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ABSTRACT. Motivated by the works of Erdös, Pomerance, Wolke and Harman on the
sum-of-divisor function σ(n), we study the distribution of a special class of natural num-
bers closely related to (multiply) perfect numbers which we term ‘(ℓ; k)-within-perfect
numbers’, where ℓ > 1 is a real number and k : [1,∞) → (0,∞) is an increasing and
unbounded function.

1. INTRODUCTION

A natural number n is said to be perfect if σ(n) = 2n, ℓ-perfect if σ(n) = ℓn (with
ℓ > 1 being rational), and multiply perfect if n | σ(n), where σ(n) represents the sum of
all positive divisors of n. An outstanding conjecture, originating from the ancient Greeks
(300 BC), asserts that there are infinitely many even perfect numbers but no odd perfect
numbers (see Euclid [Eu, Book VII, IX], Dickson [Di, Chapter I], Guy [Gu, Chapter B1]).
This conjecture is well-supported by probabilistic heuristics due to Pomerance [Pol, pp.
249, 258-259]. For ℓ ∈ {2, 3, . . . , 11}, there are known examples of ℓ-perfect numbers
(see [Gu, Chapter B1]); however, for other values of ℓ, the (non)existence of ℓ-perfect
numbers remains entirely open.

Starting in the mid-20th century, considerable interest emerged in understanding the
statistical distribution of perfect numbers. These numbers are particularly rare, as demon-
strated by the works of Erdös [Er56], Volkmann [Vo56], Kanold [Ka54, Ka57], Hornfeck
[Ho55] and Hornfeck-Wirsing [HW57], culminating in the sharpest known upper bound
for the number of perfect numbers up to x due to Wirsing [Wi59]. The bound obtained in
[Wi59] is of the order exp(O( log x

log log x ) as x → ∞, which possesses the pleasant feature
of uniform applicability to ℓ-perfect numbers for any rational ℓ. When restricting to the
class of odd perfect numbers, there is the celebrated Dickson’s finiteness theorem [Di13]
which asserts the following: given a natural number k, there are only finitely many odd per-
fect numbers with exactly k distinct prime divisors. This was later refined by Pomerance
[Pom77] and Heath-Brown [HB94].

Subsequently, it evolved into an active research area to investigate special classes of
natural numbers closely linked to perfect numbers, see [Gu, Chapter B2-B3]. For instance,
Sierpiński [Si65] introduced the notion of ‘pseudo-perfect numbers.’ In a companion ar-
ticle [CC+20], we studied a subclass of these numbers known as ‘near-perfect numbers’,
proposed by Pollack-Shevelev [PS12]. In [CC+20], we strengthened the results and analy-
sis of [PS12] by employing recursive partitions and sieve-theoretic techniques.

In this article, we investigate another type of ‘approximate’ perfect numbers of a some-
what different flavour which we term the (ℓ; k)-within-perfect numbers, where ℓ > 1 is a
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real number and k = k(y) is a certain threshold function. More precisely, a natural number
n is said to be (ℓ; k)-within-perfect if the Diophantine inequality

|σ(n)− ℓn| < k(n) (1.1)

holds. There are two distinct origins of these numbers. On one hand, Erdös ([Gu, pp. 46])
and Makowski [Ma79] were interested in the case when ℓ = 2 and k is a constant. On the
other hand, the inequality (1.1) arises naturally in the field of Diophantine approximations
for arithmetic functions. Wolke [Wo77] studied (1.1) for any real ℓ > 1 and function k(y)
of the form yc. His result was improved by Harman [Ha10] and very recently by Järviniemi
[Ja22+]. In [Ja22+], it was shown that for any real ℓ > 1 and any c ∈ (0.45, 1), there exist
infinitely many (ℓ; yc)-within-perfect numbers. The range of c can be extended to (0.39, 1)
under the Riemann Hypothesis as indicated in [Ha10]. The results of [Ha10, Ja22+] rely
on deep inputs from the distributions of primes in short intervals as well as that of the
differences of consecutive primes, see [BHP01, HB21, St22+, Ja22+]. Interested readers
are also referred to Alkan-Ford-Zaharescu [AFZ09a, AFZ09b] for settings more general
than (1.1) and the related questions in Diophantine approximations.

