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Abstract

An interesting open conjecture asks whether it is possible to walk to infinity along
primes, where each term in the sequence has one digit more than the previous. We
present different greedy models for prime walks to predict the long-time behavior of
the trajectories of orbits, one of which has similar behavior to the actual backtracking
one. Furthermore, we study the same conjecture for square-free numbers, which is
motivated by the fact that they have a strictly positive density, as opposed to primes.
We introduce stochastic models and analyze the walks’ expected length and frequency
of digits added. Lastly, we prove that it is impossible to walk to infinity in other
important number-theoretical sequences, such as perfect squares or primes in different
bases.

1 Introduction

1.1 Background

This paper is motivated by a simple question: is it possible to walk to infinity along the
primes? By this we mean starting with a prime number, appending one digit to it to form
a new prime, and repeat endlessly. Note that if each time we are appending to the left an
unlimited number of digits, the answer would be positive: one can prove this using Dirichlet’s
theorem for primes in arithmetic progression. Given any prime p other than 2 and 5, choose
some integer m so that 10m > p. As 10m and p are relatively prime, there are infinitely
many primes congruent to p (mod 10m). Any such prime is obtainable by appending digits
to the left of p. We can then repeat this process to walk to infinity.

Another intuitive interpretation is to append one digit at a time to the right. This greatly
reduces the likelihood of an infinite walk. For example, one may start the walk as 3, 31, 317,
and find that 317 cannot be extended further (by one digit to stay a prime). In fact, starting
with any one-digit prime, the longest “prime walk” (via appending one digit a time to the
right) always has length 8. For example, the optimal walk sequence starting with 3 is

{3, 37, 373, 3733, 37337, 373379, 3733799, 37337999}.
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To see this, we introduce the notion of a right truncatable prime, which is a prime that
remains prime after removing the rightmost digits successively. It is known that there are
exactly 83 right truncatable primes, with the largest one being 73939133 [1]. Notice that
every right truncatable prime with d digits corresponds to a prime walk of length d starting
with a one-digit prime (and vice versa), so the longest such walk has length 8.

Without the one-digit starting-point restriction, it is possible to have longer walks.

{19, 197, 1979, 19793, 197933, 1979339, 19793393, 197933933, 1979339333}

is a walk with step size 1 and length 9, while

{409, 4099, 40993, 409933, 4099339, 40993391, 409933919, 4099339193,

40993391939, 409933919393, 4099339193933}

is one of length 11. In particular, an exhaustive search shows that the above is the longest
prime walk with a starting point less than 1,000,000, tied with

{68041, 680417, 6804173, 68041739, 680417393, 6804173939, 68041739393,

680417393939, 6804173939393, 68041739393933, 680417393939333}.

On the other hand, some small primes do not have long walks, such as 11, whose longest
walk is {11, 113}, and 53, which fails immediately as 530 to 539 are all composite.

This suggests several questions.

� Is it possible to walk to infinity along the primes, where each prime in the sequence is
the result of appending one digit to the right of the previous? From the last observation,
we cannot do so by starting with a one-digit prime. Some remainder analysis shows
that if there is an infinite prime walk (in base 10), it eventually only appends 3’s and
9’s. To clarify, in view of remainders modulo 2 and 5, we can never append an even
number or a 5. Then consider remainders modulo 3. As 1 and 7 are both congruent
to 1 (mod 3), appending them would increase the remainder by 1. Appending 3 or 9
would leave the remainder unchanged. As we need to avoid 0 (mod 3) at all times,
we can append 1 or 7 at most once (twice when starting at 3, but 3 is already not a
promising starting point), and must only use 3’s and 9’s afterwards.

� What if, instead of appending just one digit, we append at most a bounded number of
digits to the right? More generally, what if the number of digits we append in moving
from pn to pn+1 is at most f(pn) for some function f tending to infinity? Unlike the
case of appending to the left, we cannot immediately deduce the answer by appealing
to Dirichlet’s theorem for primes in arithmetic progressions.

1.2 Stochastic models

Like most problems in number theory, the above questions are easy to state but resist
progress. We thus consider instead related random problems to try and get a sense of what

3



might be true. Such models have been used elsewhere with great success, from suggesting
there are only finitely many Fermat primes to the veracity of the Twin Prime and Goldbach
conjectures.

For example, recall the nth Fermat number is Fn = 22n + 1. The prime number theorem
says that the number of primes up to x is about x/ log x, and thus one often models a
randomly chosen number of order x as being prime with probability 1/ log x. This is the
famous Cramér model; while it is known to have some issues [10, pp. 507–514], it gives
reasonable answers for many problems. If we let {Xn} be independent Bernoulli random
variables where Xn = 1 with probability 1/ logFn, then the expected number of Xn’s that
are 1 (and thus the expected number of Fermat primes) is

E

[
∞∑
n=0

Xn

]
=

∞∑
n=0

1

log(22n + 1)
≈ 2.245, (1.1)

which is reasonably close to the number of known Fermat primes, five, coming from n ∈
{0, 1, 2, 3, 4}.

As primes are difficult to work with, we ask related questions of other sequences, such
as square-free numbers. From our heuristic model and numerical explorations, we do not
believe one can walk to infinity through the primes by adding a bounded number of digits to
the right; however, we believe it is possible for square-free numbers. For example, starting
with 2, we can get a really long walk just by always appending the smallest digit that yields
a square-free number. The following sequence only shows the first 17 numbers obtained by
the described algorithm, but, in fact, the sequence can be extended considerably.

{2, 21, 210, 2101, 21010, 210101, 2101010, 21010101, 210101010, 2101010101,

21010101010, 210101010101, 2101010101010, 2101010101010102,

210101010101021, 2101010101010210, 21010101010102101, . . .}.

While the fraction of numbers at most x that are prime is approximately 1/ log x, which
tends to zero, the fraction which are square-free tends to 1/ζ(2) = 6/π2, or about 60.79%.
(For more details, see Section 3.1.) Thus, there are tremendously more square-free numbers
available than primes. In particular, once our number is large, it is unlikely that any digit can
be appended to create another prime. Thus, it should be impossible to walk to infinity among
the primes by appending just one digit on the right. However, for square-free numbers, we
expect to have several digits that we can append and stay square-free, leading to exponential
growth in the number of paths.

Explicitly, we consider the following random processes. Given a sequence whose last term
is x, we want to assign an appropriate probability of being able to append an additional digit
to the right. We assume each term is independent of the previous, and the probability that
a digit can be appended to x is p(x). Thus, the probability will decrease as x increases for
primes but is essentially constant for square-free numbers. Furthermore, for prime walks,
we present two different models: the first one randomly selects a digit among 1, 3, 7, and 9
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and appends it to the number, while the second (refined) random model first checks what
digits yield a prime number in the next step and then randomly selects one from the set. We
assume all numbers with the same number of digits are equally likely to be in the sequence
for simplicity. For the primes base 10, we cannot append a digit that is even or a 5, whereas,
for square-free numbers, we cannot append a digit such that the sum of the digits is 9 or the
last two digits are a multiple of 4. One could consider more involved models taking these
into account.

We approximate that if a number has k digits, the number of primes of k digits in base
b is

bk

log bk
− bk−1

log bk−1
=
bk−1

log b
·
(
b

k
− 1

k − 1

)
=
bk−1((k − 1)b− k)

k(k − 1) log b
≈ (b− 1) · bk−1

k log b
.

As there are (b − 1)bk−1 such numbers, we assume the probability that a k−digit number
is prime is 1/(k log b), and assume that the events of two distinct numbers being prime are
independent.

Our main focus is the expected value and distribution of lengths of walks among these
random primes and random square-free numbers. Such probabilistic models have had re-
markable success in modeling other problems, such as the 3x+1 map and its generalizations
[5]. As remarked, this toy model has several issues. In particular, we assume the numbers
formed by appending the digits under consideration are all independent in our desired se-
quence. However, this yields a simple model with easily computed results on how long we
expect to be able to walk in the various sequences from different starting points.

In the rest of the paper, the expected walk length naturally refers to the expected value
of the length of the walk. Typically, there is either an explicit, finite collection (or sample)
of walks to experimentally take the expected length from, or a corresponding model for a
walk, under which the expected walk length can be computed theoretically from the model’s
definition.

1.3 Results

We compare the random model with observations of the actual sequences. We present the
two random models for prime walks and show that the refined one is very close to the actual
sequence. In particular, when considering prime walks with starting point less than a million,
the difference of expected lengths of the walks between our refined greedy model and the
real primes is 0.14, less than 7% of the expected length of the real prime walks of 2.07.

