GENERALIZING ZECKENDORF’S THEOREM TO HOMOGENEOUS LINEAR RECURRENCES, II

THOMAS C. MARTINEZ, STEVEN J. MILLER, CLAY MIZGERD, JACK MURPHY, CHENYANG SUN

Abstract. Zeckendorf’s theorem states that every positive integer can be written uniquely as the sum of non-consecutive Fibonacci numbers \(\{F_n\} \), where we take \(F_1 = 1 \) and \(F_2 = 2 \); in fact, it provides an alternative definition of the Fibonacci numbers. This has been generalized for any Positive Linear Recurrence Sequence (PLRS), which is, informally, a sequence satisfying a homogeneous linear recurrence with a positive leading coefficient and non-negative integer coefficients along with specified initial conditions. Note these legal decompositions are generalizations of base \(B \) decompositions. We investigate linear recurrences with leading coefficient zero, followed by non-negative integer coefficients, with differences between indices relatively prime (abbreviated ZLRR), via two different approaches. In our prequel paper, we investigate the first approach which generalizes the definition of a legal decomposition for a PLRS found in Koloğlu, Kopp, Miller and Wang. We prove that every positive integer \(N \) has a legal decomposition for any ZLRR using the greedy algorithm. We also show that a specific family of ZLRRs do not have uniqueness of decompositions. This paper investigates the second approach, which converts a ZLRR to a PLRR that has the same growth rate. We develop the Zeroing Algorithm, a powerful helper tool for analyzing the behavior of linear recurrence sequences. We use it to prove a very general result that guarantees the possibility of conversion between certain recurrences, and develop a method to quickly determine whether our sequence diverges to \(+\infty\) or \(-\infty\), given any real initial values.

Contents

1. Introduction and Definitions 2
 1.1. History and Past Results 2
 1.2. Main Results 4
2. Eventual Behavior of Linear Recurrence Sequences 5
 2.1. Properties of Characteristic Polynomials 5
 2.2. A Generalization of Binet’s Formula 7
3. The Zeroing Algorithm and Applications 9
 3.1. The Zeroing Algorithm 9
 3.2. A General Conversion Result 11
 3.3. Fast Determination of Divergence Using the Zeroing Algorithm 13
4. Investigating the Run-Time of the Zeroing Algorithm 13
5. Conclusion and Future work 18

Appendix A. Some Examples of Running the Zeroing Algorithm 19
Appendix B. List of ZLRR’s and derived ZLRR’s 20
References 24

Date: September 14, 2020.
This work was supported by NSF Grants DMS1561945, DMS1659037 and DMS1947438 as well as the Finnerty Fund. We thank the participants of the 2019 and 2020 Williams SMALL REUs and the referee for constructive comments.
1. Introduction and Definitions

1.1. History and Past Results. The Fibonacci numbers are one of the most well-known and well-studied mathematical objects, and have captured the attention of mathematicians since their conception. This paper focuses on a generalization of Zeckendorf’s theorem, one of the many interesting properties of the Fibonacci numbers. Zeckendorf [Ze] proved that every positive integer can be written uniquely as the sum of non-consecutive Fibonacci numbers (called the Zeckendorf Decomposition), where the Fibonacci numbers \(F_n\) are \(F_1 = 1, F_2 = 2,\) and \(F_{n+1} = F_n + F_{n-1}\) for \(n \geq 2.\) This result has been generalized to other types of recurrence sequences. We set some notation before describing these results.

Definition 1.1. We say a recurrence relation is a *Positive Linear Recurrence Relation (PLRR)* if there are non-negative integers \(L, c_1, \ldots, c_L\) such that

\[
H_{n+1} = c_1 H_n + \cdots + c_L H_{n+1-L},
\]

with \(L, c_1\) and \(c_L\) positive.

Definition 1.2. We say a sequence \(\{H_n\}_{n=1}^\infty\) of positive integers arising from a PLRR is a *Positive Linear Recurrence Sequence (PLRS)* if \(H_1 = 1,\) and for \(1 \leq n < L\) we have

\[
H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1.
\]

We call a decomposition \(\sum_{i=1}^m a_i H_{m+1-i}\) of a positive integer \(N\) (and the sequence \(\{a_i\}_{i=1}^m\)) legal if \(a_1 > 0,\) the other \(a_i \geq 0,\) and one of the following two conditions hold.

- **Condition 1:** We have \(m < L\) and \(a_i = c_i\) for \(1 \leq i \leq m.\)
- **Condition 2:** There exists \(s \in \{1, \ldots, L\}\) such that

\[
a_1 = c_1, \quad a_2 = c_2, \quad \ldots, \quad a_{s-1} = c_{s-1}, \quad a_s < c_s,
\]

\(a_{s+1}, \ldots, a_{s+\ell} = 0\) for some \(\ell \geq 0,\) and \(\{b_i\}_{i=1}^{m-s-\ell}\) (with \(b_i = a_{s+\ell+i}\)) is legal.

Informally, a legal decomposition is one where we cannot use the recurrence relation to replace a linear combination of summands with another summand, and the coefficient of each summand is appropriately bounded; other authors [DG, Sta] use the phrase \(G\)-ary decomposition for a legal decomposition. For example, if \(H_{n+1} = 3H_n + 2H_{n-1} + 4H_{n-2},\) then \(H_5 + 3H_4 + 2H_3 + 3H_2\) is legal, while \(H_5 + 3H_4 + 2H_3 + 4H_2\) is not (we can replace \(3H_4 + 2H_3 + 4H_2\) with \(H_5\), nor is \(6H_5 + 2H_4\) (the coefficient of \(H_5\) is too large).

We now state an important generalization, and then describe what object we are studying and our results. See [BBGLMT, BM, BCCSW, CFHMN, CFHMNPX, DFFHMPP, Ho, MNPX, MW, Ke, Len] for more on generalized Zeckendorf decompositions, and [GT, MW] for a proof of Theorem 1.3.

Theorem 1.3 (Generalized Zeckendorf’s theorem for PLRS). Let \(\{H_n\}_{n=1}^\infty\) be a Positive Linear Recurrence Sequence. Then

1. there is a unique legal decomposition for each non-negative integer \(N \geq 0,\) and
2. there is a bijection between the set \(S_n\) of integers in \([H_n, H_{n+1})\) and the set \(D_n\) of legal decompositions \(\sum_{i=1}^p a_i H_{n+1-i} - 1.\)

While this result is powerful and generalizes Zeckendorf’s theorem to a large class of recurrence sequences, it is restrictive in that the leading term must have a positive coefficient. We examine what happens in general to existence and uniqueness of legal decompositions if

\[\text{If we use the standard initial conditions then 1 appears twice and uniqueness is lost.}\]
Generically Zeckendorf’s Theorem

\[c_1 = 0. \] Special cases were studied in [CFMN, CFHMNPX], focusing on the Kentucky, \((s, b)\)-Generacci, and Fibonacci quilt Sequences; the first two still had uniqueness of decomposition while the last did not.

