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Abstract. We introduce a new matrix operation on a pair of matrices, swirl(A,X), and discuss its
implications on the limiting spectral distribution. In a special case, the resultant ensemble converges
almost surely to the Rayleigh distribution. In proving this, we provide a novel combinatorial proof
that the random matrix ensemble of circulant Hankel matrices converges almost surely to the
Rayleigh distribution, using the method of moments.

1. Introduction

Random matrix theory was used by Eugene Wigner as a mechanism for modeling the limiting
behavior of the energy distribution of heavy nuclei. The states of individual heavy nuclei are
difficult to determine using the Schrödinger Equation, so instead one can examine the eigenvalues
of random matrices and thereby obtain information about the statistical behavior of the system,
as done in [FM09].

The techniques from nuclear physics were later abstracted to ensembles of random matrices. The
motivation for choice of ensemble corresponded to the properties of physical systems. For example,
this was the motivation for studying ensembles of real symmetric matrices, self-adjoint matrices,
and Gaussian Orthogonal Ensembles. Given the importance of studying eigenvalues to both physics
(as in [Wig51, Dys62]) and to other fields of mathematics such as analytic number theory (as in
[KS99a, KS99b]), the eigenvalue distribution of the ensemble is the focus of study.

In general, it is rare to find a named, closed form limiting distribution of the eigenvalue distribu-
tions for a given ensemble of random matrices. For example, in the ensemble of Toeplitz matrices
studied in [HM05] and [BDJ06], the distribution seemed to be approaching a Gaussian distribu-
tion, but there were Diophantine obstructions with the index combinatorics of the random variable
entries in the matrices. These obstructions prevented the distribution from being a Gaussian dis-
tribution, and a closed form is still not known. Following these difficulties, an attempt to overcome
the obstructions and increase symmetry was done by adding palindromicity, this is sufficient to
guarantee almost sure convergence to the Gaussian distribution [MMS07]. Many other related
ensembles have been thoroughly investigated, for example in [BBV+19, BM02, JMP10, KKM11,
MSTW15, KKM11, BLM+15].

In this paper, we formulate a new matrix operation, “swirl,” based on the symmetry of the
concentric even matrix ensemble. An example of a matrix in this ensemble is
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

x2 x1 x0 x3 x3 x0 x1 x2
x1 x0 x3 x2 x2 x3 x0 x1
x0 x3 x2 x1 x1 x2 x3 x0
x3 x2 x1 x0 x0 x1 x2 x3
x3 x2 x1 x0 x0 x1 x2 x3
x0 x3 x2 x1 x1 x2 x3 x0
x1 x0 x3 x2 x2 x3 x0 x1
x2 x1 x0 x3 x3 x0 x1 x2


.

Notably, the xi are variables drawn independently from a probability distribution with mean zero,
variance one, and finite higher moments.

We chose this ensemble with the hope that by increasing symmetry we would be able to obtain
a closed form for the spectral distribution of the matrices in the ensemble.

It is advantageous to understand such matrices in block matrix form, as evidenced by [BBV+19].
In this vein, we split the matrices in the concentric even ensemble into blocks or quadrants and
defined the swirl operation using two N ×N input matrices, A and X, to create the larger block
matrix of size 2N × 2N corresponding to the concentric even matrix, where A is the upper right
quadrant and X is the exchange matrix. That is,

swirl(A,X) =

(
AX A
XAX XA

)
. (1.1)

In concentric even matrices, A is a circulant Toeplitz matrix and AX is a circulant Hankel
matrix. We reduce studying the circulant even ensemble to studying circulant Hankel matrices
with several theorems about the behavior of tr(swirl(A,X)) in Section 3. Hankel matrices arise in a
multitude of applications across fields of mathematics and physics: differential equations, functional
analysis, statistics, probability theory, control theory, and more (see [BG21, Pel06, SGT82], for
example). Their symmetry also makes them a heavily studied family in random matrix theory, as
in [BG21, Bou21]. Circulant Hankel matrices also happen to be even centrosymmetric matrices,
which have additional specialized applications in physics, for example in [DS03].

In Section 4 we characterize summands in terms of the number of repeated entries and compute
the moments via combinatorial degree of freedom arguments. By these methods, we obtain a novel
combinatorial proof showing that the limiting spectral distribution of the random matrix ensemble
of circulant Hankel matrices converges almost surely to the symmetrized Rayleigh distribution (for
an earlier proof relying on direct computation, see [BDJ06]). As we discuss in Appendix A, our
methods are generally applicable to many random matrix ensembles. In particular, we have the
following theorem.

Theorem 1.1. Let µA,N (x) be the empirical spectral measure of the N×N circulant Hankel random
matrix ensemble populated by entries from a sequence of random variables A from a distribution p
with mean 0, variance 1, and finite higher moments. Then,

lim
N→∞

µA,N (x)→ |x|e−x2 (1.2)

almost surely.

Notably, |x|e−x2 is the symmetrized Rayleigh distribution, with many known applications to
physics (see [Sid62]).

Many block random matrix ensembles have been investigated in the past (for example, [KKM11]).
Some of these have even yielded remarkably similar limiting empirical spectral distributions (see
Figure 3 of [MSTW15]).
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Figure 1. Histogram of eigenvalues for one hundred 40 × 40 random circulant
Hankel matrices. A symmetrized Rayleigh distribution is shown in red.

The swirl operation is very rich and lends itself to much further study. In particular, a natural
next step is to study matrix ensembles determined by different choices of A and X. We discuss
some natural next steps in Section 5.

2. Preliminaries

We characterize the distribution of the eigenvalues of several random matrix ensembles by defin-
ing a spectral measure over subfamilies of random matrices from the ensemble. Let A be an element
of a family of N × N random matrices from some ensemble where the entries are drawn from a
probability distribution p with mean 0, variance 1, and finite higher moments.

We use the Eigenvalue Trace Lemma to relate the eigenvalues to the matrix elements.

