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Abstract

Let E : y2 = x3+A(T )x+B(T ) be a non-trivial one-parameter family of
elliptic curves, and consider the kth moments pAk,E(p) :=

∑
t mod p aEt(p)k

of the Fourier coefficients aEt(p) := p+ 1−|Et(Fp)|. Rosen and Silverman
proved that if E is a rational surface then there is a negative bias in the
first moment A1,E(p) (this is conjectured to hold for all elliptic surfaces);
this bias is responsible for the rank of the elliptic surface. Michel inves-
tigated the second and higher moments; these are important as well and
are related to the distribution of zeros of the L-function associated to the
elliptic curve. He proved that pA2,E(p) = p2 + O(p3/2), with the lower

order terms of size p3/2, p, p1/2 and 1 having important cohomological in-
terpretations. In his Ph.D. thesis, Miller proposed that there is also a bias
in the second moment, and the largest lower-order coefficient that does
not average to zero is on average negative. This was proven for many
families by Mackall, Miller, Rapti, and Winsor, and explains some of the
disagreements between theory and computations for the small conductors
for the distribution of ranks in families of elliptic curves; reconciling this
disparity is one of the most important questions in the subject (it is still
an open question, for example, if the rank can be arbitrarily large). If
the bias conjecture holds, then it helps to explain for small conductors
why numerically on average the rank is higher than expected, which helps
us to understand one of the million dollar Clay Millenium prizes - the
Birch and Swinnerton-Dyer Conjecture - which states that the geomet-
ric rank of a rational elliptic surface equals to its analytic rank. In this
paper, we explore the first and second moments of some one- and two-
parameter families of elliptic curves, looking to see if the biases persist
and exploring the consequence these have on fundamental properties of
elliptic curves. We observe that in all of the one- and two-parameter fam-
ilies we proved theoretically that the first term that does not average to
zero in the second-moment expansion of the Fourier coefficients has a neg-
ative average. We found a potential counterexample to a stronger form
of Miller’s Conjecture based on the families studied to date, which is that
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the first term that does not average to zero is the p term and that has a
negative average. While we are not able to prove it, the numerical data
strongly suggests that the only term that does not average to zero is the
constant term, which has a small negative bias of −1.

Keywords: Elliptic Curves, Legendre Symbol, Biases, Ranks, Birch and
Swinnerton-Dyer Conjecture.
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1 Introduction

Elliptic curves generalize well-known concepts such as the Pythagorean triples
and the rational points on the unit circle. They are also a key to Andrew Wiles’
proof of the famous Fermat’s Last Theorem. They have wide applications in
cryptocurrency Bitcoin and cryptography.

In this section, we first define some basic concepts of elliptic curves; our main
sources are [Mi4, MMRW, Rub, Si0, ST]. Next, we introduce previous findings
on the bias conjecture. Then, we compute biases in the first and second moments
of some one- and two- parameter families using methods from [Mi1] to see if
the bias conjecture holds. In addition to looking at some new one-parameter
families, this paper explores two-parameter families for the first time, since
previous research papers focused only at one-parameter families or the family
of all elliptic curves.

1.1 Basic Concepts of Elliptic Curves

We start with the Pythagorean Theorem. The Pythagorean theorem states
that if a, b, and c are the sides of a right triangle, then

a2 + b2 = c2. (1.1)

d

a

b

c

Figure 1: A right triangle with side length a, b and c and area d

Lemma 1.1 (Pythagorean Triples). Given any Pythagorean triple there exist
m and n with m > n > 0 such that

a = k · (m2 − n2), b = k · (2mn), c = k · (m2 + n2),

(1.2)

where m, n and k are positive integers with m > n and with m and n are
coprime and not both odd, can generate all Pythagorean Triples.
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After we finish studying how to generate the rational points on a quadratic
equation a2 + b2 = c2, we are going to study how to generate the rational points
on a cubic equation.

Let x = a/c and y = b/c, and we have a unit circle

x2 + y2 = 1

(1.3)

x

y

(−1, 0) (1, 0)

(0,−1)

(0, 1)

(x, y)

(0, t)

Figure 2: A rational parametrization of the circle x2 + y2 = 1

We know one rational solution, (−1, 0). The line through (x, y) with slope t is
given by the equation:

y = t(1 + x).

(1.4)

Hence, the other point of intersection is

1− x2 = y2 = t2(1 + x)2.

(1.5)

Dividing each side by the root x = −1, we get

1− x = t2(1 + x).

(1.6)

Using the above relation, we get

x =
1− t2

1 + t2
, y =

2t

1 + t2
.

(1.7)
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We can see that if x and y are rational numbers, then the slope t = y/(1+x)
will be a rational number too. Conversely, if t is a rational number, then x and
y will be rational numbers too. Hence, by plugging random rational numbers
numbers for t, we can generate all the rational numbers on the circle (except
x = −1 in this case, because t is infinite).

Combining the area formula for a right triangle (1.1), equation of the unit
circle (1.3) as well as the rational parametrization of the unit circle (1.6) to-
gether, we get

1 =
1

2
ab

=
1

2
c2xy

=
1

2
c2
(

1− t2

t2 + 1

)(
2t

t2 + 1

)
=

c2

(t2 + 1)2
(t− t3).

(1.8)

Dividing both sides by c2/(t2 + 1)2, we get

(
t2 + 1

c
)2 = t− t3.

(1.9)

Let Y = (t2 + 1)/c and X = −t. We have

Y 2 = X3 −X,
(1.10)

which is an equation of an elliptic curve.

Definition 1 (Elliptic Curve). A curve given by the equation

y2 = x3 + ax+ b

(1.11)

is an elliptic curve, where a, b ∈ Q and 4a3 + 27b2 6= 0 because we want to avoid
degenerate cases. For example, we do not want y2 = x2(x− 1) to be an elliptic
curve; when we send y to xy we get y2 = x− 1, a parabola.

In this paper, we are going to study two kinds of families of elliptic curves:
one-parameter and two-parameter. For the families we compute in this paper,
we can do a change of variable to make the elliptic curves look like what we
write in the introduction, but for convenience we often have an x2 term.

Definition 2 (One-Parameter Family of Elliptic Curves). Let

E : y2 = x3 +A(T )x+B(T )
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be a non-trivial one-parameter family, with A(T ), B(T ) ∈ Q[T ], which are poly-
nomials of finite degree and rational coefficients.

Definition 3 (Two-Parameter Family of Elliptic Curves). Let

y2 = x3 +A(T, S)x+B(T, S)

be a non-trivial two-parameter family, with A(T, S), B(T, S) ∈ Q[T, S].

Elliptic curves have many applications. We have already seen one, where
the answer of whether or not there is a rational right triangle with area d is
related to the group of rational solutions of an associated curve. Another is the
famous Fermat’s Last Theorem.

Theorem 1.2 (Fermat’s Last Theorem). For every integer n ≥ 3 the equation

An +Bn = Cn

(1.12)

has no solutions in non-zero integers A, B and C.

Building on the work of many others Wiles was able to prove the above by
showing that if there existed a solution, it would lead to an elliptic curve with
special properties, and then proving that no such curve exists.

Next, we are going to discuss some interesting properties of elliptic curves.
For E the elliptic curve y2 = x3 + ax + b, the set of rational points is all pairs
of rational numbers (x, y) such that y2 = x3 + ax + b. We denote this set by
E(Q). One of the major results of the subject is that we can define an addition
law on the elements of E(Q), which turns this set into a group. See Figure 3
for an illustration.

We do this as follows. Let P = (x1, y1) and Q = (x2, y2) be two points in
E(Q), and consider the line connecting them (if P = Q we take the tangent line
to the curve at P ). As the two points have rational coordinates, the slope of
the line is rational, and using the point-slope form of the line we see that the
line connecting them can be written as y = mx + c for rational m and c. The
line will intersect the elliptic curve in one more point. Substituting we find

(mx+ c)2 = x3 + ax+ b;

we already know two solutions to this (x = x1, x2). As a, b,m, c, x1, x2 are
rational, the third root x3 is also rational, and then so too is y3; if we define
P +Q to be the reflection of this third point about the x-axis, namely (x3,−y3),
it turns out that E(Q) is a group (the zero element is the “point at infinity”).

Theorem 1.3 (Properties of Addition). The additional law on E(Q) has the
following properties:

(1) P + (Q+R) = (P +Q) +R, for all P,Q,R ∈ E.
(2) P +Q = Q+ P, for all P,Q ∈ E.
(3) P + P = 2P, for all P ∈ E.

See Figure 3 for an illustration.
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P +Q = R

x

y

Figure 3: Demonstrating the addition law for the elliptic curve E(Q): y2 =
x3 + 7.

Theorem 1.4 (Group of Rational Points). Mordell’s theorem states that a group
of rational points is finitely generated on a non-singular cubic elliptic curve.

Next, we are going to define one characteristic of elliptic curves that is relevant to
our paper. Often one can gain an understanding of a global object by studying
a local one. In particular, for a prime p we can look at how often we have
pairs (x, y) satisfying y2 = x3 + ax + b mod p. As half the non-zero elements
of Z/pZ = {0, 1, 2, . . . , p− 1} are non-zero squares modulo p and the other half
are not squares, it is reasonable to expect that for a randomly chosen x that
half the time it will generate two solutions modulo p and half the time it will
generate zero. Thus we expect the number of pairs to be of size p, and it is
valuable to look at fluctuations about this expected number.

Definition 4 (Fourier Coefficients). For E an elliptic curve y2 = x3 + ax + b
and a prime p, we define the Fourier coefficients aE(p) by

aE(p) := p− |E(Fp)|, (1.13)
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where |E(Fp)| is the number of solutions (x, y) to y2 = x3 + ax+ b mod p with
x, y ∈ Fp. These are used in constructing the associated L-function to the elliptic
curve.

There is a very useful formula for aE(p) (sometimes if the curve E is clear
we will write a(p) or ap). Recall the Legendre symbol

(
a
p

)
; it is zero if a is zero

modulo p, it is 1 if a is a non-zero square modulo p, and −1 otherwise. Thus

1 +
(
x3+ax+b

p

)
is the number of solutions modulo p for a fixed x. If we sum this

over all x modulo p we obtain |E(Fp)|, and thus

aE(p) = −
∑

x mod p

(
x3 + ax+ b

p

)
. (1.14)

Definition 5 (Fourier Coefficients of A Specialized Curve). We specialize T to
an integer t and obtain an elliptic curve Et with coefficient aEt(p):

aEt(p) := p− |Et(Fp)| (1.15)

where |Et(Fp)| is the number of points over Fp, the finite field. As before, we
have

aEt(p) = −
∑

x mod p

(
x3 +A(t)x+B(t)

p

)
. (1.16)

Much is known about the a(p)’s. For our work we only need to know their
size, though recent breakthroughs have determined much more about their dis-
tribution.

Theorem 1.5 (Hasse). In 1931, Hasse proved the Riemann Hypothesis for
finite fields: if E is an elliptic curve and p a prime, then

|aE(p)| ≤ 2
√
p. (1.17)

Hasse’s theorem tells us that the fluctuations in the number of solutions from
the expected value p are on the order of

√
p; this is very similar to square-root

cancellation seen in many other problems in number theory.
Last but not least, we are going to define some other important characteristic

of elliptic curves.

Definition 6 (Moment of a One-Parameter Family). Let E be a one parameter
family of elliptic curves over Q(T ), with Et the specialized curves. For each
positive integer r, we define the rth moment of the traces of Frobenius by:

AE,r(p) :=
1

p

∑
t mod p

aEt(p)
r. (1.18)

There is a natural extension to two-parameter families, where we sum over
s and t modulo p.
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Definition 7 (Big-Oh Notation). We say f = O(g(x)), read f is the big-Oh
of g, if there exists an x0 and a B > 0 such that for all x ≥ x0 we have
|f(x)| ≤ Bg(x).

Definition 8 (Rank). We can write the group of rational solutions of an elliptic
curve E as an infinite lattice (r copies of Z, where r is a non-negative integer)
and a finite torsion part:

E(Q) ∼= Zr × E(Q)tors. (1.19)

The geometric rank is the number of copies of Z, or the number of independent
points of infinite order. The analytic rank is the order of vanishing of the
associated L-function at the central point. We move on to discuss one well-
known problem of elliptic curve L-functions: the Birch and Swinnerton-Dyer
conjecture.

In the next section, we are going to talk about the connection between ranks
and biases, which is tied to another unsolved Millennium Prize Problem, the
Riemann Hypothesis.

1.2 Why Do We Care About the Biases?

It is well known that the probability that a random integer up to x is prime
is approximately 1/ log(x). However, the finer properties of the distribution of
primes remains a mystery. The Riemann zeta function ζ(s) (see [Da] for more
information), which connects integers to primes, can help us understand their
distribution. We have for Re(s) > 1

ζ(s) :=

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

; (1.20)

the zeta function is defined as the sum over integers above, but its utility comes
from the product expansion. The equivalence of these two expressions is due
to the Fundamental Theorem of Arithmetic and the geometric series formula.
Initially defined only for Re(s) > 1, the zeta function can be analytically con-
tinued to the entire complex plane with a simple pole of residue 1 at s = 1. The
line Re(s) = 1/2 is the critical line, and s = 1/2 the central point.

While the deepest connections between the zeta function and the primes
comes from applying results of complex analysis to the zeros of ζ(s), a lot can
be deduced just by looking at the series expansion for real s > 1. We give
two examples. First, when s goes to 1 from above the sum converges to the
harmonic series, which diverges. Thus there must be infinitely many primes, as
if there were only finitely many the sum would converge as s→ 1.

Another example is ζ(2). Euler showed that

ζ(2) =
1

12
+

1

22
+

1

32
+

1

42
+ · · · =

π2

6
, (1.21)

10



which is irrational; however, if there were only finitely many primes then the
product would be rational. Hence, there must be infinitely many primes.

As remarked above, while initially defined only for Re(s) > 1, ζ(s) can be
analytically continued to the entire complex plane, and satisfies a functional
equation:

ξ(s) := Γ
(s

2

)
π−

s
2 ζ(s) = ξ(1− s). (1.22)

Riemann hypothesized that all the complex zeros of ζ(s) lie on the critical line
Re(s) = 1/2. This conjecture remains one of the most difficult and important
problems in mathematics. Its importance stems from the fact that by doing
a contour integral of the logarithmic derivative of ζ(s) and shifting contours,
one obtains the Explicit Formula, which relates a sum over zeros to a sum over
prime.

Interestingly, the behavior of spacings between zeros of L-functions is similar
to that of energy levels of heavy nuclei, and to eigenvalues of random matrix
ensembles. In order to compare all these objects, it is useful to rescale so they
have mean spacing one. Thus different objects are rescaled differently. As the
average spacing between primes of size x is approximately log x, we divide the
gaps between primes by log x to obtain a sequence with mean spacing one. For
zeros of ζ(s) high on the critical line Re(s) = 1/2, the average spacing between
zeros with imaginary part T is about 1/ log T , so here we would multiply by
log T . Later we will study families of L-functions and their zeros near the
central point, and will comment on the renormalization.

We now move on to discuss other L-functions, which generalize the Riemann
zeta function. For the zeta function in the series expansion the coefficient of n−s

is always 1, and we have a product of degree one. For L-functions associated to
elliptic curves, the coefficients at a prime p are related to counting the number of
solutions modulo p, and we have a degree two product. There are unfortunately
two ways to normalize the L-function, depending on whether or not we look at
a(p) or a(p)/

√
p. We use the former, and thus our L-function will have critical

strip 0 < Re(s) < 2 and central point is s = 1; the latter gives a critical strip of
0 < Re(s) < 1 with central point s = 1/2.