Definition 1.4. We say a recurrence relation is an \(s \)-deep **Zero Linear Recurrence Relation** (ZLRR) if the following properties hold.

1. **Recurrence relation:** There are non-negative integers \(s, L, c_1, \ldots, c_L \) such that
 \[
 G_{n+1} = c_1 G_n + \cdots + c_s G_{n+1-s} + c_{s+1} G_{n-s} + \cdots + c_L G_{n+1-L},
 \]
 with \(c_1, \ldots, c_s = 0 \) and \(L, c_{s+1}, c_L \) positive.

2. **No degenerate sequences:** Let \(S = \{ m \mid c_m \neq 0 \} \) be the set of indices of positive coefficients. Then \(\gcd(S) = 1 \).

We impose the second restriction to eliminate recurrences with undesirable properties, such as \(G_{n+1} = G_{n-1} + G_{n-3} \), where the odd- and even-indexed terms do not interact. Any sequence satisfying this recurrence splits into two separate, independent subsequences. Also note that 0-deep ZLRR’s are just PLRR’s, whose sequences and decomposition properties are well-understood.

A natural question to ask is how decomposition results for PLRS’s may be extended to sequences satisfying ZLRR’s; we offer two approaches toward addressing it. [MMMS1] focuses on generalizing Zeckendorf’s theorem directly to sequences satisfying ZLRR’s, while this paper develops a method to convert ZLRR’s to PLRR’s, whose sequences have nice decomposition properties (Theorem 1.3).

We develop a powerful helper tool in analyzing linear recurrences, the **Zeroing Algorithm**; we give a full introduction of how it works in \(\S3 \). It is worth noting that this method has more uses than that of generalizing Zeckendorf’s theorem. As the first method required specific initial conditions, converting ZLRR’s to PLRR’s requires no specificity of initial conditions. We have yet to formally describe a manner to use this method to obtain meaningful results about decompositions, but our hope is that others can use the Zeroing Algorithm to do so. Before going further, we introduce an object crucial in the study of recurrence relations.

Definition 1.5. Given a recurrence relation

\[
 a_{n+1} = c_1 a_n + \cdots + c_k a_{n+1-k},
\]

we call the polynomial

\[
 P(x) = x^k - c_1 x^{k-1} - c_2 x^{k-2} - \cdots - c_k
\]

the **characteristic polynomial** of the recurrence relation. The degree of \(P(x) \) is known as the order of the recurrence relation.

We now state results relating to the second approach, which is converting any ZLRR into a PLRR derived from it in the following sense:

Definition 1.6. We say that a recurrence relation \(R_b \) is derived from another recurrence relation \(R_a \) if

\[
 P_b(x) = P_a(x)Q(x),
\]

where \(P_a(x) \) and \(P_b(x) \) are the characteristic polynomials of \(R_a \) and \(R_b \) respectively, as defined by equation (1.5), and \(Q(x) \) is some polynomial with integer coefficients with \(Q(x) \) not being the zero polynomial.
Since the roots of P_a are contained in P_b, any sequence satisfying the recurrence relation R_a also satisfies R_b, which means that the two recurrence relations yield the same sequence if the initial values of $\{b_n\}_{n=1}^{\infty}$ satisfy the recurrence relation R_a. This provides motivation for why the idea of a derived PLRR is relevant. To continue, we define an important object.

Definition 1.7. We call a root r of a polynomial principal if

1. it is a positive root of multiplicity 1, and
2. has magnitude strictly greater than that of any other root.

We prove that the characteristic polynomial of any PLRR or ZLRR has a principal root in Lemma 2.1.

1.2. Main Results. We now state a main result, which has two important corollaries that guarantee the possibility of conversion between certain linear recurrences; the Zeroing Algorithm itself provides a constructive way to do so. We provide some examples of running the Zeroing Algorithm in Appendix A.

Theorem 1.8. Given some PLRR/ZLRR, let $P(x)$ denote its characteristic polynomial, and r its principal root. Suppose we are given an arbitrary sequence of real numbers $\gamma_1, \gamma_2, \ldots, \gamma_m$, and define, for $t \leq m$,

$$
\Gamma_t(x) := \gamma_1 x^{t-1} + \gamma_2 x^{t-2} + \cdots + \gamma_{t-1} x + \gamma_t. \quad (1.6)
$$

If $\Gamma_m(r) > 0$, there exists a polynomial $p(x)$, divisible by $P(x)$, whose first coefficients are γ_1 through γ_m, with no positive coefficients thereafter.

Corollary 1.9. Given arbitrary integers γ_1 through γ_m with $\Gamma_m(r) > 0$, there is a recurrence derived from $P(x)$ which has first coefficients γ_1 through γ_m with no negative coefficients thereafter.

Corollary 1.10. Every ZLRR has a derived PLRR.

We list some examples of ZLRR’s with the derived PLRR’s that are found with the Zeroing Algorithm in Appendix B.

A natural question of interest that arises in the study of recurrences is the behavior of the size of terms in a recurrence sequence. The Fibonacci sequence behaves like a geometric sequence whose ratio is the golden ratio, and there is an analogous result for general linear recurrence sequences, proven in [BBGILMT].

Theorem 1.11. Let $P(x)$ be the characteristic polynomial of some linear recurrence relation, and let the roots of $P(x)$ be denoted as r_1, r_2, \ldots, r_j, with multiplicities $m_1, m_2, \ldots, m_j \geq 1$, respectively.

Consider a sequence $\{a_n\}_{n=1}^{\infty}$ of complex numbers satisfying the recurrence relation. Then there exist polynomials q_1, q_2, \ldots, q_j, with $\deg(q_i) \leq m_i - 1$, such that

$$
a_n = q_1(n) r_1^n + q_2(n) r_2^n + \cdots + q_j(n) r_j^n. \quad (1.7)
$$

Definition 1.12. We call (1.7) the Binet expansion of the sequence $\{a_n\}_{n=1}^{\infty}$, in analogy to the Binet Formula that provides a closed form for Fibonacci numbers.

2 Note that, by definition, the principal root is unique.
One might ask that given a PLRR/ZLRR with some real initial values, do the terms eventually diverge to positive infinity or negative infinity? One approach is to compute as many terms as needed for the eventual behavior to emerge; unfortunately, this could be very time-consuming. One could alternately solve for the Binet expansion, which often requires an excessive amount of computation.