Lemma 2.1 (Eigenvalue Trace Lemma). Let λi(A) be the eigenvalues of an N×N matrix A. Then

N∑
i=1

λki (A) = tr(Ak). (2.1)

Let c be the number of eigenvalues of A, excluding those that are trivially zero. This is derived
using rank arguments and is fixed for a given N and matrix structure.

Then, we define the empirical spectral measure of A as the following measure.

Definition 2.2. Let p be a probability density function with mean 0, variance 1, and finite higher
moments. Let A be a family of N ×N matrices with entries drawn independently from p. Then

µA,N (x)dx :=
1

c

c∑
i=1

δ

(
x−
√
cλi(A)

N

)
dx, (2.2)

where δ(x) is the Dirac-delta functional, the λi(A) are the nonzero eigenvalues of A, and c is the
number of eigenvalues in A that are not trivially 0.

Remark 2.3. The
√
c/N scaling factor is derived heuristically from the Central Limit Theorem.

By computing the trace of A2 via the Eigenvalue Trace Lemma, we get

E[tr(A2)] = N2 =
N∑
i=1

E[λi(A)2], (2.3)
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suggesting that the magnitude of the eigenvalues must be roughly N/
√
c each in expectation since

the expectation of an entry squared is 1, by our definition of p.

Via the method of moments, we will be able to understand the spectral distribution of these
eigenvalues. In this instance, the convergence of the moments of the spectral distribution is enough
to show the convergence of the spectral distribution. From the definition of the spectral measure
µA,N (x) in terms of the Dirac-delta functional, we may compute its moments.

Remark 2.4. The moments of the spectral measure of A are

Mk(A,N) :=

∫ ∞
−∞

xkµA,N (x)dx =
ck/2−1

Nk

c∑
i=1

λki (A). (2.4)

Notice that by the Eigenvalue Trace Lemma, Mk(A,N) = ck/2−1

Nk tr(Ak).
Finally, we’re interested in averaging these moments over the entire family of matrices that A

belongs to. As is standard, we define the following.

Definition 2.5. Let Mk(N) be the average of Mk(A,N) over all A in our chosen family of matrices.

Our main result is that limN→∞Mk(N) exists and that there is a universal limiting distribution
for several families of matrices.

In the following work, we will calculate Mk as a sum of terms (via the Eigenvalue Trace Lemma).
We will show that some terms are negligible by showing that they are Ok(1) (where f(n) = Ok(g(n))
if, for k ∈ Z+ fixed there exists n0, c such that for all n > n0, f(n) ≤ g(n) + c).

In this paper, we investigate swirl ensembles and circulant Hankel matrices.

Definition 2.6. An N × N circulant Hankel matrix Hn = (aij) is defined by the link relation
aij = ak` ⇐⇒ i+ j ≡ k + ` (mod N).

J =



b0 b1 b2 · · · bN−3 bN−2 bN−1
b1 b2 b3 · · · bN−2 bN−1 b0
b2 b3 b4 · · · bN−1 b0 b2
...

...
...

...
...

...
bN−3 bN−2 bN−1 · · · bN−6 bN−5 bN−4
bN−2 bN−1 b0 · · · bN−5 bN−4 bN−3
bN−1 b0 b1 · · · bN−4 bN−3 bN−2


, aij = b[i+j]N .

Note that circulant Hankel matrices are the product of circulant Toeplitz matrices and exchange
matrices, with the former considered in [HM05, BDJ06].

3. Swirl Matrices

3.1. Motivation. The swirl operation was inspired by radially symmetric matrices of the following
form: 

x2 x1 x0 x3 x3 x0 x1 x2
x1 x0 x3 x2 x2 x3 x0 x1
x0 x3 x2 x1 x1 x2 x3 x0
x3 x2 x1 x0 x0 x1 x2 x3
x3 x2 x1 x0 x0 x1 x2 x3
x0 x3 x2 x1 x1 x2 x3 x0
x1 x0 x3 x2 x2 x3 x0 x1
x2 x1 x0 x3 x3 x0 x1 x2


.

We refer to such matrices as “concentric even matrices.” Note that not only are the circles about
the center of the matrix composed of equal entries, but also these entries are repeated in later
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circles such that each matrix entry appears an equal number of times. This was intentional in an
effort to increase symmetry and derive a closed form limiting spectral distribution. For a 2N × 2N
matrix of this form, each entry appears exactly 4N times (N times in each N×N quadrant). Upon
close inspection, it is apparent that the N ×N submatrix in the top right of a 2N × 2N concentric
even matrix is an N ×N circulant Toeplitz matrix (which is not necessarily symmetric). Moreover,
the other three quadrants of the matrix may be generated from this circulant Toeplitz matrix via
a clockwise rotation of the entries. Indeed, for A an N × N circulant Toeplitz matrix, and J the
N ×N exchange matrix with 1’s on the antidiagonal and zeroes elsewhere, the 2N ×2N concentric
even matrix is given by the following: (

AJ A
JAJ JA

)
.

This block decomposition of the concentric even matrices motivates the following definition and
the focus of this section.

Definition 3.1. Let A and X be N ×N matrices. We define swirl(A,X) as the 2N × 2N matrix
where

swirl(A,X) =

(
AX A
XAX XA

)
. (3.1)

We aim to characterize the limiting spectral distribution of swirl(A,X). To do so, we relate
tr(swirl(A,X)k) to tr((AX)k) via the Eigenvalue Trace Lemma.

Remark 3.2. Observe that

swirl(A,X) =

(
AX A
XAX XA

)
=

(
AX 0

0 0

)
+

(
0 A
0 0

)
+

(
0 0

XAX 0

)
+

(
0 0
0 XA

)
. (3.2)

This observation vastly simplifies the computation of tr(((swirl(A,X))k).

Convention 1. We adopt a convenient shorthand notation for block matrices with four N × N
blocks which are 0 in 3 blocks. For example, a 2N × 2N matrix of the form with zeroes necessarily
everywhere except the top right corner will be referred to as a matrix B12. That is, B12 is of the
form (

0 Y
0 0

)
for Y an N ×N matrix. Define B11, B21, and B22 similarly with the indices corresponding to the
block that is not necessarily zero everywhere.