Definition 9 (L-function). The Hasse-Weil L-function of an elliptic curve E :
y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6 with coefficient aE(p) and discriminant
∆

∆ := −b22b8 − 8b4
3 − 27b6

2 + 9b2b4b6, (1.23)

where b2 = a1
2 + 4a4, b4 = 2a4 + a1a3 and b6 = a3

2 + 4a6, is defined as

L(s, E) :=
∏
p|∆

1

1− app−s
∏
p-∆

1

1− app−s + p1−2s
. (1.24)

See [Kn].
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Similar to the zeta function, these L-functions take local data and create a
global object, from which much can be deduced. The most important of these
inferences is the famous Birch and Swinnerton-Dyer conjecture.

Conjecture 1.6 (Birch and Swinnerton-Dyer Conjecture). The order of van-
ishing of L(E, s) at the central point s = 1 is equal to the rank of the group of
rational points E(Q).

In other words, Birch and Swinnerton-Dyer conjectured that the geometric
rank of a rational elliptic curve equals to its analytic rank.

Unfortunately, it is not known what values of rank r are possible for ratio-
nal elliptic curves. In 1938, Billing found an elliptic curve with rank 3. The
largest known rank increased over the next few decades. The largest is due to
Elkies in 2006, and is rank at least 28. Interestingly, there are not examples of
elliptic curves for each rank smaller than 28 (see [Du] for a more comprehensive
historical data on elliptic curve records):

1930 1950 1970 1990 2019
0

5

10

15

20

25

30

Year

R
an

k
>

=

Elliptic Curve Records

Similar to using the Riemann Zeta function to understand the distribution
of primes, we use the Explicit Formula ([KS]), which relates sums over primes
of the Fourier coefficients aE(p) and a2

E(p) to sums of test functions over zeros,
to deduce information about the zeros. Let us look at a one-parameter family
E : y2 = x3 +A(t)x+B(t), with t ∈ [N, 2N ], and where φ is an even Schwartz-
class function that decays rapidly (this means φ, and all of its derivatives, decay
faster than 1/(1 + |x|)A for any A > 0), logR is the average log conductor, and
γ is the zeros of the L-function:
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1

N

2N∑
t=N

∑
γt

φ

(
γt

logR

2π

)
= φ̂(0) + φ(0)− 2

N

2N∑
t=N

∑
p

log p

logR

1

p
φ̂

(
log p

logR

)
at(p)

− 2

N

2N∑
t=N

∑
p

log p

logR

1

p2
φ̂

(
2 log p

logR

)
at(p)

2 +O

(
log logR

logR

)
; (1.25)

the result above comes from integrating the logarithmic derivative of the L-
function against the Schwartz test function φ and then shifting contours.

Note that if the test function is non-negative, then dropping the contribu-
tions of φ at all the zeros that are not at the central point removes a non-negative
amount from the left hand side. The right hand side then becomes an upper
bound for the average rank of the elliptic curves in the family:

1

N

2N∑
t=N

∑
γt=0

φ (0) ≤ φ̂(0) + φ(0)− 2

N

2N∑
t=N

∑
p

log p

logR

1

p
φ̂

(
log p

logR

)
at(p)

− 2

N

2N∑
t=N

∑
p

log p

logR

1

p2
φ̂

(
2 log p

logR

)
at(p)

2 +O

(
log logR

logR

)
, (1.26)

which means that

φ (0) ∗AverageRank(N) ≤ φ̂(0) + φ(0)− 2

N

2N∑
t=N

∑
p

log p

logR

1

p
φ̂

(
log p

logR

)
at(p)

− 2

N

2N∑
t=N

∑
p

log p

logR

1

p2
φ̂

(
2 log p

logR

)
at(p)

2 +O

(
log logR

logR

)
. (1.27)

Thus when φ is non-negative, we obtain a bound for the average rank in the
family by restricting the sum to be only over zeros at the central point. The error

O
(

log logR
logR

)
comes from trivial estimation and ignores probable cancellation,

and we expect O
(

1
logR

)
or smaller to be the correct magnitude. For most one-

parameter families of elliptic curves we have logR ∼ logNa for some integer a,
where t ∈ [N, 2N ].

The main term of the first and second moments of the at(p) give φ (0) ∗
AverageRank(N) and − 1

2φ(0); this is a standard application of the prime num-
ber theorem to evaluate the resulting sums; for details see the appendices on
prime sums in [Mi1]. This is reminiscent of the Central Limit Theorem, where
so long as some weak conditions are satisfied for independent, identically dis-
tributed random variables, their normalized sum converges to the standard nor-
mal. In that setting, if the moments are finite we can always adjust our distri-
bution to have mean zero and variance one, and it is only these moments that
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enter the limiting analysis. The higher moments do have an impact, but it is
only through the lower order terms, which control the rate of convergence.

We have a similar situation here. First, the higher moments of our Fourier

coefficients contribute in the big-Oh terms O
(

1
logR

)
. Second, the lower order

terms in the first and second moments can contribute, but not to the main term
in the expansions above. Explicitly, assume the second moment of at(p)

2 is
p2 −mEp+ O(1), mE > 0. We have already handled the contribution from p2,
and −mEp contributes

S2 ∼ −2

N

∑
p

log p

logR
φ̂

(
2

log p

logR

)
1

p2

N

p
(−mEp)

=
2mE
logR

∑
p

φ̂

(
2

log p

logR

)
log p

p2
. (1.28)

We have a prime sum which converges between φ that decays, and this sum
is bounded by

∑
p log p/p2. Thus, S2 converges and there is a contribution of

size 1/ log(R). This is the motivation behind why the Bias Conjecture, which
S. J. Miller conjectured in his thesis [Mi1], matters, as a bias has an impact in
our estimates on the rank and the behavior of zeros near the central point.

Conjecture 1.7 (Bias Conjecture for the Second Moment of Fourier Coefficients
of Elliptic Curve L-Functions). Consider a family of elliptic curves. Then the
largest lower term in the second moment expansion of a family which does not
average to 0 is on average negative.

If the Bias Conjecture holds, then when we estimate the rank of a family,
there is always an extra term that slightly increases our upper bound for the
average rank. This amount decreases as logR grows, and thus in the limit plays
no role; however, it does lead to a small but noticeable contribution for small
and modest sized conductors.

Another mystery is the distribution of zeroes on the critical strip. The
average spacing at height t (i.e., imaginary part is t so points near 1 + it) is
about 1/ log(t). Thus, they are getting closer to each other, and one L-function
gives us infinitely many zeros to study. Near the central point, however, we just
have a few zeros. Since we can not do much with an individual elliptic curve,
averaging over a family and the behavior near the central behavior, which is
the n-level density, can be really helpful. If we want to deduce things about the
zeros, we would want to calculate the 1-level density because ideally we would
have 1 at the central point, and 0s everywhere else.

Definition 10 (1-Level Density). We assume that the Generalized Riemann
Hypothesis holds for the L-functions L(E, s) with zeros lying on the critical
strip 1 + it. Let us consider the family of all elliptic curves

F : y2 = x3 + ax+ b, a ∈ [−N2, N2], b ∈ [−N3, N3], (1.29)
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and one-parameter families

F : y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x+ a6(t)

ai(t) ∈ Z[t], t ∈ [N, 2N ], (1.30)

and two-parameter families

F : y2 + a1(t, s)xy + a3(t, s)y = x3 + a2(t, s)x2 + a4(t, s)x+ a6(t, s)

ai(t, s) ∈ Z[t, s], t, s ∈ [N, 2N ]. (1.31)

Let f(x) be an even Schwartz function that is supported by the Fourier Trans-
forms, γE the non-trivial zeros of the curve E, and NE its conductor. We define
the 1-level density by

D1,F (f) :=
1

|F|
∑
E∈F

f1

( logNE
2π

γ
(j1)
E

)
. (1.32)

We use the Explicit Formula to convert the sum of our test function at scaled
zeros in the definition of the one level density to a related sum over primes. For
test functions φ suitably restricted (specifically, the support of their Fourier
transform is small), we can evaluate the main term of the resulting prime sums
and we can write these as integrals of our test function against fixed functions.
Amazingly, similar results are seen when looking at energy levels of heavy nuclei,
as well as in the distribution of eigenangles above 1 for the classical compact
groups (Unitary, Symplectic, Orthogonal). This is one of many connections
among number theory, physics and random matrix theory, and allows us to use
the methods of one area to predict what the answer should be in another.

Using the Explicit Formula (1.5) to relate sums of a function φ against zeros
of an L-function to sums of its Fourier Transform against primes, we evaluate

not
∫
f(x)Wn,G(x)dx but

∫
f̂(u)Ŵn,G(u)du. Denoting SO(even) (SO(odd)) by

O+ (O−), the Fourier Transforms for the 1-level densities are

Ŵ1,O+(u) = δ0(u) +
1

2
η(u)

Ŵ1,O(u) = δ0(u) +
1

2

Ŵ1,O−(u) = δ0(u)− 1

2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)− 1

2
η(u)

Ŵ1,U (u) = δ0(u), (1.33)

where η(u) is 1, and 0 for |u| less than 1, 1, and greater than 1, and δ0 is the
standard Dirac Delta functional. See [KS] and [Mi1].
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1.3 The Bias Conjecture

Now we report on the results of our research. Much is known about the
moments of the Fourier coefficients of elliptic curves. Work of Nagao, Rosen
and Silverman shows that the first moment in families is related to the rank of
the family over Q(T ); specifically, a small negative bias results in rank; this was
used by Arms, Lozano-Robledo and Miller [ALM] to construct one-parameter
families of elliptic curves with moderate rank.

It is thus natural to ask if there is a bias in these sums in the second moments,
and if so what are the consequences. One important one, due to Miller [Mi3],
is that a negative bias here is related to some of the observed excess rank and
repulsion of zeros of elliptic curve L-functions near the central point for finite
conductors.

We start with a result from Michel on the main term of the second moments,
and the size of the fluctuations, in one-parameter families.

Theorem 1.8. For a one-parameter family E : y2 = x3 + A(T )x + B(T ) with

non-constant j(T )-invariant j(T ) = 1728 4A(T )3

4A(T )3+27B(T )2 , Michel has proven that

in the second moment of the Fourier coefficients equals to

pA2,E(p) = p2 +O(p3/2), (1.34)

with the lower order terms of size p3/2, p, p1/2 and 1 having important cohomo-
logical interpretations.

Theorem 1.9 (Birch Theorem). For the family E : y2 = x3 + ax + b of all
elliptic curves, the second moment of the Fourier coefficient equals to:

pA2,F (p) =
∑

a,b mod p

aFa,b(p) = p3 − p2. (1.35)

See [Bi, Mi1, Mi3, Mic].
Unfortunately it is very hard to compute in closed form of the Legendre sums

arising from an ellitpic curve, though we will see later that we can compute linear
and quadratic Legendre sums easily. Thus, in all our investigations below, we are
forced to restrict our analysis to families where the resulting sums are tractable.
There is therefore a danger that we are not looking at generic families.

Below is a summary of the new families we have successfully studied. In addi-
tion to several new one-parameter families, in this work two-parameter families
are studied for the first time. For the two rank 2 one-parameter families we are
unable to compute numerically, we demonstrate convincing results that for small
primes the bias conjecture holds in them. We set δ1(p) to be 1 if p ≡ 1 mod 4
and 0 otherwise, and δ3(p) to be 1 if p ≡ 3 mod 4 and 0 otherwise:
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One-Parameter Family Rank pA1,F(p) pA2,F(p)

y2 = x3 − x2 − x+ t 0 0 p2 − 2p−
(−3
p

)
p

y2 = x3 − tx2 + (x− 1)t2 0 0 p2 − 2p− [
∑
x(p)

(
x3−x2+x

p

)
]2 −

(−3
p

)
p

y2 = x3 + tx2 + t2 1 -p p2 − 2p−
(−3
p

)
p− 1

y2 = x3 + tx2 + x+ 1 1 -p p2 − p− 1 + p
∑
x(p)

(
4x3+x2+2x+1

p

)
y2 = x3 + tx2 + tx+ t2 1 -p p2 − p− 1− δ1(p)(2p)
y2 = x3 − x2 + (x2 − x)t+ 1 2 -2p p2 − 1 (“conjectured on average”)
y2 = x3 − x+ t4 2(“conjectured on average”) -2p (“conjectured on average”) p2 − p (“conjectured on average”)

Table 1: The one-parameter families we proved theoretically all show that the
largest lower order term that does not average to zero has a negative average.
Unfortunately, we are not able to prove the second moment of y2 = x3 − x2 +
(x2 − x)t + 1 as well as the first and second moment of y2 = x3 − x + t4

theoretically. Due to the limited power of our computation software, we only
generated data for the first 100 primes. Also, keep in mind that we did not
observe the same form for every prime; we conjectured the average of its first or
second moment. One family worth noting is y2 = x3−x2 + (x2−x)t+ 1; it is a
potential counterexample to a stronger form of Miller’s Bias Conjecture based
on the families studied to date, which is that in the second moment expansion
the first term that does not average to zero is the p term and that has a negative
average.

Two-Parameter Family p2A1,F(p) p2A2,F(p)

y2 = x3 + tx+ sx2 0 p3 − 2p2 + p
y2 = x3 + t2x+ st4 0 p3 − 2p2 + p− 2(p2 − p)

(−3
p

)
y2 = x3 + sx2 − t2x 0 p3 − p2 − δ3(p)(2p2 − 2p)
y2 = x3 + ts2x2 + (t3 − t2)x −p2 p3 − 3p2 + 3p− 1− δ3(p)(2p− 2)
y2 = x3 + t2x2 + (t3 − t2)sx −p2 p3 − 3p2 + 3p− δ3(p)(2p2 − 4p)

y2 = x3 + t2x2 − (s2 − s)t2x −2p2 p3 − 3p2 + 2p+ δ1(p)(p−
∑
s(p)

∑
x,y(p)

(x3−(s2−s)x
p

)(y3−(s2−s)y
p

)
)

y2 = x3 − t2x+ t3s2 + t4 −2p2 p3 − 2p2 + p−
[(−3

p

)
+
(

3
p

)]
p2

Table 2: The two-parameter families we proved theoretically all show a negative
bias in the largest lower order term in the second-moment expansion.

In the next section we briefly review some standard tools and known results
for computing sums of the Fourier coefficients in families. We then report on our
new results in the next two sections, then end with some concluding remarks.

2 Tools for Calculating Biases

In this section, we explain why we can use rank as the first moment, and then
introduce the linear and quadratic Legendre sums, the Jacobi symbol as well
as the Gauss Sum Expansion, which can be used to compute biases in elliptic
curves. See more details from [RoSi, BEW, BAU, Mi1].

Theorem 2.1 (Rosen-Silverman). For an elliptic surface(a one-parameter fam-
ily), if Tate’s conjecture holds, the first moment is related to the rank of the
family over Q(T ):
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lim
x→∞

1

x

∑
p≤x

A1, E(p) log p

p
= rankE(Q(T )). (2.1)

Conjecture 2.2 (Tate’s Conjecture for Elliptic Surfaces[ST]). Let E/Q be an
elliptic surface and L2(E , s) be the L-series attached to H2

et(E/Q,Ql). Then
L2(E , s) has a meromorphic continuation to C and satisifies:

−ords=2L2(E , s) = rankNS(E/Q), (2.2)

where NS(E/Q) is the Q-rational part of the Neron-Severi group of E. Further,
L2(E , s) does not vanish on the line Re(s) = 2.

Tate’s conjecture is known for rational surfaces: An elliptic curve y2 = x3 +
A(T )x+B(T ) is rational iff one of the following is true:

1. 0 < max(3 degA, 2 degB) < 12,

2. 3 degA = 2 degB = 12 and ordT=0T
12∆(T−1) = 0.