The fact that the characteristic polynomials for PLRR/ZLRR’s have a principal root r allows for a shortcut. Consider the Binet expansion of a ZLRS/PLRS; the coefficient attached to the r^n term, whenever nonzero, indicates the direction of divergence. We develop the following method to determine the sign of this coefficient from the initial values of the recurrence sequence.

Theorem 1.13. Given a ZLRS/PLRS $\{a_n\}_{n=1}^\infty$ with characteristic polynomial $P(x)$ and real initial values a_1, a_2, \ldots, a_k, consider the Binet expansion of $\{a_n\}_{n=1}^\infty$. The sign of the coefficient attached to r^n agrees with the sign of

$$Q(x) := a_1 x^{k-1} + (a_2 - d_2) x^{k-2} + (a_3 - d_3) x^{k-3} + \cdots + (a_k - d_k)$$

evaluated at $x = r$, where

$$d_i = a_1 c_{i-1} + a_2 c_{i-2} + \cdots + a_{i-1} c_1 = \sum_{j=1}^{i-1} a_j c_{i-j}. \quad (1.9)$$

In §4 we investigate the run-time of the Zeroing Algorithm, and discover that the run-time depends exclusively on the initial configuration of the algorithm. Particularly, we show that ZLRR’s with principal root closest to 1 will take the longest to be converted into a derived PLRR by the Zeroing Algorithm. We conclude in §5 with some open questions for future research.

2. Eventual Behavior of Linear Recurrence Sequences

In this section, we introduce important lemmas related to the roots of characteristic polynomials. In the celebrated Binet’s Formula for Fibonacci numbers, the principal root of its characteristic polynomial (i.e., the golden ratio) determines the behavior of the sequence as nearly geometric, with the golden ratio being the common ratio. We extend this characterization of near-geometric behavior to more general linear recurrences.

2.1. Properties of Characteristic Polynomials. We first introduce a lemma regarding recurrence relations of the form (1.4), with c_i non-negative integers for $1 \leq i \leq k$ and $c_k > 0$. We first justify the definition of the principal root.

Lemma 2.1. Consider $P(x)$ as in (1.5) and let $S := \{m \mid c_m \neq 0\}$. Then

1. there exists exactly one positive root r, and this root has multiplicity 1,
2. every root $z \in \mathbb{C}$ satisfies $|z| \leq r$, and
3. if $\gcd(S) = 1$, then r is the unique root of greatest magnitude.

Proof. By Descartes’s Rule of Signs, $P(x)$ has exactly one positive root of multiplicity one, completing the proof of Part (1).

3Note that we allow the initial values to be arbitrary real numbers, which would result in the sequence taking on one of three behaviors: diverging to $+\infty$, diverging to $-\infty$, or oscillating between and having magnitude $o(r^n)$.

4Note that this is Condition 2 from Definition 1.4, thus met by all s-deep ZLRR’s.
Now, consider any root $z \in \mathbb{C}$ of $P(x)$; we have $z^k = c_1 z^{k-1} + c_2 z^{k-2} + \cdots + c_k$. Taking the magnitude, we have

$$|z|^k = |z^k| = |c_1 z^{k-1} + c_2 z^{k-2} + \cdots + c_k| \leq |c_1 z^{k-1}| + |c_2 z^{k-2}| + \cdots + |c_k| = c_1 |z|^{k-1} + c_2 |z|^{k-2} + \cdots + c_k,$$ \hspace{1cm} (2.1)

which means $P(|z|) \leq 0$. Since $P(x)$ becomes arbitrarily large with large values of x, we see that there is a positive root at or above $|z|$ by the Intermediate Value Theorem, which completes Part (2).

Finally, suppose gcd$(S) = 1$. Suppose for sake of contradiction that a non-positive root z satisfies $|z| = r$; we must have $P(|z|) = 0$, which means

$$|z|^k = |c_1 z^{k-1} + c_2 z^{k-2} + \cdots + c_k| = |c_1 z^{k-1}| + |c_2 z^{k-2}| + \cdots + |c_k|. \hspace{1cm} (2.2)$$

This equality holds only if the complex numbers $c_1 z^{k-1}, c_2 z^{k-2}, \ldots, c_k$ share the same argument; since $c_k > 0$, z^{k-j} must be positive for all $c_j \neq 0$. This implies z^k, as a sum of positive numbers, is positive as well. Writing $z = |z| e^{i\theta}$, we see that the positivity of $z^k = |z|^k e^{ik\theta}$ implies $k\theta$ is a multiple of 2π, and consequently, $\theta = 2\pi d'/k$ for some integer d. We may reduce this to $2\pi d'/k'$ for relatively prime d', k'.

Let $J := S \cup \{0\}$. Since z^{k-j} is positive for all $j \in J$, we see that $2\pi d' (k - j)/k'$ is an integer multiple of 2π, so k' divides $d' (k - j)$; as d' and k' are relatively prime we have k' divides $k - j$. Since the elements of J have greatest common divisor 1, so do the elements of $K := \{k - j \mid j \in J\}$. Since k' divides every element of K, we must have $k' = 1$, so $\theta = 2\pi d'$ and thus z is a positive root. This is a contradiction, completing the proof of Part (3). \hspace{1cm} \Box

Next, we state a lemma that sheds light on the growth rate of the terms of a ZLRR/PLRR with a specific set of initial values.

Lemma 2.2. For a PLRR/ZLRR, let r be the principal root of its characteristic polynomial $P(x)$. Then, given initial values $a_i = 0$ for $0 \leq i \leq k - 2$, $a_{k-1} = 1$, we have

$$\lim_{n \to \infty} \frac{a_n}{r^n} = C,$$ \hspace{1cm} (2.3)

where $C > 0$. Furthermore, the sequence $\{a_n\}_{n=1}^\infty$ is eventually monotonically increasing.

Proof. Since r has multiplicity 1, q_1 is a constant polynomial. To see geometric behavior, we note that

$$\lim_{n \to \infty} \frac{a_n}{r^n} = \lim_{n \to \infty} q_1(n) \left(\frac{r_n}{r_0}\right) + \lim_{n \to \infty} q_2(n) \left(\frac{r_2}{r_0}\right)^n + \cdots + \lim_{n \to \infty} q_j(n) \left(\frac{r_j}{r_0}\right)^n. \hspace{1cm} (2.4)$$

Since $|r| > |r_i|$ for all $2 \leq i \leq j$, each limit with a $(r_i/r)^n$ term disappears, leaving just q_1, which must be positive, since the sequence a_n does not admit negative terms.

