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ABSTRACT. Benford’s law states that many data sets have a bias towardslower leading digits (about
30% are 1s). There are numerous applications, from designing efficient computers to detecting tax,
voter and image fraud. It’s important to know which common probability distributions are almost
Benford. We show the Weibull distribution, for many values of its parameters, is close to Benford’s
law, quantifying the deviations. As the Weibull distribution arises in many problems, especially
survival analysis, our results provide additional arguments for the prevalence of Benford behavior.
The proof is by Poisson summation, a powerful technique to attack such problems.

1. INTRODUCTION TO AND APPLICATIONS OFBENFORD’ S LAW

For any positive numberx and baseB, we can representx in scientific notation asx =
SB(x) · Bk(x), whereSB(x) ∈ [1, B) is called the significand1 of x and the integerk(x) repre-
sents the exponent. Benford’s Law of Leading Digits proposes a distribution for the significands
which holds for many data sets, and states that the proportion of values beginning with digitd is
approximately

Prob(first digit is d base B) = logB

(
d+ 1

d

)
; (1.1)

more generally, the proportion with significand at mosts baseB is

Prob(1 ≤ SB ≤ s) = logB s. (1.2)

In particular, base 10 the probability that the first digit isa 1 is about 30.1% (and not the 11% one
would expect if each digit from 1 to 9 were equally likely).

This leading digit irregularity was first discovered by Newcomb [Ne] in 1881 , who noticed
that the earlier pages in the logarithmic books were more worn than other pages. Fifty years
later Benford [Ben] observed the same digit bias in a varietyof data sets. Benford studied the
distribution of the first digits of 20 sets of data with over 20,000 total observations, including river
lengths, populations, and mathematical sequences. For a full history and description of the law,
see [Hi2, Rai], or go to the Online Benford Bibliography [BH4] for additional reading.

One of the most fascinating aspects of Benford’s law is the large and diverse list of fields study-
ing it (auditing, computer science, dynamical systems, engineering, number theory, and statistics,
to list a few). There are numerous applications, especiallyin fraud and data integrity. Two of
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the more famous are detecting tax and voter fraud (Cho and Gaines [CG], Mebane [Me], Ni-
grini [Nig1, Nig2]), but there are also applications in manyother fields, ranging from round-off
errors in computer science (Knuth [Knu]) to detecting imagefraud and compression in engineer-
ing [AHMP-GQ]. Already Benford’s law has led to a variety of tests, either to detect fraud (in
everything from corporate returns to medical studies) or totest data integrity; see for example
[JS, Nig2, NiMi].

In the next section we discuss attempts to explain the prevalence of Benford’s law; unfortunately,
some of these approaches are flawed, and have been incorrectly used for decades. Our purpose
in this article is to highlight techniques from Fourier analysis that may not be widely known to
the diverse group of researchers and aficionados in the field,emphasizing how Poisson summation
provides a clean and correct way to quantify deviations fromBenford’s law for a variety of phe-
nomena. Our main result is to quantify how close Weibull distributions are to Benford (we state
these in Theorem 4.1 in §4, after first reviewing the needed pre-requisites in §3; the proof is given
in §5). For certain values of the scale and shape parameter these distributions are almost Benford;
this is quite important, as many survival distributions aremodeled by Weibull distributions, and
thus Benford tests are applicable.

2. EXPLANATIONS OF BENFORD’ S LAW

There have been numerous attempts to pass from observing theprevalence of Benford’s law
to explaining its occurrence in different and diverse systems. Such knowledge gives us a deeper
understanding of which natural data sets should follow Benford’s law. One of the earliest and
most popular is due to Feller [Fel], and has been the subject of many articles and papers since (a
very good, recent description of this approach is given in Fewster [Few]). It suggests that Benford
behavior arises when a probability distribution is spread out over several orders of magnitude.
Unfortunately, while some distributions satisfying this condition are close to Benford, others are
not, and the method is sadly fundamentally flawed. See [BH1, BH2, Hi3] for detailed critiques
of this method. The first rigorous explanation of Benford’s law due to Hill [Hi1] through scale
invariance and measure theory (essentially, the distribution of leading digits should be invariant if
we change scale); see also [BH3].