Later in the paper, we find that most families are not in the Weierstrass
form, or y2 = x3 + A(T )x + B(T ), so now we explain how to convert the
families to Weierstrass Equations. We only need to do this to check to see if
the one-parameter family is a rational surface, and hence the Rosen-Silverman
theorem is applicable. For the computations it is often easier not to have them
in Weierstrass form.

Theorem 2.3 (Convert to Weierstrass Equations). First, we transform E :
y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 into

E′ : y2 = x3 + a2
′x2 + a4

′x+ a6
′, (2.3)

where the coefficients are given by

a2
′ = a2 +

1

4
a1

2, a4
′ = a4 +

1

2
a1a3 and a6

′ = a6 +
1

4
a3

2. (2.4)

Then we transform E′ into E′′:

E′′ : y2 = x3 + a4
′′x+ a6

′′, (2.5)

which

a4
′′ = a4

′ − 1

3
a2
′2 and a6

′′ = a6
′ +

2

27
a2
′3 − 1

3
a2
′a4
′. (2.6)

All of the one-parameter families we compute are rational surfaces. See
Appendix B for the complete proof. However, for two-parameter families, we
cannot use the Rosen - Silverman theorem, and for us the ranks are conjectural.
Checking their ranks is beyond the scope of this paper, but it can be done; see
[WAZ] for more details. As our interest is in the biases of the second moments,
we do not need to know these ranks for our purposes.

The key to our analysis in the families below are closed form expressions for
linear and quadratic Legendre sums.
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Lemma 2.4. Let a, b, c be positive integers and a 6≡ 0 mod p. Then∑
x mod p

(
ax+ b

p

)
= 0, if p - a, (2.7)

and

∑
x mod p

(
ax2 + bx+ c

p

)
=

{
−
(
a
p

)
, if p - b2 − 4ac.

(p− 1)
(
a
p

)
, if p | b2 − 4ac.

(2.8)

See Appendix A for a complete proof.
By Dirichlet’s theorem for primes in arithmetic progression, to first order as

N tends to infinity there are the same number of primes congruent to 1 mod 4
as there are congruent to 3 mod 4. Thus, up to lower order terms tending to
zero as N goes to infinity, the average behaves like:

Lemma 2.5 (Jacobi Symbol).(
−1

p

)
=

{
1, if n ≡ 1 mod 4.

−1, if n ≡ 3 mod 4.

(2.9)

See [RoSi] for more details.
For some of our families, we need an alternative expansion for the Fourier

coefficients:

Lemma 2.6 (Quadratic Formula mod p). For a quadratic ax2 + bx + c ≡ 0
mod p, a 6≡ 0, there are two distinct roots if b2−4ac equals to a non-zero square,
one root if b2 − 4ac ≡ 0, and zero root if b2 − 4ac is not a square.

See [Mi1] for more details.

Lemma 2.7 (Gauss Sum Expansion). We have the following expansion of
(
x
p

)
:

(
x

p

)
= Gp

−1
p∑
c=1

(
c

p

)
e

(
cx

p

)
,

(2.10)

where Gp =
∑
a(p)

(
a
p

)
e
(
a
p

)
, which equals to

√
p for p ≡ 1(4) and i

√
p for p ≡

3(4). For the curve y2 = fE(x), aE(p) = −
∑
x(p)

(fE(x)
p

)
. We expand the x-sum

by using Gauss sums, namely

aE(p) = Gp
−1
∑
x(p)

p∑
c=1

(
c

p

)
e

(
cfE(x)

p

)
.

(2.11)
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See [Mi1] for more details.
Sadly, there are no nice closed form expressions for cubic and higher sums,

which is why elliptic curves are so hard to analyze as we need cubic sums for
the coefficients. In this paper, we want to work with one- and two- parameter
famillies that lead to linear or quadratic sums in the T - variable, or interchange
the order of sums.

3 Biases in First and Second Moments in One-
Parameter Families

We proved in Appendix B that every one-parameter family we computed are
rational surfaces, so their first moment is equivalent to their rank.

3.1 Construction of Rank 0 Families

3.1.1 y2 = x3 − x2 − x+ t

Lemma 3.1. The first moment of the one-parameter family y2 = x3−x2−x+t
is 0. Since it is a rational surface, we can use the Rosen-Silverman theorem and
the family’s rank is 0.

Proof. For p > 3,

−pA1,F(p) =

p−1∑
t=0

p−1∑
x=0

(
x3 − x2 − x+ t

p

)

=

p−1∑
x=0

p−1∑
t=0

(
t+ (x3 − x2 − x)

p

)
= 0.

(3.1)

By the linear Legendre sum formula (Lemma 2.3), the t-sum is 0 if the equation

is in the form of at+ b. Therefore,
∑
t(p)

∑
x(p)

(
x3−x2−x+t

p

)
equals to 0.

Lemma 3.2. The second moment of the one-parameter family y2 = x3 − x2 −
x+ t times p is p2 − 2p−

(−3
p

)
p, which supports our Bias Conjecture.

Proof.

pA2,F(p) =
∑
t(p)

at
2(p)

=
∑
t(p)

∑
x,y(p)

(
x3 − x2 − x+ t

p

)(
y3 − y2 − y + t

p

)
(3.2)

20



Now, we compute the discriminant of the equation in t, denoted as δ, which we
then evaluate the quadratic Legendre sums (Lemma 2.4) to compute the second
moment:

a = 1

b = (x3 − x2 − x) + (y3 − y2 − y)

c = (x3 − x2 − x)(y3 − y2 − y)

δ = b2 − 4ac = [(x3 − x2 − x)− (y3 − y2 − y)]2.

(3.3)

We see that δ(x, y) can be rewritten as

(x− y)(x2 + xy − x+ y2 − y − 1).

(3.4)

We can see that δ(x, y) ≡ 0 if x = y and this happens p times. By the
Quadratic Formula Mod p (Lemma 2.6), δ2(x, y) = x2 + xy − x+ y2 − y − 1 =
y2 + (x− 1)y + (x2 − x− 1) ≡ 0 when

y =
−x+ 1±

√
−3x2 + 2x+ 5

2
,

(3.5)

which reduces to find when −3x2 + 2x+ 5 is a square mod p. We get 2 distinct
values of y if it is equivalent to a non-zero square, 1 value if it equals to 0, and
no value if it does not equal to a square. When solving δ2(x, y) ≡ 0 mod p, we
need to make sure y 6∈ (0). The number of solutions to δ2(x, y) = x2 + xy− x+
y2 − y − 1 ≡ 0(p) equals to:

p−1∑
x=1

(
1 +

(
−3x2 + 2x+ 5

p

))
= p− 1 +

p−1∑
x=1

(
−3x2 + 2x+ 5

p

)
= p+

∑
x(p)

(
−3x2 + 2x+ 5

p

)
.

(3.6)

Then, we use Quadratic Formula Mod p (Lemma 2.6) again. The discriminant
now equals to 4 − 4(−3)5 = 64. For p ≥ 3, p does not divide discriminant, so
the sum is p−

(−3
p

)
.

Then we check if there are any double-counting cases. If both factors are
congruent to zero, we have 3x2− 2x− 1 ≡ 0 when x = 1,−3−1. Thus, the total
number of pairs is

2p− 2−
(
−3

p

)
. (3.7)

21



Therefore,

pA2,F(p) = p

[
2p− 2−

(
−3

p

)]
− p2

= p2 − 2p−
(
−3

p

)
p.

(3.8)

3.1.2 y2 = x3 − tx2 + (x− 1)t2

Lemma 3.3. The first moment of the one-parameter family y2 = x3 − tx2 +
(x − 1)t2 is 0. Since it is a rational surface, we can use the Rosen-Silverman
theorem and the family’s rank is 0.

Proof.

−pA1,F(p) = −
∑
t(p)

at(p) =
∑
t(p)

∑
x(p)

(
x3 − tx2 + (x− 1)t2

p

)

=
∑
t(p)

∑
x(p)

(
x3 − tx2 + xt2 − t2

p

)

=

p−1∑
t=1

∑
x(p)

(
t3x3 − t3x2 + t3x− t2

p

)

=
∑
x(p)

p−1∑
t=1

(
t2

p

)(
tx3 − tx2 + tx− 1

p

)

=
∑
x(p)

p−1∑
t=0

(
t(x3 − x2 + x)− 1

p

)
−
∑
x(p)

(
−1

p

)

=
∑
t(p)

∑
x=0

(
−1

p

)
+
∑
t(p)

∑
x(p);x 6=0

(
t(x3 − x2 + x)− 1

p

)
−
∑
x(p)

(
−1

p

)

= −p+ 0 + p

= 0

(3.9)

Lemma 3.4. The second moment of the one-parameter family y2 = x3− tx2 +
(x− 1)t2 times p is p2 − 2p−

(−3
p

)
p− 1, which supports our Bias Conjecture.
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Proof.

pA2,F(p) =
∑
t(p)

at
2(p)

=
∑
t(p)

∑
x(p)

∑
y(p)

(
x3 − tx2 + xt2 − t2

p

)(
y3 − ty2 + yt2 − t2

p

)

=

p−1∑
t=1

∑
x,y(p)

(
t3x3 − t3x2 + t3x− t2

p

)(
t3y3 − t3y2 + t3y − t2

p

)

=

p−1∑
t=1

∑
x,y(p)

(
t4

p

)(
t(x3 − x2 + x)− 1

p

)(
t(y3 − y2 + y)− 1

p

)

=

p−1∑
t=0

∑
x,y(p)

(
t(x3 − x2 + x)− 1

p

)(
t(y3 − y2 + y)− 1

p

)
−
∑
x,y(p)

(
−1

p

)(
−1

p

)

=
∑
t(p)

∑
x,y(p)

(
t(x3 − x2 + x)− 1

p

)(
t(y3 − y2 + y)− 1

p

)
− p2

(3.10)

We compute the discriminant of the equation in terms of t:

a = (x3 − x2 + x)(y3 − y2 + y)

b = −[(x3 − x2 + x) + (y3 − y2 + y)]

c = 1

δ = b2 − 4ac = [(x3 − x2 + x)− (y3 − y2 + y)]2.

(3.11)

The only two ways that at least (x3−x2 +x) or (y3−y2 +y) vanishes are when
x = 0 and y = 0. Hence, the total contribution is 2p.

We can rewrite δ(x, y) as (x − y)(x2 + xy − x + y2 − y + 1). Like what we
do for the previous several families, we see that x = y 6= 0 so the contribution
from it is p− 1.

Let δ2(x, y) be (x2 + xy − x+ y2 − y + 1). Using Lemma 2.6, we have:

y =
−(x− 1)±

√
(x− 1)2 − 4(x2 − x+ 1)

2

=
−(x− 1)±

√
−3x2 + 2x− 3

2
.

(3.12)

Hence, the number of solutions to δ2(x, y) ≡ 0 is:

p−2∑
x=1

[
1 +

(
−3x2 + 2x− 3

p

)]
= p− 2 +

(
−3x2 + 2x− 3

p

)
.

(3.13)
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We use Lemma 2.6 again. The discriminant now is 22 − 4(−3)(−3). Hence,
for p > 5, p does not divide the discriminant, and the sum is −

(−3
p

)
.

Since we don’t have double-counted solutions, the total number of pairs is

2p− 4−
(
−3

p

)
.

(3.14)

When x = y 6= 0, clearly
((x3−x2+x)(y3−y2+y)

p

)
= 1 and these terms each

contribute 1.
Consider x 6= y 6= 0 and x2 + xy − x + y2 − y + 1 ≡ 0. Then x2 − x + 1 ≡

y(−y + 1− x) and y2 − y + 1 ≡ x(−x+ 1− y) and(
(x3 − x2 + x)(y3 − y2 + y)

p

)
=

(
xy(−x+ 1− y)2

p

)
. (3.15)

We can see that x 6= y, so all pairs have their Legendre factor +1. Therefore,

pA2,F(p) = p

(
2p− 4−

(
−3

p

))
−
∑
x,y(p)

(
(x3 − x2 + x)(y3 − y2 + y)

p

)
+ 2p− p2

= p2 − 2p−

∑
x(p)

(
x3 − x2 + x

p

)2

−
(
−3

p

)
p.

(3.16)

Now we move on to construct some rank 1 families.

3.2 Construction of Rank 1 Families

3.2.1 y2 = x3 + tx2 + t2

Lemma 3.5. The first moment of the one-parameter family y2 = x3 + tx2 + t2

is −1, and the family’s rank is 1.
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Proof.

−pA1,F(p) = −
∑
t(p)

at(p) =
∑
t(p)

∑
x(p)

(
x3 + tx2 + t2

p

)

=

p−1∑
t=1

∑
x(p)

(
t3x3 + t3x2 + t2

p

)

=

p−1∑
t=1

∑
x(p)

(
t2

p

)(
t(x2 + x3) + 1

p

)

=
∑
t(p)

∑
x(p)

(
t(x2 + x3) + 1

p

)
−
∑
x(p)

(
1

p

)

=
∑
t(p)

∑
x(p)

(
tx3 + tx2 + 1

p

)
−
∑
x(p)

(
1

p

)

=
∑
t(p)

∑
x=0,−1

(
1

p

)
+

∑
x 6=0,−1

∑
t(p)

(
t+ 1

p

)
− p

= 2p+ 0− p
= p

(3.17)

We apply the linear Legendre sums. Since
(
t2

p

)
yields 1, we can ignore it and

separate
(t(x3+x2)+1

p

)
into two cases: when t = 0 and when t 6= 0. When t = 0,

the sum is
∑
x(p)

(
1
p

)
= p and we subtract it from the total sum. When t 6= 0,

we have 2p when x = 0,−1 so that x3 + x2 ≡ 0 mod p. Hence, the total
contribution is 2p− p = p.

Lemma 3.6. The second moment of the one-parameter family y2 = x3+tx2+t2

times p is p2 − 2p−
(−3
p

)
p− 1, which supports our Bias Conjecture.
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Proof.

pA2,F(p) =
∑
t(p)

at
2(p)

=
∑
t(p)

∑
x,y(p)

(
x3 + tx2 + t2

p

)(
y3 + ty2 + t2

p

)

=

p−1∑
t=1

∑
x,y(p)

(
x3 + tx2 + t2

p

)(
y3 + ty2 + t2

p

)

=

p−1∑
t=1

∑
x,y(p)

(
t3x3 + t3x2 + t2

p

)(
t3y3 + t3y2 + t2

p

)

=

p−1∑
t=1

∑
x,y(p)

(
t4

p

)(
t(x3 + x2) + 1

p

)(
t(y3 + y2) + 1

p

)

=

p−1∑
t=0

∑
x,y(p)

(
t4

p

)(
t(x3 + x2) + 1

p

)(
t(y3 + y2) + 1

p

)
−
∑
x,y(p)

(
1

p

)

=
∑
x,y(p)

p−1∑
t=0

(
t(x3 + x2) + 1

p

)(
t(y3 + y2) + 1

p

)
− p2

(3.18)

Its discriminant is:

a = (x3 + x2)(y3 + y2)

b = x3 + x2 + y3 + y2

c = 1

δ = b2 − 4ac = ((x3 + x2)− (y3 + y2))2.

(3.19)

First, we calculate the cases when at least (x3 +x2) or (y3 +y2) vanishes. When

x = 0,−1, (x3 + x2) equals to zero. Then, we have
∑
t

(t(y3+y2)+1
p

)
, which is 2p

from our A1,F(p). Similarly, we have 2p for
∑
t

(t(x3+x2)+1
p

)
. We overcount by

4p when both x3 + x2 and y3 + y2 are equivalent to 0. Therefore, the total sum
of that at least (x3 + x2) or (y3 + y2) vanishes equals to 2p+ 2p− 4p = 0.