Furthermore, we note that the model becomes more precise as the starting point increases,
and the prime numbers become more sparse. As the starting point increases, the number
of primes from which we randomly choose to continue decreases. Then, we also look at
the frequency of the digits added at each step and see that the refined model approximates
the real world extremely well. Lastly, while we discuss infinite prime walks, we extend our
predictions for the case when we are allowed to insert a digit anywhere, rather than only to
the right, and verify them using the Miller-Rabin probabilistic test.
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On the other hand, when investigating square-free walks, we present the expected length
of our random models. Furthermore, we remark on the discrepancies in the frequencies of
added digits, and give the number-theoretic reasons for these discrepancies.

Although we use stochastic models for prime and square-free walks, there are some se-
quences and restrictive scenarios for which we can prove several results regarding walks to
infinity, for example, prime walks in base 2, 3, 4, 5, and 6, and on perfect squares.

Continuing this research, we studied walks on the Fibonacci sequence [8] and proved that
it is impossible to construct an infinite walk on the Fibonacci sequence by appending exactly
one digit at a time to the right. Moreover, we showed that all such walks have a length of
at most 2.

A related problem is the Gaussian Moat problem, which asks whether it is possible to
walk to infinity on Gaussian primes with steps of bounded length. Extended research has
been done on this. For example, Gethner, Wagon, and Wick in [4] and Loh in [7] proved
numerous results related to the problem. Some of the authors of this article examined the
behavior of prime walks in different number fields [6] and proved that it is impossible to
walk to infinity on primes in Z[

√
2] if the walk remains within some bounded distance from

the asymptotes y = ±x/
√

2.
The main results of the current study are as follows:
Prime walks

� Expressions for the expected prime walk lengths under multiple models are given by
(2.6), (2.7), (2.9) and (2.10);

� Comparison of the two prime walk models and the actual primes can be found in Tables
2, 3, 4, and 5;

� The expected lengths for prime walks obtained by inserting a digit anywhere are pre-
sented in Tables 7 and 8;

� A proof that it is impossible to walk to infinity on primes in base 2 by appending no
more than 2 digits is given in Theorem 2.5, while Lemmas 6.1, 6.2, 6.3, and 6.4 show
that it is impossible to walk to infinity on primes in base 3, 4, 5, and 6 by appending
one digit to the right.

Square-free walks

� The expected lengths of square-free walks given by our models are presented in Tables
9 and 11, while Theorem 3.2 shows that there exists an infinite random square-free
walk from most starting points;

� Table 10 presents the frequencies of the digits added in square-free walks, and Remark
3.13 explain why some digits appear more often than others;

� Theorems 3.7 and 3.8 give a tight bound on the expected length of square-free walks
in base 2 and 10 respectively, while Theorem 3.17 does the same for fourth-power-free
walks.
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Walks on perfect squares

� Lemma 4.1 shows that we cannot walk to infinity on perfect squares by appending one
digit to the right;

� Lemma 4.3 gives a condition on the terms of a walk to infinity on squares when ap-
pending more than one digit.

2 Modeling prime walks

2.1 Models

We now estimate the length of these random walks in base b, so there are b digits we can
append. If our number has k digits, then from §1.2, the probability a digit yields a successful
appending is approximately 1/(k log b), as we are assuming all possible numbers are equally
likely to be prime. For example, if b = 10, we are not removing even numbers or 5 or numbers
that make the sum a multiple of 3. Thus, the probability that at least one of the b digits
works is 1 minus the probability they all fail, or

1−
(

1− 1

k log b

)b
. (2.1)

The first stochastic model for primes can be described as follows. Each possible appended
number is independently declared to be a random prime with probability as described above.
Choose one digit uniformly at random and check if the obtained number is prime; if it is not,
stop and record the length; otherwise, continue the process. This algorithm can be imagined
as a greedy prime walk, as we are not looking further down the line to see which of many
possible random primes would be best to choose to get the longest walk possible. We call
this the greedy model. Furthermore, note that we may easily improve the model in base
10 by appending from {1, 3, 7, 9}. We discuss this improvement later and compare it to the
initial greedy model.

In order to compute the expected length of such a walk, starting at a one digit random
prime in base b, we count the probabilities in two different ways; note that the expected
length is just the infinite sum of the probabilities that we stop at the nth step times n.
For brevity, let An be the event that the walk has length at least n, and Bn the event that
the walk has length exactly n. It is obvious that Bi, Bj are pairwise independent and that
An = ∪∞i=nBi. Since the Bi’s are pairwise independent, we have that

P[An] = P[∪∞i=nBi] =
∞∑
i=n

P[Bi].

Therefore, we have the following system of equations:
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P[A1] = P[B1] + P[B2] + P[B3] + · · ·
P[A2] = P[B2] + P[B3] + · · ·
P[A3] = P[B3] + · · ·

...

(2.2)

Summing the above over all n we obtain

n∑
i=1

P[Ai] =
n∑
i=1

iP[Bi], (2.3)

which implies

∞∑
n=1

P[walk has length at least n] =
∞∑
n=1

nP[walk has length exactly n]. (2.4)

Note that the sum on the right is the expected walk length in our greedy model, while the
sum on the left equals

∞∑
n=0

n−1∏
k=1

(
1−

(
1− 1

k log b

)b)
, (2.5)

where each term in the sum represents the probability that there is a random prime with
which we can extend the walk for the first n − 1 steps, without considering the n−th step.
In particular, the expected length in base 10 when starting with a single digit is 4.690852.
Furthermore, by multiplying by the approximate number of primes with exactly r digits and
dividing by the expected number of primes with at most s digits, we get that the expected
length of a walk with a starting point at most s digits is

1
bs

s log b

(
s∑
r=1

(b− 1)br−1

r log b

(
∞∑
n=0

n−1∏
k=r

(
1−

(
1− 1

k log b

)b)))

=
s(b− 1)

bs

(
s∑
r=1

br−1

r

(
∞∑
n=0

n−1∏
k=r

(
1−

(
1− 1

k log b

)b)))
. (2.6)

We present in Table 1 the expected lengths as we vary the starting point and base. As
remarked earlier, one can view this model as a greedy random prime walk because we always
take another step if possible, with no regard to how many steps we may be able to take
afterward; thus, all decisions are local.

Note that the expected length of the walk in base 10 starting with a one-digit number,
4.22, is different than the one we computed earlier, 4.69. This is because we multiplied 4.69
by the approximation (b− 1)/b; i.e., 0.9. More importantly, note that in base 10 we can
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only append {1, 3, 7, 9} and hope to stay prime since primes greater than 5 are odd and not
divisible by 5.

This suggests a simple improvement to the model base 10: we only allow the four digits 1,
3, 7, and 9 to be appended on the right. Henceforth, we will only use this improved version.
To do this, we have to make a couple of changes in the formula (2.6): first, we replace the
numerator of 1/(k log b) with 10/4, as we have the same number of primes despite having
less freedom; furthermore, instead of raising 1− 10/(4k log b) to the b-th power (in this case,
10), we raise it to the fourth power as only 4 options are left. We shall call this the greedy
model. The expected walk length under this model is presented in Table 1 as 10’. Modifying
our earlier analysis, we obtain the formula for the expected length of the greedy model in
base b. Here φ(n) is the totient function.

s(b− 1)

bs

(
s∑
r=1

br−1

r

(
∞∑
n=0

n−1∏
k=r

(
1−

(
1− b

φ(b)k log b

)φ(b))))
. (2.7)

Most number of digits of starting point

1 2 3 4 5 6 7

B
as

e

2 5.20 9.90 11.62 11.45 10.40 9.08 7.79

3 5.05 7.75 7.60 6.53 5.40 4.49 3.80

4 4.87 6.55 5.86 4.79 3.92 3.29 2.85

5 4.71 5.79 4.92 3.96 3.25 2.78 2.45

6 4.57 5.27 4.34 3.48 2.89 2.49 2.22

7 4.46 4.89 3.95 3.17 2.65 2.31 2.08

8 4.37 4.59 3.67 2.95 2.49 2.19 1.98

9 4.29 4.36 3.45 2.79 2.37 2.09 1.91

10 4.22 4.17 3.28 2.66 2.28 2.20 1.85

10’ 4.54 4.55 3.55 2.83 2.38 2.09 1.90

Table 1: Expected length of prime walks given by our formula, 10’ is the refined greedy
model.

Our second model is the refined greedy model. At each step, we check whether appending
1, 3, 7, and 9 to the right yields a prime. If there are multiple digits that yield primes, the
model randomly selects one of them and continues the process. Lastly, in the primes model,
we use backtracking to find the longest walk starting at a prime.
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Start has x digits 1 2 3 4 5 6

greedy model 1.89 1.60 1.41 1.30 1.25 1.20

refined greedy model 4.33 3.37 2.76 2.37 2.08 1.90

primes 8.00 4.71 3.48 2.71 2.28 2.03

Table 2: Comparison of the expected walk lengths. The refined greedy model is significantly
closer to the actual value compared to the greedy one.