Rather than trying to prove why so many different phenomena are almost Benford, another
approach is to study specific, important instances. In particular, there is an extensive literature on
the leading digits of random variables and products of random variables of specific distributions
(see for example [MiNi1]). While these arguments cannot be as general, the systems described
arise in many important applications, making the importance of these researches clear.

The starting point of this work is the paper by Leemis, Schmeiser, and Evans [LSE], who cham-
pion this viewpoint. They ran numerical simulations on a variety of parametric survival distri-
butions to examine conformity to Benford’s Law. Among thesedistributions was the Weibull
distribution, whose density is

f(x;α, γ) =

{
γ
α

(
x
α

)(γ−1)
exp

(
−
(
x
α

)γ)
if x ≥ 0

0 otherwise,
(2.1)

whereα, γ > 0. Note thatα adjusts the scale of the data and onlyγ affects the shape of the
distribution.2 Special cases of the Weibull include the exponential distribution (γ = 1) and the
Rayleigh distribution (γ = 2). The most common use of the Weibull is in survival analysis,
where a random variableX modeled by the Weibull represents the “time-to-failure”, resulting in
a distribution where the failure rate is modeled relative toa power of time.

2One could introduce another parameter,β, which would represent a translation of the data. Doing so replacesx
with x− β, and the conditionx ≥ 0 becomesx ≥ β. In this paper we concentrate on the caseβ = 0.
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The Weibull distribution arises in problems in such diversefields as food contents, engineering,
medical data, politics, pollution and sabermetrics, alongwith many others; see [An, Ca, CB, Fr,
MABF, Mik, Mi, TKD, We, Yi, ZLYM] to name just a few. As the extensiveness of this list
indicates, many data sets follow a Weibull distribution, and thus if we are going test for fraud or
data integrity, it is essential to quantify how close these distributions are to Benford. Our goal
in this work is to provide proofs of the observations of Leemis, Schmeiser, and Evans [LSE]
that Weibulls are often close to Benford, emphasizing the ideas behind the method as these are
applicable to a variety of other problems (see for example [JKKKM, KM, MiNi2]).

3. MATHEMATICAL PRELIMINARIES

Our analysis generalizes the work of [MiNi2], where the exponential case was studied in detail
(see also [DL] for another approach to analyzing exponential random variables). The main ingre-
dients come from Fourier analysis, in particular applying Poisson summation to the derivative of
the cumulative distribution function of the logarithms modulo 1,FB. We first review some needed
definitions, then describe why it is so useful to study the logarithms modulo 1, and conclude with
a quick review of Poisson summation.

(1) The Gamma functionΓ(s) generalizes the factorial function; we haveΓ(n+ 1) = n! for n
a non-negative integer, and forℜ(s) > 0 we have

Γ(s) =

∫ ∞

0

e−xxs−1dx

(we will need to evaluate the Gamma function at complex arguments in our analysis);
hereℜ(z) denotes the real part ofz. See [WW] for an introduction and proofs of needed
properties.

(2) We saya is congruent tob modulo 1 ifa− b is an integer; we denote this bya = b mod 1.
(3) A sequence{an}∞n=1 ⊂ [0, 1] is equidistributed if

lim
N→∞

#{n : n ≤ N, an ∈ [a, b]}
N

= b− a

for all [a, b] ⊂ [0, 1]. Similarly a continuous random variable on[0,∞) whose probability
density function isp is equidistributed modulo1 if

lim
T→∞

∫ T

0
χa,b(x)p(x)dx∫ T

0
p(x)dx

= b− a

for any[a, b] ⊂ [0, 1], whereχa,b(x) = 1 for x mod 1 ∈ [a, b] and0 otherwise.
(4) If f is an integrable function (so

∫∞
−∞ |f(x)|dx < ∞) then its Fourier transform, denoted

f̂ , is given by

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx, where eiu = cos u+ i sin u.

Note if X is a random variable with densityf then this is a rescaled version of its charac-
teristic function,E[eitX ].