Remark 3.3. BijBk` = 0 if j 6= k and is of the form Bi` otherwise.

3.2. Computing tr((swirl(A,X))k). Recall the following facts:

tr(CD) = tr(DC) (3.3)

and
tr(C +D) = tr(C) + tr(D) (3.4)

for N ×N matrices C and D. We are now ready to relate tr((swirl(A,X))k) to tr((AX)k).

Theorem 3.4. For A and X both N ×N matrices, tr((swirl(A,X))k) = 2k tr((AX)k).

Proof. Moreover, any term in the expansion of

(swirl(A,X))k =

((
AX 0

0 0

)
+

(
0 A
0 0

)
+

(
0 0

XAX 0

)
+

(
0 0
0 XA

))k
=
∑

Bi1j1Bi2j2 · · ·Bikjk
(3.5)

is of the form Bi1jk . Since trace is additive, we have that a term contributes 0 to the trace of

(swirl(A,X))k if i1 6= jk; if they are not equal, the main diagonal of the matrix is all zeroes.
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As such, by Remark 3.3 and the above, the nonzero summands of (swirl(A,X))k correspond to
products Bi1j1Bi2j2 · · ·Bikjk where j` = i`+1 for 1 ≤ ` ≤ k − 1 and jk = i1. There are 2k such

summands since one can choose the first indices of the k matrices in the summand in 2k ways.
Then, the second indices are exactly determined by the above requirements.

Observe that the only nonzero block of a Bi1jk matrix in the trace expansion of tr((swirl(A,X))k)
is a product of matrices. By the construction of swirl, this product begins with A if i = 1, and
ending with A if j = 2. Also observe that this product begins with an X if i = 2, and ends with
X if j = 1. All such products will start with one of A or X and end with the opposite. These
products will also not have consecutive repeated A’s or X’s. These properties follow from Remark
3.3 and the definition of swirl.

In order for this product of matrices to contribute to the trace, note that the first and last
index of such a product must be equal (or else it will not be a diagonal entry). Thus, there
must be an equal number of matrices of the form B12 and B21 in any contributing product. As
such, each nonzero summand in the expansion of tr((swirl(A,X))k) (with swirl(A,X) expressed as
B11 + B12 + B21 + B22) will be of the form tr((XA)k) or tr((AX)k). Consequently, there are 2k

such nonzero contributing terms and

tr((swirl(A,X))k) = 2k tr((AX)k), (3.6)

by the cyclic property of trace. �

Given that the trace of the kth power of a matrix completely determines the kth moment of
its empirical spectral distribution, Theorem 3.4 allows us to reduce characterizing the limiting
spectral distribution of swirl(A,X) ensembles to characterizing the limiting spectral distribution of
AX matrices.

3.3. Iterating swirl. Another interesting avenue for swirl is iterating the operation.

Definition 3.5. Let A,X be N × N matrices. Let Xk be the block matrix with 2k−1 X’s on the
anti-diagonal and zeroes elsewhere. Note that X1 = X. Then, set

swirlk(A,X) := swirl(. . . swirl(swirl(swirl(A,X1), X2), X3), . . .), Xk) (3.7)

where swirl is repeated k times in the above.

We begin by analyzing the trace of iterated swirl matrices.

Proposition 3.6. Fix A,X both N ×N matrices such that X2 = I and k a nonnegative integer.
Then

tr(swirlk(A,X)) = 2k tr(AX). (3.8)

Proof. We prove by induction. For k = 1, this follows from Theorem 3.4. Now, assume this holds
for r − 1 for r ≥ 2. Then,

swirlr(A,X) = swirl(swirlr−1(A,X), Xr) (3.9)

=

(
Xr swirlr−1(A,X) swirlr−1(A,X)
Xr swirlr−1(A,X)Xr swirlr−1(A,X)Xr

)
.

This implies

tr(swirlr(A,X)) = tr(Xr swirlr−1(A,X)) + tr(swirlr−1(A,X)Xr) (3.10)

= 2 tr(Xr swirlr−1(A,X)).
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Now

Xr swirlr−1(A,X) =

(
0 Xr−1

Xr−1 0

)(
Xr−1 swirlr−2(A,X) swirlr−2(A,X)

Xr−1 swirlr−2(A,X)Xr−1 swirlr−2(A,X)Xr−1

)
(3.11)

=

(
swirlr−2(A,X)Xr−1 Xr−1 swirlr−2(A,X)Xr−1

swirlr−2(A,X) Xr−1 swirlr−2(A,X)

)
.

Thus

tr(Xr swirlr−1(A,X)) = tr(swirl(swirlr−2(A,X), Xr−1)) (3.12)

= tr(swirlr−1(A,X))

= 2r−1 tr(AX)

by induction.
Therefore,

tr(swirlr(A,X)) = 2r tr(AX). (3.13)

The result then follows by induction. �

Remark 3.7. Alternatively, observe that, since X2 = I, swirl`(A,X) is just the block matrix of

swirl(A,X) repeated 4`−1 times. This means tr(swirl`(A,X)) = 2`−1 tr(swirl(A,X)) = 2` tr(AX).

If we wish to study the moments of ensembles of such matrices, we need to understand the trace
of powers of the iterated swirl matrices. We reduce this to an analysis of tr((AX)k) in the following
proposition.