Then, assume x, y 6∈ {0,−1}. When δ(x, y) ≡ 0 mod p, we have

δ(x, y) = (x− y)(x2 + xy + x+ y2 + y).

(3.20)
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Therefore,

pA2,F(p) =
∑

x,y 6=0,−1;δ(x,y)≡0

p

(
(x3 + x2)(y3 + y2)

p

)

−
∑

x,y 6=0,−1

(
(x3 + x2)(y3 + y2)

p

)
− p2. (3.21)

We can see that δ(x, y) ≡ 0 if x = y and this happens p times. If x = y,
then the second factor equals to 3x2 + 2x, which is congruent to zero at most
twice.

By Lemma 2.6, δ2(x, y) = x2 + xy + x+ y2 + y ≡ 0 when

y =
−x− 1±

√
−3x2 − 2x+ 1

2
,

(3.22)

which reduces to find when −3x2 − 2x+ 1 is a square mod p. We get 2 distinct
values of y if it is equivalent to a non-zero square, 1 value if it equals to 0, and
no value if it does not equal to a square. When we solve δ2(x, y) ≡ 0 mod p,
we need to make sure y 6∈ (0,−1). If y = 0, then x = −1; if y = −1, then
x = 0. Therefore, we don’t get an excluded y. Thus, the number of solutions to
δ2(x, y) = x2 + xy + x+ y2 + y ≡ 0 equals to:

p−2∑
x=1

[
1 +

(
−3x2 − 2x+ 1

p

)]
= p− 2

(
−3x2 − 2x+ 1

p

)
.

(3.23)

Then, we use Lemma 2.6 again. The discriminant now equals to 4−4(−3)1 =
16. For p ≥ 5, p does not divide discriminant, so the sum is −

(−3
p

)
.

For x 6= 0,−1, the number of solutions to x2 + xy + x + y2 + y ≡ 0 is
p− 2−

(−3
p

)
; the number of solutions to x− y ≡ 0 is at most p− 2. At most two

pairs of (x, y) satisfy both x2 + xy + x + y2 + y ≡ 0 and x = y. There are no
pairs that satisfy 3x2 ≡ −2x, so we do not have over-counting. Thus, the total
number of pairs is

2p− 2−
(
−3

p

)
. (3.24)

When δ(x, y) 6≡ 0 and x = y 6= 0,−1, clearly
((x3+x2)(y3+y2)

p

)
contributes 1.

Consider x 6= y and x2 + xy + x + y2 + y ≡ 0 and x, y 6= 0,−1. Then,
y2 + y ≡ −x(x+ y + 1) and x2 + x ≡ −y(y + x+ 1) and(

(x3 + x2)(y3 + y2)

p

)
=

(
x(x2 + x)y(y2 + y)

p

)
=

(
x2y2(x+ y + 1)

p

)
.

(3.25)
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As long as x 6= −y−1, the contribution is 1. If x = −y−1, then we will have
x2 + x ≡ 0. This implies x = 0,−1, which can not happen since x, y 6= 0,−1.
Therefore, all pairs have their Legendre factor +1, and we need only count how
many such pairs are there:

pA2,F(p) = p

[
2p− 2−

(
−3

p

)]
−

∑
x,y 6=0,−1

(
(x3 + x2)(y3 + y2)

p

)
− p2

= p2 − 2p−
(
−3

p

)
p− 1.

(3.26)

3.2.2 y2 = x3 + tx2 + x+ 1

Lemma 3.7. The first moment of the one-parameter family y2 = x3+tx2+x+1
is −1, and the family’s rank is 1.

Proof.

−pA1,F(p) = −
∑
t(p)

at(p) =
∑
t(p)

∑
x(p)

(
x3 + x2(t+ 1) + x+ 1

p

)

=

p−1∑
x=1

∑
t(p)

(
x3 + tx2 + x+ 1

p

)
+
∑
t(p)

(
1

p

)
= 0 + p

= p

(3.27)

Lemma 3.8. The second moment of the one-parameter family y2 = x3 + tx2 +

x + 1 times p is p2 − p − 1 + p
∑
x(p)

(
4x3+x2+2x+1

p

)
, which supports our Bias

Conjecture.

Proof. We compute the second moment using Gauss Sum Expansion (Lemma
2.7):

pA2,F(p) =
∑
t(p)

at
2(p)

=
∑
t(p)

∑
x(p)

∑
y(p)

(
x3 + x+ 1 + x2t

p

)(
y3 + y + 1 + y2t

p

)

=
∑
x,y(p)

p−1∑
c,d=1

1

p

(
cd

p

)
e

(
c(x3 + x+ 1)− d(y3 + y + 1)

p

)∑
t(p)

e

(
(cx2 − dy2)t

p

)
.

(3.28)
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Note that c and d are invertible mod p. If the numerator in the t-exponential
is non-zero, the t-sum vanishes. If exactly one of x and y vanishes, the numerator
is not congruent to zero mod p. Hence, either or neither are zero. If both are
zero, the t-sum gives p, the c-sum gives Gp, the d-sum gives (Gp)

−1, for a total
contribution of p.

Assume x and y are non-zero. Then d = cx2y−2 (otherwise the t-sum is
zero). The t-sum yields p, and we have:

pA2,F(p) =

p−1∑
x,y=1

p−1∑
c=1

1

p

(
x2y2

p

)
e

(
cy−2(x3y2 + xy2 + y2 − x2y3 − x2y − x2)

p

)
p+ p

=

p−1∑
x,y=1

p−1∑
c=1

(
x2y2

p

)
e

(
cy−2(x− y)(x2y2 − xy − x− y)

p

)
+ p

=

p−1∑
x,y=1

p−1∑
c=0

(
x2y2

p

)
e

(
cy−2(x− y)(x2y2 − xy − x− y)

p

)
+ p−

p−1∑
x,y=1

(
x2y2

p

)

=

p−1∑
x,y=1

p−1∑
c=0

e

(
cy−2(x− y)(x2y2 − xy − x− y)

p

)
+ p− (p− 1)2.

(3.29)

If g(x, y) = (x− y)(x2y2 − xy− x− y ≡ 0(p), then the c-sum is p, otherwise
it is 0. We are left with counting how often g(x, y) ≡ 0 for x, y non-zero.

Clearly, whenever x = y, g(x, y) ≡ 0(p). There are p − 1 solutions for each
non-zero x, so the total contribution is p(p− 1).

Consider x2y2 − xy − x− y ≡ 0 now. By the Quadratic Formula mod p,

y =
(x+ 1)±

√
(x+ 1)2 + 4x3

2x2

=
(x+ 1)±

√
4x3 + x2 + 2x+ 1

2x2
.

(3.30)

If 4x3 + x2 + 2x + 1 is a non-zero square, y has two distinct values. If it
equals to 0, y has one value, and if it does not equal to a square, y does not
have a value.

For a given non-zero x, the number of non-zero y for 4x3 + x2 + 2x + 1 is

1 +
(

4x3+x2+2x+1
p

)
. Hence the number of non-zero pairs with 4x3 + x2 + 2x+ 1

is∑
x 6=0

(
1 +

(
4x3 + x2 + 2x+ 1

p

))
= p− 1 +

p∑
x=0

(
4x3 + x2 + 2x+ 1

p

)
− 1.

(3.31)

29



Each of these pairs contributes p, so the total contribution is

p2 + p
∑
x

(
4x3 + x2 + 2x+ 1

p

)
− 2p.

(3.32)

We must be careful about double counting. If both x − y ≡ 0 and x2y2 −
xy−x−y ≡ 0, then we find x3 ≡ x+2 (x 6= 0), and we have one double-counted
solution.

Therefore, the second moment times p equals to:

pA2,F(p) = p2 + p

∑
x(p)

(
4x3 + x2 + 2x+ 1

p

)− 2p− p+ p(p− 1) + p− (p− 1)2

= p2 − p− 1 + p
∑
x(p)

(
4x3 + x2 + 2x+ 1

p

)
.

(3.33)

Although we have a p3/2 term in the second moment, by the Sato-Tate
conjecture (which has been proven by Taylor, jointly with Clozel, Harris and
Shepherd Barron, see [Clo]) this will have a mean of zero because it is p times
the coefficients of an elliptic curve E : y2 = 4x3 + x2 + 2x+ 1. Hence, the Bias
Conjecture still holds.

3.2.3 y2 = x3 + tx2 + tx+ t2

Lemma 3.9. The first moment of the one-parameter family y2 = x3 + tx2 +
tx+ t2 is −1, and the family’s rank is 1.
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Proof.

−pA1,F(p) = −
∑
t(p)

at(p) =
∑
t(p)

∑
x(p)

(
x3 + tx2 + tx+ t2

p

)

=

p−1∑
t=1

∑
x(p)

(
x3 + tx2 + tx+ t2

p

)

=

p−1∑
t=1

∑
x(p)

(
t3x3 + t3x2 + t2x+ t2

p

)

=

p−1∑
t=1

∑
x(p)

(
t2

p

)(
tx3 + tx2 + x+ 1

p

)

=

p−1∑
t=0

∑
x(p)

(
t(x3 + x2) + x+ 1

p

)
−
∑
x(p)

(
x+ 1

p

)

=
∑
t(p)

∑
x=0,−1

(
t(x3 + x2) + x+ 1

p

)
+
∑
t(p)

∑
x(p)x 6=0,−1

(
t(x3 + x2) + x+ 1

p

)
− 0

=
∑
t(p)

∑
x=−1

(
0

p

)
+
∑
t(p)

∑
x=0

(
1

p

)
+

∑
x(p)x6=0,−1

∑
t(p)

(
t+ x+ 1

p

)
= 0 + p+ 0 = p

(3.34)

Lemma 3.10. The second moment of the one-parameter family y2 = x3 +tx2 +
tx+ t2 times p is p2−3p−1 if p is 1 mod 4 and p2−p−1 if p is 3 mod 4 which
supports our Bias Conjecture.

31



Proof.

pA2,F(p) =
∑
t(p)

at
2(p)

=
∑
t(p)

∑
x(p)

∑
y(p)

(
tx2 + tx+ t2 + x3

p

)(
ty2 + ty + t2 + y3

p

)

=

p−1∑
t=1

∑
x,y(p)

(
t3x2 + t2x+ t2 + t3x3

p

)(
t3y2 + t2y + t2 + t3y3

p

)

=

p−1∑
t=1

∑
x,y(p)

(
t4

p

)(
t(x3 + x2) + x+ 1

p

)(
t(y3 + y2) + y + 1

p

)

=

p−1∑
t=0

∑
x,y(p)

(
t(x3 + x2) + x+ 1

p

)(
t(y3 + y2) + y + 1

p

)
−
∑
x,y(p)

(
x+ 1

p

)(
y + 1

p

)

=
∑
t(p)

∑
x,y(p)

(
t(x3 + x2) + x+ 1

p

)(
t(y3 + y2) + y + 1

p

)
− 0

=
∑
t(p)

∑
x,y(p)

(
t(x3 + x2) + x+ 1

p

)(
t(y3 + y2) + y + 1

p

)
(3.35)

We have

a = (x3 + x2)(y3 + y2)

b = (x3 + x2)(y + 1) + (y3 + y2)(x+ 1)

c = (x+ 1)(y + 1)

δ = b2 − 4ac = [(x3 + x2)(y + 1)− (y3 + y2)(x+ 1)]2.

(3.36)

The discriminant δ(x, y) can be rewritten as

δ(x, y) = (x− y)(x+ y)(x+ 1)(y + 1).

(3.37)

The only way that makes (x3 +x2)(y+ 1) or (y3 + y2)(x+ 1) vanish is when
x and y both equal to −1. Therefore,

pA2,F(p) =
∑

x,y 6=0,−1;δ(x,y)≡0

p

(
(x3 + x2)(y + 1)− (y3 + y2)(x+ 1)

p

)

−
∑

x,y 6=0,−1

(
(x3 + x2)(y + 1)− (y3 + y2)(x+ 1)

p

)
− 1. (3.38)
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We can see that δ(x, y) ≡ 0 if x = y and this happens p− 2 times. If x = y
then the second factor equals to 2x3 + 3x2 + 2x, which is congruent to zero at
most three times.

By the Quadratic Formula mod p (Lemma 2.6), δ2(x, y) = x2y+ x2 + xy2 +
2xy + x+ y2 + y ≡ 0(p) when

y =
−(x2 + 2x+ 1)±

√
x4 − 2x+ 1

2(x+ 1)

=
−(x2 + 2x+ 1)±

√
(x+ 1)2(x− 1)2

2(x+ 1)
,

(3.39)

which reduces to find when (x+1)2(x−1)2 is a square mod p. We get 2 distinct
values of y if it is equivalent to a non-zero square, 1 value if it equals to 0, and
no value if it does not equal to a square. We can see that x4−2x+1 is always a
square unless x = 1 and x = −1. Since we already state that x can not equal to
−1, so we only need to deal with x = 1. Thus, the number of solutions δ2 ≡ 0(p)
is (p− 2), and the total contribution is p(p− 2).

Therefore, on average p times the second moment equals to

pA2,F(p) = p(p− 2)−
∑

x,y 6=0,−1

(
(x3 + x2)(y + 1)− (y3 + y2)(x+ 1)

p

)
− 1

= p2 − 2p− 1.

(3.40)

Keep in mind that we have three kinds of primes: when p = 2 (this case
is trivial in the computations we have in this paper), when p ≡ 1 mod 4 and
when p ≡ 3 mod 4. When x = y and x = −y, can both help the discriminant to

vanish. If x = y 6= 0, then
(
x
p

)(
y
p

)
=
(
x2

p

)
and every prime always contributes p;

if p ≡ 1 mod 4 and x = −y 6= 0, by the Jacobi Symbol (Lemma 2.5)
(
x
p

)(−y
p

)
=(−1

p

)(
x2

p

)
=
(
x2

p

)
also contributes p. If p ≡ 1 mod 4 and x = −y, by the Jacobi

Symbol there should be an extra contribution of p. However, since we already
count the contribution from x = −y, we need to subtract p from the average
second moment:

pA2,F(p) = p2 − 2p− 1− p
= p2 − 3p− 1.

(3.41)

If p ≡ 3 mod 4 and x = −y, by the Jacobi Symbol (Lemma 2.5) there
should be an extra contribution of −p. However, since we already count the
contribution from x = −y, we need to subtract −p from the average second
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moment:

pA2,F(p) = p2 − 2p− 1− (−p)
= p2 − p− 1.

(3.42)

Now we move on to construct some rank 2 families.

3.3 Construction of Rank 2 Families

3.3.1 y2 = x3 − x2 + (x2 − x)t+ 1

Lemma 3.11. The first moment of the one-parameter family y2 = x3 − x2 +
(x2 − x)t+ 1 is −2, and the family’s rank is 2.

Proof.

−pA1,F(p) = −
∑
t(p)

at(p) =
∑
t(p)

∑
x(p)

(
x3 − x2 + (x2 − x)t+ 1

p

)

=

p−1∑
x=0

p−1∑
t=0

(
(x2 − x)t+ (x3 − x2 + 1)

p

)

=
∑
x6=0,1

p−1∑
t=0

(
t+ (x3 − x2 + 1)

p

)
+

p−1∑
t=0

[(
1

p

)
+

(
1

p

)]
= 0 + 2p

= 2p

(3.43)

We apply linear Legendre sums to
∑p−1
t=0

((x2−x)t+(x3−x2+1)
p

)
. If x = 0, 1, we

have two
∑
t(p)

(
1
p

)
, so the rank equals to 2.

Conjecture 3.12. We conjecture that the second moment of the one-parameter
family y2 = x3−x2 + (x2−x)t+ 1 times p is p2− 1 on average, which supports
our Bias Conjecture.