(5) Let η > 0. We sayf decays likex−(1+η) if there are constantsx0, Cη > 0 such that
|f(x)| ≤ Cη|x|−(1+η) for all |x| > x0.
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One of the most common ways to prove a system is Benford is to show that its logarithms
modulo 1 are equidistributed. We quickly sketch the proof ofthis equivalence; see [Dia, MiNi2,
MT-B] for details. If yn = logB xn mod 1 (thusyn is the fractional part of the logarithm ofxn),
then the significands ofByn andxn = BlogB xn are equal, as these two numbers differ by a factor of
Bk for some integerk. If now {yn} is equidistributed modulo 1, then by definition for any[a, b] ⊂
[0, 1] we havelimN→∞#{n ≤ N : yn ∈ [a, b]}/N = b−a. Taking[a, b] = [0, logB s] implies that
asN → ∞ the probability thatyn ∈ [0, logB s] tends tologB s, which by exponentiating implies
that the probability that the significand ofxn is in [1, s] tends tologB s, the Benford probability.

Given a random variableX, letFB denote the cumulative distribution function oflogB X mod
1. The above discussion shows that Benford’s law is equivalent to FB(z) = z, or our original
random variableX is Benford if F ′

B(z) = 1. This suggests that a natural way to investigate
deviations from Benford behavior is to compare the deviation of F ′

B(z) from 1, which would
represent a uniform distribution.

Fourier analysis is ideally suited for these computations.The reason is that in general one cannot
throw away part of a mathematical expression and maintain equality. For example,

√
(x mod 1) + (y mod 1)

is neither equal to nor congruent modulo 1 to
√
x+ y; however,e2πix does equale2πi(x mod 1). By

using the complex exponentials, it is harmless to drop modulo 1 restrictions. As these restric-
tions naturally arise in investigating the first digit, it isnatural to attack the problem with Fourier
techniques.

The last ingredient we need is Poisson summation. We don’t state it in its most general form, as
the following weak version typically suffices for Benford investigations due to the smoothness of
the underlying densities. See [MT-B] or [SS] for a proof.

Theorem 3.1 (Poisson summation). Let f, f ′ and f ′′ be continuous functions which decay like
x−(1+η) for someη > 0. Then

∞∑

n=−∞

f(n) =
∞∑

n=−∞

f̂(n).

Our assumptions aboutf imply that f̂ decays rapidly. The power of Poisson summation is that
it typically allows us to exchange a slowly converging sum with a rapidly converging sum. In
many applications only then = 0 term matters; iff is a probability density then it integrates to 1
and hencêf(0) = 1. For us, this is important as it implies a sum over non-zeron can measure a
deviation.

For example, consider the density of a normal random variable Y with mean 0 and variance
N/2π; this example is very important in showing Brownian motionsand many product of in-
dependent random variables become Benford (see [MT-B, MiNi1]). If we want to see how of-
ten Y mod 1 is in an interval[a, b] ⊂ [0, 1], we need to studyProb(Y mod 1 ∈ [a, b]) =∑∞

n=−∞ Prob(Y ∈ [a + n, b + n]). We sketchhow Poisson summation enters, and provide full
details when we prove our main result. The latter probabilities are integrals of the density over the
intervals[a+n, b+n], and ifN is large each of these is approximatelyb−a times the density atn.
By Poisson summation, summing the density overn is the same as summing the Fourier transform
atn:

∞∑

n=−∞

1√
N

e−πn2/N =

∞∑

n=−∞

e−πn2N .

Note the sharp contrast between the two sums. For the first sum, all n with |n| ≤
√
N contribute

the same order of magnitude, while for the second sum then = 0 term contributes 1 and the next
term is immensely smaller (by a factor ofe−πN ). This example illustrates how Poisson summation
allows us to replace a slowly decaying sum of a density with a rapidly decaying one.



