φ), (6.3)

and integrating by parts n times establishes

|ĥ(−γ)| ≤
∣∣∣ 1

(2π)n−1γn

∣∣∣ ∫ ∞
−∞

∣∣φ(n)(e2πt)e(2n+1)πt
∣∣dt =

Cn(φ)

|γ|n
(6.4)

as desired. �
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6.2. Bounding the Sum Over Zeros. We first use Theorem 5.3 and Lemma 6.1 to
estimate

∑
ρ Φx(ρ) for nontrivial ρ.

Proposition 6.2. For n ≥ 1, we have that
∣∣∣∑ρ Φx(ρ)

∣∣∣ is bounded above by

≤ 2
√
x

((√
C0(φ)C2(φ) + 3C0(φ)

)(
(n+ 8) log(n) + (n+ 1)

(1

7
+ log(Nq(k − 1))

)
+

9

2
+

36

n

)
+
√
C0(φ)C2(φ)

(
n

2
+ 7 +

24

n

)
+ C2(φ)

(
1 +

8

n

))
, (6.5)

where the sum is over the nontrivial zeros of L(s,Symnf ⊗ χ). For n = 0,
∣∣∣∑ρ Φx(ρ)

∣∣∣
is bounded above by
√
x
(√

C0(φ)C2(φ)
(
42.96+2 log(Nq(k−1))

)
+
(
72.8+6 log(Nq(k−1))

)
C0(φ)+23.56C2(φ)

)
.

(6.6)

Proof. By the triangle inequality and the proof of Lemma 6.1, we have∣∣∣∣∣∑
ρ

Φx(ρ)

∣∣∣∣∣ ≤ 2
√
x
∞∑
j=0

nSymnf⊗χ(3j)
∣∣ĥ(−j)

∣∣
≤ 2
√
x

(
U/3∑
j=0

nSymnf⊗χ(3j)C0(φ) + nSymnf⊗χ(U)C0(φ) +
∑

j≥U
3
+1

nSymnf⊗χ(3j)
C2(φ)

(3j)2

)

≤ 2
√
x

(∫ U/3

0

nSymnf⊗χ(3t)C0(φ)dt+ 2nSymnf⊗χ(U)C0(φ) +

∫ ∞
U/3

nSymnf⊗χ(3t)
C2(φ)

(3t)2
dt

)
.

For brevity, we let K1 = 3(n+1)
2

(
log(Nq(k− 1)) + 1

7

)
and K2 = 3

2
n+ 12. We can now

write
nSymnf⊗χ(j) ≤ K1 +K2 log(n+ j + 9/2).

With this notation, the above two integrals are bounded by(
K1

(
C0(φ)

U

3
+ C2(φ)

1

3U

)
+K2

((
U

3
log
(
n+

9

2
+ U

)
−
(
n

3
+

3

2

)
log
(

1 +
U

n+ 9/2

)
− U

3

)
C0(φ) +

(n+ 9/2) log(n+ 9/2 + U) + U
(

log(n+ 9/2 + U)− log(U)
)

9(n+ 9/2)U/3
C2(φ)

))
· 2
√
x.

(6.7)

Using the inequality a ≥ log(1 + a) and substituting U =
√
C2(φ)/C0(φ) gives an

upper bound of
4

3

√
x
√
C0(φ)C2(φ)

(
K1+K2

(
log
(
n+9/2+

√
C2(φ)/C0(φ)

)
+

1

2

))
+4
√
xnSymnf⊗χ(U)C0(φ).

For n ≥ 1, substituting in the values of K1 and K2 and bounding log
(
n + 9/2 +√

C2(φ)/C0(φ)
)

with log(n) +
(
9/2 +

√
C2(φ)/C0(φ)

)
/n gives the final bound. For

n = 0, a direct substitution into (6.7) gives the final bound.
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�

Proposition 6.3. Assume supp(φ) ⊂ [1/2, 5/2] and x ≥ 106. Then the sum
∣∣∣∑ρ Φx(ρ)

∣∣∣
is bounded above by

.004(n+ 2) + Φ(0), (6.8)
where the sum ranges over the trivial zeros of L(s,Symnf ⊗ χ).