While Table 1 presents the expected length of prime walks given by formulas (2.6) and
(2.7), the Tables 2, 3, 4, 5, and 6 show the data obtained by computer simulations on our
previously described models.

2.2 Results and comparison of models

According to the random probabilistic model of prime walks in §2.1, the expected length of
a greedy prime walk, starting with a single digit prime in base 10, is 4.69. We compare this
heuristic estimate with the primes.

We present the results of the greedy and refined greedy models in the following tables,
which show the results of our computer simulations. The refined greedy model is rather
close to the real data whereas the greedy one still predicts some behaviors of the walks. The
data for the actual primes is computed by the program that exhaustively searches for the
longest prime walk given a starting point. First, let us observe how the number of digits of
the starting point affects the expected walk length of the models in Table 2.

We consider different starting points to eliminate small number bias. As a result, the
above table shows that the expected length of the walks decreases as the starting point
increases in both our random model and in the real world.

Furthermore, we analyze the frequency of digits added in the prime walks, both for the
actual primes and in our models. In particular, we remark that it was expected that 3 and 9
appear more often than 1 and 7. This is because 1 and 7 can never be appended if we start
with a prime that is 2 (mod 3), and at most one number in our prime walk can be 2 (mod 3).
We present the frequency of digits in Table 4 when the starting point is less than 1,000,000.
As expected, in both our models and the real prime walks, the number of appended 3’s is
very close to the number of appended 9’s while the number of appended 1’s is very close to
the number of appended 7’s. One surprising result is that there appear significantly more
7’s in the random models than in the real prime walks. We observe how the starting point
affects the frequency of the digits added in Tables 3, 4, and 5.

As mentioned above, we observe that the number of appended 3’s and 9’s is larger than
the number of appended 1’s and 7’s. This is due to the fact that by modulo 3 considerations,
we can only append 3 or 9 to a number 2 (mod 3). In particular, this means that when
starting with a prime 1 (mod 3), we can only append 1 or 7 at most once in our walk,
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whereas there are no such constrains for 3 and 9. We present our models when starting
with 2 (mod 3) in the following section. Furthermore, this bias will be seen in our models.
Indeed, if a number if composite after appending a digit, the digit will not be counted for.
As the “probability” of a number being prime after appending 3 or 9 is higher than that of
being prime after appending 1 or 7, the frequency of 3’s and 9’s will be higher than that of
1’s and 7’s, as can be seen in Tables 3, 4, and 5.

Number of appended 1’s 3’s 7’s 9’s

random model 15.6% 33.0% 19.9% 31.3%

refined greedy model 11.8% 36.7% 14.2% 37.1%

primes 12.1% 40.2% 11.1% 36.5%

Table 3: Frequency of added digits in prime walks with starting point less than 100,000.

Number of appended 1’s 3’s 7’s 9’s

random model 15.4% 32.7% 18.5% 33.2%

refined greedy model 12.5% 35.9% 14.7% 36.8%

primes 13.1% 38.8% 12.2% 35.6%

Table 4: Frequency of added digits in prime walks with starting point less than 1,000,000.

Number of appended 1’s 3’s 7’s 9’s

random model 16.3% 32.3% 18.5% 32.8%

refined greedy model 12.7% 35.8% 14.8% 36.4%

primes 13.3% 38.6% 12.4% 35.5%

Table 5: Frequency of added digits in prime walks with starting point greater than 100,000
but less than 1,000,000.

2.3 Starting with 2 (mod 3)

In this subsection, we compare our models with the primes when our starting number is 2
(mod 3). This experiment is motivated because we can only append 3 or 9 to such a prime
while hoping to remain prime; any other digit would lead to a composite number divisible
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by 2, 3, or 5. Therefore, we refine our model only to append 3 or 9. In this case, the walks
are shorter, but the model predictions are closer to the primes. Note that the longest prime
walk with starting point 2 (mod 3) less than 1,000,000 has length 10, and is

{809243, 8092439, 80924399, 809243993, 8092439939, 80924399393, 809243993933,

8092439939333, 80924399393333, 809243993933339}.

Since there are now only two possible digits to append, instead of four, the expected length
of the walk is given by

9s

10s

(
s∑
r=1

10r−1

r

(
∞∑
n=0

n−1∏
k=r

(
1−

(
1− 10

2k log 10

)2
)))

. (2.8)

Start has x digits 1 2 3 4 5 6

greedy model 2.83 1.94 1.64 1.45 1.34 1.28

refined greedy model 3.49 3.22 2.43 2.04 1.77 1.62

primes 8.00 3.81 2.64 2.12 1.81 1.64

Table 6: Expected length of the walks with starting point 2 (mod 3).

We compare our model (2.8) to the primes in Table 6. The refined greedy model approx-
imates the real world extraordinary well, especially as the initial number increases. This
is due to primes’ sparseness, as usually at most one of {1, 3, 7, 9} can be appended as the
number increases.

2.4 Other walks along primes

Since the probability of a given number being prime decreases the larger it gets, it seems
quite reasonable, albeit extremely difficult to prove, that walking to infinity along the primes
by appending or prepending digits is impossible. We might consider other sequences. For
example, is it possible to walk to infinity along the primes by inserting digits anywhere? For
some quick intuition, we can estimate the probability that a number n is prime at 1/log n.
In base b, n has about logb n digits, so there are about b logb n possible numbers reachable
by adding digits anywhere to n. This means that the expected number of primes reachable
from n is about b logb n/log n = b/log b. This is quite interesting because it does not depend
on n, strongly suggesting that walks to infinity are possible.

Now that we have an intuition on what may happen if we are allowed to append a digit
at a time anywhere, we follow the idea of §2.1 to create a model to find the expected length
of prime walks in this case.
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Similar to (2.5), the expected walk length for an m−digit number can be written as

∞∑
n=1

n−1∏
k=m

(
1−

(
1− 1

k log b

)b(k+1)−1−k)
. (2.9)

Notice that the only difference between (2.5) and (2.9) is the exponent of 1− 1/(k log b).
The number b(k+1)−1−k is obtained by considering how many distinct numbers we could
produce by adding a digit anywhere in the k-digit number in base b. For example, adding
another 4 right before of after the existing 4 in 3141 yields the same number, so we do not
count that twice. However, if the number has repeated digits, our approximation would
double count some cases; for example, adding 1 before, in between the 1’s, or after 11 would
yield the same result. As the number of digits of the number increases, the number is more
likely to have a repeated digit, hence we have to admit this approximation has some issues.
In particular, it is very poor when the base is small.

By computing this expression, we have the expected walk length for the basic case at
b = 10, k = 1, which is 61.57. This number is tremendously larger than an expected length of
4.69 for appending on the right only. More interestingly, as the base increases the expected
value obtained by this expression diverges. Results for different bases, b, and different starting
lengths, k, are presented in Table 7.

Again, by multiplying by the approximate number of primes with exactly r digits and
dividing by the expected number of primes with at most s digits, we get that the expected
length of a walk with starting point at most s digits is about

s(b− 1)

bs

( s∑
r=1

br−1

r

( ∞∑
n=1

n−1∏
k=m

(
1−

(
1− 1

k log b

)b(k+1)−1−k)))
. (2.10)

The expected walk lengths with starting length up to some s for different bases b is
shown in Table 8. These values also respect the pattern seen in Table 7 that higher bases
have larger expected walk lengths.

To show the existence of long walk, we consider the Miller-Rabin probabilistic test and
confirming the data with SageMath, we found a prime walk of length 189 shown below We
would like to thank the reviewer for recommending this.

2.5 Some proofs related to prime walks

As mentioned in the introduction, it is possible to walk to infinity on primes by appending
an unbounded number of digits to the left at each step. Dirichlet’s theorem on arithmetic
progressions states that given two positive coprime integers a and d, there are infinitely many
primes congruent to a (mod d). Thus given an initial prime p0 other than 2 or 5, we can take
n such that 10n0 > p0, and find a prime p1 such that p1 ≡ p0 (mod 10n0). The congruence
modulo 10n0 corresponds to the left-appending of some number of digits. This gives us the
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Starting length

1 2 3 4 5 6 7 8 9 10

B
as

e
2 6.22 6.74 5.89 5.35 4.99 4.73 4.54 4.40 4.28 4.18

3 10.01 9.01 8.25 7.74 7.37 7.09 6.88 6.71 6.58 6.46

4 13.32 12.33 11.55 10.99 10.58 10.26 10.01 9.80 9.63 9.49

5 17.56 16.57 15.76 15.16 14.69 14.33 14.03 13.79 13.58 13.40

6 22.90 21.90 21.07 20.42 19.90 19.49 19.15 18.87 18.63 18.42

7 29.59 28.59 27.73 27.04 26.48 26.03 25.65 25.32 25.05 24.81

8 37.96 36.97 36.08 35.36 34.76 34.26 33.85 33.49 33.17 32.90

9 48.45 47.45 46.55 45.79 45.16 44.63 44.17 43.78 43.43 43.13

10 61.57 60.57 59.65 58.87 58.21 57.64 57.15 56.72 56.35 56.01

Table 7: Expected walk length for small starting lengths evaluated up to n = 1000.

next step in our walk; we can now seek a prime of the form p1 (mod 10n1), and the process
continues indefinitely unto infinity.