THE WEIBULL DISTRIBUTION AND BENFORD’S LAW 5

4. MAIN RESULTS

Our main result is the following extension of results for theexponential distribution, which
measures the deviation of the logarithm modulo 1 of Weibullsand the uniform distribution. It’s
thus not surprising that forγ close to 1 the digits are close to Benford, asγ = 1 corresponds to
the exponential distribution. The main contribution belowis quantifying how the fit worsens asγ
grows. The largerγ is, the worse the fit. This is intuitively plausible from a plot of the Weibull
density; asγ increases, the distribution becomes more concentrated near 1. Part of theα is easier
to explain. As the effect of replacingα by αB is simply to rescale our random variable by a factor
of B, the significand is unaffected. Thus it suffices to studyα in the window[1, B), butγ may be
any real value.

Theorem 4.1. LetZα,γ be a random variable whose density is a Weibull with parametersα, γ > 0
arbitrary. For z ∈ [0, 1], let FB(z) be the cumulative distribution function oflogB Zα,γ mod 1;
thusFB(z) := Prob(logB Zα,γ mod 1 ∈ [0, z]). Then the density oflogB Zα,γ mod 1, F ′

B(z), is
given by

F ′
B(z) = 1 + 2

∞∑

m=1

ℜ
(
e−2πim(z− logα

logB ) · Γ
(
1 +

2πim

γ logB

))
. (4.1)

In particular, the densities oflogB Zα,γ mod 1 andlogB ZαB,γ mod 1 are equal, and thus it suffices
to consider onlyα in an interval of the form[a, aB) for anya > 0.

From the fundamental equivalence, a straightforward integration immediately translates (4.1)
into quantifying differences in the distribution of leading digits of Weibulls and Benford’s law.
Specifically, the probability of a first digit ofd is obtained by integratingF ′

B(z) from logB d to
logB(d + 1). The main term comes from the constant 1, and islogB

d+1
d

, the Benford probability;
we discuss the size of the error in Theorem 4.2.

The above theorem is proved in the next section. As in [MiNi2], the proof involves apply-
ing Poisson summation to the derivative of the cumulative distribution function of the logarithms
modulo 1, which as discussed in the previous section is a natural way to compare deviations from
the resulting distribution and the uniform distribution. The key idea is that if a data set satisfies
Benford’s Law, then the distribution of its logarithms willbe uniform. Our series expansions are
obtained by applying properties of the Gamma function.

As the deviations ofF ′
B(z) from being identically 1 measure the deviations from Benford be-

havior, it is important to have good estimates for the sum over m in (4.1). The bounds below have
not been optimized, but instead have been chosen to simplifythe algebra in the proofs (given in
Appendix A). Thus we assumek below is at least 6, which is essentially equivalent to only inves-
tigating the case where the errorǫ is required to be of at most modest size (which is reasonable,as
a series expansion with a large error is useless).

Theorem 4.2. LetF ′
B(z) be as in(4.1).

(1) For M ≥ γ logB log 2
4π2 , the error from dropping them ≥ M terms inF ′

B(z) is at most

2
√
2(π2 + γ logB)

√
γ logB

π3
M e−π2M/γ logB.

(2) In order to have an error of at mostǫ in evaluatingF ′
B(z), it suffices to take the firstM

terms, whereM = (k+ ln k+ 1/2)/a, with k = max (6,− ln (aǫ/C)), a = π2/(γ logB),

andC = 2
√
2(π2+γ logB)

√
γ logB

π3 .

For further analysis, we compared our series expansion for the derivative to the uniform distribu-
tion through a Kolmogorov-Smirnov test; see Figure 1 for a contour plot of the discrepancy. This
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statistic measures the absolute value of the greatest difference in cumulative distribution functions
of two densities. Thus the larger the value, the further apart they are. Note the good fit observed
between the two distributions whenγ = 1 (representing the Exponential distribution), which has
already been proven to be a close fit to the Benford distribution ([DL, LSE, MiNi2]).
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FIGURE 1. Kolmogorov−Smirnov Test: Left:γ ∈ [0, 15], Right: γ ∈ [.5, 2]. As γ
(the shape parameter on the x-axis) increases, the Weibull distribution is no longer
a good fit compared to the uniform. Note thatα (the scale parameter on the y-axis)
has less of an effect on the overall conformance.