We are not able to prove the second moment of this family theoretically, so
we observe numerically and generate the second moment form for the first 100
primes:

We can see that for the first 100 primes, every form has p2 − c1p − 1 (see
Appendix C.1 for the complete data table). The second moment c1 is always
less than 2

√
p in absolute value. This is important because otherwise, the count

is not for an elliptic curve. What’s more, c1 seems to be even numbers and
grow, but the sum of c1s seems to average to zero. We conjecture that the form
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Figure 4: The distribution of the largest lower order term in the second moment
expansion of y2 = x3 − x2 + (x2 − x)t+ 1 for the first 100 primes.

of this one-parameter family is p2 − 1 on average, but there might be terms of
1, p1/2, p, or p3/2. This family is a potential counterexample to a stronger form
of Miller’s Conjecture based on the families studied to date, which is that the
first term that does not average to zero is the p term and that has a negative
average.
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3.3.2 y2 = x3 − x+ t4

Conjecture 3.13. We conjecture that the first moment of the one-parameter
family y2 = x3−x+ t4 is −2 on average, and the family’s rank is 2 on average.

We are not able to prove the first moment of this family theoretically, so we
observe numerically and generate the first moment form for the first 100 primes:

Figure 5: The distribution of the first moment of y2 = x3 − x+ t4 for the first
100 primes.

We can see that −2 appears frequently, but there are some 2 and −6 (see
Appendix C.2 for the complete data table). We conjecture that the first moment
is −2 on average and the rank of this family is 2 on average.
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Conjecture 3.14. We conjecture that the second moment of the one-parameter
family y2 = x3 − x + t4 times p is p2 − p on average, which supports our Bias
Conjecture.

We are not able to prove the second moment of this family theoretically, so
we observe numerically and generate the second moment form for the first 100
primes:

Figure 6: The distribution of the largest lower order term in the second moment
expansion of y2 = x3 − x+ t4 for the first 100 primes.

We can see that for the first 100 primes, p2 − p appears most of the times
(see Appendix C.3). We observe that primes that are 5 mod 8 do not have a
constant term. Primes that are 3 mod 4 always have the form of p2−p (although
some 1 mod 4 primes have it too). However, we are not able to compute the
exact second form times p. We conjecture the form times p to be p2 − p on
average, but there might be terms of 1, p1/2, p or p3/2.

Now we turn to see if the Bias Conjecture holds in some two-parameter
families.

4 Biases in First and Second Moments in Two-
Parameter Families

In this section, we are going to compute the biases in first and second mo-
ments in two-parameter families. Keep in mind that for two-parameter families,
Rosen - Silverman does not hold in them so the ranks are conjectural. Checking
their ranks is beyond the scope of this paper. See [WAZ] for more details.

37



4.1 Construction of Rank 0 Families

4.1.1 y2 = x3 + tx+ sx2

Lemma 4.1. The first moment of the two-parameter family y2 = x3 + tx+ sx2

is 0.

Proof.

−p2A1,F(p) =−
∑
t(p)

∑
s(p)

at,s(p) =
∑
t(p)

∑
x(p)

∑
s(p)

(
x3 + tx+ sx2

p

)

=

p−1∑
t=1

∑
x(p)

∑
s(p)

(
t3x3 + t2x+ st2x2

p

)

=

p−1∑
t=1

∑
x(p)

∑
s(p)

(
t2

p

)(
tx3 + x+ sx2

p

)

=
∑
t(p)

∑
x(p)

∑
s(p)

(
tx3 + x+ sx2

p

)
−
∑
x(p)

∑
s(p)

(
x+ sx2

p

)

=
∑
x(p)

∑
s(p)

∑
t(p)

(
tx3 + sx2 + x

p

)
− 0

=
∑
x(p)

∑
s(p)

∑
t=0

(
sx2 + x

p

)
+
∑
x(p)

∑
s(p)

∑
t(p);t6=0

(
tx3 + x+ sx2

p

)

+
∑
x(p)

∑
t(p)

∑
s=0

(
tx3 + x

p

)
+
∑
x(p)

∑
t(p)

∑
s(p);s6=0

(
tx3 + x+ sx2

p

)
− 0

=0 + 0 + 0 + 0− 0

=0

(4.1)

Lemma 4.2. The second moment of the two-parameter family y2 = x3+tx+sx2

times p2 is p3 − 2p2 + p, which supports our Bias Conjecture.
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Proof.

p2A2,F(p) =
∑
t,s(p)

at,s
2(p)

=
∑
t(p)

∑
s(p)

∑
x,y(p)

(
x3 + tx+ sx2

p

)(
y3 + ty + sy2

p

)

=

p−1∑
t=1

∑
s(p)

∑
x,y(p)

(
x3 + tx+ sx2

p

)(
y3 + ty + sy2

p

)

=

p−1∑
t=1

∑
s(p)

∑
x,y(p)

(
t3x3 + t2x+ st2x2

p

)(
t3y3 + t2y + st2y2

p

)

=

p−1∑
t=1

∑
s(p)

∑
x,y(p)

(
t4

p

)(
tx3 + x+ sx2

p

)(
ty3 + y + sy2

p

)

=

p−1∑
t=0

∑
s(p)

∑
x,y(p)

(
tx3 + x+ sx2

p

)(
ty3 + y + sy2

p

)
−
∑
s(p)

∑
x,y(p)

(
x+ sx2

p

)(
y + sy2

p

)

=
∑
x,y(p)

∑
s(p)

∑
t(p)

(
tx3 + x+ sx2

p

)(
ty3 + y + sy2

p

)
− (p− 1)

(4.2)

We compute the discriminant of the equation in terms of t and s:

a = x3y3

b = x3(y + sy2) + y3(x+ sx2)

c = (y + sy2)(x+ sx2)

δ = b2 − 4ac = [(x3(y + sy2)− y3(x+ sx2)]2

= [xy(x− y)(sxy + x+ y)]2.

(4.3)

We need to count the number of times x, y and s vanish. Let us consider
xy(x − y) first. When x = 0, y can be any number except 0 because we have
x = y = 0 later when x − y ≡ 0(p). We can also see that s vanishes, so the
contribution from x = 0 is p − 1. Similarly, when y = 0, its contribution is
p− 1. When x = y 6= 0, x− y ≡ 0(p) and s does not vanish. We have a special
case when x = y = 0 and its contribution is 1. The total contribution from
x− y ≡ 0(p) is p(p− 1) + 1.

Then, we consider sxy + x+ y. When s ≡ 0(p), we are left with x+ y. The
contribution from x + y ≡ 0(p) is (p − 1)2. When s 6≡ 0(p), the contribution
from s+ x+ y ≡ 0(p) is (p− 1)3. We need to be careful about double-counting.
If x = y and sxy + x + y are both congruent to zero mod p, then we have
sx2 + 2x ≡ 0(p). Every s has 1 corresponding x value, so we overcount by p2.
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Therefore, the second moment equals to:

p2A2,F(p) = (p− 1) + (p− 1) + (p− 1)p+ 1 + (p− 1)2 + (p− 1)3 − p2 − (p− 1)

= p3 − 2p2 + p.

(4.4)

4.1.2 y2 = x3 + t2x+ st4

Lemma 4.3. The first moment of the two-parameter family y2 = x3 + t2x+st4

is 0.

Proof.

−p2A1,F(p) = −
∑
t(p)

∑
s(p)

at,s(p) =
∑
t(p)

∑
x(p)

∑
s(p)

(
x3 + t2x+ st4

p

)

=

p−1∑
t=1

∑
x(p)

∑
s(p)

(
t3x3 + t3x+ st4

p

)

=

p−1∑
t=1

∑
x(p)

∑
s(p)

(
t3

p

)(
x3 + x+ st

p

)

=
∑
x(p)

∑
s(p)

∑
t(p)

(
t

p

)(
st+ (x3 + x)

p

)

=
∑
x(p)

∑
s(p)

∑
t(p)

(
t

p

)(
t−1st+ (x3 + x)

p

)

=
∑
x(p)

∑
s(p)

∑
t(p)

(
t

p

)(
s+ (x3 + x)

p

)
.

(4.5)

Since t is not zero, we send s to t−1s, and look at the s sum, which equals to
zero.

Lemma 4.4. The second moment times p2 of the two-parameter family y2 =
x3 +t2x+st4 is p3−2p2 +p−2(p2−p)

(−3
p

)
, which supports our Bias Conjecture.
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Proof. We have

p2A2,F(p) =
∑
t,s(p)

at,s
2(p)

=
∑
t(p)

∑
s(p)

∑
x,y(p)

(
x3 + t2x+ st4

p

)(
y3 + t2y + st4

p

)

=

p−1∑
t=1

∑
s(p)

∑
x,y(p)

(
t3x3 + t3x+ st4

p

)(
t3y3 + t3y + st4

p

)

=

p−1∑
t=1

∑
s(p)

∑
x,y(p)

(
t6

p

)(
x3 + x+ st

p

)(
y3 + y + st

p

)

=

p−1∑
t=0

∑
s(p)

∑
x,y(p)

(
x3 + x+ st

p

)(
y3 + y + st

p

)
−
∑
s(p)

∑
x,y(p)

(
x3 + x

p

)(
y3 + y

p

)

=
∑
x,y(p)

∑
s(p)

∑
t(p)

(
st+ (x3 + x)

p

)(
st+ (y3 + y)

p

)
− p

∑
x(p)

(
x3 + x

p

)2

=
∑
s=0

∑
t(p)

∑
x(p)

(
x3 + x

p

)2

+
∑
x,y(p)

∑
s6=0

∑
t(p)

(
st+ (x3 + x)

p

)(
st+ (y3 + y)

p

)

− p

∑
x(p)

(
x3 + x

p

)2

=
∑
x,y(p)

∑
s6=0

∑
t(p)

(
st+ (x3 + x)

p

)(
st+ (y3 + y)

p

)

=
∑
x,y(p)

∑
s6=0

∑
t(p)

(
ss−1t+ (x3 + x)

p

)(
ss−1t+ (y3 + y)

p

)

=
∑
x,y(p)

∑
s6=0

∑
t(p)

(
t+ (x3 + x)

p

)(
t+ (y3 + y)

p

)

= (p− 1)
∑
x,y(p)

∑
t(p)

(
t+ (x3 + x)

p

)(
t+ (y3 + y)

p

)
,

(4.6)

where in passing from the second to the third line we sent x and y modulo p to
tx and ty, which is valid so long as t is not zero; to keep the sum over all t we
need to subtract the t = 0 contribution. We can also see that when s = 0, since
the t-sum is p and there is no t dependence, the contribution from s = 0 and
t = 0 cancel out each other. Note that now as s is non-zero, we can send t to
s−1t, and we get a nice quadratic sum in t.
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We use Lemma 2.4. The discriminant of our quadratic in t equals

a = 1

b = (x3 + x) + (y3 + y)

c = (x3 + x)(y3 + y)

δ(x, y) = b2 − 4ac = [(x3 + x)− (y3 + y)]2

= [(x− y)(y2 + xy + (1 + x2))]2,

(4.7)

and we are going to count the number of ways it vanishes. Therefore,

p2A2,F(p) = (p− 1)

 ∑
x,y mod p
δ(x,y)≡0(p)

∑
t(p)

(
t+ (x3 + x)

p

)(
t+ (y3 + y)

p

)

+
∑

x,y mod p
δ(x,y)6≡0(p)

∑
t(p)

(
t+ (x3 + x)

p

)(
t+ (y3 + y)

p

)
= (p− 1)

 ∑
δ(x,y)≡0(p)

(p− 1) +
∑

δ(x,y)6≡0(p)

(−1)


= (p− 1)

p ∑
δ(x,y)≡0(p)

+p2(−1)

 .
(4.8)

We have three cases for δ(x, y) ≡ 0(p):
Case 1: We need to count the number of solutions of δ1(x, y) = x − y ≡ 0,

which happens p times when x = y.

Case 2: We need to count the number of solutions of δ2(x, y) = y2 + xy +
(1 + x2) ≡ 0. By the Quadratic Formula mod p, we have

y =
−x±

√
−3x2 − 4

2
,

(4.9)

which reduced to finding when −3x2− 4 is a square. Thus, summing over x for
p > 2 yields ∑

x(p)

[
1 +

(
−3x2 − 4

p

)]
= p+

∑
x(p)

(
−3x2 − 4

p

)

= p−
(
−3

p

)
,

(4.10)
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which follows from Lemma 2.4. The discriminant now is 02− 4 · (−3) · (−4).
For p ≥ 5, p does not divide the discriminant, hence this sum is p−

(−3
p

)
.

Case 3: We need to be careful about double-counting. The double-counted
pairs satisfy both x = y and y2 + xy + (1 + x2) ≡ 0(p), which means that they
satisfy 3x2 + 1 ≡ 0(p), or −3x2 ≡ 1. Thus, there is a double-counted solution if
and only if

(−3
p

)
= 1, and the number of double-counted pairs is 1 +

(−3
p

)
.

Therefore, the total number of pairs for δ(x, y) ≡ 0(p) is:∑
δ1(x,y)≡0

+
∑

δ2(x,y)≡0

−
∑

δ1(x,y)≡0;δ2(x,y)≡0

= p+ p−
(
−3

p

)
− 1−

(
−3

p

)

= 2p− 1− 2

(
−3

p

)
. (4.11)

Hence, the second moment times p2 of the family equals to:

p2A2,F(p) = (p− 1)

[
p

(
2p− 1− 2

(
−3

p

))
+ p2(−1)

]
= p(p− 1)

(
p− 1− 2

(
−3

p

))
= p3 − 2p2 + p− 2(p2 − p)

(
−3

p

)
.

(4.12)

4.1.3 y2 = x3 + sx2 − t2x

Lemma 4.5. The first moment of the two-parameter family y2 = x3 +sx2−t2x
is 0.
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Proof.

−p2A1,F(p) =−
∑
t(p)

∑
s(p)

at,s(p) =
∑
t(p)

∑
x(p)

∑
s(p)

(
x3 + sx2 − t2x

p

)

=

p−1∑
t=1

∑
x(p)

∑
s(p)

(
t3x3 + t2sx2 − t3x

p

)

=

p−1∑
t=1

∑
x(p)

∑
s(p)

(
t2

p

)(
t(x3 − x) + sx2

p

)

=

p−1∑
t=0

∑
x(p)

∑
s(p)

(
t(x3 − x) + sx2

p

)
−
∑
x(p)

∑
s(p)

(
sx2

p

)

=
∑
t(p)

∑
x(p)

∑
s(p)

(
t(x3 − x) + sx2

p

)
− 0

=
∑
t(p)

∑
s(p)

∑
x=−1,0,1;x(p)

(
t(x3 − x) + sx2

p

)

+
∑
t(p)

∑
s(p)

∑
x 6=−1,0,1;x(p)

(
t(x3 − x) + sx2

p

)
− 0

=
∑
s(p)

(
0

p

)
+
∑
s(p)

(
−s
p

)
+
∑
s(p)

(
s

p

)
+
∑
t(p)

∑
s(p)

∑
x 6=−1,0,1;x(p)

(
t(x3 − x) + sx2

p

)
− 0

=0 + 0 + 0 + 0− 0

=0

(4.13)

Lemma 4.6. The second moment of the two-parameter family y2 = x3 + sx2−
t2x times p2 is p3 − p2 if p ≡ 1 mod 4 and p3 − 3p2 + 2p if p ≡ 3 mod 4, which
supports our Bias Conjecture.
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Proof.

p2A2,F(p) =
∑
t,s(p)

at,s
2(p)

=
∑
t(p)

∑
s(p)

∑
x,y(p)

(
x3 + sx2 − t2x

p

)(
y3 + sy2 − t2y

p

)

=

p−1∑
t=1

∑
s(p)

∑
x,y(p)

(
t3x3 + t2sx2 − t3x

p

)(
t3y3 + t2sy2 − t3y

p

)

=

p−1∑
t=1

∑
s(p)

∑
x,y(p)

(
t4

p

)(
t(x3 − x) + sx2

p

)(
t(y3 − y) + sy2

p

)

=

p−1∑
t=0

∑
s(p)

∑
x,y(p)

(
t(x3 − x) + sx2

p

)(
t(y3 − y) + sy2

p

)
−
∑
x,y(p)

∑
s(p)

(
sx2

p

)(
sy2

p

)

=
∑
x,y(p)

∑
s(p)

∑
t(p)

(
t(x3 − x) + sx2

p

)(
t(y3 − y) + sy2

p

)
− (p− 1)3

(4.14)

We compute the discriminant of the equation in terms of t and s:

a = (x3 − x)(y3 − y)

b = (x3 − x)sy2 + (y3 − y)sx2

c = s2x2y2

δ = b2 − 4ac = [(x3 − x)sy2 − (y3 − y)sx2]2

= [sxy(x− y)(xy + 1)]2.