The main results of this article concern the class of threshold functions k = k(y) which
are complementary to those considered in [Wo77, Ha10, Ja22+]. Moreover, we are also
interested in estimating the size of the set

W (ℓ; k;x) := {n ≤ x : |σ(n)− ℓn| < k(n)} . (1.2)

Consequently, our work employs a different set of techniques compared to the earlier men-
tioned works.

Theorem 1.1. Let c ∈ (0, 1/3) be given. Suppose k : [1,∞) → (0,∞) is an in-
creasing and unbounded function satisfying k(y) ≤ yc for y ≥ 1. Let Σ be the set
{σ(m)/m : m ≥ 1}. Then

(a) If ℓ = a/b ∈ (Q ∩ (1,∞)) \ Σ with (a, b) = 1, then

#W (ℓ; k;x) = O
(
ab3x2/3+c+o(1)

)
(1.3)

for 1 < ℓ ≤ xc and x ≥ 1, where the implicit constants are absolute.

(b) If ℓ = a/b ∈ Σ with (a, b) = 1, and there exists δ > 0 such that k(y) ≥ yδ for
y ≥ 1, then

lim
x→∞

#W (ℓ; k;x)

x/ log x
=

∑
σ(m)= ℓm

1

m
. (1.4)

Remark 1.2. We also have an analogous result for c = 0 and its proof is actually simpler,
see Proposition 2.7 and Remark 3.1.

Remark 1.3. Firstly, the infinite series of (1.4) converges by Wirsing’s Theorem ([Wi59]),
which will be applied in various ways throughout the course of proving Theorem 1.1.

Secondly, a key strength of our theorem is that all dependencies in (1.3) are made en-
tirely explicit. Our bound remains non-trivial even if the numerator or denominator of
ℓ grows with x at a controlled rate, though this necessitates appropriately shrinking the
admissible range for c.

Thirdly, while it is possible that the dependence on ℓ (i.e., the factor ab3) in (1.3) can
be improved, it does not appear that this dependence can be removed. This is in constrast
to Wirsing’s Theorem.



ON THE WITHIN-PERFECT NUMBERS 3

1.1. Notations. We use the following notations throughout this article:

• f(x) ≍ g(x) if there exist constants c1, c2 > 0 such that c1g(x) < f(x) < c2g(x)
for sufficiently large x,

• f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1,
• f(x) = O(g(x)) or f(x) ≪ g(x) if there exists a constant C > 0 such that
f(x) < Cg(x) for sufficiently large x,

• f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0,
• subscripts indicate dependence of implied constants on other parameters, and
• p always denotes a prime number.

1.2. Acknowledgments. This material is based upon work supported by the EPSRC grant:
EP/W009838/1, the Williams SMALL REU Program under the NSF grants DMS2341670,
DMS1265673, DMS1561945 and DMS1347804, as well as the Swedish Research Council
under grant no. 2021-06594 while the first author was in residence at Institut Mittag-
Leffler in Djursholm, Sweden during the year of 2024. Both of the authors would like to
express their gratitude to the participants of the SMALL REU (2015-16) for their constant
encouragement, and also for the generous hospitality in Williamstown and Djursholm.

2. PRELIMINARY DISCUSSIONS AND PREPARATIONS

2.1. Distribution Function and Phase Transition. We begin by briefly explaining why
the sublinear regime for k = k(y) is of the greatest interest in the study of within-
perfectness. For this, we recall the definition of a distribution function.

Definition 2.1. Let −∞ ≤ a < b ≤ ∞.

(1) A function F : (a, b) → R is a distribution function if F is increasing, right
continuous, F (a+) = 0, and F (b−) = 1.

(2) An arithmetic function f : N → R has a distribution function if there exists a
distribution function F such that

lim
x→∞

1

x
#{n ≤ x : f(n) ≤ u} = F (u)

at all points of continuity of F .

