THE WEIBULL DISTRIBUTION AND BENFORD’S LAW
VICTORIA CUFF, ALLISON LEWIS, AND STEVEN J. MILLER

ABSTRACT. Benford’s law states that many data sets have a bias toleavdsleading digits (about
30% are 1s). There are numerous applications, from degjgrffitient computers to detecting tax,
voter and image fraud. It's important to know which commoalability distributions are almost
Benford. We show the Weibull distribution, for many valué#® parameters, is close to Benford’s
law, quantifying the deviations. As the Weibull distrilari arises in many problems, especially
survival analysis, our results provide additional argutador the prevalence of Benford behavior.
The proof is by Poisson summation, a powerful techniquetazkisuch problems.

1. INTRODUCTION TO AND APPLICATIONS OFBENFORD' S LAW

For any positive number and baseB, we can represent in scientific notation asz =
Sp(z) - B¥@), whereSg(z) € [1, B) is called the significafidof z and the integek(z) repre-
sents the exponent. Benford’s Law of Leading Digits propasédistribution for the significands
which holds for many data sets, and states that the propastivalues beginning with digid is
approximately

d+1
Prob(first digit is d base B) = logpg (%) ; (1.2)
more generally, the proportion with significand at mebasenB is
Prob(1 < Sp <'s) = logys. (1.2)

In particular, base 10 the probability that the first digi&is is about 30.1% (and not the 11% one
would expect if each digit from 1 to 9 were equally likely).

This leading digit irregularity was first discovered by Nent [Ne] in 1881 , who noticed
that the earlier pages in the logarithmic books were morenvibban other pages. Fifty years
later Benford [[Beh] observed the same digit bias in a vandtgata sets. Benford studied the
distribution of the first digits of 20 sets of data with over, @10 total observations, including river
lengths, populations, and mathematical sequences. Fdf fadtory and description of the law,
see[[Hi2['Rai], or go to the Online Benford Bibliography [BHdr additional reading.

One of the most fascinating aspects of Benford’s law is thgeland diverse list of fields study-
ing it (auditing, computer science, dynamical systemsirezgging, number theory, and statistics,
to list a few). There are numerous applications, especialfyaud and data integrity. Two of
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the more famous are detecting tax and voter fraud (Cho andeG4CG], Mebane [Me], Ni-
grini [Nig1}, Nig2]), but there are also applications in masther fields, ranging from round-off
errors in computer science (Knuth [Knu]) to detecting im&ged and compression in engineer-
ing [AHMP-GQ]. Already Benford’s law has led to a variety @fsts, either to detect fraud (in
everything from corporate returns to medical studies) oegi data integrity; see for example
[0S [Nig2 [ NiMi].

In the next section we discuss attempts to explain the pgaealof Benford’s law; unfortunately,
some of these approaches are flawed, and have been ingousetl for decades. Our purpose
in this article is to highlight techniques from Fourier ayg$ that may not be widely known to
the diverse group of researchers and aficionados in the éelghasizing how Poisson summation
provides a clean and correct way to quantify deviations fBenford’s law for a variety of phe-
nomena. Our main result is to quantify how close Weibullrthstions are to Benford (we state
these in Theorein 4.1 i B4, after first reviewing the needeer@quisites in[83; the proof is given
in §8). For certain values of the scale and shape parametse thistributions are almost Benford;
this is quite important, as many survival distributions aredeled by Weibull distributions, and
thus Benford tests are applicable.

2. EXPLANATIONS OF BENFORD' S LAW

There have been numerous attempts to pass from observimgdhalence of Benford's law
to explaining its occurrence in different and diverse syste Such knowledge gives us a deeper
understanding of which natural data sets should follow Beti$ law. One of the earliest and
most popular is due to Feller [Fel], and has been the subfeubay articles and papers since (a
very good, recent description of this approach is given ingter [Few]). It suggests that Benford
behavior arises when a probability distribution is spreatlaver several orders of magnitude.
Unfortunately, while some distributions satisfying th@ndition are close to Benford, others are
not, and the method is sadly fundamentally flawed. See [BHHZ,BHi3] for detailed critiques
of this method. The first rigorous explanation of Benfordi/ Idue to Hill [Hil] through scale
invariance and measure theory (essentially, the distabutf leading digits should be invariant if
we change scale); see also [BH3].