Proposition 3.8. Fix A,X to be N × N matrices such that X2 = I and k and l nonnegative
integers. Then

tr((swirl`(A,X))k) = 2k` tr((AX)k). (3.14)

Proof. We prove by induction on `. For ` = 1, this follows from Theorem 3.4. Now, assume

tr((swirl`(A,X))k) = 2k` tr((AX)k) (3.15)

holds for ` = r ≥ 1. We show it holds for ` = r + 1. By Definition 3.5,

swirl`+1(A,X) = swirl(swirl`(A,X`), X`+1). (3.16)

So,

tr((swirl`+1(A,X))k) = tr((swirl(swirl`(A,X), X`+1))
k)

= 2k tr((swirl`(A,X)X`+1)
k)

with the last step following from Theorem 3.4.
Let B = swirl`−1(A,X). Then,

swirl`(A,X)X`+1 =

(
BX` B
X`BX` X`B

)(
0 X`

X` 0

)
(3.17)

=

(
BX` B
X`BX` X`B

)
= swirl`(A,X)

with the last step following from the assumption that X2 = I.
Therefore

tr((swirl`+1(A,X))k) = 2k tr((swirl`(A,X)X`+1)
k)

= 2k tr((swirl`(A,X))k)

= 2k(`+1) tr((AX)k)

with the last step from the inductive hypothesis. The result then follows by induction. �
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3.4. The Product of Swirl and its Transpose. If we assume that X is a permutation matrix,
then tr(swirl(A,X) swirl(A,X)T ) reduces to understanding tr(AAT ). This is a useful quantity to
understand if A and X are chosen such that swirl(A,X) does not necessarily have real eigenvalues.

Proposition 3.9. Fix A,X to be N ×N matrices with X a permutation matrix. Then

tr((swirl(A,X) swirl(A,X)T )k) = 22k tr((AAT )k). (3.18)

Proof. Let S = swirl(A,X) swirl(A,X)T . We show by induction that

Sk = 22k−1
(

(AAT )k (AAT )kXT

X(AAT )k X(AAT )kXT

)
. (3.19)

For the base case consider Sk for k = 1. We have

S1 =

(
AX A
XAX XA

)(
(AX)T (XAX)T

AT (XA)T

)
. (3.20)

This yields

=

(
(AX)(AX)T +AAT (AX)(XAX)T +A(XA)T

(XAX)(AX)T + (XA)AT (XAX)(XAX)T + (XA)(XA)T

)
. (3.21)

Expanding the transpose terms yields

=

(
AXXTAT +AAT AXXTATXT +AATXT

XAXXTAT +XAAT XAXXTATXT +XAATXT

)
. (3.22)

Recall X is a permutation matrix XXT = I. Thus, we have

= 2

(
AAT AATXT

XAAT XAATXT

)
. (3.23)

Now assume that the inductive hypothesis holds for k = n; we will show it holds for k = n+ 1.
Rewrite Sn+1 as SSn. Then

Sn+1 = 2

(
AAT AATXT

XAAT XAATXT

)
22n−1

(
(AAT )n (AAT )nXT

X(AAT )n X(AAT )nXT

)
, (3.24)

by induction. Matrix multiplication yields

= 22n
(

(AAT )n+1 + (AAT )n+1 (AAT )n+1XT + (AAT )n+1 +XT

X(AAT )n+1 +X(AAT )n+1 X(AAT )n+1XT +X(AAT )n+1XT

)
. (3.25)

Simplifying we have

= 22n+1

(
(AAT )k+1 (AAT )k+1XT

X(AAT )k+1 X(AAT )k+1XT

)
. (3.26)

This completes the inductive argument.
Now calculating the trace is trivial. Note by the cyclic property of trace, tr(Sk) = 22k−1 tr((AAT )k)+

22k−1 tr(X(AAT )kXT )) = 22k tr((AAT )k). �

Here the limiting spectral distribution reduces to the a scaled semi-circle distribution, which is
handled in [Wig58].
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3.5. Limiting Spectral Distribution of Swirled Matrix Ensembles. From the previous work
in this section, we can reduce the analysis of swirl matrix ensembles to the analysis of matrix product
ensembles. We consider the empirical spectral measure defined in Definition 2.2. In this case, from
Remark 3.7, for A and X both N × N matrices, and ` ≥ 1, swirl`(A,X) has the same number

of trivial nonzero eigenvalues, c, as swirl`(A,X). Let BN2` = swirl`(A,X). Then the empirical
spectral measure of BN2` is given by

µA,N2`(x)dx :=
1

c

c∑
i=1

δ

(
x−
√
cλi(A)

N2l

)
dx. (3.27)

From Definition 2.2 and Proposition 3.8, the kth moment of the spectral distribution in this case is
thus

2`kck/2−1

2`kNk+1
E[tr((AX)k)] =

ck/2−1

Nk+1
E[tr((AX)k)], (3.28)

which does not depend on `. As such, the limiting spectral distribution of swirl is the same for any
number of iterations, `.

4. Circulant Hankel Matrices

In all the ensembles that follow, we assume that the matrices are constructed from a sequence of
independently and identically distributed random variables (i.i.d.r.v.) with distribution p having
mean 0, variance 1, and finite higher moments. We assign elements of this sequence to matrix
entries according to the symmetry of our given ensemble.

4.1. Moments via powers of AX. From Theorem 3.4, studying the trace of the even concentric
swirl matrices reduces to studying the trace of powers of HN = ANJN , with HN the N × N
circulant Hankel matrix, AN the N × N circulant Toeplitz matrix, and JN the N × N exchange
matrix. The matrix ensemble of circulant Hankel matrices is exceptional in its own right; its
limiting spectral distribution converges almost surely to a symmetrized Rayleigh distribution (as
shown in [BDJ06]). In this section, we provide a new combinatorial proof of this remarkable result.
We begin by defining the empirical spectral measure for this ensemble of matrices. This measure,
for the normalized eigenvalues of our matrix H, is given by the following definition.

Definition 4.1. The empirical spectral measure of a random N ×N circulant Hankel matrix is

µHN
(x)dx :=

1

N

N∑
i=1

δ

(
x− λi(HN )√

N

)
dx. (4.1)

where δ(x) is the Dirac-delta functional and the λi are the non-zero eigenvalues of HN .

Remark 4.2. The
√
N scaling factor is derived heuristically. By computing the trace of H2

N , we
obtain

E[tr(H2
N )] = N2 =

N∑
i=1

λi(HN )2, (4.2)

suggesting that the eigenvalues must be roughly
√
N each in expectation.