(4.15)

When s is congruent to zero mod p, xy(x− y)(xy + 1) does not have to be
congruent to zero mod p. For our convenience, we only count the number of
times when x 6= 0, y = 0 and x = 0, y 6= 0. The contribution is (p− 1)2.

When s is not congruent to zero mod p, xy(x−y)(xy+1) has to be congruent
to zero mod p. The contribution from xy(x − y) is (p − 1)(p − 1), as x 6= 0,
y 6= 0 and x 6= y. Then we have xy + 1 ≡ 0(p), so the contribution is also
(p− 1)(p− 1). Hence, its total contribution is (p− 1)(p− 1)(2p− 2).

Therefore, on average p2 times the second moment equals to

pA2,F(p) = (p− 1)2 + (p− 1)(p− 1)(2p− 2)− (p− 1)3

= p3 − 2p2 + p.

(4.16)

When x = 7 6= 0 and p ≡ 1 mod 4, by the Jacobi Symbol (Lemma 2.5)
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(
x
p

)(−y
p

)
=
(
x2

p

)
contributes p. Hence, we have

p2A2,F(p) = p3 − 2p2 + p+ p(p− 1)

= p3 − p2.

(4.17)

When x = y 6= 0 and p ≡ 3 mod 4, by the Jacobi Symbol (Lemma 2.5)(
x
p

)(−y
p

)
= −

(
x2

p

)
contributes −p. Hence, we have

p2A2,F(p) = p3 − 2p2 + p− p(p− 1)

= p3 − 3p2 + 2p.

(4.18)

4.2 Construction of Rank 1 Families

4.2.1 y2 = x3 + ts2x2 + (t3 − t2)x

Lemma 4.7. The first moment of the two-parameter family y2 = x3 + ts2x2 +
(t3 − t2)x is −1.

Proof.

−p2A1,F(p) = −
∑
t(p)

∑
s(p)

at,s(p)

=
∑
t(p)

∑
x(p)

∑
s(p)

(
x3 + ts2x2 + (t3 − t2)x

p

)

=
∑
t(p)

∑
s(p)

∑
x=1

(
t3x3 + t3s2x2 + t4x− t3x

p

)

=
∑
t(p)

∑
s(p)

∑
x=1

(
t3

p

)(
x3 + s2x2 + tx− x

p

)

=
∑
x(p)

∑
s(p)

∑
t(p)

(
t

p

)(
tx+ (x3 + s2x2 − x)

p

)
(4.19)

The t-sum is p − 1 if p | (x3 + s2x2 − x) and −1 otherwise. When s is
congruent to zero mod p, x = ±1 contributes p− 1, and other times everything
else contributes −1. When s is not congruent to zero mod p, which happens
p− 1 times, x = 0 contributes p− 1 and other times everything else contributes
−1. Thus, the total contribution is p[2(p− 1) + (p− 2)(−1)] + (p− 1)[1(p− 1) +
(p− 1)(−1)] = p2.
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Lemma 4.8. The second moment of the two-parameter family y2 = x3+ts2x2+
(t3 − t2)x times p2 is p3 − 3p2 + 3p− 1 when p ≡ 1 mod 4 and p3 − 3p2 + p+ 1
when p ≡ 3 mod 4, which supports our Bias Conjecture.

Proof.

p2A2,F(p) =
∑
t,s(p)

at,s
2(p)

=
∑
t(p)

∑
s(p)

∑
x,y(p)

(
x3 + ts2x2 + (t3 − t2)x

p

)(
y3 + ts2y2 + (t3 − t2)y

p

)

=
∑
s(p)

∑
x,y(p)

p−1∑
t=1

(
t3x3 + t3s2x2 + t4x− t3x

p

)(
t3y3 + t3s2y2 + t4y − t3y

p

)

=
∑
s(p)

∑
x,y(p)

p−1∑
t=1

(
t6

p

)(
tx+ x3 + s2x2 − x

p

)(
ty + y3 + s2y2 − y

p

)

=
∑
s(p)

∑
x,y(p)

∑
t(p)

(
tx+ x3 + s2x2 − x

p

)(
ty + y3 + s2y2 − y

p

)

−
∑
s(p)

∑
x,y(p)

(
x3 + s2x2 − x

p

)(
y3 + s2y2 − y

p

)

=
∑
s(p)

∑
x,y(p)

∑
t(p)

(
tx+ x3 + s2x2 − x

p

)(
ty + y3 + s2y2 − y

p

)
− (p2 − 1)

(4.20)

a = xy

b = x(y3 + s2y2 − y) + y(x3 + s2x2 − x)

c = (x3 + s2x2 − x)(y3 + s2y2 − y)

δ = b2 − 4ac = [x(y3 + s2y2 − y)− y(x3 + s2x2 − x)]2

= [xy(y − x)(s2 + x+ y)]2

(4.21)

When x = 0, y can be any number except 0 because we have x = y later
(and there’s case when x = y = 0. For the same reason, when y = 0, x can
be any number except 0. For x = y, there are p values. In all of these three
cases, s can be any value except 0 (we have a special case later) so the total
contribution is (p− 1)[(p− 1) + (p− 1) + p].

When s is congruent to zero mod p, which happens once, x = −y 6= 0
happens p− 1 times, so its contribution is p− 1.

When s is not congruent to zero mod p, which happens p − 1 times, the
contribution from s2 + x+ y ≡ 0(p) is (p− 1)(p− 2)2.

We must be careful about double-counting. When y − x and s2 + x+ y are
both congruent to zero mod p (s, x, y 6= 0), we have s2 + 2x ≡ 0(p). Each s has
a corresponding x, so the contribution from this case is (p− 1).
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Hence, on average the second moment times p2 equals to

p2A2,F(p) = 3(p− 1)[(p− 1) + (p− 1) + p] + (p− 1) + (p− 1)(p− 2)2 − (p− 1)− (p2 − 1)

= p3 − 3p2 + 2p.

(4.22)

If p ≡ 1 mod 4 and when x = −y, by the Jacobi Symbol (Lemma 2.5)(
x
p

)(−y
p

)
=
(−1
p

)(
x2

p

)
=
(
x2

p

)
contributes an extra p− 1 (as s must equal to 0 and

x, y 6= 0):

p2A2,F(p) = p3 − 3p2 + 2p+ p− 1

= p3 − 3p2 + 3p− 1.

(4.23)

If p ≡ 3 mod 4 and when x = −y, by the Jacobi Symbol (Lemma 2.5)(−1
p

)(
x2

p

)
= −

(
x2

p

)
contributes an extra −(p − 1) (as s must equal to 0 and

x, y 6= 0):

p2A2,F(p) = p3 − 3p2 + 2p− (p− 1)

= p3 − 3p2 + p+ 1.

(4.24)

4.2.2 y2 = x3 + t2x2 + (t3 − t2)sx

Lemma 4.9. The first moment of the two-parameter family y2 = x3 + t2x2 +
(t3 − t2)sx is −1.

Proof.

−p2A1,F(p) = −
∑
t(p)

∑
s(p)

at,s(p)

=
∑
t(p)

∑
x(p)

∑
s(p)

(
x3 + t2x2 + (t3 − t2)sx

p

)

=
∑
t(p)

∑
s(p)

∑
x=1

(
t3x3 + t4x2 + t4sx− t3sx

p

)

=
∑
t(p)

∑
s(p)

∑
x=1

(
t3

p

)(
x3 + tx2 + tsx− sx

p

)

=
∑
x(p)

∑
s(p)

∑
t(p)

(
t

p

)(
t(x2 + sx) + (x3 − sx)

p

)
(4.25)
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The t-sum is p − 1 if p | (x3 − sx) and −1 otherwise. When s is congruent
to zero mod p and x = 0, s vanishes so every s contributes p. When s is not
congruent to zero mod p, which happens p−1 times, x2 = s 6= 0 contributes p−1
and other times everything else contributes −1. Thus, the total contribution is
p2 + p(p− 1)[1(p− 1) + (p− 1)(−1)] = p2.

Lemma 4.10. The second moment of the two-parameter family y2 = x3 +
t2x2 + (t3 − t2)sx times p2 is p3 − 3p2 + 3p if p ≡ 1 mod 4 and p3 − 5p2 + 7p if
p ≡ 3 mod 4, which supports our Bias Conjecture.

Proof.

p2A2,F(p) =
∑
t,s(p)

at,s
2(p)

=
∑
t(p)

∑
s(p)

∑
x,y(p)

(
x3 + t2x2 + (t3 − t2)sx

p

)(
y3 + t2y2 + (t3 − t2)sy

p

)

=
∑
s(p)

∑
x,y(p)

p−1∑
t=1

(
t3x3 + t4x2 + t4sx− t3sx

p

)(
t3y3 + t4y2 + t4sy − t3sy

p

)

=
∑
s(p)

∑
x,y(p)

p−1∑
t=1

(
t6

p

)(
t(x2 + sx) + (x3 − sx)

p

)(
t(y2 + sy) + (y3 − sy)

p

)

−
∑
s(p)

∑
x,y(p)

(
x3 − sx

p

)(
y3 − sy

p

)

=
∑
s(p)

∑
x,y(p)

∑
t(p)

(
t(x2 + sx) + (x3 − sx)

p

)(
t(y2 + sy) + (y3 − sy)

p

)
− p(p− 1)

(4.26)

The discriminant of the equation equals to

a = (x2 + sx)(y2 + sy)

b = (x2 + sx)(y3 − sy) + (y2 + sy)(x3 − sx)

c = (x3 − sx)(y3 − sy)

δ = b2 − 4ac = [(x2 + sx)(y3 − sy)− (y2 + sy)(x3 − sx)]2

= [xy(x− y)(s(x+ y + 1) + xy)]2.

(4.27)

We have two special cases when xy is congruent to zero mod p. When x = 0
and y = 1 or y = 0 and x = 1, s vanishes. The contribution from other xy(x−y)
cases is p(p − 2) + p(p − 2) + p2 = 3p2 − 4p. Hence, the total contribution is
3p2 − 4p+ 2.

When s is congruent to zero mod p, xy = 0. Since x and y can not equal to
zero, there is no contribution from this case.
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When s is not congruent to zero mod p, the contribution is (p − 1)3(x 6= 0
and y 6= 0). We must be careful about double-counting. We are aware that
if xy and s(x + y + 1) + xy are both congruent to zero, we double-count by
2p(p− 2) solutions (s can be any value, but x 6= 0, 1 and y 6= 0, 1). If x− y and
s(x+ y+ 1) + xy are both congruent to zero, we get s(2x+ 1) + x2 ≡ 0(p). We
double-count by (p−1)p+1 solutions as when x 6= 0, the contribution is always
p except when x = 1, the contribution is 1.

Thus, on average the second moment of this family times p2 equals to

p2A2,F(p) = 3p2 − 4p+ 2 + 0 + (p− 1)3 − 2p(p− 2)− (p− 1)p− 1− p(p− 1)

= p3 − 4p2 + 5p.

(4.28)

If p ≡ 1 mod 4 and x = −y, by the Jacobi Symbol (Lemma 2.5) there is an
extra contribution of (p− 1)2 + 1 from s− y2 ≡ 0(p):

p2A2,F(p) = p3 − 4p2 + 5p+ (p− 1)2 + 1

= p3 − 3p2 + 3p.

(4.29)

If p ≡ 3 mod 4 and x = −y, by the Jacobi Symbol (Lemma 2.5) there is an
extra contribution of −[(p− 1)2 + 1] from s− y2 ≡ 0(p):

p2A2,F(p) = p3 − 4p2 + 5p− [(p− 1)2 + 1]

= p3 − 5p2 + 7p.

(4.30)

4.3 Construction of Rank 2 Families

4.3.1 y2 = x3 + t2x2 − (s2 − s)t2x

Lemma 4.11. The first moment of the two-parameter family y2 = x3 + t2x2 −
(s2 − s)t2x is −2.
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Proof.

−p2A1,F(p) = −
∑
t(p)

∑
s(p)

at,s(p)

=
∑
t(p)

∑
x(p)

∑
s(p)

(
x3 + t2x2 − (s2 − s)t2x

p

)

=
∑
t(p)

∑
s(p)

∑
x=1

(
t3x3 + t4x2 − (s2 − s)t3x

p

)

=
∑
t(p)

∑
s(p)

∑
x=1

(
t3

p

)(
x3 + tx2 − (s2 − s)x

p

)

=
∑
x(p)

∑
s(p)

∑
t(p)

(
t

p

)(
tx2 + (x3 − (s2 − s)x)

p

)
(4.31)

The t-sum is p − 1 if p | (x3 − (s2 − s)x) and −1 otherwise. When s2 − s
is congruent to zero mod p - which happens twice - and x = 0, s vanishes so x
contributes p. When s is not congruent to zero mod p, every x contributes p−1
(x 6= 0). Thus, the total contribution is p2 +p[2(p−1)+ (p−2)(−1)] = 2p2.

Lemma 4.12. The second moment of the two-parameter family y2 = x3+t2x2−
(s2 − s)t2x times p2 is p3 − 3p2 + 3p −

∑
s(p)

∑
x,y(p)

(x3−(s2−s)x
p

)(y3−(s2−s)y
p

)
if p ≡ 1 mod 4 and p3 − 3p2 + 2p if p ≡ 3 mod 4, which supports our Bias
Conjecture.
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Proof.

p2A2,F(p) =
∑
t,s(p)

at,s
2(p)

=
∑
t(p)

∑
s(p)

∑
x,y(p)

(
x3 + t2x2 − (s2 − s)t2x

p

)(
y3 + t2y2 − (s2 − s)t2y

p

)

=
∑
s(p)

∑
x,y(p)

p−1∑
t=1

(
t3x3 + t4x2 − (s2 − s)t3x

p

)(
t3y3 + t4y2 − (s2 − s)t3y

p

)

=
∑
s(p)

∑
x,y(p)

p−1∑
t=1

(
t6

p

)(
tx2 + (x3 − (s2 − s)x)

p

)(
ty2 + (y3 − (s2 − s)y)

p

)

−
∑
s(p)

∑
x,y(p)

(
x3 − (s2 − s)x

p

)(
y3 − (s2 − s)y

p

)

=
∑
s(p)

∑
x,y(p)

∑
t(p)

(
tx2 + (x3 − (s2 − s)x)

p

)(
ty2 + (y3 − (s2 − s)y)

p

)
−

−
∑
s(p)

∑
x,y(p)

(
x3 − (s2 − s)x

p

)(
y3 − (s2 − s)y

p

)

(4.32)

a = x2y2

b = (y3 − (s2 − s)y)x2 + (x3 − (s2 − s)x)y2

c = (y3 − (s2 − s)y)(x3 − (s2 − s)x)

δ = b2 − 4ac = [(y3 − (s2 − s)y)x2 − (x3 − (s2 − s)x)y2]2

= [xy(x− y)(−s2 + s− xy)]2

(4.33)

The contribution from xy(x− y) is p(p− 1) + p(p− 1) + p2 = 3p2 − 2p.
When s = 0 or s = −1, −s2 + s is congruent to zero mod p. We need

xy ≡ 0(p). However, there is no contribution, since x 6= 0 and y 6= 0.
When −s2 + s is not congruent to zero mod p, we need −s2 + s−xy ≡ 0(p).