We now show that this statement’s counterpart is also true, namely that it is possible to
walk to infinity on primes by appending an unbounded number of digits to the right.

Theorem 2.1. Let p0 be a prime. Then there exists a sequence of infinitely many primes
p0, p1, . . . such that for all i ≥ 1, pi is equal to 10ni · pi−1 + ki, for positive integers ni and ki
with ki < 10ni.

Proof. We can restate our goal as follows: given an arbitrary but fixed prime p, we must
show that there exists an n such that there is a prime between 10n · p and 10n · p+ 10n− 1 =
10n(p+ 1)− 1, i.e., in the interval [p10n, (p+ 1)10n).

To do so, we note that for a given p, and for a fixed but arbitrary real r such that
0 < r < 1, there exists an n such that

p < 10
1−r
r
n − 1. (2.11)

Moreover, given such an n, then it is possible to find a real, positive x such that

p10n = x− xr. (2.12)

Then, using first (2.11) and then (2.12), we have that

p10n < 10
n
r − 10n

x− xr < 10
n
r − 10n.

14



s

1 10 100

B
as

e

2 3.11 5.08 3.37

3 6.67 6.97 5.36

4 9.99 9.94 7.97

5 14.05 13.86 11.39

6 19.08 18.90 15.84

7 25.36 25.33 21.59

8 33.22 33.49 29.00

9 43.07 43.79 38.50

10 55.41 56.76 50.61

Table 8: Expected walk length for starting lengths up to s.

This second inequality implies that xr < 10n, for when xr = 10n, then x− xr = 10
n
r − 10n,

and moreover, x− xr is strictly increasing (once it is positive).
Given that xr < 10n, then x− xr > x− 10n. This means that p10n > x− 10n, and so

x < (p+ 1)10n. (2.13)

All that remains is finding an r such that there is always a prime in the interval [x− xr, x].
Results of this nature are plentiful; most recently, Baker, Harman, and Pintz show that a
value of r = 0.525 suffices for x greater than some lower bound x0. Because there exists a
prime in the interval [x−x0.525, x] for x > x0, then using our definitions above there must be
a prime contained in the interval [p10n, (p+ 1)10n). Note that in order to guarantee x > x0,
it is necessary to choose an n such that n > log10((x0 − xr0)/p) (and such that (2.11) holds
as well).

That there is a prime in [p10n, (p + 1)10n) implies that there are n and k such that
p10n + k is prime, with k < 10n. This gives the next prime in our sequence, which thus goes
on infinitely.

Definition 2.2. An extended Cunningham chain is the infinite sequence e1, e2, . . ., generated
by an initial prime p and the relation ek = 2ek−1 + 1 (for k ≥ 1 and e0 = p). In other words,

15



we have that

e0 = p,

e1 = 2p+ 1,

e2 = 4p+ 3,

...

ei = 2ip+ 2i − 1,

...

We show that such extended Cunningham chains, no matter their initial prime p, contain
a sequence of consecutive composite ei’s of arbitrarily length. To do so, we begin with the
following lemma.

Lemma 2.3. Given k ≥ dlog2(p+ 1)e+ 2, then 2k − (p+ 1) is not a power of 2.

Proof. Suppose that there exist k and n such that 2k − (p + 1) = 2n. Then it is the case
that 2k − 2n = p + 1. Moreover, we have that 2k − 2n ≥ 2k − 2k−1 = 2k−1. We can thus
find a solution for n only if k < dlog2(p+ 1)e+ 2, for if we take k ≥ dlog2(p+ 1)e+ 2, then
2k−1 ≥ 2dlog2(p+1)e+1 > p+ 1. We thus have that p + 1 = 2k − 2n ≥ 2k−1 > p+ 1, which is a
contradiction.

With this result in hand, we move on to the main theorem.

Theorem 2.4. In every such extended Cunningham chain, given any n ∈ Z+, there is i ∈ Z+

such that ei, ei+1, . . . , ei+n−1 are composite.

Proof. Set k = dlog2(p+ 1)e + 2, and let us consider i = c · φ(2k − p − 1) · φ(2k+1 − p −
1) · · ·φ(2k+n−1 − p− 1), where c ∈ Z+ is arbitrary. Moreover, for each of 2k+j − p− 1 (with
0 ≤ j ≤ n− 1), take an odd positive divisor dj | 2k+j − p − 1 that is greater than 1. We
can find such dj because we have chosen k via Lemma 2.3 such that none of 2k+j − p− 1 are
powers of 2. Because p + 1 ≡ 2k+j (mod 2k+j − p− 1), it is also the case that p + 1 ≡ 2k+j

(mod dj). Thus we have that

ei−(k+j) = 2i−(k+j)(p+ 1)− 1 ≡ 2i−(k+j)2k+j − 1 ≡ 2i − 1 (mod dj). (2.14)

However, as 2 is coprime with dj, Euler’s theorem gives 2φ(dj) ≡ 1 (mod dj). Moreover, it is
the case that φ(dj) | φ(2k+j − p− 1), since dj | (2k+j − p− 1). Hence we have that

ei−(k+j) ≡ 2i − 1 ≡ 2c·φ(2
k−p−1)·φ(2k+1−p−1)···φ(2k+n−1−p−1) − 1

≡ (2φ(dj))Kj − 1 ≡ 0 (mod dj), (2.15)

such that Kj is an integer (Kj = c · [φ(2k − p− 1) · · ·φ(2k+n−1 − p− 1)]/φ(dj)).

We have thus show that ei−k, ei−k−1, . . . , ei−(k+n−1) are composite. Notice that with c
sufficiently large, i can be made greater than k+ n− 1, allowing us to find a subsequence of
n composite elements for any n. Renaming the indices gives the desired result.
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From here we can obtain the following theorem, which relates to the broader problem of
walking to infinity on primes.

Theorem 2.5. It is impossible to walk to infinity on primes in base 2 by appending no more
than 2 digits at a time to the right.

Proof. Given one or two digits, we can append either 0, 1, 00, 01, 10, or 11. For parity
reasons, one cannot append any of 0, 00, or 10.

Appending 012 to a prime p gives 4p+ 1. If p ≡ 2 (mod 3), then 4p+ 1 is divisible by 3
and thus not prime. Moreover, given p ≡ 2 (mod 3), then 2p + 1 and 4p + 3 are equivalent
to 2 (mod 3) as well. Thus if p ≡ 2 (mod 3), we can walk to infinity from that point onward
only by appending 12 or 112.

If p ≡ 1 (mod 3), then 4p+ 1 ≡ 2 (mod 3). This brings us to the above case, now applied
to 4p + 1. No matter the value of our initial prime p, we can therefore append 01 at most
once in our walk to infinity. It is thus sufficient to consider the point at which we append
only 1 or 11 to eternity. We can then apply Theorem 2.4 with n = 2. Namely, continuously
appending 1 to a prime in a base 2 creates a generalized Cunningham chain, which we know
contains prime gaps of size 2; hence there will be some point in the prime sequence for which
2p+ 1 and 4p+ 3 are both composite, and we can walk no further.

Applying the ideas of the above results allows us to make observations in bases 3, 4, 5,
and 6. We thank the reviewer for his or her comments on pointing out the proofs for bases
3 and 6. The proofs for base 3, 4, 5, and 6 can be found in the Section 6

In conclusion, the use of stochastic models suggests that there is no infinite prime walk
given adding one digit at a time to the right, but that it is likely to have ones if we can
add a digit anywhere. On the other hand, for other less restrictive problems, namely, if
we can walk to infinity given appending an unbounded number of digits to the right and if
appending a digit at a time in base 2, 3, 4, 5, and 6, we show the former case is possible, but
the latter is not.

3 Modeling square-free walks

3.1 Model

We now turn our attention to square-free walks whose density is positive, contrasting to
a zero density sequence like primes. We thus expect that it is possible to walk to infinity
using square-free numbers. However, to verify our conjecture, one must append the digits
carefully. For example, 231546210170694222 is a square-free number such that successively
removing the rightmost digit always yields a square-free number, but appending any digit to
the right yields a non-square-free one. We now present our model for estimating the length
of square-free walks.