In order to use the method of moments, we compute the kth moment for the empirical spectral
distribution of a random matrix HN , µHN

(x).

Remark 4.3. The kth moment of the empirical spectral distribution of the random matrix HN ,
averaged over an ensemble, is given by

Mk(N) :=

∫ ∞
−∞

xkµHN
(x)dx =

1

N
k
2
+1

N∑
i=1

E[λki (HN )] =
1

N
k
2
+1

E[tr(Hk
N )]. (4.3)
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We use Mk to denote limN→∞Mk(N).

This standard computation follows from the properties of the Dirac delta functional and the
Eigenvalue Trace Lemma.

Proposition 4.4. We have M1 = 0 and M2 = 1.

Proof. The first moment is immediate from E[tr(HN )] = 0. The second moment follows from
substituting E[tr(H2

N )] = N2 into the formula in Remark 4.3. �

In order to compute Mk for k ≥ 2 we consider the limiting behavior of the terms in the sum
combinatorially. It is useful to note the following fact.

Remark 4.5. In HN = ANJN , cij = ck` if and only if i+ j ≡N k + `, where we index the matrix
beginning at 0.

We begin by showing the odd moments of the limiting spectral distribution are all zero.

Theorem 4.6. We have M2k+1 = 0 for all k ∈ Z≥0.

Proof. First, we analyze tr(H2k+1
N ) via the Eigenvalue Trace Lemma. Observe that since the entries

of HN are independent, if any are to the first power in a summand in the expansion of tr(HN ), the
expected value of the entire summand is zero. For example,

E[hi1i2hi2i3hi3i1 ] = E[xaxbxb] = E[xa]E[x2b ] = 0 · 1 = 0. (4.4)

Thus, at a minimum, the entries must be matched in pairs with at least one triple in all of the
contributing terms. We bound the number of ways to construct such summands. There are at
most k distinct entries xji in a given contributing summand by this pairing argument. We can

choose such entries in less than Nk ways. Then, we can specify the matrix index of one of the
terms in the summand in N ways. There are at most kk ways to assign each factor in the summand
to a particular xji and then the choice of one index of a matrix entry completely determines the
remaining matrix indices via Remark 4.5. This implies there are at most k + 1 degrees of freedom
for any choice of grouping (and the number of ways to assign factors in the summand to xji is

Ok(1)). So, the number of contributing summands is Ok(N
k+1). Note that each grouping of ni

matrix entries equal to xji contributes

E[(xji)
ni ] = pni = Ok(1) (4.5)

since p has finite higher moments by assumption. As such, each contributing term contributes
Ok(1) to Mk.

Substituting into our formula from Remark 4.3, we get:

M2k+1(N) =
Ok(N

k+1)

N
2k+1

2
+1

= Ok(N
−1/2). (4.6)

Taking the limit as N →∞, we achieve the desired result. �

Next, we show M2k = k! for all k and thus limN→∞ µHN
(x), averaged over all HN converges to

the symmetrized Rayleigh distribution.
We begin with a sample calculation showing M4 = 2 to build intuition for the proof.

Proposition 4.7. We have M4 = 2.

Proof. Note that

tr(H4
N ) =

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

hi1i2hi2i3hi3i4hi4i1 (4.7)

where hijij+1 is the matrix entry of HN at the ij
th row and and ij+1

th column. As before, if
any of the random variables in a summand is not equal to any of the others, we can write the
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expectation of the whole summand as a product of the expectation of the singleton term and the
rest of the summand by the independence of our random variables. Since all of the random variables
have mean 0, such a term contributes zero. As such, there are only two options for contributing
summands: four equal matrix entries or two pairs of equal matrix entries.

Case 1 : In this case, there are four summands that are all matched. That is, ci1i2 = ci2i3 = ci3i4 =
ci4i1 . Up to relabeling, the first case yields the system of equations

i1 + i2 ≡N i2 + i3 (4.8)

i2 + i3 ≡N i3 + i4

i3 + i4 ≡N i4 + i1

i4 + i1 ≡N i1 + i2

This implies i1 ≡N i3 and i2 ≡N i4, leaving only two free variables. Since there are only 2
degrees of freedom in this case and each of our i.i.r.d. random variables have finite moments
by assumption, terms of this kind contributes O(N2) to the expectation of tr(H4

N ). Thus,

by Remark 4.3, such terms contribute limN→∞
O(N2)
N3 = 0 to the fourth moment in the limit.

Notably, the system of equations corresponds to the equation matrix
1 1 −1 −1
0 1 0 −1
−1 0 1 0
0 −1 0 1


which has nullity 2. Thus, since vectors satisfying this system of equations are exactly those
in the null space of this matrix, there are O(N) valid linear combinations of basis vectors of
the null space, and the random variables have finite fourth moments, such terms contribute
O(N2) to the expectation of tr(H4

N ). This alternate linear algebraic formulation is used in
our the proof of Theorem 4.11.

Case 2 : In this case, all summands are paired. This case of matching the random variables into
pairs has two subcases.
Subcase 2.1 : Pair nonadjacent random variables, that is, ci1i2 = ci3i4 , ci2i3 = ci4i1 . This

pairing yields the following system of equations:

i1 + i2 ≡N i3 + i4 (4.9)

i2 + i3 ≡N i4 + i1

i3 + i4 ≡N i1 + i2

i4 + i1 ≡N i2 + i3

This implies i2 ≡N i4 and i1 ≡N i3. Thus there are only two degrees of freedom in this
case and it does not contribute in the limit.
Note that the equation matrix corresponding to the system of equations has nullity 2,
an alternative proof that this case cannot contribute.

