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Abstract. A Schreier set S is a subset of the natural numbers with minS ≥ |S|. It has
been known that the sequence (a1,n), where

a1,n := |{S ⊆ N : maxS = n and minS ≥ |S|}|,
is the Fibonacci sequence. Generalizing this result, we prove that for all p ∈ N, the sequence
(ap,n), where

ap,n := |{S ⊆ N : maxS = n and minS ≥ p|S|}|,
has a linear recurrence relation of higher order. We investigate further by requiring that
min2S ≥ q|S|, where min2 S is the second smallest element of S. We prove a linear recurrence
relation for the sequence (ap,q,n), where

ap,q,n := |{S ⊆ N : maxS = n,minS ≥ p|S| and min2S ≥ q|S|}|,
and discuss a curious relationship between (aq,n) and (ap,q,n).

1. Introduction

A Schreier set S is a subset of the natural numbers with minS ≥ |S|, and the Schreier family
containing all Schreier sets is denoted by S1. Schreier de�ned them to solve a problem in Banach
space theory in 1930 [Sch]. These sets were also independently discovered in combinatorics and
are connected to Ramsey-type theorems for subsets of N. An online post [UA] proved that the
Fibonacci sequence appears if we count Schreier sets under certain conditions.

De�ne

M1,n := {S ∈ S1 : maxS = n}.

Then |M1,1|= 1, |M1,2|= 1 and |M1,n+2|= |M1,n+1|+|M1,n| for all n ≥ 1 [UA]. The proof
uses two one-to-one mappings to argue about cardinalities of sets. We generalize this result by
de�ning, for p ∈ N,

Sp := {S ⊆ N : minS ≥ p|S|}, and Mp,n := {S ∈ Sp : maxS = n},

and prove the following1.

Theorem 1.1. Given p ∈ N, consider the sequence (|Mp,n|)∞n=1. We have

(1) |Mp,n+p|=
∑n+p−1

k=1

∑k/p−2
j=0

(
n+p−k−1

j

)
+ 1, and

(2) for n ≥ 1, |Mp,n+p+1|= |Mp,n+p|+|Mp,n|.
We call (|Mp,n|)∞n=1 the generalized Schreier-Fibonacci sequence of order p.
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1Our de�nition of Sp is not the same as what used in Banach space theory to indicate the Schreier sets of
order p [AA].
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Another natural extension is to put an additional restriction on our set S; in particular, we
require that min2 S ≥ q|S|, where min2 S is the second smallest element in S. We de�ne

Sp,q := {S ⊆ N : minS ≥ p|S| and min2S ≥ q|S|}.

For a given n, we consider the family of sets Mp,q,n = {S ∈ Sp,q : maxS = n}. When a set
has exactly one element, we take the element to be both the smallest and the second smallest.
The following theorem gives an explicit formula to calculate |Mp,q,n|.

Theorem 1.2. Given p < q ∈ N, for the sequence (|Mp,q,n|)∞n = 1, we have |Mp,q,n|= 0 if

n ≤ q − 1, |Mp,q,n|= 1 if q ≤ n ≤ 2q − 1 and

|Mp,q,n| = 1 + (n− 2p) +

n+2
q+1∑

k = 3

n+2−k∑
i = qk

(i− pk)
(
n− i− 1

k − 3

)
if n ≥ 2q.

Theorem 1.3. Fix p < q ∈ N. Consider (Mq,n)
∞
n=1 and (Mp,q,n)

∞
n=1. For each n ∈ N, de�ne

an := |Mp,q,n+q|. We have

an+q+1 = an+q + an + (q − p)|Mq,n|.

Note that when p = q, we have Theorem 1.1. We have the following corollary that shows a
recurrence relation for the sequence (|Mp,q,n|)∞n=1.

Corollary 1.4. Fix p < q in N. For n ∈ N, de�ne an := |Mp,q,n+q|. We have

an+2q+2 = 2an+2q+1 − an+2q + 2an+q+1 − 2an+q − an.

Proof. Fix n ∈ N. By Theorem 1.3, we have

an+q+1 − an+q = an + (q − p)|Mq,n| (1.1)

an+2q+1 − an+2q = an+q + (q − p)|Mq,n+q| (1.2)

an+2q+2 − an+2q+1 = an+q+1 + (q − p)|Mq,n+q+1|. (1.3)

By Theorem 1.1, we know that |Mq,n+q+1|= |Mq,n+q|+|Mq,n|. Subtract Equation (1.1) and
Equation (1.2) from Equation (1.3) to �nish the proof. �

Remark 1.5. For �xed p, q, Theorem 1.4 gives a recurrence relation of depth 2q+2; interest-
ingly, the depth is independent of p.