Definition 3.1. A square-free integer is an integer that is not divisible by any perfect square
other than 1.
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If Q(x) denotes the number of square-free positive integers less than or equal to x, it is
well-known [9] that

Q(x) ≈ x
∏

p prime

(
1− 1

p2

)
= x

∏
p prime

1

1 + 1
p2

+ 1
p4

+ · · ·
=

x

ζ(2)
=

6x

π2
. (3.1)

Our first stochastic model for square-free numbers is defined as follows. Each possible
appended number is independently declared to be a square-free number with probability
p = 6/π2. Choose one digit uniformly at random and append it: if the obtained number is
not square-free, stop and record the length; otherwise, continue the process. One can view
this algorithm as a greedy square-free walk because we are not looking further down the line
to see which of many possible random square-free would be best to choose to get the longest
walk possible. Henceforth, we will call this the greedy model. Still, comparing the greedy
model for square-free walks with that for prime walks, the square-free walks are longer than
prime walks. We present the comparison in Table 9.

Start has x digits 1 2 3 4 5 6

greedy square-free walk 2.81 2.76 2.72 2.71 2.71 2.70

greedy prime walk 2.83 1.94 1.64 1.45 1.34 1.28

Table 9: Comparison of the expected length of the walks in base 10.

To gain more understanding in the behavior of square-free walks, we first find the prob-
ability that the square-free walk is of length exactly k. Let X denote the number of steps in
our random square-free walk. Then

Pr[X = k] = pk(1− p) =
6k(π2 − 6)

π2k+2
. (3.2)

Since
∞∑
k=1

Pr[X = k] =
∞∑
k=0

(
pk − pk+1

)
= 1 (3.3)

and Pr[X = k] ≥ 0 for all k, this is a probability space; furthermore, X is a geometric
random variable. Using the fact

∞∑
k=0

pk =
1

1− p
(3.4)

and differentiating, we obtain

∞∑
k=0

kpk−1 =
1

(1− p)2
⇒

∞∑
k=0

kpk(1− p) =
p

1− p
. (3.5)
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Therefore, we find the expected length of square-free walks as

E[X] =
∞∑
k=0

k Pr[X = k] =
∞∑
k=0

kpk(1− p) =
p

1− p
=

6

π2 − 6
≈ 1.55. (3.6)

Similarly, we have that

∞∑
k=0

kpk =
p

(1− p)2
⇒

∞∑
k=0

k2pk(1− p) =
p(p+ 1)

(1− p)2
. (3.7)

Therefore,

Var(X) = E[X2]− (E[X])2 =
p(p+ 1)

(1− p)2
− p2

(1− p)2

=
p

(1− p)2
=

6π2

(π2 − 6)2
≈ 3.95. (3.8)

Given a square-free number, let us now compute the probability that the longest walk
starting with it is at most k. Let Pi be the probability that the longest square-free walk has
length at most i. In particular, P1 is the probability that the longest square-free walk has
a length of exactly one, i.e., the walk is the starting point. In other words, appending any
digit yields a non-square-free number, so

P1 = (1− p)10 =
(π2 − 6)10

π20
≈ 8.5835× 10−5. (3.9)

Now, consider the probability that the longest square-free walk has length at most 2.
Indeed, there are 10 possible cases where exactly i digits work in the first appending, i.e.,
0 ≤ i ≤ 9. Then, by using (3.9) we have that

P2 = P1 +

(
10

1

)
(1− p)9pP1 +

(
10

2

)
(1− p)8(pP1)

2 + · · ·+
(

10

10

)
p10P 10

1

=

(
10

0

)
(1− p)10 +

(
10

1

)
(1− p)9pP1 + · · ·+

(
10

10

)
p10P 10

1

=
10∑
i=0

(
10

i

)
(1− p)10−i (pP1)

i = (1− p+ pP1)
10 ≈ 8.5950× 10−5. (3.10)

To compute P3, let i denote the number of digits that we can append in the first step
while staying square-free. Then, there are 10i possible numbers after the second appending.
Like P2, we consider cases when there are exactly 0 ≤ k ≤ 10i numbers work. Note that,
when i = 0 or j = 0, we have a walk of length 1, 2 respectively, so such cases are included in
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P2. Therefore, by (3.9) and (3.10), we have that

P3 = P2 +
10∑
i=1

(
10

i

)
pi(1− p)10−i

(
10i∑
k=1

(
10i

k

)
(1− p)10i−k(pP1)

k

)

= P2 +
10∑
i=1

pi(1− p)10−i
(
((1− p) + pP1)

10i − (1− p)10i
)

= P2 +
10∑
i=1

pi(1− p)10−i
(
P i
2 − P i

1

)
= P2 +

10∑
i=1

pi(1− p)10−iP i
2 −

10∑
i=1

pi(1− p)10−iP i
1

= P2 + ((1− p+ pP2)
10 − (1− p)10)− ((1− p+ pP1)

10 − (1− p)10)
= (1− p+ pP2)

10 ≈ 8.5950× 10−5. (3.11)

The next step is to compute Pk which can be done by induction. Suppose that, for
2 ≤ m ≤ k, Pk = (1 − p + pPk−1)

10. Similar to the idea of computing P2 and P3, we have
that

Pk+1

= Pk +
10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1=1

(
10ak−2
ak−1

)
pak−1(1− p)10ak−2−ak−1

10ak−1∑
ak=1

(
10ak−1
ak

)
pak(1− p)10ak−1−akpak1

= Pk +
10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1

(
10ak−2
ak−1

)
pak−1(1− p)10ak−2−ak−1

(
(1− p+ pP1)

10ak−1 − (1− p)10ak−1
)

= Pk +
10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

10a1∑
a2=1

(
10a1
a2

)
pa2(1− p)10a1−a2 · · ·

10ak−2∑
ak−1

(
10ak−2
ak−1

)
pak−1(1− p)10ak−2−ak−1

(
P
ak−1

2 − P ak−1

1

)
. (3.12)

By repeating the same procedure as in calculating P3, we are able to reduce the above
expression to
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Pk+1 = Pk +
10∑
a1=1

(
10

a1

)
pa1(1− p)10−a1

(
P a1
k − P

a1
k−1
)

= Pk + (1− p+ pPk)
10 − (1− p+ pPk−1)

10

= (1− p+ pPk)
10, (3.13)

which holds true for any positive integer k ≥ 1.
We now prove that Pk approaches some constant as k →∞. Using (3.13), we have that

Pk = (1− p+ pPk−1)
10 ≥ 0.

Furthermore, if Pk−1 ≤ 1/2, then

Pk ≤
(

1− p+
p

2

)10
=

(
1− 3

π2

)10

< 0.710 <
1

2
.

Then, by induction, when the base case is P1 ≈ 8.5835× 10−5 (from (3.9)), we have that
Pk ≤ 1/2 for any k ≥ 1. Lastly, note that P2 > P1, and using strong induction and (3.13),
we get that

Pk+1 = (1− p+ pPk)
10 ≥ (1− p+ pPk−1)

10 = Pk.

In other words, (Pk)k≥1 is an increasing sequence. By the monotone convergence theorem,
we get that there exists l ∈ [0, 1/2] such that

lim
k→∞

Pk = l.

Sending k →∞ in (3.13), we get that

l = (1− p+ pl)10.

Using Mathematica, we see that the only rational root in the range [0, 1/2] is

l ≈ 8.5950× 105. (3.14)

The limit of Pk, or l, stands for the probability that, starting at some fixed number x, there
is a bounded limit N , which can be very large, that no square-free walk can exceed length
N . That is, if the limit of Pk is as small as 8.5950× 105, it implies the following theorem.

Theorem 3.2. Given we append one digit at a time, the probability that there is an infinite
random square-free walk from any starting point is as least 1− l ≈ 0.99991. In other words,
there is such a walk from almost any starting point.
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Remark 3.3. While this implies with high probability that we can always walk to infinity on
square-free numbers, there exist square-free numbers such that you cannot. For example,
231546210170694222 is a square-free number, but if we append any digit to the right we get
a non-square-free number. In particular, if we delete any number of digits to the right we
get a square-free number as well, so this proves we can reach a stopping point when starting
with 2 and append digits to the right randomly. Furthermore, our example implies that
the walk is not constructive, i.e., if we start with a square-free walk and append a digit at
random that yields a new square-free number, we might reach a point where we could not
move forward.

3.2 Results

From §3.1, according to the greedy model of square-free walks, the expected length of square-
free walks is 6/(π2 − 6) in any base. In reality, however, this is not always the case.