A celebrated theorem of Davenport [Da33] asserts that σ(n)/n possesses a continuous
and strictly increasing distribution function on [1,∞). Denote by D( · ) the distribution
function of σ(n)/n and extend its definition to R by setting D(u) = 0 for u < 1. More
generally, a necessary and sufficient criterion for the existence of distribution functions for
additive functions was established by Erdős-Wintner [EW39], see [Te, Chapter I.5, III.4]
for further details.

The following result describes the phase transition for the asymptotic density for the set
of all (ℓ; k)-within-perfect numbers which we denote by W (ℓ; k).

Proposition 2.2. Let D(·) be the distribution function of σ(n)/n. Then

(a) If k(n) = o(n), then W (ℓ; k) has asymptotic density 0.
(b) If k(n) ∼ cn for some c > 0, then W (ℓ; k) has asymptotic density equal to

D(ℓ+ c)−D(ℓ− c).
(c) If k(n) ≍ n, then W (ℓ; k) has positive lower density and upper density strictly

less than 1.
(d) If n = o(k(n)), then W (ℓ; k) has asymptotic density 1.
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Sketch. The proof is elementary and we will only indicate certain details for part (d). Let’s
label the elements of W (ℓ; k) by nj in increasing order. For any j ∈ N, there exists nj ∈ N
such that n/k(n) < 1/j for any n ≥ nj . Whenever x ≥ nj , we have

1

x
#{n ≤ x : |σ(n)− ℓn| < jn} ≤ nj

x
+

1

x
#{n ≤ x : |σ(n)− ℓn| < k(n)}.

Upon taking liminf to both sides, it follows that D(ℓ+ j) ≤ 1. By Davenport’s theorem,
D( · ) is continuous and D(∞) = 1. Letting j → ∞ yields

lim inf
x→∞

#W (ℓ; k;x)

x
= 1.

□

2.2. On Congruences involving σ(n). Henceforth, our focus shifts to the sublinear thresh-
olds, where we crucially make use of the techniques developed by Pomerance and his
co-authors over the years. In 1975, Pomerance [Pom75] initiated the study of the equation

σ(n) = ℓn + k (2.1)

with ℓ, k being integers and ℓ > 1. Central to [Pom75] is the following important concept,
which proves very useful in many Erdös-style problems (see [PP16]):

Definition 2.3 (Regular/ Sporadic). The solutions to the congruence σ(n) ≡ k (mod n)
of the form

n = pm, where p ∤ m, m | σ(m), σ(m) = k, (2.2)
are called regular. All other solutions are called sporadic.

The main observation is that sporadic solutions occur much less frequently than regular
solutions. In a series of works [Pom75, Pom76a, Pom76b, PS12, APP12, PP13], this was
quantified with various degrees of precision and uniformity. We summarize the progress
made in this direction.

Let Spork(x) be the set of sporadic solutions of σ(n) ≡ k (mod n) up to x. In
[Pom75], [PS12], [APP12] and [PP13], it was shown, respectively, that the following
bounds hold as x → ∞:

• #Spork(x) = Oβ,k(x exp(−β
√
log x log log x)) for fixed k and fixed β < 1/

√
2,

• #Spork(x) = O(x2/3+o(1)) uniformly in |k| < x2/3,
• #Spork(x) = O(x1/2+o(1)) uniformly in |k| < x1/4, and
• #Spork(x) ∩ {σ(n) is odd} = O(|k|x1/4+o(1)) uniformly in 0 < |k| ≤ x1/4.

When k = 0, we have a much stronger bound for (2.1) due to Wirsing ([Wi59]).
Unfortunately, the aforementioned results are not sufficient for our study of within-

perfect numbers. We must consider a more general congruence

bσ(n) ≡ k (mod n) (2.3)

where b and k are integers with b ≥ 1. Accordingly, the definitions of regular and sporadic
solutions should be extended as follows:

Definition 2.4. Suppose b | k. Then n is said to be a regular solution to (2.3) if

n = pm, where p ∤ m, m | bσ(m), σ(m) =
k

b
. (2.4)

All other solutions are called sporadic. In the case when b ∤ k, all solutions to (2.3) are
considered sporadic.