To see that a_n is eventually increasing, consider the sequence

$$A_n := a_{n+1} - a_n = (q_1 r_1 - q_1) r_n + (q_2 r_1 - q_2) r_2^n + \cdots + (q_j r_1 - q_j) r_j^n. \hspace{1cm} (2.5)$$

\hspace{1cm} \footnote{Observe that k is in both J and K. Suppose, by contradiction, that some $q > 1$ divides every element of K; then, every element of $\{k - \kappa \mid \kappa \in K\} = J$ is divisible by q, which is impossible.}
A similar analysis shows
\[
\lim_{n \to \infty} \frac{(q_2(n+1) r_2 - q_2(n)) r_2^n + \cdots + (q_j(n+1) r_j - q_j(n)) r_j^n}{(q_1 r_1 - q_1) r_1^n} = 0,
\]
meaning that the term \((q_1 r_1 - q_1) r_1^n\) grows faster than the sum of the other terms; thus \(A_n\) is eventually positive as desired. \(\square\)

Corollary 2.3. For a PLRR/ZLRR, let \(r\) be the principal root of its characteristic polynomial \(P(x)\). Then, given initial values satisfying \(a_i \geq 0\) for \(0 \leq i \leq k - 1\) and \(a_i > 0\) for some \(0 \leq i \leq k - 1\), we have
\[
\lim_{n \to \infty} \frac{a_n}{r^n} = C,
\]
where \(C > 0\). Furthermore, the sequence \(\{a_n\}_{n=1}^{\infty}\) is eventually monotonically increasing. That is, Lemma 2.2 extends to any set of non-negative initial values that are not all zero.

Proof. We first note that the derivation of (1.7) does not rely on the initial values; any sequence satisfying the recurrence takes on this form.

Since one of the initial values \(a_0, a_1, \ldots, a_{k-1}\) is a positive integer, we know that one of \(a_k, a_{k+1}, \ldots, a_{2k-1}\) is also a positive integer by the recurrence relation, which forces \(a_n\) to be at least \(a_{n-k}\). Let \(k \leq i \leq 2k-1\) be such that \(a_i\) is positive. Consider the sequence \(b_n = a_{n+i-k+1}\), which has \(b_{k-1} = a_i > 0\). By the recurrence relation, we have \(b_n \geq a_n\) for all \(n\), which would be impossible if the Binet expansion of \(b_n\) had a non-positive coefficient attached to the \(r^n\) term. Eventual monotonicity thus follows. \(\square\)

2.2. **A Generalization of Binet’s Formula.** In general, the Binet expansion of a recurrence sequence is quite unpleasant to compute or work with. However, things become much simpler when the characteristic polynomial has no multiple roots. In that case, we may construct an explicit formula for the \(n\)th term of the sequence, given a nice set of initial values. Keeping in mind that linear combinations of sequences satisfying a recurrence also satisfy the recurrence, one could construct a formula for the \(n\)th term given arbitrary initial values.

Theorem 2.4. Consider a ZLRR with characteristic polynomial \(P(x)\) that does not have multiple roots, and initial values \(a_i = 0\) for \(0 \leq i \leq k - 2\), \(a_{k-1} = 1\). Then each term of the resulting sequence may be expressed as
\[
a_n = c_1 r_1^n + c_2 r_2^n + \cdots + c_k r_k^n,
\]
where the \(r_i\) are the distinct roots of \(P(x)\), and \(c_i = 1/P'(r_i)\).

Before providing a proof of Theorem 2.4, we illustrate with a motivating example: Binet’s Formula.

Example 2.5. Consider the Fibonacci Numbers with \(F_0 = 0, F_1 = 1\). Let \(P(x) = x^2 - x - 1\), which has roots \(\alpha = (1 + \sqrt{5})/2\) and \(\beta = (1 - \sqrt{5})/2\). Then \(P'(x) = 2x - 1\) and it is easy to verify that \(1/P'(\alpha) = 1/\sqrt{5}\) and \(1/P'(\beta) = -1/\sqrt{5}\), leading to the well known Binet formula for the Fibonacci numbers.

We now prove Theorem 2.4.

Proof. Since each root has multiplicity 1, the existence of such explicit form follows from the Binet expansion (see Theorem 1.11), so we are left to prove that \(c_i = 1/P'(r_i)\). Using the
initial values, we see that the c_i are solutions to the linear system

$$
\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
r_1 & r_2 & r_3 & \cdots & r_k \\
r_1^2 & r_2^2 & r_3^2 & \cdots & r_k^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
r_1^{k-1} & r_2^{k-1} & r_3^{k-1} & \cdots & r_k^{k-1}
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3 \\
\vdots \\
c_k
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0 \\
\vdots \\
1
\end{pmatrix}.
$$

(2.9)

Denote the matrix by A; by Cramer’s rule, we have $c_i = \frac{\det(A_i)}{\det(A)}$, where A_i is the matrix formed by replacing column i of A with the column vector of zeroes and a single 1. Using Laplace expansion, we see that $\det(A_i) = (-1)^{k+i} \det(M_{ki})$, where M_{ki} is the k, i minor matrix of A formed by deleting row k and column i. Notice that both A and M_{ki} are Vandermonde matrices, which means we have

$$
\det(A) = \prod_{1 \leq a < b \leq k} (r_b - r_a), \quad \det(M_{ki}) = \prod_{1 \leq a < b \leq k, a, b \neq i} (r_b - r_a).
$$

(2.10)

We may thus simplify and find:

$$
c_i = (-1)^{k+i} \left(\prod_{1 \leq a < b \leq k, a, b \neq i} (r_a - r_b) \right) / \left(\prod_{1 \leq a < b \leq k} (r_a - r_b) \right)
= (-1)^{k+i} \left(\prod_{1 \leq a < b \leq k, a = i \text{ or } b = i} (r_a - r_b) \right)
= \frac{(-1)^{k+i}}{(r_i - r_1)(r_i - r_2) \cdots (r_i - r_{i-1})(r_{i+1} - r_i) \cdots (r_{k-1} - r_i)(r_k - r_i)}
= \frac{(-1)^{k+i}}{\prod_{j=1}^{i-1}(r_i - r_j)(-1)^{k-i} \prod_{j=i+1}^{k}(r_i - r_j)}
= \frac{1}{\prod_{1 \leq j \leq k, j \neq i} (r_i - r_j)}.
$$

(2.11)

Note that the product is simply the function

$$
f(x) = \prod_{1 \leq j \leq k, j \neq i} (x - r_j)
$$

(2.12)
evaluated at \(x = r_i \). To evaluate this, we may rewrite

\[
 f(r_i) = \lim_{x \to r_i} f(x) = \lim_{x \to r_i} \prod_{1 \leq j \leq k, j \neq i} (x - r_j)
\]

\[
 = \lim_{x \to r_i} \frac{(x - r_i)}{(x - r_i)} \prod_{1 \leq j \leq k} (x - r_j) = \lim_{x \to r_i} \frac{\prod_{1 \leq j \leq k} (x - r_j)}{x - r_i}
\]

which equals \(P'(r_i) \) by l'Hôpital’s rule. We thus have \(c_i = 1/f(r_i) = 1/P'(r_i) \), completing the proof. \(\square \)

3. The Zeroing Algorithm and Applications

An alternate approach to understanding decompositions arising from ZLRR’s is to see if for every ZLRR one could associate a PLRR with similar behavior: a derived PLRR. In this section, we develop the machinery of the Zeroing Algorithm, which is an extremely powerful tool for understanding recurrence sequences analytically. We prove a very general result about derived recurrences that implies every ZLRS has a derived PLRS.