Dropping the probabilistic assumption about the square-free numbers, we assume that
a random square-free walk starts with the empty string, then randomly selected digits are
appended to the right, and the process stops when the number obtained is not square-free.
We let Eb denote the expected length of such a walk in base b, and SF the set of square-free
numbers.

We first introduce some notations.

Definition 3.4 (Right Truncatable Square Free). We set RTSFb to be the set of square-
free numbers base b such that if we successively remove the rightmost digit, each resulting
number is still square-free. Equivalently, let bk−1 ≤ x < bk. Then, x ∈ RTSFb if and only if
for all ` ∈ {0, 1, . . . , k − 1} we have bx/b`c is square-free.

Definition 3.5. Define
Lb,k :=

∣∣RTSFb ∩ [bk−1, bk)
∣∣ . (3.15)

Thus Lb,k counts the number of right-truncatable square-free numbers with exactly k
digits in base b.

Lemma 3.6. We have

Eb =
∞∑
k=1

Lb,k
bk

. (3.16)

Proof. The proof follows from identical reasoning as that in proving the equivalent formula,
(2.4), for the primes.

Theorem 3.7. We have E2 satisfies the following bounds:

2.31435013 <
636163720502

238
≤ E2 ≤

636163930777

238
< 2.31435090. (3.17)
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Proof. A straightforward calculation yields (L2,n)1≤n≤40 = (1, 2, 3, 5, 7, . . . , 168220).
Let

S1 :=
40∑
i=1

L2,i

2i
=

318081860251

237
, (3.18)

S2 :=
∞∑
i=41

L2,i

2i

and note that
S1 + S2 = E2. (3.19)

Moreover, let LO2,k =
∣∣RTSF2∩ [2k−1, 2k)∩(2Z+1)

∣∣ be the number of odd right truncatable

square-free binary numbers of length-k binary numbers, and similarly LE2,k =
∣∣RTSF2 ∩

[2k−1, 2k)∩2Z
∣∣ the even ones. By modulo 4 considerations, we have that LO2,k+1 ≤ LO2,k+LE2,k

and LE2,k+1 ≤ LO2,k.

S2 =
LO2,41 + LE2,41

241
+
∞∑
i=41

LO2,i+1 + LE2,i+1

2i+1
≤

LO2,41 + LE2,41
241

+
∞∑
i=41

2LO2,i + LE2,i
2i+1

=
LO2,41 + LE2,41

241
+
S2

2
+
LO2,41
242

+
∞∑
i=41

LO2,i+1

2i+2

≤
3LO2,41 + 2LE2,41

242
+
S2

2
+
∞∑
i=41

LO2,i + LE2,i
2i+2

≤
5LO2,40 + 3LE2,40

242
+

3S2

4
.

Thus, we have

S2 ≤
5LO2,40 + 3LE2,40

240
≤ 5L2,40

240
=

210275

238
. (3.20)

As clearly S2 ≥ 0,
40∑
i=1

L2,i

2i
≤ E2 =

40∑
i=1

L2,i

2i
+ S2. Substituting the numerical results

from (3.18) yields the bound.

Although we do not use the base b = 2 model for square-free walks anywhere else, it is
listed here since the proof of this theorem can be adapted to other bases.

Theorem 3.8. 2.63297479 ≤ E10 ≤ 2.720303756.

Proof. The proof is similar to that of Theorem 3.7. We use

(L10,n)1≤n≤8 = (6, 39, 251, 1601, 10143, 64166, 405938, 2568499), (3.21)

and the inequalities
LO10,k+1 ≤ 5LO10,k + 5LE10,k
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and
LE10,k+1 ≤ 3LO10,k + 2LE10,k.

As stated earlier, the same proof can be adapted for any base b = 3, 4, . . . , 9. This method
fails for larger bases due to computational reasons.

3.3 Discussion of the behaviors of square-free walks

We first introduce some notation. Given a number x and a digit i in base b, xi = b · x + i;
in other words, we append i to the right of x. The following are some remarks relating to
some behaviors of square-free walks.

Remark 3.9. The fact that E10 > 6/(π2 − 6) was expected, since we know that xi is more
likely to be square-free if x is square-free. This is due to the fact that if x is square-free,
then x 6≡ 0 (mod p2) for every prime p. In particular, this implies that [x0, x9] can be any
segment of Z/p2Z except [0, 9], hence the chance that xi 6≡ 0 (mod p2), ∀i ∈ [0, 9] is slightly
bigger. Notice that this behavior is consistent for any base b.

Remark 3.10. A computer program yields that when x ∈ {1, 2, . . . , 1,000,000} is square-free,
the probability of xi is also square-free is around 0.5944, and when x ∈ {1, 2, . . . , 1,000,000}
is not square-free, the probability of xi being square-free is around 0.5669. Note that both
these values are larger than 6/π2. This is because small numbers have a larger chance of
being square-free. Furthermore, when x is smaller, i.e., x ∈ {1, 2, . . . , 10n}, n < 6, these
probabilities are even larger. As x increases, we expect the two probabilities to decrease,
but they still have a small difference.

Remark 3.11. We also explore how the starting point affects the length of the walk. As in
the prime walks, the expected length of the walk decreases as the starting point increases
since small numbers have a bigger chance of being square-free. This is shown in Table 9.
Note that the expected length of around 2.71 (when the starting point increases) is inside
the interval given by Theorem 3.8.

Remark 3.12. We also consider the frequency of the digits added in our square-free walk and
how this changes when we vary the walk’s starting point. The result is shown in Table 10.

Remark 3.13. We make the following observations based on the frequency of the digits in
base 10.

� Odd digits appear more often than even digits. This is because if x is square-free, then
it cannot be a multiple of 4, hence even digits appear less.

� The frequencies of 2 and 6 are less than 0, 4, and 8. This is because if x and xi are
square-free and i is even, then if x is odd, by modulo 4 considerations i is 0, 4, or 8,
and if x is even, then i is 2 or 6. However, x is almost twice more likely to be odd;
hence the frequency of 0, 4, and 8 is bigger than 2 and 6.
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� 5 appears less than any other odd digit. Similar to the above, x5 is not square-free if
x ends with 2 or 7.

� 9 appears more often than any other digit. This is because if x is square-free, then
x 6≡ 0 (mod 9), hence x9 6≡ 0 (mod 9).

� As the starting point increases, the frequencies stabilize.

Remark 3.14. By looking at the last digit, we can make informed decisions on what digit to
append at each step to increase the chance the number is square-free using the Remark 3.13.

Number of digits of starting point

1 2 3 4 5 6

D
ig

it
ad

d
ed

0 10.1% 7.4% 7.6% 7.5% 7.5% 7.5%

1 14.0% 13.6% 13.2% 13.4% 13.4% 13.4%

2 8.4% 5.5% 5.3% 5.3% 5.3% 5.3%

3 13.5% 13.5% 13.4% 13.4% 13.4% 13.3%

4 5.1% 8.1% 8.0% 8.0% 8.0% 8.0%

5 12.1% 10.8% 10.9% 10.8% 10.8% 10.8%

6 8.3% 5.5% 5.4% 5.3% 5.3% 5.3%

7 13.4% 13.5% 13.2% 13.3% 13.3% 13.3%

8 4.9% 7.4% 8.0% 8.0% 8.0% 8.0%

9 9.7% 14.2% 14.5% 14.6% 14.6% 14.6%

Table 10: Comparing the frequency of the digits of square-free walks in base 10.

3.4 Refined greedy model

Lastly, we present an alternative to the greedy square-free walk. As stated in Remark 3.13,
odd digits appear most frequently. Using this, we created a different model: if we start with
an odd square-free number not divisible by 5, we can always append 0 to get a square-free
number, since the initial number is not divisible by 2 or 5. Then randomly append one of
1, 3, 7, and 9. If the number is square-free, repeat the process, otherwise stop and record the
length. Using (3.1), we get that the probability that a random odd integer, non-divisible by
5, is square-free is

p =
∏

p prime 6=2,5

(
1− 1

p2

)
=

1

ζ(2)
· 1

1− 1
4

· 1

1− 1
25

=
25

3π2
.
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Let X denote the number of steps in our refined square-free walk. Note that the number
of steps can only be even, since appending 0 to an odd, non-divisible by 5 number yields a
square-free number. Therefore, we have that

P[X = 2k] = pk(1− p) =
25k

3kπ2k
· 3π2 − 25

3π2
=

25k(3π2 − 25)

3k+1π2k+2
.

Analogously to (3.6), we have that

E[X] =
2p

1− p
=

50

3π2 − 25
≈ 10.84,

which is a lot larger than the expected walk length in the normal model computed in (3.6).
We present the comparison in Table 11.