ON THE WITHIN-PERFECT NUMBERS 5

We record the following generalization of [PS12, Lemma 8], which will be used in the
proof of Theorem 1.1 and may also be of independent interest. For the convenience of the
readers, we include a sketch of proof of this proposition here.

Proposition 2.5. The number of sporadic solutions n ≤ x to the congruence bσ(n) ≡
k (modn) is O(b2x2/3+o(1)) for any x ≥ 1 and integer k satisfying |k| < bx2/3. The
implicit constants are absolute.

Our intended applications take into account of the uniformity of the range and the
strength of the upper bound in counting sporadic solutions. In light of Wirsing’s Theorem
([Wi59]) and Remark 1.3, it is also desriable to maintain all implicit constants absolute but
this can be somewhat subtle, see [APP12, Remark 1] and [PP13]. After a careful exam-
ination of existing strategies, the authors believe that the approach of [PS12] is the most
suitable for attaining our desired generalization (e.g., ℓ can be rational), incorporating all
the favourable features mentioned above. Their method softly utilizes the unique factoriza-
tion of a natural number into its square-free and square-full parts, the anatomy of unitary
divisors 1, and the following result from [Pol11, Theorem 1.3]:∑

x1/3<m≤x2/3

(m,σ(m))

m2
≤ 3x−1/3+o(1), (2.5)

which turns out to be a nice application of Wirsing’s Theorem!

Proof of Proposition 2.5. We can certainly assume that x ≥ b, otherwise the count is triv-
ially bounded by b, which is acceptable in view of Theorem 1.1. Let |k| < bx2/3. Suppose
n ≤ x is a sporadic solution to the congruence bσ(n) ≡ k (mod n). One can simultane-
ously assume that n > x2/3 and the square-full part of n is bounded by x2/3. Indeed, the
contribution from the complement can easily seen to be O(x2/3). We then consider the
following two cases.

(1) Suppose p := P+(n) > x1/3. By the assumption made, we have n = pm with
p ∤ m and m < x2/3. The congruence can be written as bσ(n) = qn + k for
some integer q ≥ 0. It follows that

b(p+ 1)σ(m) = bσ(n) = qpm+ k,

and
p(bσ(m)− qm) = k − bσ(m).

If k − bσ(m) = 0, then n is a regular solution, which is a contradiction! So,
k − bσ(m) ̸= 0. For each m, the number of such p is O(log |k − bσ(m)|) =
O(log(bx2/3 log log x)) = O(log bx) because of p | (k− bσ(m)). Therefore, the
number of such n is O(x2/3 log bx) = O(x2/3 log x), which is acceptable.

(2) Suppose p := P+(n) ≤ x1/3. Such n must have a unitary divisor m in the interval
(x1/3, x2/3], see [PS12]. We have σ(n) ≡ 0 (mod σ(m)) and bσ(n) ≡ k (mod
m). By the Chinese Remainder Theorem, we have bσ(n) ≡ an ( mod [m,σ(m)])
for some unique 0 ≤ an < [m,σ(m)]. Given m ∈ (x1/3, x2/3], the number
of possible values for bσ(n) is ≤ 1 + (2bx log x)/[m,σ(m)]. Summing over

1Note: m is a unitary divisor of n if n has a decomposition of the form n = mm′, where (m,m′) = 1.
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m ∈ (x1/3, x2/3], the total number of possible values of bσ(n) is

≤
∑

x1/3<m≤x2/3

(
2bx log x

[m,σ(m)]
+ 1

)
≤ x2/3 + (2bx log x)(3x−1/3+o(1)) ≤ 7bx2/3+o(1)

from Lemma 2.5. Moreover, the size of q = (bσ(n)− k)/n is clearly

≪ b log log x +
|k|
n

< b log log x+ b ≪ b log log x

by the assumptions n > x2/3 and |k| < bx2/3. Since bσ(n) = qn+k, the number
of possible values of n is at most

(7bx2/3+o(1))(b log log x) ≤ 7b2x2/3+o(1).