3.1. The Zeroing Algorithm. Consider some ZLRS/PLRS with characteristic polynomial

\[
P(x) := x^k - c_1 x^{k-1} - c_2 x^{k-2} - \cdots - c_k,
\]

and choose a sequence of \(k \) real numbers \(\beta_1, \beta_2, \ldots, \beta_k \); the \(\beta_i \) are considered the input of the algorithm. For nontriviality, the \(\beta_i \) are not all zero. We define the Zeroing Algorithm to be the following procedure. First, create the polynomial

\[
Q_0(x) := \beta_1 x^{k-1} + \beta_2 x^{k-2} + \cdots + \beta_{k-1} x + \beta_k.
\]

Next, for \(t \geq 1 \), define a sequence of polynomials

\[
Q_t(x) := x Q_{t-1}(x) - q(1, t-1) P(x),
\]

indexed by \(t \), where \(q(1,t) \) is the coefficient of \(Q_t(x) \) at the \(x^{k-1} \) term. We terminate the algorithm at step \(t \) if \(Q_t(x) \) does not have positive coefficients. An example run of the Zeroing Algorithm is provided in Appendix \(\Box \).

To understand the algorithm through linear recurrences, we denote by \(q(n,t) \) the coefficient of \(Q_t(x) \) at the term \(x^{k-n} \), where \(n \) ranges from 1 to \(k \). Unraveling the recurrence relation on the polynomials yields the following system of recurrence relations

\[
q(1,t) = q(2, t - 1) + c_1 q(1, t - 1),
\]

\[
q(2,t) = q(3, t - 1) + c_2 q(1, t - 1),
\]

\[
\vdots
\]

\[
q(k - 1,t) = q(k, t - 1) + c_{k-1} q(1, t - 1),
\]

\[
q(k,t) = c_k q(1, t - 1),
\]

with initial values

\[
q(1,0) = \beta_1, \quad q(2,0) = \beta_2, \quad \ldots, \quad q(k,0) = \beta_k.
\]
Note that if \(q(1, t) \) through \(q(k, t) \) are all non-positive, then so are \(q(1, t+1) \) through \(q(k, t+1) \); the same holds for nonnegativity.

Lemma 3.1. The sequence \(q(1, t) \) satisfies the recurrence specified by the characteristic polynomial \(P(x) \). For each \(1 \leq n \leq k \), \(q(n, t) \) is a positive linear combination of \(q(1, t) \) at various stages:

\[
q(n, t) = c_n q(1, t-1) + c_{n+1} q(1, t-2) + \cdots + c_k q(1, t - (k + 1 - n)) \\
= \sum_{i=0}^{k-n} c_{n+i} q(1, t - (i + 1)).
\]

Proof. We first examine the sequence \(q(1, t) \). For \(t \geq k \), we have

\[
q(1, t) = c_1 q(1, t-1) + c_2 q(1, t-2) + q(3, t-2) \\
\vdots \\
= c_1 q(1, t-1) + c_2 q(1, t-2) + \cdots + c_k q(1, t - (k - 1)) + q(k, t - (k - 1)) \\
= c_1 q(1, t-1) + c_2 q(1, t-2) + \cdots + c_k q(1, t - (k - 1)) + c_k q(1, t-k),
\]

which is what we want.

The latter part can also be proven by unraveling the system of recurrences: we have

\[
q(n, t) = c_n q(1, t-1) + q(n + 1, t-1) \\
= c_n q(1, t-1) + c_{n+1} q(1, t-2) + q(n + 2, t-2) \\
= c_n q(1, t-1) + c_{n+1} q(1, t-2) + c_{n+2} q(1, t-3) + q(n + 3, t-3) \\
\vdots \\
= c_n q(1, t-1) + c_{n+1} q(1, t-2) + \cdots + q(n + (k - n), t - (k - n)) \\
= c_n q(1, t-1) + c_{n+1} q(1, t-2) + \cdots + c_k q(1, t - (k - n) + 1),
\]

as desired. \(\square \)

Now we may prove a very useful result.

Lemma 3.2. Let \(r \) be the principal root of \(P(x) \). Consider the Binet expansion of the sequence \(q(n, t) \) (indexed by \(t \)) for each \(n \). The sign of the coefficient attached to the term \(r^t \) agrees with the sign of \(Q_0(r) \).

Proof. Recall the recurrence relation \(Q_t(x) = x Q_{t-1}(x) - q(1, t-1) P(x) \). Evaluating at \(x = r \), the \(P(x) \) term drops out and we have \(Q_t(r) = r Q_{t-1}(r) \), and iterating this procedure gives \(r^t Q_0(r) \).

Recalling that \(q(n, t) \) is defined to be the coefficient of \(Q_t(x) \) at the term \(x^{k-n} \), we have

\[
r^t Q_0(r) = Q_t(r) = r^{k-1} q(1, t) + r^{k-2} q(2, t) + \cdots + r q(k-1, t) + q(k, t).
\]

Note that this means the sequence \(Q_t(r) \) satisfies the recurrence specified by \(P(x) \) as well. Since each \(q(n, t) \) is a positive linear combination of \(q(1, t) \) at various stages, they all have the same sign on the coefficient of the \(r^t \) term in their explicit expansion as a sum of geometric sequences, and this sign agrees with the sign of the coefficient of \(r^t \) in the expansion of \(Q_t(r) \).
Now we just need to show the sign in $Q_t(r)$ agrees with the sign of $Q_0(r)$.

Consider the quantity $\lim_{t \to \infty} Q_t(r)/r^t$, which extracts the coefficient of the r^t term in $Q_t(r)$. Since $Q_t(r) = r^tQ_0(r)$, we have

$$\lim_{t \to \infty} \frac{Q_t(r)}{r^t} = \lim_{t \to \infty} \frac{r^tQ_0(r)}{r^t} = Q_0(r)$$

(3.9)

as desired. □

We can now establish an exact condition on when the Zeroing Algorithm terminates.