The contribution from this case is (p− 2)(p− 1)2.
Last but not least, we calculate the double-counting cases. When xy and

−s2+s−xy are both congruent to zero mod p, the contribution is 2. When x−y
and −s2 +s−xy are both congruent to zero mod p, we have −s2 +s−x2 ≡ 0(p)
and the contribution is 2p2 − 2 (s 6= 0, 1).

52



Thus, on average the second moment of this family times p2 equals to:

p2A2,F(p) = 3p2 − 2p+ 0 + (p− 2)(p− 1)2 − (2p2 − 2)

−
∑
s(p)

∑
x,y(p)

(
x3 − (s2 − s)x

p

)(
y3 − (s2 − s)y

p

)

= p3 − 3p2 + 3p−
∑
s(p)

∑
x,y(p)

(
x3 − (s2 − s)x

p

)(
y3 − (s2 − s)y

p

)
.

(4.34)

Keep in mind that although we have an extra term in the second moment
above, the term will contribute positive values, making the negative bias larger.
Hence, the Bias Conjecture still holds.

If p ≡ 1 mod 4, there is an extra contribution of p as s can be any value:

p2A2,F(p) = p3 − 3p2 + 3p−
∑
s(p)

∑
x,y(p)

(
x3 − (s2 − s)x

p

)(
y3 − (s2 − s)y

p

)
+ p

= p3 − 3p2 + 4p−
∑
s(p)

∑
x,y(p)

(
x3 − (s2 − s)x

p

)(
y3 − (s2 − s)y

p

)
.

(4.35)

If p ≡ 3 mod 4,
∑
s(p)

∑
x(p)

(x3−(s2−s)x
p

)
=
∑
s(p)

∑
x(p)

(
x
p

)(
x2−s2+s

p

)
= 0

because the two distinct solutions to 1 + 4x2 ≡ 0 mod p are both non-squares
modulo p. In addition, there is an extra contribution of −p as s can be any
value:

p2A2,F(p) = p3 − 3p2 + 3p− 0− p
= p3 − 3p2 + 2p.

(4.36)

4.3.2 y2 = x3 − t2x+ t3s2 + t4

Lemma 4.13. The first moment of the two-parameter family y2 = x3 − t2x+
t3s2 + t4 is −2.
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Proof.

−p2A1,F(p) = −
∑
t(p)

∑
s(p)

at,s(p)

=
∑
t(p)

∑
x(p)

∑
s(p)

(
x3 − t2x+ t3s2 + t4

p

)

=
∑
t(p)

∑
s(p)

∑
x=1

(
t3x3 − t3x+ t3s2 + t4

p

)

=
∑
t(p)

∑
s(p)

∑
x=1

(
t3

p

)(
x3 − x+ s2 + t

p

)

=
∑
x(p)

∑
s(p)

∑
t(p)

(
t

p

)(
t+ (x3 − x+ s2)

p

)
(4.37)

The t-sum is p− 1 if p | x3−x+ s2 and −1 otherwise. When s2 = 0, each of
x = −1, 0, 1 contributes p−1 and everything else contributes −1. When s2 6= 0,
one x value contributes p−1 and everything else contributes −1. Thus, the total
contribution is p[3(p−1)+(p−3)(−1)]+(p−1)[1(p−1)+(p−1)(−1)] = 2p2.

Lemma 4.14. The second moment of the two-parameter family y2 = x3−t2x+

t3s2 + t4 times p2 is p3 − 2p2 + p −
[(−3

p

)
+
(

3
p

)]
p2, which supports our Bias

Conjecture.

Proof.

p2A2,F(p) =
∑
t,s(p)

at,s
2(p)

=
∑
t(p)

∑
s(p)

∑
x,y(p)

(
x3 − t2x+ t3s2 + t4

p

)(
y3 − t2y + t3s2 + t4

p

)

=
∑
s(p)

∑
x,y(p)

p−1∑
t=1

(
t3x3 − t3x+ t3s2 + t4

p

)(
t3y3 − t3y + t3s2 + t4

p

)

=
∑
s(p)

∑
x,y(p)

p−1∑
t=1

(
t6

p

)(
t+ (x3 − x+ s2)

p

)(
t+ (y3 − y + s2)

p

)

−
∑
s(p)

∑
x,y(p)

(
x3 − x+ s2

p

)(
y3 − y + s2

p

)

=
∑
s(p)

∑
x,y(p)

∑
t(p)

(
t+ (x3 − x+ s2)

p

)(
t+ (y3 − y + s2)

p

)
− p(p− 1)

(4.38)
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a = 1

b = (x3 − x+ s2) + (y3 − y + s2)

c = (x3 − x+ s2)(y3 − y + s2)

δ = b2 − 4ac = [(x3 − x+ s2)− (y3 − y + s2)]2

= [(x− y)(x2 + xy + y2 − 1)]2

(4.39)

We see that s disappears, so every s has the same contribution. The solutions
to the first factor are x = y, which happens p times. For fixedx, the discriminant

of the second factor can be rewritten as −x±
√

4−3x2

2 , and the sum is
∑p−1
x=1[1 +(

4−3x2

p

)
] = p−1−

(−3
p

)
. We must be careful about double-counting. When both

factors are congruent to zero mod p, some pairs satisify 3x2 ≡ 1. If
(

3
p

)
= 1

we have double-counted two solutions; if it is -1, there was no double counting.

Hence, the contribution is p2(p− 1−
[(−3

p

)
+
(

3
p

)]
.

Thus,

p2A2,F(p) = p2(p− 1−
[(
−3

p

)
+

(
3

p

)]
− p(p− 1)

= p3 − 2p2 + p−
[(
−3

p

)
+

(
3

p

)]
p2.

(4.40)

5 Conclusion and Future Work

We have shown in every one- and two-parameter family we are able to prove
theoretically the largest lower order term that does not average to zero has
a negative average. For the families we are unable to prove theoretically, we
conjecture that these terms of their second moments on average are negative
from the data we get. However, because of our limitation to generate data, we
are not sure if the form contains terms of size p3/2 because they dwarf the smaller
order p terms and make them hard to see. We can investigate on finding a more
efficient way to generate data. In particular, there are families with terms of
size p3/2 that average to zero, and are followed by terms of size p with a negative
average.

While we have concentrated on the second moments of the Fourier coef-
ficients in elliptic curves, there are a lot of other fields we can explore. For
example, we can explore higher ranks (> 2), higher moments (> 2) as well as
other families, and see if similar biases exist. The difficulty is that the result-
ing sums cannot be handled by existing techniques; in general we cannot even
compute a(p) for a given elliptic curve, as we cannot do cubic Legendre sums.
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Another area we want to focus on in the future is getting to know the two-
parameter families better. What are the implications of the negative bias of the
two-parameter families? How do they behave differently from one-parameter
families or other families and why?

We have two tables below: the first table records the rank, the first moment
times p and the second moment times p of every one-parameter family we prove
theoretically or generate data for the first 100 primes in this paper; the second
table records the rank, the first moment times p2 and the second moment times
p2 of every two-parameter family we prove theoretically. We set δ1(p) to be 1 if
p ≡ 1 mod 4 and 0 otherwise, and δ3(p) to be 1 if p ≡ 3 mod 4 and 0 otherwise.

One-Parameter Family Rank pA1,F(p) pA2,F(p)

y2 = x3 − x2 − x+ t 0 0 p2 − 2p−
(−3
p

)
p

y2 = x3 − tx2 + (x− 1)t2 0 0 p2 − 2p− [
∑
x(p)

(
x3−x2+x

p

)
]2 −

(−3
p

)
p

y2 = x3 + tx2 + t2 1 -p p2 − 2p−
(−3
p

)
p− 1

y2 = x3 + tx2 + x+ 1 1 -p p2 − p− 1 + p
∑
x(p)

(
4x3+x2+2x+1

p

)
y2 = x3 + tx2 + tx+ t2 1 -p p2 − p− 1− δ1(p)(2p)
y2 = x3 − x2 + (x2 − x)t+ 1 2 -2p p2 − 1 (“conjectured on average”)
y2 = x3 − x+ t4 2(“conjectured on average”) -2p (“conjectured on average”) p2 − p (“conjectured on average”)

Table 3: The one-parameter families we proved theoretically all show that the
largest lower order term that does not average to zero has a negative average.
Unfortunately, we are not able to prove the second moment of y2 = x3 − x2 +
(x2 − x)t + 1 as well as the first and second moment of y2 = x3 − x + t4

theoretically. Due to the limited power of our computation software, we only
generated data for the first 100 primes. Also, keep in mind that we did not
observe the same form for every prime; we conjectured the average of its first or
second moment. One family worth noting is y2 = x3−x2 + (x2−x)t+ 1; it is a
potential counterexample to a stronger form of Miller’s Bias Conjecture based
on the families studied to date, which is that in the second moment expansion
the first term that does not average to zero is the p term and that has a negative
average.

Two-Parameter Family p2A1,F(p) p2A2,F(p)

y2 = x3 + tx+ sx2 0 p3 − 2p2 + p
y2 = x3 + t2x+ st4 0 p3 − 2p2 + p− 2(p2 − p)

(−3
p

)
y2 = x3 + sx2 − t2x 0 p3 − p2 − δ3(p)(2p2 − 2p)
y2 = x3 + ts2x2 + (t3 − t2)x −p2 p3 − 3p2 + 3p− 1− δ3(p)(2p− 2)
y2 = x3 + t2x2 + (t3 − t2)sx −p2 p3 − 3p2 + 3p− δ3(p)(2p2 − 4p)

y2 = x3 + t2x2 − (s2 − s)t2x −2p2 p3 − 3p2 + 2p+ δ1(p)(p−
∑
s(p)

∑
x,y(p)

(x3−(s2−s)x
p

)(y3−(s2−s)y
p

)
)

y2 = x3 − t2x+ t3s2 + t4 −2p2 p3 − 2p2 + p−
[(−3

p

)
+
(

3
p

)]
p2

Table 4: The two-parameter families we proved theoretically all show a negative
bias in the largest lower order term in the second-moment expansion.
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A Proof of Linear and Quadratic Legendre Sums

Lemma A.1 (Linear Legendre Sum).∑
x mod p

(
ax+ b

p

)
= 0 if p - a. (A.1)

Proof. Since p - a, there are exactly p−1
2 quadratic residues, p−1

2 quadratic
nonresidues, and 1 number that is divisible by p in a system of residues modulo
p. Hence, linear legendre sum equals to∑

x mod p

(
ax+ b

p

)
= (

p− 1

2
)× 1 +

p− 1

2
×−1 + 1× 0 = 0.

(A.2)

Lemma A.2 (Quadratic Legendre Sum). Let a, b, c be positive integers. As-
sume p > 2 and a 6≡ 0 mod p, we have:

∑
x mod p

(
ax2 + bx+ c

p

)
=

{
−
(
a
p

)
, if p - b2 − 4ac.

(p− 1)
(
a
p

)
, if p | b2 − 4ac.

(A.3)
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Proof.∑
x mod p

(
ax2 + bx+ c

p

)
=

(
a−1

p

) ∑
x mod p

(
a2x2 + bax+ ac

p

)

=

(
a

p

) ∑
x mod p

(
x2 + bx+ ac

p

)

=

(
a

p

) ∑
x mod p

(
x2 + bx+ 4−1b2 + ac− 4−1b2

p

)

=

(
a

p

) ∑
x mod p

(
(x+ 2−1b)2 − 4−1(b2 − 4ac)

p

)

=
∑

x mod p

(
a

p

)(
x2 −D
p

)
(A.4)

We have three cases in total:
Case 1: If D is zero mod p, then the sum equals to:

p−1∑
x=0

(
x2

p

)
= p− 1.

(A.5)

Case 2: If D is a non-zero square mod p, then

p−1∑
x=0

(
x2 −D
p

)
=

p−1∑
x=0

(
x+ d

p

)(
x− d
p

)
= −1.

(A.6)

where d2 = D. Shift x by d, and then replace x with (2d)x, we have:

S(d) =

p−1∑
x=0

(
x+ 2d

p

)(
x

p

)

=

p−1∑
x=0

(
2dx+ 2d

p

)(
2dx

p

)

=

(
2d

p

)2 p−1∑
x=0

(
x+ 1

p

)(
x

p

)
= S(1). (A.7)

Note that
∑p−1
d=0 S(d) equals to 0, so

∑
d mod p S(d) equals to 0. We can also

see that if d is not 0, then S(d) = S(1) because
(

2d
p

)2
equals to 1, and if we
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move 2d by 1, the two equations are equivalent to each other. If d equals to 0,

S(0) = p− 1 because
(
x+d
p

)(
x
p

)
now becomes

(
x
p

)2
. Hence,

∑
d mod p

S(d) = S(0) +

p−1∑
d=1

S(1)

= (p− 1) + (p− 1)S(1).

(A.8)

Thus, S(1) = −1.
Case 3: When D is not a square, we use the multiplicative property of Legendre
sums (i.e when p is a prime, (0, 1, 2, ..., p − 1) is the same as (1, g, g2, ..., gp−1)
for some generator g) to compute the sum. We can rewrite D as g2k+1 because
anything of the form g2k is a perfect square mod p, and of the form g2k+1 is
not. We can also rewrite x as gkx because summing over x mod p is the same
as summing over gkx mod p. Therefore, we have

∑
x mod p

(
g2kx2 − g2k+1

p

)
=

∑
x mod p

(
g2k

p

)(
x2 − g
p

)
=

∑
x mod p

(
x2 − g
p

)
.

(A.9)

Thus, S(g2k+1) = S(g) for all k, which means contribution for
(
x2−g
p

)
is the

same.
Define the set of non-zero squares as S and the set of non-squares as N . This

shows that for all non-squares, the contribution is the same and it is the sum of(
x2−g
p

)
. Since

∑p−1
D=0

∑p−1
x=0(x

2−D
p ) = 0, the quadratic Legendre sum S(g) when

D is not a square equals to:

p−1∑
D=0

p−1∑
x=0

(
x2 −D
p

)
=

p−1∑
x=0

(
x2

p

)
+
∑
D∈S

p−1∑
x=0

(
x2 −D
p

)
+
∑
g∈N

p−1∑
x=0

(
x2 − g
p

)
= (p− 1) +

p− 1

2
(−1) +

p− 1

2
S(g).

(A.10)

Hence, S(g) = −1.

B Proof of Rational Surfaces for One-Parameter
Families

In this section, we will prove that the one-parameter families we computed
are rational surfaces using Theorem 2.3, or else the first moment does not
equal to their rank.
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B.1 Rank 0 One-Parameter Families

B.1.1 y2 = x3 − x2 − x− t

Lemma B.1. One-parameter family y2 = x3 − x2 − x− t is a rational surface.

Proof. We first convert the family to its Weierstrass form and we have

a′2 = −1,

a′4 = −1,

a′6 = −t,

a′′4 = −1− 1

3
(−1)2 = −4

3
,

a′′6 = −t+
2

27
(−1)3 − 1

3
· (−1) · (−1) = −t− 11

27
.