The desired result follows by putting the conclusions of the two cases together. □

2.3. A simple application. Let k, a, b be integers such that k ̸= 0, a > b ≥ 1, and (a, b) =
1. Denote by S(a, b; k) the set of all solutions to the Diophantine equation bσ(n) = an+k
that generalizes (2.1). Let S(a, b; k;x) := S(a, b; k) ∩ [1, x]. The main result of [Pom75]
is stated as follows.

Theorem 2.6. As x → ∞, we have

#S(a, 1; k;x) ≪k,a
x

log x
. (2.6)

Motivated by Pomerance’s theorem, Davis-Klyve-Kraght [DKK13] recently performed
an extensive numerical investigation on the true size of S(a, 1; k;x). As a first application
of Proposition 2.5, we sharpen Pomerance’s theorem and confirm some of the observations
and speculations made in [DKK13]. This will also serve as the base case for Theorem 1.1,
see Section 3.2.

Proposition 2.7.
(a) If k ≥ 1, ab | k, and σ(k/a) = k/b, then

#S(a, b; k;x) ∼ a

k

x

log(ax/k)
(2.7)

as x → ∞.
(b) Otherwise, we have

#S(a, b; k;x) = O(b2x2/3+o(1)) (2.8)

for any x ≥ 1, where the implicit constants are absolute. In particular, the bound
(2.8) is uniform in a.

Proof. Suppose n ∈ S(a, b; k). Then bσ(n) ≡ k (mod n). If b ∤ k, then all solutions are
sporadic by Definition 2.4 and (2.8) follows at once from Proposition 2.5.

Suppose b | k and n is a regular solution. Then k(1 + p) = b(1 + p)σ(m) = apm+ k.
Hence, bσ(m) = k = am and in particular, we have

a | k and σ(k/a) = k/b (= σ(m)). (2.9)

In other words, if (2.9) is violated, then all solutions are sporadic and once again (2.8)
holds. This proves part (b) of Proposition 2.7.
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Suppose ab | k and σ(k/a) = k/b. Then the set {n ∈ N : n = p(k/a), p ∤ (k/a)}
consists of all regular solutions and is contained in S(a, b; k). Using Proposition 2.5, the
Prime Number Theorem, and the bound ω(n) = O(log n) 2, it follows that

#S(a, b; k;x) = π(ax/k) + O(log |k|) + O(b2x2/3+o(1))

∼ a

k

x

log(ax/k)

as x → ∞. Hence, part (a) follows and this completes the proof of Proposition 2.7. □

3. PROOF OF THEOREM 1.1

3.1. Upper Bound. We begin by proving the harder part of Theorem 1.1, i.e., the upper
bounds for W (ℓ; k;x). Fix c ∈ (0, 1/3). Let kc(y) := yc and k(y) ≤ kc(y) for y ≥ 1.
Given a function f , we write W̃ (ℓ; f ;x) := {n ≤ x : |σ(n)− ℓn| < f(x)}. The following
inequality is apparent:

#W (ℓ; k;x) ≤ #W̃ (ℓ; k;x) ≤ #W̃ (ℓ; kc;x). (3.1)

Let ℓ = a/b > 1 be in the lowest term. For n ∈ W̃ (ℓ; kc;x), we have bσ(n)− an = k
for some integer k such that |k| < bxc. In particular, we have

bσ(n) ≡ k (mod n) for |k| < bxc. (3.2)

By Proposition 2.5, the number of n ∈ W̃ (ℓ; kc;x) which is a sporadic solution (see
Definition 2.4) is O(bxc) · O(b2x2/3+o(1)) = O(b3x2/3+c+o(1)), which is acceptable in
view of Theorem 1.1. On the other hand, the number of regular solutions n = pm ∈
W̃ (ℓ; kc;x) with p ≤ bxc is O(bxc+o(1)) by Wirsing’s Theorem ([Wi59] or see Section 1).
The contribution is clearly negligibly small.