Rather than trying to prove why so many different phenomeeaaémost Benford, another
approach is to study specific, important instances. In@adr, there is an extensive literature on
the leading digits of random variables and products of ramdariables of specific distributions
(see for example [MiNil1]). While these arguments cannot bg@eneral, the systems described
arise in many important applications, making the imporéapicthese researches clear.

The starting point of this work is the paper by Leemis, Sclseeiand Evans [LSE], who cham-
pion this viewpoint. They ran numerical simulations on aietgrof parametric survival distri-
butions to examine conformity to Benford’s Law. Among thelstributions was the Weibull
distribution, whose density is

Foa) = { ()" e (- (2)7) >0 @.1)

0 otherwise,

wherea,y > 0. Note thata adjusts the scale of the data and onhaffects the shape of the
distributiond Special cases of the Weibull include the exponential distion (y = 1) and the
Rayleigh distribution{ = 2). The most common use of the Weibull is in survival analysis,
where a random variabl& modeled by the Weibull represents the “time-to-failur&sulting in

a distribution where the failure rate is modeled relativa fmower of time.

20ne could introduce another parametgrwhich would represent a translation of the data. Doing ptames:
with  — 3, and the conditiom: > 0 becomes: > . In this paper we concentrate on the case 0.
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The Weibull distribution arises in problems in such divdiskls as food contents, engineering,
medical data, politics, pollution and sabermetrics, aloiittp many others; seé [An, Ca, CB, Fr,
Mi] TKD, We| Yi] ZLYM] to name just a few. As the extgsiveness of this list
indicates, many data sets follow a Weibull distributiond @inus if we are going test for fraud or
data integrity, it is essential to quantify how close thesgrithutions are to Benford. Our goal
in this work is to provide proofs of the observations of Legnftschmeiser, and Evans [L'SE]
that Weibulls are often close to Benford, emphasizing tleasdbehind the method as these are

applicable to a variety of other problems (see for examM&KM, KM, MiNi2]).

3. MATHEMATICAL PRELIMINARIES

Our analysis generalizes the work bf [MiNi2], where the exgatial case was studied in detail
(see also|DL ] for another approach to analyzing exponkraralom variables). The main ingre-
dients come from Fourier analysis, in particular applyimgsBon summation to the derivative of
the cumulative distribution function of the logarithms nutml1, F'z. We first review some needed
definitions, then describe why it is so useful to study thatdgms modulo 1, and conclude with
a quick review of Poisson summation.

(1) The Gamma functiof(s) generalizes the factorial function; we have: + 1) = n! for n
a non-negative integer, and fii(s) > 0 we have

['(s) :/ e "2 tdx
0

(we will need to evaluate the Gamma function at complex agnumin our analysis);
hereX(z) denotes the real part of See[[WW] for an introduction and proofs of needed
properties.

(2) We sayu is congruent td modulo 1 ifa — b is an integer; we denote this lay= b mod 1.

(3) A sequencéa,}>>, C [0, 1] is equidistributed if

n <
i Fin <N, an € [a, b}
N—o0 N

for all [a, b] C [0, 1]. Similarly a continuous random variable {fnoco) whose probability
density function i is equidistributed modulo if

. I3 Xaw(@)p(@)de
oo foT p(z)dx

for any|[a,b] C [0,1], wherey,,(z) = 1 for 2 mod 1 € [a, b] and0 otherwise.
(4) If fis an integrable function (sﬁfooo |f(x)|dx < o0) then its Fourier transform, denoted

-~

f, s given by

=b—-a

J?(y) B / f($)6_2”i1‘ydl', where ™ = cosu + i sin u.

Note if X is a random variable with densitlythen this is a rescaled version of its charac-
teristic functionE[e*¥].

(5) Letn > 0. We sayf decays likez=U*" if there are constantsy, C,, > 0 such that
|f(2)] < Cylz|~3F for all || > .
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One of the most common ways to prove a system is Benford is dw $hat its logarithms
modulo 1 are equidistributed. We quickly sketch the proathig equivalence; see [Dia, MiNi2,
MT-B] for details. Ify,, = loggz z,, mod 1 (thusy, is the fractional part of the logarithm af,),
then the significands d8¥~ andz,, = B'°¢5 " are equal, as these two numbers differ by a factor of
B* for some integet. If now {y, } is equidistributed modulo 1, then by definition for gdayb] C
[0, 1] we havdimy o, #{n < N : y, € [a,b]}/N = b—a. Taking|a, b] = [0, log s] implies that
asN — oo the probability that,, € [0,logy s| tends tolog; s, which by exponentiating implies
that the probability that the significand ©f is in [1, s] tends tdog s, the Benford probability.