Start has x digits 1 2 3 4 5 6

greedy square-free walk 2.81 2.76 2.72 2.71 2.71 2.70

refined greedy square-free walk 11.44 9.92 9.79 9.48 9.14 8.80

Table 11: Comparing the expected walk length of greedy square-free models the walks in
base 10.

3.5 Higher-power-free walks

In general, by following the same procedure as in (3.1), Qn(x), the number of nth-power-free
numbers less than or equal to x, is approximately x/ζ(n). Thus, the probability any number
x is an n-power-free is 1/ζ(n).

It is known that the special values ζ(2n) can be computed as follows:

ζ(2n) = (−1)n+1B2n(2π)2n

2(2n)!
.

However, there is no known closed formula for ζ(2n + 1), but the approximation of ζ(3) is
1.20205 . . . . Hence, we obtain the following probabilities.

0.831905 . . . ≤ P [x = cube-free] ≤ 0.831912 . . . ,

P [x = fourth-power-free] = 90/π4 = 0.92393 . . . .

Since there is no significant change in dealing with cube-free compared with fourth-power-
free, we focus only the fourth-power-free sequence due to its precise representation 90/π2.
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Similar to 3.1, letting X4 denote the number of steps in our random fourth-power-free walks,
we obtain the expected length and its variance:

E[X4] =
90

π4 − 90
= 12.14723 . . . ,

Var(X4) = E[X2]− (E[X])2 =
p

(1− p)2
=

90π4

(π4 − 90)2
= 159.7026 . . . . (3.22)

Then, we observe if there is any subtle difference in the expected length of random
fourth-power-free walks in difference bases: base 2 and base 10.

Definition 3.15. RT4Fb to be the set of fourth-power-free numbers base b such that if we
successively remove the rightmost digit, each resulting number is still square-free.

Definition 3.16. Lb,k as in definition 3.4, Lb,k := |RT4Fb ∩ [bk−1, bk)|.

Theorem 3.17. Let Eb denote the expected length of fourth-free walks in base b.

10.002745850302745 ≤ E2 ≤ 13.0679694,

and
5.081603865 ≤ E10 ≤ 15.02018838.

Proof. Following Theorem 3.7, and obtain Eb =
∞∑
k=1

Lb,k
bk

. Given S1,b =
m∑
k=1

Lb,k
bk

and

S2,b =
∞∑

k=m+1

Lb,k
bk

, we use Eb = S1,b + S2,b to estimate Eb. The accuracy of Eb depends on

the number of terms, m, of the sum S1,b we are able to compute.
Considering walks in base 2 and given E denotes even and O denotes odd, we find the

following inequalities.

1. LE2,k+4 ≤ LO2,k+3 + LO2,k+2 + LO2,k+1,

2. LO2,k+1 ≤ LO2,k + LE2,k.

Given that Ai = L2,m+i/2
m+i, the relationships above give us a lower and an upper bound

of E2,
S1,2 ≤ E2 ≤ S1,2 + A0 + 4A1 + 8A2 + 16A3. (3.23)

Similarly, for base 10, the following relationships can be found.

1. LO10,k+1 ≤ 5LO10,k + 5LE10,k

2. LE10,k+3 ≤ 3LO10,k+2 + 2LE10,k+2 + 13LO10,k+1 + 12LE10,k+1 + 63LO10,k + 62LE10,k.
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Also, given that Bi = L10,m+i/10m+i, we find a lower and an upper bound of E10,

S1,10 ≤ E10 ≤ S1,10 +
B0

125
+

52B1

125
+

24B2

5
+ 16B3. (3.24)

Substituting the numerical values S1,2 =
36∑
k=1

L2,k

2k
≈ 10.002745850302745 in (3.23) and

S1,10 =
7∑

k=1

L10,k

10k
≈ 5.081603865 in (3.24) yields the bounds.

Nevertheless, Theorem 3.17 does not help us distinguish E2 and E10 for fourth-power-free
walks, but this is a computational issue that can be fixed. One way to do is to compute S1,2

and S1,10 up to a larger m, more precisely, when m ≈ 110 in base 2 and m ≈ 50 in base 10.
Another way is to observe the difference between the limits of L2,k+1/L2,k and L10,k+1/L10,k,
as k approaches ∞, and go from there. For whichever approach, we expect E2 < E10 as we
have for square-free walks. Note that, as the exponent n gets larger, the probability that a
number is nth-power-free, 1/ζ(n), approaches 1. Hence, the existence of a walk to infinity
exists in nth-power-free is even more likely as n gets larger. In such a case, there is nothing
much to investigate, so we turn our attention to other sequences whose asymptotic density
is 0 just like primes.

4 Walks on perfect squares

Similar to how we model prime and square-free walks, the density of perfect squares is
approximately 1/

√
n because the number of perfect squares less than n is about

√
n. Then,

the asymptotic density of perfect squares is 0, just like primes, because as n approaches ∞,
1/
√
n goes to 0. Although, for sufficiently large n, 1/

√
n < 1/ log n < 6/π2 implies that

perfect squares are sparser than primes and square-frees, this sequence is still a good choice
to study because it has an explicit pattern, (n2)n≥0. Hence, we seek to investigate if perfect
squares have any walk to infinity in this section.

Lemma 4.1. It is impossible to walk to infinity on perfect squares by appending a bounded,
odd number of digits to the right.

Proof. Suppose some infinite sequence of squares s21, s
2
2, . . . exists, subject to the following

relationship:
102ni−1s2i + ki = s2i+1, (4.1)

such that each ni is a positive integer less than or equal to some upper bound N , and each
ki is a nonnegative integer such that ki < 102ni−1. Then, it is also the case that

102ni+1−1s2i+1 + ki+1 = s2i+2, (4.2)
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with ki+1 < 102ni+1−1. Using (4.1) to substitute for si+1, we have that

102ni+1+2ni−2s2i + 102ni+1−1ki + ki+1 = s2i+2

102ni+1−1ki + ki+1 = (si+2 + 10ni+1+ni−1si)(si+2 − 10ni+1+n1−1si).

Neither ki nor ki+1 can be equal to 0, for otherwise (4.1) would have an integer of the form
102ni−1s2i be a perfect square, which is impossible (and similarly for (4.2)). Therefore, si+2−
10ni+1+ni−1si is non-zero and so si+2 > 10ni+1+ni−1si, implying that si+2 + 10ni+1+ni−1si >
2 · 10ni+1+ni−1si. Thus, we have

102ni+1−1ki + ki+1 = (si+2 + 10ni+1+ni−1si)(si+2 − 10ni+1+ni−1si)

> (2 · 10ni+1+ni−1si)(1) = 2 · 10ni+1+ni−1si. (4.3)

However, because ki < 102ni−1 and ki+1 < 102ni+1−1, it is also the case that

102ni+1−1ki + ki+1 < 102ni+1+2ni−2 + 102ni+1−1. (4.4)

Combining (4.3) with (4.4) yields

2 · 10ni+1+ni−1si < 102ni+1+2ni−2 + 102ni+1−1. (4.5)

Since our sequences of squares is infinite, one can choose an arbitrarily large si, while the
values of ni and ni+1 are bounded. Therefore it is possible to find an si such that this
inequality does not hold. Hence, such an infinite sequence of squares does not exist.

We can apply a similar argument to the case of appending a bounded, even number of
digits. First, however, we observe that it is possible to walk to infinity in such a manner.

Lemma 4.2. It is possible to walk to infinity on perfect squares by appending a bounded,
even number of digits to the right.

Proof. Let s2 be a perfect square. Then 102s2, 104s2, 106s2, . . . are all perfect squares. Thus,
appending 00 to the right at each step allows us to walk to infinity on squares.

This existence proof can be generalized to show that after a certain point, only 0’s can
be appended to obtain the next square in the sequence.

Lemma 4.3. Let s21, s
2
2, . . . be an infinite sequence of squares such that s2i is generated by

appending an even, bounded number of digits to s2i−1. Let the number of digits appended at
each step be no greater than 2N . Then for s2i ≥ 102N/4, it is the case that s2i+1/s

2
i = 102n,

for some positive integer n ≤ N .

Proof. Given s21, s
2
2, . . ., we have that

102nis2i + ki = s2i+1 (4.6)
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such that each ni is a positive integer less than or equal to some upper bound N , and each
ki is a nonnegative integer such that ki < 102ni . Then

ki = (si+1 + 10nisi)(si+1 − 10nisi). (4.7)

For a given i, either ki = 0 or it does not. If it does, then we have 102nis2i = s2i+1, which
corresponds to appending 2ni zeros to the right. Otherwise, if ki 6= 0, then si+1 > 10nisi, so
si+1 + 10nisi > 2 · 10nisi. This means that

ki = (si+1 + 10nisi)(si+1 − 10nisi)

> (2 · 10nisi)(1) = 2 · 10nisi.