Theorem 3.3. Let $Q_0(x)$ be as defined in (3.2) and let r be the principal root of $P(x)$. The Zeroing Algorithm terminates if and only if $Q_0(r) < 0$.

Proof of Theorem 3.3. If $Q_0(r) < 0$, then the coefficient of r^t in the expansion of $q(n, t)$ is also negative for each n; this means $q(n, t)$ diverges to negative infinity, and that there must be some t when $q(n, t)$ is non-positive for each n.

For the other direction, if $Q_0(r) \geq 0$ then suppose, for contradiction, that there is some t_0 where $q(n, t_0) \leq 0$ for all n. Then we would have

$$r^{t_0}Q_0(r) = Q_{t_0}(r) = r^{k-1}q(1, t_0) + r^{k-2}q(2, t_0) + \cdots + r q(k-1, t_0) + q(k, t_0) \leq 0, \ (3.10)$$

which implies $Q_0(r) \leq 0$, forcing $Q_0(r) = 0$.

Notice that this equality only occurs when $q(1, t_0) = q(2, t_0) = \cdots = q(k, t_0) = 0$. This means for each n, $q(n, t) = 0$ for all $t > t_0$, so each $q(n, t)$ is identically zero, which contradicts our assumption of non-triviality. □

3.2. A General Conversion Result. Now that we have developed the main machinery of the Zeroing Algorithm, we could prove a very general result on converting between linear recurrences.

Proof of Theorem 1.8. For ease of notation, extend the γ sequence by setting $\gamma_i = 0$ for $i > m$. We modify the Zeroing Algorithm slightly to produce the desired $p(x)$.

Consider a sequence of polynomials $Q_t(x)$ of degree at most $k - 1$, with

$$Q_1(x) = \gamma_1(P(x) - x^k),$$

$$Q_t(x) = xQ_{t-1}(x) - (q(1, t-1) - \gamma_t)P(x) - \gamma_t x^k, \quad (3.11)$$

where again, $q(n, t)$ denotes the coefficient of $Q_t(x)$ at x^{k-n}. Note that after iteration m, $\gamma_t = 0$ and we have the unmodified Zeroing Algorithm again.

Lemma 3.4. Define $p_t(x) := x^k \Gamma_t(x) + Q_t(x)$. At each iteration t, we have the following:

1. $P(x)$ divides $p_t(x)$,
2. the first t coefficients of $p_t(x)$ are γ_1 through γ_t, and
3. $Q_t(r) = -r^k \Gamma_t(r)$.

Proof. A straightforward induction argument suffices for all of them.

1. We have

$$p_1(x) = x^k \gamma_1(x) + Q_1(x) = x^k \gamma_1 + \gamma_1 (P(x) - x^k) = \gamma_1 P(x). \quad (3.12)$$

JANUARY 2020 11
Assuming $P(x)$ divides $p_t(x)$, we have
\[
\begin{align*}
 p_{t+1}(x) &= x^k \Gamma_{t+1}(x) + Q_{t+1}(x) \\
 &= x^k (\gamma_1 x^t + \gamma_2 x^{t-1} + \cdots + \gamma_{t+1}) + Q_{t+1}(x) \\
 &= x \cdot x^k (\gamma_1 x^{t-1} + \gamma_2 x^{t-2} + \cdots + \gamma_t) + x Q_t(x) - (q(1, t) - \gamma_{t+1}) P(x) - \gamma_{t+1} x^k \\
 &= x (x^k (\gamma_1 x^{t-1} + \gamma_2 x^{t-2} + \cdots + \gamma_t) + Q_t(x)) - (q(1, t) - \gamma_{t+1}) P(x) \\
 &= x p_t(x) - (q(1, t) - \gamma_{t+1}) P(x),
\end{align*}
\]
which is divisible by $P(x)$ by the inductive hypothesis.

(2) We first prove that $Q_t(x)$ has degree at most $k - 1$. This is certainly true for $Q_1(x) = \gamma_1 (P(x) - x^k)$. Assume $Q_t(x)$ as degree at most $k - 1$; we then have
\[
Q_{t+1}(x) = x Q_t(x) - (q(1, t) - \gamma_{t+1}) P(x) - \gamma_{t+1} x^k.
\]
It is evident that the highest power of x to appear is x^k, which has coefficient
\[
q(1, t) - (q(1, t) - \gamma_{t+1}) - \gamma_{t+1} = 0.
\]
From the construction $p_t(x) := x^k \Gamma_t(x) + Q_t(x)$, now it is evident that the first t coefficients are just those of $\Gamma_t(x)$.

(3) We have
\[
Q_1(r) = \gamma_1 (P(r) - r^k) = -r^k \gamma_1.
\]
Suppose $Q_t(r) = -r^k \Gamma_t(r)$; we have
\[
\begin{align*}
 Q_{t+1}(r) &= r Q_t(r) - (q(1, t) - \gamma_{t+1}) P(r) - \gamma_{t+1} r^k \\
 &= r (-r^k \Gamma_t(r)) - \gamma_{t+1} r^k \\
 &= -r^k (r \Gamma_t(r) + \gamma_{t+1}) \\
 &= -r^k \Gamma_{t+1}(r).
\end{align*}
\]

Now we have $Q_m(r) = -r^m \Gamma_m(r) < 0$, since $\Gamma_m(r) > 0$. Running the Zeroing Algorithm starting with $Q_m(x)$ yields some $Q_{m+t_0}(x)$ that does not have positive coefficients. We see that $p_{m+t_0}(x) = x^k \Gamma_{m+t_0}(x) + Q_{m+t_0}(x)$ is divisible by $P(x)$, has first $m + t_0$ coefficients γ_1 through γ_m followed by t_0 0’s, and thus does not have positive coefficients after γ_m; we may choose $p(x) = p_{m+t_0}(x)$.

Corollary 3.5. Given $\gamma_1 = 1$ and arbitrary integers γ_2 through γ_m with $\Gamma_m(r) > 0$, there is a recurrence derived from $P(x)$ whose characteristic polynomial has first coefficients γ_1 through γ_m with no positive coefficients thereafter.

Proof. Take $p(x)$ from Theorem 1.8, which has first coefficients γ_1 through γ_m. Since $\gamma_1 = 1$, $p(x)$ is the characteristic polynomial of a linear recurrence. In fact, since γ_2 through γ_m are integers, $p(x)$, and thus the recurrence, has integer coefficients.

Corollary 3.6. Every ZLRR has a derived PLRR.