Suppose p > bxc and bσ(m) = rm for some integer r ≥ a+ 1. Then

|bσ(n)− an| = |b(1 + p)σ(m)− apm| = |(1 + p)rm− apm| = m|r + p(r − a)|
≥ m(r + p) > bxc.

This contradicts with (3.2)!
Suppose p > bxc and bσ(m) = rm for some integer r ≤ a− 1. Then

• If r + p(r − a) ≥ 0 (which implies p < a), then a contradiction with p > bxc

arises whenever xc > ℓ.
• If r + p(r − a) < 0, then |bσ(n)− an| < bxc ⇐⇒ m[(a− r)p− r] < bxc. By

Merten’s Theorem, the number of such n is at most∑
2≤r≤a−1

∑
bxc<p≤x

bxc

(a− r)p− r
≤ abxc

∑
bxc<p≤x

1

p− (a− 1)

≤ 2abxc
∑
p≤x

1

p
≪ abxc log log x

whenever xc ≥ 2ℓ. The contribution is once again negligible.

Hence, we are left to consider the case when r = a, i.e.,

n = pm ∈ W̃ (ℓ; kc;x) such that p > bxc and σ(m) = ℓm. (3.3)

2Denote by ω(n) the number of distinct prime factors of n.
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If ℓ ̸∈ Σ, there is clearly no such n and thus #W (ℓ; k;x) = O(ab3x2/3+c+o(1)) by taking
into account the paragraphs right above. This proves part (a) of Theorem 1.1.

Suppose ℓ ∈ Σ. Firstly, observe from partial summation and Wirsing’s Theorem that∑
σ(m)= ℓm

logm

m
=

∫ ∞

1

log t

t
dPℓ(t) = lim

t→∞

log t

t1−o(1)
+

∫ ∞

1

log t

t2−o(1)
dt ≪ 1,

(3.4)

where Pℓ(t) := #{m ≤ t : σ(m) = ℓm}. As a result, both of the series∑
σ(m)= ℓm

logm

m
and

∑
σ(m)= ℓm

1

m
(3.5)

can readily seen to be convergent. Notice that the bound (3.4) is uniform in ℓ.
Secondly, we have m < x1−c since x ≥ n = pm > xcm. 3 It follows that

0 <
logm

log x
≤ 1− c < 1,

and (
1− logm

log x

)−1

= 1 +Oc

(
logm

log x

)
. (3.6)

Let β > 1 be given. The Prime Number Theorem asserts the existence of a constant
X0 = X0(β) > 0 such that π(x) < βx/ log x whenever x ≥ X0. For x ≥ X

1/c
0 , the

number of n satisfying (3.3) is at most∑
σ(m)=ℓm

m≤x1−c

π(x/m) < β
∑

σ(m)=ℓm

m≤x1−c

x/m

log(x/m)

<
βx

log x

∑
σ(m)=ℓm

1

m
+ Oc

(
βx

(log x)2

∑
σ(m)=ℓm

logm

m

)

<
βx

log x

∑
σ(m)=ℓm

1

m
+ Oc

(
βx

(log x)2

)
with the help of (3.6) and the convergence of the series in (3.5). Therefore, we have

lim sup
x→∞

#W (ℓ; k;x)

x/ log x
≤ β

∑
σ(m)=ℓm

1

m
(3.7)

for any β > 1. Let β → 1+ in (3.7), it follows that

lim sup
x→∞

#W (ℓ; k;x)

x/ log x
≤

∑
σ(m)=ℓm

1

m
.

This proves the upper bound of Theorem 1.1.(b).