Proof. A direct calculation gives for m ≥ 0.

|Φx(−m/2)| ≤
( 1

100, 000

)m/2
. (6.9)

As in Section 7.2 of [14], the trivial zeroes occur at most at the negative half-integers
with multiplicity at most 1 + n

2
. Additionally, there is a possible zero at s = 0 which

contributes an additional Φ(0) term to the sum. Thus∑
ρ trivial

|Φx(ρ)| ≤ n+ 2

2

∞∑
m=1

|Φx(−m/2)|+ Φ(0) ≤ .004(n+ 2) + Φ(0).

�

6.3. Error from passing to prime powers. We bound the error between ψSymnf⊗χ(x)
and

∑
p 6|N Un(cos(θp))χ(p)φx(p) to complete the proof of Proposition 3.4.

Proposition 6.4. Assume supp(φ) ⊂ [1/2, 5/2], maxt∈R |φ(t)| ≤ 2, and x > 106. Then∣∣∣∑
pj

ΛSymnf⊗χ(pj)φx(p
j)−
∑
p 6|N

Un(cos(θp)) log(p)χ(p)φx(p)
∣∣∣ ≤ (n+1)(3.983

√
x+2 logN).

(6.10)

Proof. Using the estimate |ΛSymnf⊗χ(pj)| ≤ (n+ 1) log p, we have∣∣∣∑
pj

ΛSymnf⊗χ(pj)φx(p
j)−

∑
p6|N

Un(cos(θp)) log(p)χ(p)φx(p)
∣∣∣

≤
∑
pj ,j≥2

∣∣ΛSymnf⊗χ(pj)φx(p
j)
∣∣+
∑
p|N

|ΛSymnf⊗χ(p)φx(p)|

≤ (n+ 1)
∑
pj ,j≥2

log(p)|φx(pj)|+ (n+ 1)
∑
p|N

log(p)|φx(p)|.

We recall Rosser and Schoenfeld’s [12] bound of ψ(x)−θ(x) < 1.001102
√
x+3x1/3

for all x > 0, and the trivial bound x1/3 < x1/2/10 for x > 106. Applying these bounds,
the above sum is bounded above for all x > 106 by

(n+ 1) max
t∈R
|φ(t)| (ψ(5x/2)− θ(5x/2)) + (n+ 1) max

t∈R
|φ(t)| logN

≤ 2(n+ 1)
(

1.001102
√

5x/2 + 3(5x/2)1/3
)

+ 2(n+ 1) logN

≤ 3.983(n+ 1)
√
x+ 2(n+ 1) logN.

�
Page 14 of 16



Hammonds, Kothari, Luntzlara, Miller, Thorner, Wieman

6.4. The Proof of Proposition 3.4. To prove Proposition 3.4, it simply remains to add
the bounds in Propositions 6.2, 6.3, and 6.4. Doing so, we obtain for x ≥ 106, n ≥ 1
(noting that under our hypotheses, |Φ(0)| ≤ 8),∣∣∣∑
p 6|N

Un(cos θp) log(p)χ(p)φx(p)− δn,χΦ(1)x
∣∣∣

≤ 2
√
x

((√
C0(φ)C2(φ) + 3C0(φ)

)(
(n+ 8) log(n) + (n+ 1)

(1

7
+ log(Nq(k − 1))

)
+

9

2
+

36

n

)
+
√
C0(φ)C2(φ)

(
n

2
+ 7 +

24

n

)
+ C2(φ)

(
1 +

8

n

)
+ 2(n+ 1)

)
+ 2(n+ 1) logN, (6.11)

as desired. Similarly in the case where n = 0, we have∣∣∣∑
p 6|N

Un(cos θp) log(p)χ(p)φx(p)− δn,χΦ(1)x
∣∣∣

≤
√
x
(√

C0(φ)C2(φ)
(
42.96 + 2 log(Nq(k − 1))

)
+
(
72.8 + 6 log(Nq(k − 1))

)
C0(φ)

+ 23.56C2(φ) + 3.983
)

+ 2 logN. (6.12)
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