The Kolmogorov−Smirnov metric gives a good comparison because it allows us to compare
the distributions in terms of both parameters,γ andα. We also look at two other measures of
closeness, theL1-norm and theL2-norm, both of which also test the differences between (4.1)and
the uniform distribution; see Figure 2. TheL1-norm off−g is

∫ 1

0
|f(t)−g(t)|dt, which puts equal

weights on the all deviations, while theL2-norm is given by
∫ 1

0
|f(t)− g(t)|2dt, which unlike the

L1-norm puts more weight on larger differences. The closerγ is to zero the better the fit. Asγ
increases the cumulative Weibull distribution is no longera good fit compared to 1. TheL1 and
L2-norms are independent ofα.
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FIGURE 2. Left: L1-norm of F ′
B(z) − 1 for γ ∈ [0.5, 10]. Right: L2-norm of

F ′
B(z)− 1 for γ ∈ [0.5, 10].

The combination of the Kolmogorov-Smirnov tests and theL1 andL2 norms show us that the
Weibull distribution almost exhibits Benford behavior whenγ is modest; asγ increases the Weibull
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no longer conforms to the expected leading digit probabilities. The scale parameterα does have a
small effect on the conformance as well, but not nearly to thesame extreme as the shape parameter,
γ. Fortunately in many applications the scale parameterγ is not too large (it is frequently less than
2 in the Weibull references cited earlier), and thus our workprovides additional support for the
prevalence of Benford behavior.

5. PROOF OFMAIN RESULT

To prove Theorem 4.1, we study the distribution oflogB Zα,γ mod 1 whenZα,γ has the Weibull
distribution with parametersα andγ. The analysis is aided by the fact that the cumulative dis-
tribution function for a Weibull random variable has a nice closed form expression; forZα,γ the
cumulative distribution function isFα,γ(x) = 1− exp(−(x/a)γ). Let [a, b] ⊂ [0, 1]. Then

Prob(logB Zα,γ mod 1 ∈ [a, b]) =

∞∑

k=−∞

Prob(logB Zα,γ mod 1 ∈ [a+ k, b+ k])

=

∞∑

k=−∞

Prob(Zα,γ ∈ [Ba+k, Bb+k])

=

∞∑

k=−∞

(
exp

(
−
(
Ba+k

α

)γ)
− exp

(
−
(
Bb+k

α

)γ))
.

(5.1)

Proof of Theorem 4.1.It suffices to investigate (5.1) in the special case whena = 0 andb = z,
since for any other interval[a, b] we may determine its probability by subtracting the probability
of [0, a] from [0, b]. Thus, we study the cumulative distribution function oflogB Zα,γ mod 1 for
z ∈ [0, 1], which we denote byFB(z):

FB(z) := Prob (logB Zα,γ mod 1 ∈ [0, z])

=

∞∑

k=−∞

(
exp

(
−
(
Bk

α

)γ)
− exp

(
−
(
Bz+k

α

)γ))
. (5.2)

This series expansion is rapidly converging, and the closeness ofZα,γ to Benford is equivalent to
the rapidly converging series in (5.2) forFB(z) being close toz for all z.

A natural way to investigate the closeness ofFB(z) to z is to compareF ′(z) to 1. As in [MiNi2],
studying the derivativeF ′

B(z) is an easier way to approach this problem, because we obtain a

simpler Fourier transform than the Fourier transform ofe
−
(

Bk

α

)γ

−e
−
(

Bz+k

α

)γ

. We then can analyze
the obtained Fourier transform by applying Poisson summation (Theorem 3.1).