3Actually, m ≤ xmin{c,1−c}.
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3.2. Lower Bound. The proof of the lower bound for Theorem 1.1.(b) is relatively straight-
forward. Suppose ℓ ∈ Σ. Based on the experience of Pomerance et. al. (see Section 2.2),
a lower bound for #W (ℓ; k;x) can be obtained by estimating the size of the set

Lℓ(δ) :=
{
n ≤ x : n = pm, p ∤ m, σ(m) = ℓm, ℓm < (pm)δ

}
(3.8)

provided that k(y) ≥ yδ for any y ≥ 1, where δ ∈ (0, 1). We have

#Lℓ(δ) =
∑

σ(m)=ℓm

m≤xδ/ℓ

∑
(ℓm)1/δ/m<p≤x/m

p ∤m

1.

Using the bound ω(m) = O(logm), Wirsing’s theorem and partial summation, it fol-
lows that

#Lℓ(δ) =
∑

σ(m)=ℓm

m≤xδ/ℓ

∑
(ℓm)1/δ/m<p≤x/m

1 + Oδ(x
o(1)),

and ∑
σ(m)=ℓm

m≤xδ/ℓ

∑
p≤(ℓm)1/δ/m

1 ≪ ℓ1/δ
∑

σ(m)=ℓm

m≤xδ

m1/δ−1 ≪ ℓ1/δx1−δ+o(1).

Hence,

#Lℓ(δ) =
∑

σ(m)=ℓm

m≤xδ/ℓ

π(x/m) + Oδ

(
ℓ1/δx1−δ+o(1)

)
. (3.9)

Let α < 1. By the Prime Number Theorem, there exists x0 = x0(α) > 0 such that
π(x) > αx/ log x whenever x ≥ x0. Thus, if x > (x0)

1/(1−δ), then

#Lℓ(δ) >
αx

log x

∑
σ(m)=ℓm

m≤xδ/ℓ

1

m
+ Oδ

(
ℓ1/δx1−δ+o(1)

)

=
αx

log x

 ∑
σ(m)=ℓm

1

m
+ O

(
(ℓ/xδ)1+o(1)

) + Oδ

(
ℓ1/δx1−δ+o(1)

)
.

From this, we may deduce that

lim inf
x→∞

#W (ℓ; k;x)

x/ log x
> α

∑
σ(m)=ℓm

1

m
. (3.10)

Since this holds for any α < 1, the lower bound for Theorem 1.1.(b) follows.

Remark 3.1. Suppose ℓ ∈ Σ. Proposition 2.7 implies that when k ≡ k0 ≥ 1 is a constant
function, we have

#W (ℓ; k0;x)

x/ log x
=

∑
|k|<bk0

#S(a, b; k;x)

x/ log x
∼

∑
0<m<k0/ℓ

b|m
σ(m)=ℓm

1

m
(3.11)
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as x → ∞. The rightmost quantity of (3.11) converges to
∑

σ(m)=ℓm
b|m

1/m as k0 → ∞. In

particular, when ℓ ∈ Z and k is an increasing unbounded function, one reaily observes
that

#W (ℓ; k;x)

x/ log x
∼ lim

k0→∞

#W (ℓ; k0;x)

x/ log x
(3.12)

as x → ∞. However, the asymptotic (3.12) is not necessarily true when ℓ ̸∈ Z because of
the restriction b | m present in (3.11)!

4. CONCLUDING DISCUSSIONS, NUMERICS, & FURTHER DIRECTIONS

Building upon the method of [APP12], Pollack-Pomerance-Thompson [PPT18] recently
proved a variant of the main result of [APP12], albeit with a weaker error term and unifor-
mity. Specifically, they proved that if ℓ ∈ Z is kept fixed, the number of sporadic solutions
to the equation σ(n) = ℓn+ k up to x is O(x3/5+oℓ(1)) as x → ∞ and for any integer k.
To the best of the authors’ knowledge, there seems to be a number of subtlties in general-
izaing the method of [PPT18] to the equation bσ(n) = an + k. Additionally, as noted in
[APP12], it appears that obtaining an estimate that is fully uniform in all of a, b, k would
require considerable effort.

If ℓ is restricted to be an integer and is kept fixed, the same argument from Theorem 1.1
along with the main theorem of [PPT18], should yield the slightly improved admissible
range c ∈ (0, 2/5). However, the barrier of our method seems to be c ∈ (0, 1/2), see
[PPT18, Conjecture 4.3]. When ℓ is not an integer, it is unclear what the barrier should be
and likley somewhat smaller than (0, 1/2).