Subcase 2.2 : Pair adjacent random variables. For example, ci1i2 = ci2i3 and ci3i4 = ci4i1 .
Note that there are two such pairings. Up to relabeling, this pairing yields the following
system of equations:

i1 + i2 ≡N i2 + i3 (4.10)

i2 + i3 ≡N i1 + i2

i3 + i4 ≡N i4 + i1

i4 + i1 ≡N i3 + i4
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This implies only i1 ≡N i3, yielding 3 degrees of freedom. Thus, the terms in this case
contribute in the limit. Fixing i1, there is a unique choice for i3 and N choices for
both i2 and i4, yielding 2N3 choices total after iterating over all i1 and both choices
of pairing orientation.
Substituting into Remark 4.3, we then get that this case contributes precisely 2 to M4

in the limit and M4 = 2, since this is the only contributing case.

�

We see that only a select few of the summands in the computation of even moments contribute
in the limit. We formalize this observation in the following lemmas.

Lemma 4.8. For even moments M2k, where k ≥ 1, the only contributing summands xn1
j1
· · ·xn`

j`
in

the trace expansion are those where ni = 2 for all 1 ≤ i ≤ `.
Proof. Consider any summand in tr(H2k

N ), xn1
j1
· · ·xn`

j`
, where∑̀

i=1

ni = 2k (4.11)

and each ni ≥ 1. Now, if any ni = 1, the expectation of the summand is 0. So, we may assume
each ni ≥ 2. If there is at least one factor in the summand with nr ≥ 3, there are less than k + 1
degrees of freedom of terms with such groupings—there are at most k − 1 ways to choose the xji
and an additional N ways to fix a matrix index in some term (which then induces a constant in N
number of possible arrangements).

Each such term contributes

lim
N→∞

O(Nk)

Nk+1
= 0 (4.12)

to M2k, as desired. �

Remark 4.9. The argument in Theorem 4.6 and Lemma 4.8 also shows that there are at most
k + 1 degrees of freedom when assigning xji in pairs in the computation of tr(H2k

N ).

For the following arguments, consider an index “even” if its subscript is even. Similarly define
odd indices. For example, consider

tr(H4
N ) =

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

hi1i2hi2i3hi3i4hi4i1 . (4.13)

We view i1, i3 as the “odd” indices and i2, i4 as the “even” indices.

Lemma 4.10. The pairings of odd indices to even indices contribute k! to M2k.

Proof. Consider the system of equations resultant in this case. Each relation can be assumed to be
of the general form

ij + ij+1 ≡N i` + i`+1 (4.14)

for j even and ` odd. Note in particular that all even indices arise on the left hand side of such
relations as the first term and all odds similarly as the first term on the right hand side. Since in
such relations each index is added to the subsequent index, every index appears in a sum exactly
once on both sides of the equations.

Interpret these equations as 1 × N row vectors with ones in the entries corresponding to the
indices on the left hand side of the relations and negative ones to those on the right hand, as in
Proposition 4.7. Now, from the above observation, the sum of these k row vectors is 0. This implies
they are linearly dependent. This means the matrix given by this system of equations has nullity
at least k + 1. Note that vectors x in the null space are exactly solutions to

Ex = 0 (4.15)
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for E the matrix of these row vectors. This implies we have k + 1 degrees of freedom in this case.
From Remark 4.9, we thus have exactly k + 1 degrees of freedom, so these pairings contribute
exactly their constant term to M2k in the limit.

To count the number of odd-even pairings, we choose an odd and an even index to pair in k2

ways. Then we repeat until there are no indices left to pair, yielding (k!)2. However, we introduced
an arbitrary ordering on the pairs in this process, so we correct by dividing by k!, yielding k!
as desired. Note that, given the choice of a single index and pairings, every index is determined
uniquely (regardless of the modulo N). �

Now we complete the proof by showing that the other pairings of indices do not contribute in
the limit.

Theorem 4.11. M2k = k!.

Proof. From Lemma 4.10, it suffices to show that any arrangement of pairs including an odd-odd or
even-even index matching will not contribute. One way to do so is to show that the k row vectors
corresponding to the resultant system of equations are all linearly independent and thus the rank of
the corresponding matrix is k, implying a nullity of k and less than k+ 1 degrees of freedom. Note
that there being an odd-odd index pairing implies that there must be an even-even index pairing.

Step 1: We will show that if there is an odd-odd index pairing then the equations corresponding
to even-odd index pairings are linearly independent as row vectors.

Fix a relation given by such an even-odd index pairing. Each side of each relation of the
form i` + i`+1 ≡N ir + ir+1 can be conceptualized as as a “first” index (matched index)
plus a “second” index. For the sake of consistency, when converting such relations into row
vectors (by moving all the terms to a single side), we negate the side with the odd first
index. In order to show linear independence of the even-odd row vectors, it suffices to show
that no nonempty linear combination of them sums to 0.

Note that each index appears at most twice amongst the odd-even pair relations. In
particular, if we fix

i` + i`+1 ≡N i`+2i+1 + i`+2i+2 (4.16)

to be in our linear combination, with ` even, this yields a row vector of the form

(0, 0, . . . , 1, 1, 0, . . . , 0,−1− 1, 0, . . . , 0)

with the 1’s in the ` and (`+1)st positions and the −1’s in the (`+2i+1)st and (`+2i+2)th

positions and all other positions 0 (note the indices range from 1 to 2k).
Crucially, in order to form a linear combination of even-odd vectors summing to 0, we

must nullify each index in the sum. Each index appears at most once as a first and a second
index. Given our signing convention, even indices are positive as first indices and negative
as second indices. Odds indices are negative as first indices and positive as second indices.
Note that, since each index occurs at most once as a first index and a second index, the two
expressions cannot be exactly equal. In order to cancel out the positive contribution of i` to
the `th column, we need to add the term including i` as a second index. However, we then
must cancel out the contribution of i`−1 as a first index by including it as a second index.
To do that, we must include i`−2 as a first index. As such we see that in order to cancel out
the contribution of each necessary term, we need to include every term as both a first and
second index. However, by assumption, there is an odd-odd index. Therefore, not every
index has a row vector corresponding to it as a first and second index. Thus, we cannot
cancel out the contribution to every column and there is no nonempty linear combination
of vectors corresponding to the even-odd pair expressions that equals 0. We conclude that
these row vectors are linearly independent.
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Step 2: We will show that the row vectors corresponding to odd-odd pairs of indices cannot be
part of any nonempty linear combination of row vectors summing to zero (the proof follows
for even-even pairs as well).