(B.1)

Hence, we get

y2 = x3 − 4

3
x− t− 11

27
. (B.2)

Recall that Tate’s conjecture is known for rational surfaces: an elliptic curve
y2 = x3 + A(T )x + B(T ) is rational if 0 < max(3 degA, 2 degB) < 12 is true.
In this family, 0 < max(3 degA = 0, 2 degB = 2) = 2 < 12, so the family is a
rational surface.

B.1.2 y2 = x3 − tx2 + (x− 1)t2

Lemma B.2. One-parameter family y2 = x3 − tx2 + (x − 1)t2 is a rational
surface.

Proof. We first convert the family to its Weierstrass form and we have

a′2 = −t,
a′4 = t2,

a′6 = −t2,

a′′4 = t2 − 1

3
(−t)2 =

2

3
t2,

a′′6 = −t2 +
2

27
(−t)3 − 1

3
· (−t) · (t2) = −t2 +

7

27
t3.

(B.3)

Hence, we get

y2 = x3 +
2

3
t2x− t2 +

7

27
t3. (B.4)

Recall that Tate’s conjecture is known for rational surfaces: an elliptic curve
y2 = x3 + A(T )x + B(T ) is rational if 0 < max(3 degA, 2 degB) < 12 is true.
In this family, 0 < max(3 degA = 6, 2 degB = 6) = 6 < 12, so this family is a
rational surface.
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B.2 Rank 1 One-Parameter Families

B.2.1 y2 = x3 + tx2 + t2

Lemma B.3. One-parameter family y2 = x3 + tx2 + t2 is a rational surface.

Proof. We first convert the family to its Weierstrass form and we have

a′2 = t,

a′4 = 0,

a′6 = t2,

a′′4 = 0− 1

3
t2 = −1

3
t2,

a′′6 = t2 +
2

27
t3 − 1

3
· 0 · t = t2 +

2

27
t3.

(B.5)

Hence, we get

y2 = x3 − 1

3
t2x+ t2 +

2

27
t3. (B.6)

Recall that Tate’s conjecture is known for rational surfaces: an elliptic curve
y2 = x3 + A(T )x + B(T ) is rational if 0 < max(3 degA, 2 degB) < 12 is true.
In this family, 0 < max(3 degA = 6, 2 degB = 6) = 6 < 12, so this family is a
rational surface.

B.2.2 y2 = x3 + tx2 + x+ 1

Lemma B.4. One-parameter family y2 = x3 + tx2 +x+1 is a rational surface.

Proof. We first convert the family to its Weierstrass form and we have

a′2 = t

a′4 = 1

a′6 = 1

a′′4 = 1− 1

3
t2

a′′6 = 1 +
2

27
t3 − 1

3
· 1 · t = 1 +

2

27
t3 − 1

3
t.

(B.7)

Hence, we get

y2 = x3 + (1− 1

3
t2)x+ 1 +

2

27
t3 − 1

3
t. (B.8)

In this family, 0 < max(3 degA = 6, 2 degB = 6) = 6 < 12, so this family is a
rational surface.
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B.2.3 y2 = x3 + tx2 + tx+ t2

Lemma B.5. One-parameter family y2 = x3+tx2+tx+t2 is a rational surface.

Proof. We first convert the family to its Weierstrass form using and we have:

a′2 = t

a′4 = t

a′6 = t2

a′′4 = t− 1

3
t2 =

2

3
t2

a′′6 = t4 +
2

27
t3 − 1

3
· t · t = t4 +

2

27
t3 − 1

3
t2.

(B.9)

Hence, we get

y2 = x3 +
2

3
t2x+ t4 +

2

27
t3 − 1

3
t2. (B.10)

In this family, 0 < max(3 degA = 6, 2 degB = 8) = 8 < 12, so this family is a
rational surface.

B.3 Rank 2 One-Parameter Families

B.3.1 y2 = x3 − x2 + (x2 − x)t+ 1

Lemma B.6. One-parameter family y2 = x3 − x2 + (x2 − x)t+ 1 is a rational
surface.

Proof. We first convert the family to its Weierstrass form and we have:

a′2 = t− 1

a′4 = −t
a′6 = 1

a′′4 = −t− 1

3
(−1)2 = −t− 1

3

a′′6 = 1 +
2

27
(t− 1)3 − 1

3
· (t− 1) · (−t) = 1 +

2

27
(t− 1)3 +

1

3
(t2 − t).

(B.11)

Hence, we get

y2 = x3 − (−t− 1

3
)x+ t2 + 1 +

2

27
(t− 1)3 +

1

3
(t2 − t). (B.12)

In this family, 0 < max(3 degA = 3, 2 degB = 6) = 6 < 12, so the family is a
rational surface.
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B.3.2 y2 = x3 − x+ t4

Lemma B.7. One-parameter family y2 = x3 − x+ t4 is a rational surface.

Proof. This family is already in its Weierstrass form. In this family, 0 <
max(3 degA = 0, 2 degB = 8) = 8 < 12, so this family is a rational surface.
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C Data Table For Rank 2 One-Parameter Fam-
ilies

C.1 Second Moment of x3 − x2 + (x2 − x)t+ 1

p pA2,F(p) Form p pA2,F(p) Form p pA2,F(p) Form p pA2,F(p) Form
3 14 p2 + 2p− 1 113 11864 p2 − 8p− 1 271 70730 p2 − 10p− 1 443 194476 p2 − 4p− 1
5 34 p2 + 2p− 1 127 16636 p2 + 4p− 1 277 80052 p2 + 12p− 1 449 205192 p2 + 8p− 1
7 62 p2 + 2p− 1 131 21090 p2 + 30p− 1 281 78960 p2 − 1 457 216160 p2 + 16p− 1
11 120 p2 − 1 137 18768 p2 − 1 283 79522 p2 − 2p− 1 461 211598 p2 − 2p− 1
13 246 p2 + 6p− 1 139 19598 p2 + 2p− 1 293 95810 p2 + 34p− 1 463 219924 p2 + 12p− 1
17 322 p2 + 2p− 1 149 20412 p2 − 12p− 1 307 96090 p2 + 6p− 1 467 209682 p2 − 18p− 1
19 322 p2 − 2p− 1 151 24612 p2 + 12p− 1 311 84902 p2 − 38p− 1 479 232314 p2 + 6p− 1
23 436 p2 − 4p− 1 157 24334 p2 − 2p− 1 313 102350 p2 + 14p− 1 487 231324 p2 − 12p− 1
29 840 p2 − 1 163 29176 p2 + 16p− 1 317 96684 p2 − 12p− 1 491 243044 p2 + 4p− 1
31 898 p2 − 2p− 1 167 28222 p2 + 2p− 1 331 106912 p2 − 8p− 1 499 227044 p2 − 44p− 1
37 1368 p2 − 1 173 29582 p2 − 2p− 1 337 102784 p2 − 32p− 1 503 254014 p2 + 2p− 1
41 1598 p2 − 2p− 1 179 31324 p2 − 4p− 1 347 125960 p2 + 16p− 1 509 262134 p2 + 6p− 1
43 1848 p2 − 1 181 33846 p2 + 6p− 1 349 129478 p2 + 22p− 1 521 266230 p2 − 10p− 1
47 2114 p2 − 2p− 1 191 32660 p2 − 20p− 1 353 116842 p2 − 22p− 1 523 280850 p2 + 14p− 1
53 2596 p2 − 4p− 1 193 35704 p2 − 8p− 1 359 113084 p2 − 44p− 1 541 312156 p2 + 36p− 1
59 2890 p2 − 10p− 1 197 36444 p2 − 12p− 1 367 125146 p2 − 26p− 1 547 303584 p2 + 8p− 1
61 3354 p2 − 6p− 1 199 38406 p2 − 6p− 1 373 134652 p2 − 12p− 1
67 5292 p2 + 12p− 1 211 47052 p2 + 12p− 1 379 149704 p2 + 16p− 1
71 5324 p2 + 4p− 1 223 54634 p2 + 22p− 1 383 148906 p2 + 6p− 1
73 5766 p2 + 6p− 1 227 56522 p2 + 22p− 1 389 138872 p2 − 32p− 1
79 6556 p2 + 4p− 1 229 50150 p2 − 10p− 1 397 159990 p2 + 6p− 1
83 6058 p2 − 10p− 1 233 58016 p2 + 16p− 1 401 160800 p2 − 1
89 9166 p2 + 14p− 1 239 59988 p2 + 12p− 1 409 163190 p2 − 10p− 1
97 8826 p2 − 6p− 1 241 54706 p2 − 14p− 1 419 169694 p2 − 14p− 1
101 10402 p2 + 2p− 1 251 65510 p2 + 10p− 1 421 189028 p2 + 28p− 1
103 10814 p2 + 2p− 1 257 70674 p2 + 18p− 1 431 180588 p2 − 12p− 1
107 9308 p2 − 20p− 1 263 63908 p2 − 20p− 1 433 184890 p2 − 6p− 1
109 12752 p2 + 8p− 1 269 67518 p2 − 18p− 1 439 193598 p2 + 2p− 1
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C.2 First Moment of x3 − x+ t4

p pA1,F(p) Form p pA1,F(p) Form p pA1,F(p) Form p pA1,F(p) Form
3 -6 −2p 113 -678 −6p 271 -542 −2p 443 -886 −2p
5 -10 −2p 127 -254 −2p 277 -554 −2p 449 898 2p
7 -14 −2p 131 -262 −2p 281 562 2p 457 -2742 −6p
11 -22 −2p 137 -822 −6p 283 -566 −2p 461 -922 −2p
13 -26 −2p 139 -278 −2p 293 -586 −2p 463 -926 −2p
17 34 2p 149 -298 −2p 307 -614 −2p 467 -934 −2p
19 -38 −2p 151 -302 −2p 311 -622 −2p 479 -958 −2p
23 -46 −2p 157 -314 −2p 313 -1878 −6p 487 -974 −2p
29 -58 −2p 163 -326 −2p 317 -634 −2p 491 -982 −2p
31 -62 −2p 167 -334 −2p 331 -662 −2p 499 -998 −2p
37 -74 −2p 173 -346 −2p 337 -2022 −6p 503 -1006 −2p
41 -246 −6p 179 -358 −2p 347 -694 −2p 509 -1018 −2p
43 -86 −2p 181 -362 −2p 349 -698 −2p 521 -3126 −6p
47 -94 −2p 191 -382 −2p 353 -2118 −6p 523 -1046 −2p
53 -106 −2p 193 386 2p 359 -718 −2p 541 -1082 −2p
59 -118 −2p 197 -394 −2p 367 -734 −2p 547 -1094 −2p
61 -122 −2p 199 -398 −2p 373 -746 −2p
67 -134 −2p 211 -422 −2p 379 -758 −2p
71 -142 −2p 223 -446 −2p 383 -766 −2p
73 146 2p 227 -454 −2p 389 -778 −2p
79 -158 −2p 229 -458 −2p 397 -794 −2p
83 -166 −2p 233 466 2p 401 802 2p
89 178 2p 239 -478 −2p 409 -2454 −6p
97 194 2p 241 482 2p 419 -838 −2p
101 -202 −2p 251 -502 −2p 421 -842 −2p
103 -206 −2p 257 -1542 −6p 431 -862 −2p
107 -214 −2p 263 -526 −2p 433 866 2p
109 -218 −2p 269 -538 −2p 439 -878 −2p
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C.3 Second Moment of x3 − x+ t4

p pA2,F(p) Form p pA2,F(p) Form p pA2,F(p) Form p pA2,F(p) Form
3 18 p2 + 3p 113 12092 p2 − 5p− 112 271 73170 p2 − p 443 195806 p2 − p
5 20 p2 − p 127 16002 p2 − p 277 76452 p2 − p 449 250068 p2 + 108p− 25
7 42 p2 − p 131 17030 p2 − p 281 76828 p2 − 7p− 166 457 202932 p2 − 13p+ 24
11 110 p2 − p 137 17924 p2 − 6p− 23 283 79806 p2 − p 461 200996 p2 − 25p
13 156 p2 − p 139 19182 p2 − p 293 83212 p2 − 9p 463 213906 p2 − p
17 132 p2 − 9p− 4 149 22052 p2 − p 307 93492 p2 − p 467 217622 p2 − p
19 342 p2 − p 151 22650 p2 − p 311 96410 p2 − p 479 228962 p2 − p
23 506 p2 − p 157 24492 p2 − p 313 111460 p2 + 43p+ 32 487 236682 p2 − p
29 812 p2 − p 163 26406 p2 − p 317 90028 p2 − 33p 491 240590 p2 − p
31 930 p2 − p 167 27722 p2 − p 331 109230 p2 − p 499 248502 p2 − p
37 740 p2 − 17p 173 33907 p2 + 23p 337 118380 p2 + 14p+ 93 503 252506 p2 − p
41 2596 p2 + 22p+ 13 179 31862 p2 − p 347 120062 p2 − p 509 283004 p2 + 47p
43 1806 p2 − p 181 32580 p2 − p 349 143788 p2 + 63p 521 288212 p2 + 32p+ 99
47 2162 p2 − p 191 36290 p2 − p 353 122764 p2 − 5p− 80 523 273006 p2 − p
53 3180 p2 + 7p 193 35716 p2 − 7p− 182 359 128522 p2 − p 541 292140 p2 − p
59 3422 p2 − p 197 37036 p2 − 9p 367 134322 p2 − p 547 298662 p2 − p
61 3660 p2 − p 199 39402 p2 − p 373 120852 p2 − 49p
67 4422 p2 − p 211 44310 p2 − 9p 379 143262 p2 − p
71 4970 p2 − p 223 49506 p2 − p 383 146306 p2 − p
73 3612 p2 − 23p− 38 227 51302 p2 − p 389 157156 p2 + 15p
79 6162 p2 − p 229 52212 p2 − p 397 169916 p2 + 31p
83 6806 p2 − p 233 49516 p2 − 20p− 113 401 173732 p2 + 32p+ 99
89 7548 p2 − 4p− 17 239 56882 p2 − p 409 163908 p2 − 8p− 101
97 7332 p2 − 21p− 40 241 49044 p2 − 37p− 120 419 175142 p2 − p
101 7676 p2 − 25p 251 62750 p2 − p 421 176820 p2 − p
103 10506 p2 − p 257 59212 p2 − 26p− 155 431 185330 p2 − p
107 11342 p2 − p 263 68906 p2 − p 433 223268 p2 + 82p− 273
109 11772 p2 − p 269 80700 p2 + 31p 439 192282 p2 − p

D Mathematica Code For Computing the First
and Second Moment

D.1 First Moment Computation

p = 13; Sum[Sum[JacobiSymbol[(x^3-x+t^4), p],{x, 0, p-1}],{t,0,p-1}]

D.2 Second Moment Computation

h[u_, v_] := v^3 - v^2 + (v^2 - v) u + 1;

f[p_] := Sum[

Sum[Sum[JacobiSymbol[h[t, x] h[t, y], p], {x, 0, p - 1}], {y, 0,

p - 1}], {t, 0, p - 1}];

g[p_] := 1.0 (f[p] - p^2)/p;

secondmomentrange[nstart_, nend_] :=

Module[{}, For[n = nstart, n <= nend, n++, {prime = Prime[n];

Print["We are looking at the prime ", prime];

Print["The second moment term Sum_{t,x,y mod p} a_t(p)^2 is ",

f[prime]];

Print["The second moment minus p^2 then divided by p is ",

g[prime]];

Print[" "]’}];];
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D.3 Statistics Display

data = {}

Mean[data] 1.0

StandardDeviation[data] 1.0

Histogram[data, Automatic, "Probability"]
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