Proof. Take $m = 2$, $\gamma_1 = 1$, $\gamma_2 = -1$. We thus have $\Gamma_m(r) = r - 1 > 0$, as shown in the section on characteristic polynomials. We can thus find $p(x)$ with first two coefficients 1, -1 with no positive coefficients thereafter; this is the characteristic polynomial of a PLRR.
Note that a ZLRR does not have a unique derived PLRR; the Zeroing Algorithm simply produces a PLRR whose characteristic polynomial takes the coefficients and up to k nonzero terms at the end, where k is the degree of the characteristic polynomial of the ZLRR. In fact, for any positive integer n less than the principal root of a ZLRR, there exists a derived PLRR with leading coefficients $1, -1,$ a bunch of 0’s, and up to k nonzero terms at the end. Thus, it suffices to show that the sequence $q(1, t)$ follows the linear recurrence and has behavior determined by $Q_0(r)$. Thus, it must be the case that $q(1, t)$ becomes non-positive, the Zeroing Algorithm will terminate within the next $k - 2$ steps.

Proposition 4.1. _After the time step at which the sequence $q(1, t)$ becomes non-positive, the Zeroing Algorithm will terminate within the next $k - 2$ steps._

Proof. We assume that $Q_0(r) < 0$, and the Zeroing Algorithm does indeed terminate. Consider the relationships between coefficient sequences starting with Equation (3.4). Since we are dealing with ZLRR’s, $c_1 = 0$, and so we have $q(1, t) = q(2, t - 1)$. Thus, it must be the case that $q(2, t)$ will become fully negative exactly one time step before $q(1, t)$. Note also that...
$q(k,t)$ becomes fully negative one time step after $q(1,t)$. Following this, in the worst case the coefficient sequences $q(k-1,t), \ldots, q(3,t)$ will become fully negative in consecutive steps after $q(k,t)$. This amounts to a maximum of $k - 2$ steps that the algorithm can take after $q(1,t)$ becomes fully negative. □

Remark 4.2. To determine the runtime, we see that it suffices to determine the iteration when $q(1,t)$ becomes nonpositive. Recall that $q(1,t)$ satisfies the recurrence specified by $P(x)$ (Lemma 3.1), and thus has a Binet expansion using the roots of $P(x)$ (Theorem 1.1), with the coefficients of those roots in the expansion being determined by the k initial values $q(1,0), \ldots, q(1,k-1)$. By unraveling equation 3.4, we can obtain the initial values

$$q(1,j) = \beta_{j+1} + \sum_{i=2}^{j} c_i q(1,j-i). \quad (4.1)$$

for $0 \leq j \leq k - 1$.

Recall that $P(x)$ has a principal root r, which determines the behavior of $q(1,t)$, as it “dominates” the behavior of the other roots of $P(x)$ in the Binet expansion. Therefore, we now turn our attention to the principal coefficient, which we define to be the coefficient of the principal root in the Binet expansion. For this principal coefficient determines the behavior of r in the Binet expansion, and thus the behavior of $q(1,t)$. We begin with key notation. (Note that in the remainder of this section, we may refer to the principal root r as r_1 for ease of indexing.)

Definition 4.3. We denote the nth degree Elementary Symmetric Polynomial of k items by

$$S_n(x_1, \ldots, x_k) = x_1 x_2 \cdots x_n + \cdots + x_{k+1-n} \cdots x_k = \sum_{1 \leq i_1 < i_2 < \cdots < i_n \leq k} x_{i_1} \cdots x_{i_n} \quad (4.2)$$

where $1 \leq n \leq k$. If $n = 0$, we define $S_0(x_1, \ldots, x_k) = 1$.

Lemma 4.4. Consider $P(x)$ as in (3.1). Then we have

$$r_1 = -S_1(r_2, \ldots, r_k) \quad (4.3)$$

and

$$S_1(r_2, \ldots, r_k)S_{n-1}(r_2, \ldots, r_k) = S_n(r_2, \ldots, r_k) + (-1)^n \cdot c_n. \quad (4.4)$$

Proof. For an arbitrary polynomial of the form $a_k x^k + \cdots + a_1 x + a_0$ with roots r_1, \ldots, r_k, Vieta’s Formulas can be written as

$$S_n(r_1, \ldots, r_k) = (-1)^n \cdot \frac{a_k-n}{a_k}, \quad \text{for } 1 \leq n \leq k. \tag{4.5}$$

Given the form of $P(x)$ this simplifies to

$$c_n = (-1)^{n+1} S_n(r_1, \ldots, r_k) \tag{4.6}$$

for $1 \leq n \leq k$. Then we know that $c_1 = r_1 + r_2 + \cdots + r_k$. Thus (4.3) then follows from the fact that $c_1 = 0$, since we are dealing with the characteristic polynomial of a ZLRR.
Then we have
\[S_n(r_1, \ldots, r_k) = \sum_{1 \leq i_1 < i_2 < \cdots < i_n \leq k} r_{i_1} \cdots r_{i_n} \]
\[= \sum_{2 \leq i_1 < i_2 < \cdots < i_n \leq k} r_{i_1} \cdots r_{i_n} + \sum_{2 \leq i_1 < i_2 < \cdots < i_{n-1} \leq k} r_1 r_{i_1} \cdots r_{i_{k-1}} \]
\[= S_n(r_2, \ldots, r_k) + r_1 S_{n-1}(r_2, \ldots, r_k) \]
\[= S_n(r_2, \ldots, r_k) - S_1(r_2, \ldots, r_k) S_{n-1}(r_2, \ldots, r_k) \]
(4.6)
which implies,
\[S_1(r_2, \ldots, r_k) S_{n-1}(r_2, \ldots, r_k) = S_n(r_2, \ldots, r_k) - S_n(r_1, \ldots, r_k) \]
\[= S_n(r_2, \ldots, r_k) + (-1)^n (-1)^{n+1} S_n(r_1, \ldots, r_k) \]
\[= S_n(r_2, \ldots, r_k) + (-1)^n c_n. \]
(4.7)

Theorem 4.5. Consider \(P(x) \) as in (3.1). Suppose the roots of \(P(x) \), \(r_1, \ldots, r_k \), each have multiplicity 1, and without loss of generality, suppose \(r_1 > |r_2| > \cdots > |r_k| \), with \(r_1 \) being the principal root. Then, considering the Binet expansion \(q(1, t) = a_1 r_1^t + \cdots + a_k r_k^t \) we have
\[a_1 = \frac{Q_0(r_1)}{\prod_{i=2}^k (r_1 - r_i)}. \]
(4.8)