Given a random variabl, let I’z denote the cumulative distribution functionlof; X mod
1. The above discussion shows that Benford’s law is equivdterh’s(z) = z, or our original
random variableX is Benford if F;;(z) = 1. This suggests that a natural way to investigate
deviations from Benford behavior is to compare the dewatid F;(z) from 1, which would
represent a uniform distribution.

Fourier analysis is ideally suited for these computatidiine reason is that in general one cannot

throw away part of a mathematical expression and maintaialigy. For example,/(z mod 1) + (y mod 1)
is neither equal to nor congruent modulo Lt@ + y; however¢*™* does equat?™( med 1) By
using the complex exponentials, it is harmless to drop nmdutestrictions. As these restric-
tions naturally arise in investigating the first digit, itiatural to attack the problem with Fourier
techniques.
The last ingredient we need is Poisson summation. We da@ié gtin its most general form, as
the following weak version typically suffices for Benfordrestigations due to the smoothness of
the underlying densities. See [MT-B] or [SS] for a proof.

Theorem 3.1 (Poisson summation)et f, f// and f” be continuous functions which decay like

0+ for somen > 0. Then
Yo ofm) = Y f).

n=—oo n=—0oo

Our assumptions aboutimply thatfdecays rapidly. The power of Poisson summation is that
it typically allows us to exchange a slowly converging sunthva rapidly converging sum. In
many appIiAcations only the = 0 term matters; iff is a probability density then it integrates to 1
and hencef(0) = 1. For us, this is important as it implies a sum over non-zegan measure a
deviation.

For example, consider the density of a normal random vagigbith mean 0 and variance
N/2m; this example is very important in showing Brownian moti@msl many product of in-
dependent random variables become Benford (see [MT-B, M)Nilf we want to see how of-
ten Y mod 1 is in an interval[a,b] C [0,1], we need to study’rob(Y mod1 € [a,b]) =
Yo JProb(Y € [a+ n,b+ n]). We sketchhow Poisson summation enters, and provide full
details when we prove our main result. The latter probaddiare integrals of the density over the
intervalsja+n, b+n], and if N is large each of these is approximatély a times the density at.

By Poisson summation, summing the density ovesthe same as summing the Fourier transform
atn:

[e.e]

= 1 > >
—mn*/N __ —mn*N
— € = (& .
Note the sharp contrast between the two sums. For the firstaumwith |n| < +/N contribute
the same order of magnitude, while for the second sumthe0 term contributes 1 and the next
term is immensely smaller (by a factor@f™). This example illustrates how Poisson summation
allows us to replace a slowly decaying sum of a density witipadly decaying one.
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4. MAIN RESULTS

Our main result is the following extension of results for #agonential distribution, which
measures the deviation of the logarithm modulo 1 of Weibaild the uniform distribution. It's
thus not surprising that foy close to 1 the digits are close to Benford,nas- 1 corresponds to
the exponential distribution. The main contribution belswquantifying how the fit worsens as
grows. The larget is, the worse the fit. This is intuitively plausible from a ptd the Weibull
density; asy increases, the distribution becomes more concentratedln@art of thev is easier
to explain. As the effect of replacingby o B is simply to rescale our random variable by a factor
of B, the significand is unaffected. Thus it suffices to studp the window[1, B), buty may be
any real value.

Theorem 4.1. Let Z, , be arandom variable whose density is a Weibull with pararseiey > 0
arbitrary. For z € [0, 1], let Fi5(z) be the cumulative distribution function bfg; Z,, ., mod 1,
thus Fig(2) := Prob(logg Z,, mod 1 € [0, 2]). Then the density dbgy Z, , mod 1, Fj(z), is
given by

> , oga 2mim
Fiz) = 1423 R (e2mGiEs) (1 . 4.1
o = readw (e (1 0 @
In particular, the densities dbg ; Z,, , mod 1 andlog; Z,5 , mod 1 are equal, and thus it suffices
to consider onlyy in an interval of the forma, a B) for anya > 0.