Suppose indices ir and ir+2i are paired for r odd and i ≥ 1. The corresponding row
vector is of the form

(0, 0, . . . , 1, 1, 0, . . . , 0,−1− 1, 0, . . . , 0)

with 1’s in the rth and (r+ 1)st indices and −1’s in the (r+ 2i)th and (r+ 2i+ 1)st indices.
As before, to cancel out the contribution of ir, we need ir to appear as a second index
and contribute negatively. As a result, ir−1 must appear as a first index and contribute
negatively. Then we need ir−1 to appear as a second index and contribute positively to
cancel out that contribution. This requires ir−2 to appear as a first index and contribute
positively. However, this implies that all first odd indices must contribute positively and
all first even indices must contribute negatively to achieve total cancellation. We know this
cannot be the case as there is an odd-odd pair and one of the first odd indices must thus
contribute negatively. As such, odd-odd and even-even pairs cannot be a part of linear
combinations of the row vectors summing to 0.

We conclude that a linearly dependent family of row vectors must be a subset of the
even-odd pair row vectors if it exists. However, from Step 1, this is impossible. So, all of
the row vectors are linearly independent. Thus, if there are odd-odd or even-even index
pairs, the rank of the matrix is k and the nullity is k. Since the nullity of this matrix is
a upper bound on the degrees of freedom in this case, such pairings will not contribute in
the limit. The only remaining pairings are all odd-even. From Lemma 4.10 we conclude
M2k = k!.

�

We use in Theorem 4.12 that the moments of the limiting spectral distribution of the Circulant
Hankel ensemble are the same as the moments of a symmetrized Rayleigh distribution. More
broadly, a Rayleigh distribution is a Weibull distribution with fixed parameters. For our purposes,
denote the Weibull distribution with scale parameter λ and shape parameter k by the following:

f(x;λ, k) =
kxk−1

xλk
e−(x/λ)

k
, (4.17)

for x ≥ 0 and 0 otherwise. As our eigenvalue distributions are symmetric, we symmetrize the
distribution by replacing x with |x| and dividing through by 2 to retain∫ ∞

−∞

f(|x|;λ, k)

2
dx = 1. (4.18)

This symmetrization notably has no effect on the even moments of the distribution and zeroes
all the odd moments.

The (2n)th moment of a Weibull distribution f(x;λk) is given by

m2n = λ2nΓ(2n/k + 1). (4.19)

When this distribution is Rayleigh, i.e., k = 2 and λ = 1, the nth moment for n even is then n!.

Theorem 4.12. Let A denote an infinite sequence of values drawn from a distribution p with mean
0, variance 1, and finite higher moments. As N →∞ the limiting spectral measure of the circulant
Hankel random matrix ensemble converges almost surely to the limiting spectral distribution given
by the Mm’s, the symmetrized Rayleigh distribution:

f(x) = |x|e−x2 . (4.20)
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Proof. This follows by the exact same argumentation as in Section 6 of [HM05] with plus rather
than minus modulo N . �

We may then conclude that the limiting spectral distribution of iterated swirl ensembles on A
circulant Toeplitz and J an exchange matrix also converges almost surely to a symmetrized Rayleigh
distribution.

Corollary 4.13. Let G2N = swirl(A, J) for J the N ×N exchange matrix and A a random N ×N
circulant Toeplitz matrix. As N → ∞, the limiting spectral measure of this ensemble converges
almost surely to a symmetrized Rayleigh distribution.

Proof. From the observation that swirl(A, J) trivially has half of its rows repeated, G2N has only
N nontrivial, nonzero eigenvalues. The empirical spectral measure of the 2N × 2N matrix B2N is
thus given by the following equation:

µB2N
(x)dx :=

1

N

N∑
i=1

δ

(
x− λi(B2N )

2
√
N

)
dx. (4.21)

See Definition 2.2 for the derivation of the scaling factor. From Theorem 3.4, the kth moment of
the limiting spectral distribution of this ensemble equals

lim
N→∞

1

Nk/2+1
E[tr(Hk

N )]. (4.22)

As such, the kth moment in this case is exactly the kth moment of the limiting spectral distribution
of HN . The result then follows from Theorem 4.12. �

Remark 4.14. Note that, for an ensemble such that swirl(A,X) has no repeated rows, swirl(A,X)
would not have the same limiting spectral distribution as AX. Indeed, its moments would be 2k

times the moments of the limiting spectral distribution of AX. In the case of a Weibull distribution,
this would only increase the λ scaling parameter of the Weibull distribution by a factor of

√
2.

5. Future Work

The obvious next step is to study broader matrix ensembles related to swirl(A,X). A good
starting point is ensembles with X2 = I, due to the following theorem of Tao and Yasuda [TY02].

Theorem 5.1 (Tao-Yasuda [TY02], 2002). Let A and X be real symmetric matrices with X2 = I.

• AX = XA if and only if the spectrum of A equals the spectrum of XA up to sign.
• AX = −XA if and only if the spectrum of A equals the spectrum of XA multiplied by i.

In particular, if we choose ensembles A and X such that A and X are N × N real symmetric
matrices, X2 = I and AX = XA, then AX has all real eigenvalues.

Another interesting direction is study the even powers of non-symmetric swirl ensembles. Propo-
sition 3.9 provides a useful starting point for such investigations.

Finally, given that circulant Toeplitz and circulant Hankel matrices yield rare named, closed form
limiting spectral distributions, it seems likely that they possess some intrinsic, special properties.
Inspired by the work of [BB18, BB11, BHS11, MSTW15] on matrices with patterns governed by
link functions, we investigated circulant matrices with link functions along different diagonals, but
found the results disappointingly uninteresting. These results are summarized in Appendix A.

Appendix A.