But at the same time, ki < 102ni , so it must be the case that

102ni > 2 · 10nisi. (4.8)

For large enough si, this is false, because ni is bounded. In particular, we arrive at a
contradiction once si ≥ 10ni/2. Because ni ≤ N , this means that ki cannot be nonzero once

s2i ≥
102N

4
. (4.9)

Once this condition is attained, we must have ki = 0 and s2i+1/s
2
i = 102ni , as desired.

The natural next question is to consider the general case: appending any number of
bounded digits, even or odd.

Suppose we have squares s2i , s
2
i+1, . . . , s

2
i+j+2, for some positive integer j, subject to the

following relationships:

102n1−1s2i + k1 = s2i+1,

102m1s2i+1 = s2i+2,

102m2s2i+2 = s2i+3,

...

102mjs2i+j = s2i+j+1,

102n2−1s2i+j+1 + k2 = s2i+j+2,

such that n1, n2,m1,m2, . . . ,mj are positive integers less than or equal to some upper bound
N , and k1 and k2 are nonnegative integers with k1 < 102n1−1, k2 < 102n2−1. In other words,
we append an odd number of digits to s2i , then repeatedly append an even number of 0’s for
j steps, and then append another odd number of digits.

Substituting for s2i+j+1 in terms of s2i+j, then s2i+j in terms of s2i+j−1, and so on gives

102(n1+n2+m1+···+mk−1)s2i + 102(n2+m1+···+mj)−1k1 + k2 = s2i+j+2. (4.10)
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Using difference of squares and the same bounding techniques as in Lemmas 4.1 and 4.3, we
find that

2 · 10n1+n2+m1+···+mj−1si < 102(n2+m1+···+mj)−1k1 + k2, (4.11)

and using the fact that k1 < 102n1−1 and k2 < 102n2−1, we have that

2 · 10n1+n2+m1+···+mj−1si < 102(n1+n2+m1+···+mj−1) + 102n2−1. (4.12)

While it is still the case that we can choose arbitrarily large si, we can also guarantee that
the right side of the inequality remains larger; while each mi is bounded, j is not, and so
given an si, the value of the sum m1 + · · ·+mj can be chosen to satisfy the inequality.

This observation shows that we cannot rule out the possibility that there are always steps
on our walk to infinity in which we append an odd number of digits. On the other hand,
neither does it prove that there exists a walk containing infinitely many such odd steps. We
can conclude that these odd steps must grow increasingly sparse as the squares grow larger,
but the question of whether there could be infinitely many remains open.

Although the answer to the most general case is not complete, determining the existence
of infinite walks on perfect squares turns out to be simpler than primes and square-frees due
to its discernible pattern.

5 Conclusion

In the exploration to find a walk to infinity along some number theory sequences, given
we append a bounded number of digits, we have established several results for different
sequences. Our study choices were based on the sequences’ densities; from the least to the
highest one, we have investigated perfect squares, primes, and N th-power-free. Where we
could not prove anything concrete, we used stochastic models that approximate the real
world fairly well in the ranges we study.

Utilizing some stochastic models has led us to a conjecture that there is no walk to infinity
for primes, a sequence of zero density with no discernible pattern in its occurrence, while a
walk to infinity is likely to exist for square-free numbers whose density is a positive constant.
Additionally, we have provided the answers to the same question for other sequences, namely
perfect squares and primes in smaller bases. We have shown that it is impossible to walk to
infinity on primes in base 2, 3, 4, 5, or 6 if appending 1 or 2 digits at a time. Lastly, we find
a way to append an even bounded number of digits indefinitely for perfect squares.

Stochastic models give us a strong inclination to determine whether we can walk to
infinity along some number theory sequence. The results presented in this paper suggest
simple speculation that small density leads to the absence of the walks to infinity. However,
as we mainly observe sequences based on their density, it remains to be determined how
much other factors, such as the sequence’s pattern or structure, may contribute as well.
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6 Appendix

We present the proofs that it is impossible to walk to infinity in bases 3, 4, 5, and 6.

Lemma 6.1. It is impossible to walk to infinity on primes in base 3 by appending a single
digit at a time to the right.

Proof. First, note that we can only append a 2 in base 3, as appending a 0 would yield a
number divisible by 3, while appending a 1 would yield an even number. Therefore, at each
step we can only append a 2. Let p1, p2, . . . be the sequence formed by appending 2 at each
step. We have that

p1 = p1,

p2 = 3p1 + 2,

p3 = 9p1 + 8,

...

pi = 3i−1p1 + 3i−1 − 1,

...

Therefore, we have that

pp1 ≡ 3p1−1p1 + 3p1−1 − 1 ≡ 0 (mod p1), (6.1)

by Fermat’s little theorem. Hence pp1 is composite, and it is impossible to walk to infinity
on primes in base 3 by appending just one digit at a time.

Lemma 6.2. It is impossible to walk to infinity on primes in base 4 by appending a single
digit at a time to the right.

Proof. We confine ourselves to considering only odd digits. Because 4 ≡ 1 (mod 3), append-
ing 1 to a prime p ≡ 2 (mod 3) gives 4p+ 1 ≡ 0 (mod 3), a composite. One can thus append
1 at most a single time in walking to infinity, and so it suffices to consider the infinite sub-
sequence over which only 3’s are appended. Call the elements of this subsequence p1, p2, . . ..
Then, in similar fashion to the extended Cunningham chains, these elements take the form

p1 = p1,

p2 = 4p1 + 3,

p3 = 16p1 + 15,

...

pi = 4i−1p1 + 4i−1 − 1,

...
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But then
pp1 ≡ 4p1−1p1 + 4p1−1 − 1 ≡ 0 (mod p1), (6.2)

by Fermat’s little theorem. Hence pp1 is composite, and it is impossible to walk to infinity
on primes in base 4 by appending just one digit at a time.

We apply a similar argument to base 5.

Lemma 6.3. It is impossible to walk to infinity on primes in base 5 by appending a single
digit at a time to the right.

Proof. In base 5, parity mandates that we append either 2 or 4 at each step. If we have a
prime p ≡ 1 (mod 3), then 5p + 4 ≡ 0 (mod 3), and so we must append a 2. Moreover, if
p ≡ 1 (mod 3) then 5p + 2 ≡ 1 (mod 3) as well, so we must append another 2, and so on
until infinity.

If p1 ≡ 1 (mod 3), then we have that

pi = 5i−1p1 +
5i−1 − 1

2
. (6.3)

Then it is the case that 2pi ≡ 5i−1 − 1 (mod p1), and so 2pp1 is divisible by p1 according to
Fermat’s little theorem. Therefore pp1 is composite.

On the other hand, if we have a p ≡ 2 (mod 3), then 5p + 2 ≡ 0 (mod 3), so we must
append a 4. But 5p + 4 ≡ 2 (mod 3) when p ≡ 2 (mod 3), thus requiring that we append
4’s unto infinity.

Given p1 ≡ 2 (mod 3), we find that

pi = 5i−1p1 + 5i−1 − 1. (6.4)

Fermat’s little theorem, therefore, allows us to conclude that pp1 is composite. The exception
is when p1 = 5, in which case we write pi = 5i−1p1 + 5i−1 − 1 = 5i−2(5p1 + 4) + 5i−2 − 1 =
5i−2p2 + 5i−2 − 1, and observe that pp2+1 is divisible by p2.

Hence, regardless of our initial prime, there must be a composite element in the sequence
produced by appending one digit to the right.

Lastly, the same argument can be used for base 6.

Lemma 6.4. It is impossible to walk to infinity on primes in base 6 by appending a single
digit at a time to the right.

Proof. By parity and modulo 3 considerations, we can only append 1 or 5 at each step.
However, note that 1 can be appended at most 3 times, as 6p+ 1 ≡ p+ 1 (mod 5). Assume
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that we have reached a point where we can only append 5 and let p1 be this prime. Let
p1, p2, . . . be the sequence formed by appending 5 at each step. We have that

p1 = p1,

p2 = 6p1 + 5,

p3 = 6p1 + 35,

...

pi = 6i−1p1 + 6i−1 − 1,

...

By Fermat’s little theorem, we have that 2p1−1 ≡ 1 (mod p1) and 3p1−1 ≡ 1 (mod p1) hence
6p1−1 ≡ 1 (mod p1). Therefore, we have that

pp1 ≡ 6p1−1p1 + 6p1−1 − 1 ≡ 0 (mod p1), (6.5)

and so pp1 is composite. Therefore, it is impossible to walk to infinity on primes in base 6
by appending just one digit at a time.
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