From the fundamental equivalence, a straightforward natémn immediately translates (4.1)
into quantifying differences in the distribution of leadidigits of Weibulls and Benford’s law.
Specifically, the probability of a first digit of is obtained by integrating’;(z) from log d to
logz(d + 1). The main term comes from the constant 1, anidds, <1, the Benford probability;
we discuss the size of the error in Theoifen 4.2.

The above theorem is proved in the next section. As in [MiNtBe proof involves apply-
ing Poisson summation to the derivative of the cumulatiggritiution function of the logarithms
modulo 1, which as discussed in the previous section is aalatay to compare deviations from
the resulting distribution and the uniform distributionhélkey idea is that if a data set satisfies
Benford’s Law, then the distribution of its logarithms whlé uniform. Our series expansions are
obtained by applying properties of the Gamma function.

As the deviations of';(z) from being identically 1 measure the deviations from Bethfoe-
havior, it is important to have good estimates for the sunt even (4.1). The bounds below have
not been optimized, but instead have been chosen to sinthéfalgebra in the proofs (given in
AppendiX8). Thus we assuniebelow is at least 6, which is essentially equivalent to onixes-
tigating the case where the errois required to be of at most modest size (which is reasonable,
a series expansion with a large error is useless).

Theorem 4.2. Let F5(z) be as in(@.1).
(1) For M > 1eeBlos2 ‘the error from dropping then > M terms inF(z) is at most

472
2\/§(ﬂ-2 + IOg B) V7 log B M e—7r21\/[/'y log B
3 '
(2) In order to have an error of at mostin evaluatingF';(z), it suffices to take the first/
terms, wheréV/ = (k +1Ink +1/2)/a, with k = max (6, — In (ac/C)), a = 7%/(ylog B),
andC = 2\/§(W2+’YIO%B)\/W.

™

For further analysis, we compared our series expansiohéaterivative to the uniform distribu-
tion through a Kolmogorov-Smirnov test; see Figure 1 for atoar plot of the discrepancy. This
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statistic measures the absolute value of the greatestatife in cumulative distribution functions
of two densities. Thus the larger the value, the furthertapaly are. Note the good fit observed
between the two distributions when= 1 (representing the Exponential distribution), which has
already been proven to be a close fit to the Benford distobu{iDL, [LSE,[MiNi2]).

107”“““”““WH“““H“‘L 10

FIGURE 1. Kolmogorov-Smirnov Test: Leftry € [0, 15], Right: v € [.5,2]. Asy
(the shape parameter on the x-axis) increases, the Weibtribdtion is no longer

a good fit compared to the uniform. Note thafthe scale parameter on the y-axis)
has less of an effect on the overall conformance.

The Kolmogorowv-Smirnov metric gives a good comparison because it allow® u®mpare

the distributions in terms of both parameteysand«. We also look at two other measures of
closeness, thé;-norm and the.,-norm, both of which also test the differences betwéen @ntl)
the uniform distribution; see Figulré 2. The-norm of f —g is fol | f(t)—g(t)|dt, which puts equal
weights on the all deviations, while tHg-norm is given byfo1 |f(t) — g(t)|*dt, which unlike the
L;-norm puts more weight on larger differences. The closexrto zero the better the fit. Ag
increases the cumulative Weibull distribution is no longegood fit compared to 1. Thi, and
Ly-norms are independent of

[ 3.0F
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FIGURE 2. Left: L;-norm of F;(z) — 1 for 4y € [0.5,10]. Right: Ly-norm of
Fp(z) — 1for~ € [0.5,10].

The combination of the Kolmogorov-Smirnov tests and theand L, horms show us that the

Weibull distribution almost exhibits Benford behavior wiheis modest; as increases the Weibull
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no longer conforms to the expected leading digit probaeditThe scale parameterdoes have a
small effect on the conformance as well, but not nearly testme extreme as the shape parameter,
~. Fortunately in many applications the scale parametemot too large (it is frequently less than

2 in the Weibull references cited earlier), and thus our wandvides additional support for the
prevalence of Benford behavior.