When computing the moments of the limiting empirical spectral measures of our ensembles we
converted our problem of finding degrees of freedom of contributing summands in the trace to a
problem of calculating the nullity of a matrix. As a specific example, we can calculate the nth
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moment of the Hankel ensemble by looking at set partitions of {1, 2, . . . n} and calculating the rank
of matrices of the form

Mπ = (In − Pπ)Bn(1, 1), (A.1)

where In is the identity matrix, Pπ is a permutation matrix, and Bn(s, t) is a matrix with s in the
diagonal and t to the right of the diagonal. The matrix B4(s, t) is written below as an example.

B4(s, t) =


s t 0 0
0 s t 0
0 0 s t
t 0 0 s

 (A.2)

The permutation matrix Pπ corresponds to the particular matchings of indices in the summand
corresponding to equal matrix entries. The nullity of the matrix Mπ gives the degrees of freedom
of assignments of entries to groups that contribute in the case π. Iterating over all set partitions
and substituting into the formula in Definition 2.4, we can easily show certain configurations do
not contribute in the limit.

We generalize by considering matrices which are constant along certain circulant lines/diagonals.
We call these (s, t)-ensembles. Formally, an N ×N matrix is in the (s, t)-ensemble if

si+ tj ≡N sk + t` =⇒ aij = ak`. (A.3)

An example of a matrix within the (1,2)-ensemble is:

A4(1, 2) =


x1 x2 x3 x4
x3 x4 x1 x2
x1 x2 x3 x4
x3 x4 x1 x2

 (A.4)

Note how the equivalent entries, denoted here by entries of the same value, are spaced apart by
s = 1 row movements and t = 2 column movements. This creates the appearance of a matrix where
every s rows, the entries are horizontally permuted by t columns. From this, we obtain the idea of
slope as we describe the relationship between equivalent entries in (s, t)-ensemble patterns. This
generalization is the idea of a polynomial link function in the literature, except now modulo N (see
[BB18, BB11, BHS11, MSTW15]).

However, this generalization is insufficient if we intend to study symmetric matrices. Thus, we
strengthen our condition to

aij = amn ⇐⇒ si+ tj ≡N sm+ tn OR ti + sj ≡N tm + sn. (A.5)

This allows us to generalize the special behavior of both circulant Hankel and circulant Toeplitz
matrices.

Below we is a 4× 4 matrix that belonging to the (1, 1)-ensemble
x1 x2 x3 x4
x2 x3 x4 x1
x3 x4 x1 x2
x4 x1 x2 x3

 .
These represent the circulant Hankel matrices. Moreover, 4×4 matrices from the (1,−1)-ensemble
are of the form 

x1 x2 x3 x4
x4 x1 x2 x3
x3 x4 x1 x2
x2 x3 x4 x1

 .
These represent the circulant Toeplitz matrices.
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Inspired by the fact that both the circulant Hankel and circulant Toeplitz matrices admitted, we
generalize the structure of these matrices in the hopes of finding a broader class of matrices with
limiting empirical spectral distributions given by named probability distributions. To this end,
notice how the elements of the aforementioned families cascade through the matrix with ”slope”
±1. It is this notion of slope which we wish to generalize, and will be made more concrete in what
follows.

With this change in parameters, the same pattern of equivalent entries being s rows and t columns
away persists, and the main observable change is in the number of equivalence classes of matrix
entries that appear.

The elements at the indices generated by (s, t) and (t, s) form a group:

H = 〈(s, t), (t, s)〉 ≤ (Z/NZ)× (Z/NZ). (A.6)

Notice that H is a normal subgroup of (Z/NZ)× (Z/NZ). We want to understand the number
of cosets associated to ((Z/NZ)× (Z/NZ))/H, as this will give us the number of unique elements
within an N ×N matrix with the aforementioned rule.

In the simplest cases we get the matrices we studied in the main portion of the paper. When s
and t both equal 1, the resultant ensemble is Hankel, with the number of cosets increasing as N
increases. It is this positive slope that reflects the symmetry of the matrix that is lacking in the
ciruclant Toeplitz. Likewise, if s and t are units with opposite signs, i.e., s = 1 and t = −1, the
resulting matrices are all Toeplitz. Similarly, the number of cosets increases consistently with N .
The number of cosets is important to consider because it indicates the amount of variation within
the matrix, the more cosets there are, the fewer zero eigenvalues appear.

Now, as we vary s and t, new patterns arise in the family of matrices and consequently the
number of cosets. This variance is a function of the positioning of equivalent entries. With these
new s and t values, the spacing between the placement of the entries changes, and there are some
very interesting patterns to the numbers of cosets and the qualities of symmetry. However, among
all these patterns, it appears that the only ones that remain symmetric are circulant Hankel.
Besides those, we continue to observe circulant Toeplitz matrices appearing at certain intervals and
numbers of cosets.

For N coprime to s and t, we observe that when

s ≡ t (mod [H : (Z/NZ)× (Z/NZ)]), (A.7)

where [H : (Z/NZ) × (Z/NZ)] is the index of H in (Z/NZ) × (Z/NZ), the matrices yielded are
circulant Toeplitz. Alternatively, when

s ≡ −t (mod [H : (Z/NZ)× (Z/NZ)]) (A.8)

the matrices yielded are circulant Hankel.
However, we found that whenever we consider N×N matrices from the (s, t)-ensemble with s, t 6=

±1, then the limiting spectral distribution is uninteresting. This is because the number of cosets
for a matrix in this ensemble appears bounded by a constant times gcd((s+ t)(s− t), N). Indeed,
the matrix becomes a block matrix with many repetitions of a much smaller matrix, deferring its
spectral distribution to that smaller matrix ensemble. When s and t are units (up to sign), we find
computationally that the number of cosets is proportional to gcd(0, N), which is just N . Because
the number of cosets is proportional to N , the number of eigenvalues grows as we increase the size
of the matrix. However, in the other case, number of nonzero eigenvalues is fixed, preventing a new
distribution from arising.
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