2. Proof of Theorem 1.1

Given a set S and a number a, de�ne

a+ S := {a+ s : s ∈ S}.

In our proof, we partition Mp,n+p+1 into two disjoint sets A and B then use bijective maps to
show that |A|= |Mp,n+p| and |B|= |Mp,n|. This is the same technique used in [UA].

Proof of Theorem 1.1.

(1) To �nd an explicit formula for |Mp,n+p|, we use the following simple counting argument.
Let k be the minimum element of our set S ∈ Mp,n+p. If k = n + p, then S = {n + p}. If
k < n + p, then we can choose it to be any number between 1 and n + p − 1. For each of
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these choices, we have �xed the maximum and the minimum of our set and so, we can choose
j elements between k + 1 and n+ p− 1, where j ≤ k/p− 2. Therefore

|Mp,n+p| =
n+p−1∑
k=1

k/p−2∑
j=0

(
n+ p− k − 1

j

)
+ 1,

which is the desired formula.

(2) The set Mp,n+p+1 is the union of

(a) A = {S ∈Mp,n+p+1 : n+ p /∈ S},
(b) B = {S ∈Mp,n+p+1 : n+ p ∈ S}.

We compute |A| by considering the map R1 : Mp,n+p → A with R1(S) = (S\{n + p}) ∪ {n +
p + 1}. The map is well-de�ned because it preserves the cardinality of the set and does not
decrease the minimum element of a set. Injectivity of R1 is clear. The map is also onto because
given U ∈ A, R1(U\{n+ p+ 1} ∪ {n+ p}) = U . So, |A|= |Mp,n+p|.

Next, we determine |B| by considering the map R2 : Mp,n → B with R2(S) = (S + p) ∪
{n+ p+ 1}. Since minS ≥ p|S|, min(S + p) ≥ p(|S|+1). This shows that R2 is well-de�ned.
Injectivity is clear. The map is also onto because given U ∈ B, R2((U\{n+ p+ 1})− p) = U .
So, |B|= |Mp,n|. We conclude that

|Mp,n+p+1| = |Mp,n+p| + |Mp,n|.

�

3. Proof of Theorem 1.2 and Theorem 1.3

Our proof of Theorem 1.2 employs straightforward counting arguments. For Theorem 1.3, we
partition Mp,q,n+2q+1 into three subsets and use bijective maps to argue that the cardinalities
of these three subsets are equal to an+q, an and (q − p)|Mq,n|, respectively.

Proof of Theorem 1.2. Fix p < q ∈ N. We prove the theorem by considering di�erent ranges
for n. For n ≤ q − 1, if |S|> 0 we have the contradiction

q ≤ q|S| ≤ min2S ≤ n ≤ q − 1.

For q ≤ n ≤ 2q − 1, we have |S|= 1 since otherwise we have the contradiction

2q ≤ q|S| ≤ min2S ≤ n ≤ 2q − 1.

If n ≥ 2q, we prove that

|Mp,q,n| = 1 + (n− 2p) +

n+2
q+1∑

k = 3

n−k+2∑
i = qk

(i− pk)
(
n− i− 1

k − 3

)
.

• The 1 on the right hand side comes from the set {n}.

• For a two-element set S, the maximum element n is also the second smallest element.
Because min2 S = n ≥ 2q, min2 S/q = n/q ≥ 2q/q = 2 = |S|. Let m = minS. As we
need m/p ≥ |S|= 2, we must have m ≥ 2p. Therefore m can be any value from 2p to
n− 1. Hence we have n− 2p sets of 2 elements.
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• For sets with at least three elements, we �rst �nd the range for the second smallest
element. Let min2 S = i and |S|= k. Since there are k − 2 elements bigger than i,
i ≤ n− k + 2. Because min2 S/q ≥ |S|, we have i ≥ qk. So, qk ≤ i ≤ n− k + 2. Next,
we �nd the upper bound for k. It follows from the fact that qk ≤ n− k + 2, and thus
we obtain k ≤ n+2

q+1 . With i and k �xed, there are i − pk choices for minS because

i = min2 S > minS ≥ pk. Finally, we have
(
n−i−1
k−3

)
choices to pick k − 3 elements

between min2 S = i and n, so our formula is correct.