We use the fact that the derivative of the infinite sumFB(z) is the sum of the derivatives of the
individual summands. This is justified by the rapid decay of summands, yielding

F ′
B(z) =

∞∑

k=−∞

1

α
·
[
exp

(
−
(
Bz+k

α

)γ)
Bz+k

(
Bz+k

α

)γ−1

γ logB

]

=

∞∑

k=−∞

1

α
·
[
exp

(
−
(
ζBk

α

)γ)
ζBk

(
ζBk

α

)γ−1

γ logB

]
, (5.3)

where forz ∈ [0, 1], we use the change of variablesζ = Bz.
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We introduceH(t) = 1
α
· exp

(
−
(

ζBt

α

)γ)
ζBt

(
ζBt

α

)γ−1

γ logB, whereζ ≥ 1 asζ = Bz with

z ≥ 0. SinceH(t) is decaying rapidly we may apply Poisson summation, thus
∞∑

k=−∞

H(k) =

∞∑

k=−∞

Ĥ(k), (5.4)

whereĤ is the Fourier Transform ofH : Ĥ(u) =
∫∞
−∞H(t)e−2πitudt. Therefore

F ′
B(z) =

∞∑

k=−∞

H(k) =
∞∑

k=−∞

Ĥ(k)

=
∞∑

k=−∞

∫ ∞

−∞

1

α
· exp

(
−
(
ζBt

α

)γ)
ζBt

(
ζBt

α

)γ−1

γ logB · e−2πitkdt. (5.5)

We change variables again, settingw = (ζBt/α)
γ , which implies

t = logB

(
αw1/γ

ζ

)
and dw =

1

α

(
ζBt

α

)γ−1

· ζBtγ logB dt, (5.6)

so that

F ′
B(z) =

∞∑

k=−∞

∫ ∞

0

e−w · exp
(
−2πik · logB

(
αw1/γ

ζ

))
dw

=

∞∑

k=−∞

(
α

ζ

)−2πik/ logB ∫ ∞

0

e−w · w−2πik/γ logBdw

=

∞∑

k=−∞

(
α

ζ

)−2πik/ logB

Γ

(
1− 2πik

γ logB

)
, (5.7)

where we used the definition of theΓ-function in the last line. AsΓ(1) = 1, we have

F ′
B(z) = 1 +

∞∑

m=1

[(
ζ

α

) 2πim
logB

Γ

(
1− 2πim

γ logB

)
+

(
ζ

α

)−2πim
logB

Γ

(
1 +

2πim

γ logB

)]
(5.8)

As in [MiNi2], the above series expansion is rapidly convergent. Asζ = Bz we have
(
ζ

α

)2πim/ logB

= cos

(
2πmz − 2πm

(
logα

logB

))
+ i sin

(
2πmz − 2πm

(
logα

logB

))
, (5.9)

which gives a Fourier series expansion forF ′
B(z) with coefficients arising from special values of

theΓ-function.
Using properties of theΓ-function we are able to improve (5.8). Ify ∈ R thenΓ(1 − iy) =

Γ(1 + iy) (where the bar denotes complex conjugation). Thus themth summand in (5.8) is the
sum of a number and its complex conjugate, which is simply twice the real part. We use the
following standard relationship (see for example [AS]):

|Γ(1 + ix)|2 =
πx

sinh(πx)
=

2πx

eπx − e−πx
. (5.10)

Writing the summands in (5.8) as2ℜ
(
e−2πim(z− logα

logB ) · Γ
(
1 + 2πim

γ logB

))
, (5.8) becomes

F ′
B(z) = 1 + 2

∞∑

m=1

ℜ
(
e−2πim(z− logα

logB ) · Γ
(
1 +

2πim

γ logB

))
. (5.11)
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Finally, in the exponential argument above there is no change in replacingα with αB, as this
changes the argument by2πi. Thus it suffices to considerα ∈ [a, aB) for anya > 0. �

This proof demonstrates the power of using Poisson summation in Benford’s law problems, as
it allows us to convert a slowly convergent series expansioninto a rapidly converging one, with
the main term corresponding to Benford behavior and the other terms measuring the deviation.

APPENDIX A. PROOFS OFBOUNDING ESTIMATES

We first estimate the contribution toF ′
B(z) from the tail, say from the terms withm ≥ M . We

do not attempt to derive the sharpest bounds possible, but rather highlight the method in a general
enough case to provide useful estimates.