Theorem 1.1 leads to several interesting consequences which are stated as follows. As
usual, k : [1,∞) → (0,∞) is an increasing function such that

yδ ≤ k(y) ≤ yc for y ≥ 1. (4.1)

Firstly, it is natural to consider the following quantity

Dc(ℓ) := lim
x→∞

#W (ℓ; yc;x)

x/ log x
=: lim

x→∞
Dc(ℓ;x) (4.2)

for ℓ ∈ [1,∞) and c ∈ (0, 1). In view of Proposition 2.2, this new ‘distribution function’ is
arguably well-suited to study the within-perfect numbers with respect to sublinear thresh-
old. However, this distribution function behaves quite differently from the ones described
in Definition 2.1.

Proposition 4.1. The function ℓ 7→ Dc(ℓ) is discontinuous on a dense subset of [1,∞),
for any c ∈ (0, 1/3).

Proof. It follows from a theorem of Anderson (see [Pol, pp. 270]) that (Q∩ [1,∞)) \Σ is
dense in [1,∞). Observe that Dc takes the value 0 on (Q∩ [1,∞)) \Σ but it takes positive
values on Σ by Theorem 1.1. So, Dc is discontinuous on Σ. It is a well-known theorem
that Σ is again dense in [1,∞) (see [Pol, pp. 275]). This completes the proof. □

Secondly, a real number ℓ > 1 is said to be Σ-approximable if there exists a function
f(x) → ∞ and a sequence of positive integers (mi)i≥1 such that |ℓ − σ(mi)/mi| <
1/f(mi) for any i ≥ 1. It is clear that

Proposition 4.2. If ℓ > 1 is Σ-approximable, then #W (ℓ; k;x) ≫ x/ log x on an un-
bounded set of x.
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In fact, for any function f(x) → ∞, there are irrational numbers ℓ > 1 that are Σ-
approximable by f . This follows from the standard nested interval argument and the theo-
rems of Anderson used in the proof of Proposition 4.1.

We conclude this article with some numerics and open problems for further investiga-
tion.

We calculate the quotient of Dc(2;x) for various values of c ∈ (0, 1) and at x =
1, 000, 000, x = 10, 000, 000, and x = 20, 000, 000. Note:

∑
σ(m)=2m

1
m ≈ 0.2045.

k(y) x = 1, 000, 000 x = 10, 000, 000 x = 20, 000, 000
y0.9 3.661860 3.305180 3.196040
y0.8 1.141480 0.945623 0.908751
y0.7 0.494278 0.435395 0.426470
y0.6 0.311567 0.274586 0.267904
y0.5 0.276559 0.259482 0.255962
y0.4 0.264968 0.252956 0.250063
y0.3 0.225980 0.247837 0.247299
y0.2 0.151238 0.195911 0.197430

TABLE 1. Dc(2;x) for various values of x and c.

It is natural to ask the following.

Problem 4.3. When c ∈ (1/2, 1), does the correct order of magnitude for #W (ℓ; k;x),
with ℓ ∈ Σ and k satisfying (4.1), continue to be x/ log x as x → ∞?

In between the sublinear and linear regime, e.g., k(y) = y/ log y, Proposition 2.2 gives
no conclusion. Consider the plot of x 7→ #W (2; k;x)/(x/ log x) for such k from x = 2
to x = 10, 000:

FIGURE 1. This plot shows the quantity #W (2; k;x)/(x/ log x) with
k(y) = y/ log y for x = 2 to 10, 000.

Problem 4.4. What is the order of magnitude of #W (ℓ; k;x) if the function k satisfies
yc = o(k(y)) for any c ∈ (0, 1)?
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Problem 4.5. What is the order of magnitude for #W (ℓ; k;x) for irrational ℓ?

Problem 4.6. Determine set of points of continuity for the distribution function ℓ 7→ Dc(ℓ).
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