�

Proof of Theorem 1.3. For a nonempty, �nite set S, de�ne S′ := S\{maxS}. ClearlyMp,q,n+2q+1

is the union of three following disjoint sets:

(a) A := {S ∈Mp,q,n+2q+1 : n+ 2q /∈ S},
(b) B := {S ∈Mp,q,n+2q+1 : n+ 2q ∈ S, S′ − q ∈Mp,q,n+q}, and
(c) C := {S ∈Mp,q,n+2q+1 : n+ 2q ∈ S, S′ − q /∈Mp,q,n+q}.

Let τ(S) = (S\{maxS}) ∪ {n + 2q + 1}. We compute |A| by considering the map τ :
Mp,q,n+2q → A. The map is well-de�ned because

(1) for all S ∈Mp,q,n+2q, τ(S) does not contain n+ 2q,
(2) τ does not change the cardinality of a set, while both the smallest and the second

smallest of the set do not decrease.

Clearly τ is one-to-one. We show that it is also onto. Let U ∈ A. If |U |= 1, that is U =
{n + 2q + 1}, then τ({n + 2q}) = U . If |U |= 2, we have U = {m,n + 2q + 1} for some
2p ≤ m < n+ 2q. Then τ({m,n+ 2q}) = U . If |U |≥ 3, then

τ({n+ 2q} ∪ U\{n+ 2q + 1}) = U.

Therefore τ is onto and thus, bijective. So, |A|= |Mp,q,n+2q|= an+q.

Let ψ(S) = (S+q)∪{n+2q+1}. We compute |B| by considering the map ψ :Mp,q,n+q → B.
Note that ψ is well-de�ned because while ψ makes the cardinality of a set increase by 1, both
the smallest and the second smallest increase by q. Clearly ψ is one-to-one, and by the de�ni-
tion of B, it is also onto. Therefore |B|= |Mp,q,n+q|= an.

Finally, we compute |C|. Partition C into Ci, where

Ci = {S ∈Mp,q,n+2q+1 : n+ 2q ∈ S and p|S|+i = minS},

for 0 ≤ i ≤ q − p − 1. We show that C = ∪q−p−1i=0 Ci. Let F ∈ Ci for some 0 ≤ i ≤ q − p − 1.
We have

min(F ′ − q) = minF − q = p|F |+i− q < p|F |−p = p|F ′ − q|.
So, F ′ − q /∈ Mp,q,n+q. Hence, F ∈ C. We have shown that ∪q−p−1i=0 Ci ⊆ C. Now, let
E ∈ C. Because E ∈ Mp,q,n+2q+1 and E′ − q /∈ Mp,q,n+q, it is straightforward to deduce
that min(E′ − q) < p|E′ − q|, which implies that p|E|≤ minE < p|E|+(q − p). Therefore,

minE = p|E|+i for some 0 ≤ i ≤ q− p− 1. This shows that C ⊆ ∪q−p−1i=0 Ci. We conclude that

C = ∪q−p−1i=0 Ci.
It remains to prove that |Ci|= |Mq,n|. Consider the map

φi : Ci −→Mq,n

S −→ (S′\{minS})− 2q.
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We show that φi is well-de�ned as follows. Let F ∈ Ci. Observe that

q|φi(F )| = q|(F ′\{minF})− 2q| = q(|F |−2) = q|F |−2q
≤ min2F − 2q = min((F ′\{minF})− 2q) = minφi(F ).

To see that φi is onto, let G ∈ Mq,n and H = {p(|G|+2) + i} ∪ (G + 2q) ∪ {n + 2q + 1}. We
have minH = p(|G|+2) + i since

p(|G|+2) + i ≤ p(|G|+2) + (q − p) < p|G|+2q ≤ min(G+ 2q).

It follows that H ∈ Ci because

p|H| = p(|G|+2) ≤ p(|G|+2) + i = minH, and

q|H| = q(|G|+2) ≤ minG+ 2q = min2H.

Clearly φi(H) = G and thus φi is onto. Since injectivity of φi is clear, φi is bijective. This
shows that |Ci|= |Mq,n| and so, |C|= (q − p)|Ci|= (q − p)|Mq,n|.

We conclude that

|Mp,q,n+2q+1| = |A|+|B|+|C| = |an+q|+|an|+(q − p)|Mq,n|.
�
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