5. PROOF OFMAIN RESULT

To prove Theorem 411, we study the distributiod®f; Z, , mod 1 whenZ, ., has the Weibull
distribution with parameteras and~. The analysis is aided by the fact that the cumulative dis-
tribution function for a Weibull random variable has a nitesed form expression; for,, , the
cumulative distribution function i&, . (z) = 1 — exp(—(z/a)”). Let[a, b] C [0,1]. Then

Prob(logg Z, mod 1 € [a,b]) = Z Prob(logp Z,, mod 1 € [a+ k,b+ k])

k=—00

= Y Prob(Z, € [B*™", B"™))

() ()

(5.1)

Proof of Theoreri 4] 1t suffices to investigaté (3.1) in the special case whea 0 andb = z,
since for any other intervak, b) we may determine its probability by subtracting the proligbi
of [0,a] from [0, b]. Thus, we study the cumulative distribution functionlef; Z, , mod 1 for
z € [0, 1], which we denote by'z(z):

Fs(z) = Prob(logy Za. mod 1 € [0,2])
- S (B () e

This series expansion is rapidly converging, and the clesenfZ, ., to Benford is equivalent to
the rapidly converging series in(5.2) féi;(z) being close ta for all =.
A natural way to investigate the closenesg®fz) to z is to compard™”’(z) to 1. As in [MiNi2],

studying the derivativd';(z) is an easier way to approach this problem, because we obtain a
Bz+k

simpler Fourier transform than the Fouriertransforna_o(%) —e_(T> . We then can analyze
the obtained Fourier transform by applying Poisson sunomdfiheoreny 311).

We use the fact that the derivative of the infinite sB(z) is the sum of the derivatives of the
individual summands. This is justified by the rapid decayurhmands, yielding

I Bz+k v Bz+k v—1
exp <— ( ) ) Btk (—) ~vlog B
« «

o EN Y kN 7L
= Z é - lexp <— (%) ) (B (%) ~vlog B

k=—00

o0

Fhiz) = 3

k=—o0

SEE

: (5.3)

where forz € [0, 1], we use the change of variablgs= B~.
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We introduceH (£) = L - exp < (CBt> ) (B <<Bt) ~log B, where¢ > 1 as¢ = B* with
z > 0. SinceH (t) is decaylng rapidly we may apply Poisson summation, thus

S H(k) = Y H(k), (5.4)
k=—00 k=—00
whereH is the Fourier Transform off : H (u = [T H(t)e ?""dt. Therefore
Fplz) = Y Hk) = Y H(k)
k=—o00 k=—o00
t\ Y t\ 71
= Z / — exp( (g) )CBt<CB) vlog B - e~ ikt (5.5)
oo « «
We change variables again, setting= (( B!/a)”, which implies
1/ t\ Y~
t = logg <O‘“é ) and dw — = <C£) . ¢Blylog B dt, (5.6)
« «

so that

Fi(z) = Z / v exp (—27rz'k; log (O‘UZM)) duw

k=—o0
—27ik/log B

_ Z (g) / e~ . w—27rik/'ylogBdw

= \¢ 0

S —2mik/log B .
o 2mik

= — ry1- 5.7

kzz_w(é) ( 710g3>’ &1

where we used the definition of tlefunction in the last line. A$'(1) = 1, we have
2mim

2mim — 7
- C\ =B 2mim (\ l=B 2mim
=1 = ry{1- = i1
+mz::1 (a ~vlog B - e +710gB

As in [MiNi2], the above series expansion is rapidly conesrg As¢ = B* we have

C 2mim/ log B IOg a IOg a
= = cos | 2mrmz — 2mTm +isin | 2rmz — 2mm , (5.9
Q@ log B log B

which gives a Fourier series expansion fd§(z) with coefficients arising from special values of
theI'-function.

Using properties of th&-function we are able to improveé (5.8). 4f € R thenT'(1 — iy) =
I'(1 + iy) (where the bar denotes complex conjugation). Thusitfesummand in[(5]8) is the
sum of a number and its complex conjugate, which is simplgévihe real part. We use the
following standard relationship (see for example [AS]):

(5.8)

T 2rx
[(1+ix)]* = = : 5.10
IP(L+ ) sinh(7x) erT — =7 (5-10)
Writing the summands i {5.8) a& <e‘2”m(z‘113§§) T <1 + fffjg";)), (5.8) becomes

/ o —27r2m z = 2mim
Fi(z) = 1+2Z§)%( )-r(1+710g3)). (5.11)
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Finally, in the exponential argument above there is no changeplacinga with aB, as this
changes the argument Byi. Thus it suffices to consider € [a, aB) for anya > 0. O

This proof demonstrates the power of using Poisson summatiBenford’s law problems, as
it allows us to convert a slowly convergent series expansitma rapidly converging one, with
the main term corresponding to Benford behavior and ther d&éinens measuring the deviation.