Proof of Theorem 4.2(1). We must bound the truncation error

EB(z) := ℜ
∞∑

m=M

e−2πim(z− logα
logB ) · Γ

(
1 +

2πim

γ logB

)
, (A.1)

whereΓ(1 + iu) =
∫∞
0

e−xxiudx =
∫∞
0

e−xeiu log xdx. Note that in our case,u = 2πm
γ logB

. As u
increases there is more oscillation and therefore more cancelation, resulting in a smaller value for

our integral. Since|eiθ| = 1, if we take absolute values inside the sum we have|e−2πim(z− logα

logB )| =
1, and thus we may ignore this term in computing an upper bound.

Using standard properties of the Gamma function, we have

|Γ(1 + ix)|2 =
πx

sinh(πx)
=

2πx

eπx − e−πx
, where x =

2πm

γ logB
. (A.2)

This yields

|EB(z)| ≤
∞∑

m=M

1 ·
(

4π2m

γ logB
· 1

e2π2m/γ logB − e−2π2m/γ logB

)1/2

. (A.3)

Let u = e2π
2m/γ logB. We overestimate our error term by removing the difference of the expo-

nentials in the denominator. Simple algebra shows that for1
u− 1

u

≤ 2
u

we needu ≥
√
2. For us this

meanse2π
2m/γ logB ≥

√
2, allowing us to simplify the denominator ifm ≥ γ logB log 2

4π2 , which we
may do as we assumedM exceeds this value andm ≥ M . We substitute this bound into (A.2),
and replace

√
m with m to simplify the resulting integral:

|EB(z)| ≤
∞∑

m=M

(
4π2m

γ logB

)1/2

·
√
2

eπ2m/γ logB
≤ 2

√
2π√

γ logB

∫ ∞

M

me−π2m/γ logBdm. (A.4)

Lettinga = π2/γ logB, integrating by parts gives

|EB(z)| ≤ 2
√
2π√

γ logB

1

a2
(
aMe−aM + e−aM

)
≤ 2

√
2π√

γ logB

a+ 1

a
Me−aM (A.5)

(sinceM ≥ 1, aM + 1 ≤ (a + 1)M), which after some algebra simplifies to

|EB(z)| ≤ 2
√
2(π2 + γ logB)

√
γ logB

π3
M e−π2M/γ logB, (A.6)

which is the error listed in Theorem 4.2(1). �
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Proof of Theorem 4.2(2). Given the estimation of the error term from above, we now ask the re-
lated question of, given anǫ > 0, how large mustM be so that the firstM terms giveF ′

B(z)

accurately to withinǫ of the true value. LetC = 2
√
2(π2+γ logB)

√
γ logB

π3 anda = π2

γ logB
. We must

chooseM so thatCMe−aM ≤ ǫ, or equivalently

C

a
aMe−aM ≤ ǫ. (A.7)

As this is a transcendental equation inM , we do not expect a nice closed form solution, but we
can obtain a closed form expression for a bound onM ; for any specific choices ofC anda we can
easily numerically approximateM . We letu = aM , giving

ue−u ≤ aǫ/C. (A.8)

With a further change of variables, we letk = − ln(aǫ/C) and then expandu asu = k+ x (as the
solution should be close tok). We find

u · e−u ≤ e−k is equivalent to
k + x

ex
≤ 1. (A.9)

We tryx = ln k + 1
2
, and see

k + x

ex
≤ 1 is equivalent to

k + ln k + 1
2

k · e1/2 ≤ 1. (A.10)

From here, we want to determine the value ofk such thatln k ≤ 1
2
k, as this ensures the needed

inequality above holds. Exponentiating, we needk2 ≤ ek. As ek ≥ k3/3! for k positive, it suffices
to choosek so thatk2 ≤ k3/6, or k ≥ 6; this holds forǫ sufficiently small. Fork ≥ 6, we have

k + ln k +
1

2
≤ k +

1

2
k +

1

12
k =

19

12
k ≈ 1.5833k, (A.11)

but
k · e1/2 ≈ 1.64872k. (A.12)

Therefore a correct cutoff value forM , in order to have an error of at mostǫ, is

M =
k + ln k + 1

2

a
, (A.13)

where

k = max
(
k,− ln

(aǫ
C

))
, a =

π2

γ logB
, C =

2
√
2(π2 + γ logB)

√
γ logB

π3
. (A.14)

�
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