APPENDIX A. PROOFS OFBOUNDING ESTIMATES

We first estimate the contribution #d;(z) from the tail, say from the terms withh. > M. We
do not attempt to derive the sharpest bounds possible, tharraighlight the method in a general
enough case to provide useful estimates.

Proof of Theoreri 4J@]). We must bound the truncation error

2mim
— R Gl D N Al
Z ‘ ) ( +710gB)’ (A1)

m=M

wherel'(1 +iu) = [~ e a’dr = [ e *e™2*dz. Note that in our casey = 1% Asu

increases there is more oscillation and therefore moreetaitian, resulting in a smaller value for
our integral. Sincée®| = 1, if we take absolute values inside the sum we Hav@”m(z 13§§)| =
1, and thus we may ignore this term in computing an upper bound.

Using standard properties of the Gamma function, we have

T 2rx 2mm
1+ = = h = .
[P + ) sinh(mx) e vlog B

(A.2)

This yields

- 4mm 1 1/2
‘8B(Z>| < Z L (fylogB ' 627r2m/'ylogB _ 6—27r2m/'ylogB) ’ (A3)

m=M

Letu = 27 ™/7los B \\e overestimate our error term by removing the differerfadi® expo-
nentials in the denominator. Simple algebra shows tha{#@{< 2 we needu > /2. For us this

meanse?™ ™/ 78 B > /2 allowing us to simplify the denominator if > 2loebloe2 “ywhich we
may do as we assuméd exceeds this value and > M. We substitute this bound intb (A.2),
and replace/m with m to simplify the resulting integral:

> 41%m, 1/2 V2 2V 21 o0 2
Ep(z)| < ( ) . < me™™ e B (A.4)
[€5(2)] n;w ~vlog B em?m/vlog B Vylog B Ju

Lettinga = 7%/vlog B, integrating by parts gives

2v2r 1 221 a+1
£ < aMl —aM —aM < M —aM A5
Es(2)l < 710gBa2( e < vlogB a ‘ (A-5)
(sinceM > 1,aM + 1 < (a + 1)M), which after some algebra simplifies to
2/2(7? log B)\/vlog B
s s DATAEBIWIIRE p portminies, (n.6)

which is the error listed in Theorelm 4.2(1). O
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Proof of Theorerh 4i@2). Given the estimation of the error term from above, we now hskré-
lated question of, given an > 0, how large mustV/ be so that the firsii/ terms giveFy;(z)

accurately to withire of the true value. Lef = 22 tile BVATEE gng, — 71’;;3. We must
chooseM so thatCMe=*M < ¢, or equivalently

C
— aMe ™M < e (A.7)
a

As this is a transcendental equation/ify we do not expect a nice closed form solution, but we
can obtain a closed form expression for a boundfrfor any specific choices af' anda we can
easily numerically approximat/. We letu = a M, giving

ue ™ < ae/C. (A.8)
With a further change of variables, we let= — In(ae/C') and then expand asu = k + z (as the
solution should be close t9. We find

u-e * < e " isequivalent to < 1 (A.9)
6"E
We tryz =1Ink + , and see
k k+Ink+ 3
e < 1 isequivalent to ————2 (A.10)
e’ k- el/?

From here, we want to determine the valuekafuch thain £ < %k as this ensures the needed
inequality above holds. Exponentiating, we nééd< e*. Aser > k?/3! for k positive, it suffices
to choosé: so thatk? < k3/6, or k > 6; this holds fore sufficiently small. Fok > 6, we have

1 1 1 19
k+hnk+- < k+-k+—k = —k ~ 1. k A1l
+ In +2_ +2 +12 17 5833k, ( )
but
k-e'? ~ 1.64872k. (A.12)
Therefore a correct cutoff value fdd, in order to have an error of at mastis
k+Ink+ 1
M o= STBETS (A.13)
a
where
2 24/2(7? log B)\/v1log B
k = max(k:,—ln(g)>, a = L, C = V2(n* + vlog B)y/7Tog . (A.19)
C ~vlog B 3
]
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