Proof. Using Equation (4.1) to find the initial \(k \) values of \(q(1, t) \), we note that the coefficients \(a_1, \ldots, a_k \) are the solutions to the following linear system:
\[
\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
r_1 & r_2 & r_3 & \cdots & r_k \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
r_1^k & r_2^k & r_3^k & \cdots & r_k^k
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
a_3 \\
\vdots \\
a_k
\end{pmatrix}
= \begin{pmatrix}
\beta_1 \\
\beta_2 \\
\beta_2 + c_2 \beta_1 \\
\vdots \\
\beta_k + \sum_{i=2}^{k-1} c_i q(1, k - 1 - i)
\end{pmatrix}.
\]
(4.9)
To find \(a_1 \), we can use Cramer’s Rule. Let \(A \) denote the matrix of roots. If we let \(A_1 \) be the matrix formed by substituting the first column of \(A \) with the column vector of initial terms of \(q(1, t) \), then we have \(a_1 = \det(A_1) / \det(A) \). Because \(A \) is a Vandermonde matrix we have
\[\det(A) = \prod_{1 \leq i < j \leq k} (r_j - r_i). \]
(4.10)
We can then use Laplace expansion to obtain
\[\det(A_1) = \sum_{n=1}^k q(1, n-1)(-1)^{n+1} \det(M_{n1}), \]
(4.11)
where \(M_{n1} \) is the \(n, 1 \) minor of \(A_1 \), which is the \((k-1) \times (k-1)\) matrix formed by deleting the \(n \)-th row and 1-st column of \(A_1 \).
Note that each minor – except for \(M_{k1} \) in (4.11) – is not a Vandermonde matrix due to its missing row of geometric terms. However, the determinants of these “punctured” Vandermonde
matrices have a similar form to the determinant of a regular Vandermonde matrix involving
elementary symmetric polynomials of the roots. By the results found in [KKL], we can write
\[
\det(M_n) = S_{k-n}(r_2, \ldots, r_k) \cdot \prod_{2 \leq i < j \leq k} (r_j - r_i). \tag{4.12}
\]

So, we have
\[
det(A_1) = \sum_{n=1}^{k} q(1, n-1) \cdot (-1)^{n+1} \cdot S_{k-n}(r_2, \ldots, r_k) \cdot \prod_{2 \leq i < j \leq k} (r_j - r_i)
\]
\[
= \left[\prod_{2 \leq i < j \leq k} (r_j - r_i) \right] \cdot \sum_{n=1}^{k} q(1, n-1) \cdot (-1)^{n+1} \cdot S_{k-n}(r_2, \ldots, r_k) \tag{4.13}
\]

So, we can solve for \(a_1\).
\[
a_1 = \frac{\det(A_1)}{\det(A)} = \frac{\sum_{n=1}^{k} q(1, n-1) \cdot (-1)^{n+1} \cdot S_{k-n}(r_2, \ldots, r_k)}{\prod_{i=2}^{k} (r_i - r_1)}
\]
\[
= \frac{\sum_{n=1}^{k} q(1, n-1) \cdot (-1)^{n+1} \cdot S_{k-n}(r_2, \ldots, r_k)}{(-1)^{k+1} \cdot \prod_{i=2}^{k} (r_1 - r_i)} \tag{4.14}
\]

Next, we shall demonstrate that
\[
(-1)^{m+1} \cdot \sum_{n=1}^{m} \beta_n r_1^{m-n} = \sum_{n=1}^{m} q(1, n-1) \cdot (-1)^{n+1} \cdot S_{m-n}(r_2, \ldots, r_k) \tag{4.15}
\]

by induction on \(m\). (However, we note that implicitly \(m \leq k\), since we have not defined \(\beta_i\) where \(i > k\).)

Base Case \((m = 3)\): We have, by plugging in by \((4.5)\) and \((4.6)\),
\[
3 \sum_{n=1}^{3} q(1, n-1) \cdot (-1)^{n+1} \cdot S_{3-n}(r_2, \ldots, r_k) = \beta_1 S_2(r_2, \ldots, r_k) - \beta_2 S_1(r_2, \ldots, r_k) + \beta_1 c_2 + \beta_3
\]
\[
= \beta_1 S_2(r_2, \ldots, r_k) - \beta_2 S_1(r_2, \ldots, r_k) + \beta_1
\]
\[
= \beta_1 r_2^2 + \beta_2 r_1 + \beta_3
\]
\[
= (-1)^{3+1} \cdot \sum_{n=1}^{3} \beta_n r_1^{3-n} \tag{4.16}
\]

Inductive Step: Assume \((4.15)\) holds for all \(m' < m\). Then for \(m' = m - 1\) we have
\[
(-1)^{m} \cdot \sum_{n=1}^{m-1} \beta_n r_1^{m_1-n} = \sum_{n=1}^{m-1} q(1, n-1) \cdot (-1)^{n+1} \cdot S_{m-1-n}(r_2, \ldots, r_k). \tag{4.17}
\]
So, we have

\[(-1)^{m+1} \sum_{n=1}^{m} \beta_m r_1^{m-n} = -r_1 \sum_{n=1}^{m-1} [q(1, n-1) \cdot (-1)^{n+1} \cdot S_{m-1-n}(r_2, \ldots, r_k)] + \beta_m \]

\[= S_1(r_2, \ldots, r_k) \sum_{n=1}^{m-1} [q(1, n-1) \cdot (-1)^{n+1} \cdot S_{m-1-n}(r_2, \ldots, r_k)] + \beta_m \]

\[= \sum_{n=1}^{m-1} [q(1, n-1) \cdot (-1)^{n+1} \cdot S_{m-n}(r_2, \ldots, r_k)] + (-1)^{m-1} \sum_{n=1}^{m-1} [q(1, n-1) \cdot c_{m-n}] + \beta_m \]

\[= \sum_{n=1}^{m} [q(1, n-1) \cdot (-1)^{n+1} \cdot S_{m-n}(r_2, \ldots, r_k)] \quad \text{by (4.1),} \quad (4.18) \]

thus we have (4.15) which, when \(m = k \), implies that

\[(-1)^{k+1} \cdot Q_0(r_1) = \sum_{n=1}^{k} [q(1, n-1) \cdot (-1)^{n+1} \cdot S_{m-n}(r_2, \ldots, r_k)] . \quad (4.19) \]

Therefore, by simplifying (4.14) we have (4.8).

\[\square \]

Corollary 4.6. As \(r \to 1 \), we have \(t_0 \to \infty \), where \(t_0 \) denotes the number of steps taken after the modified Zeroing Algorithm of Lemma 3.4 reverts back to the unmodified form.

Remark 4.7. Corollary 4.6 tells us that ZLRR's with principal roots closest to 1 will take the longest to convert into a derived PLRR.

Proof. From Lemma 3.4 we know that \(Q_m(r) = -r^k \cdot \Gamma_m(r) \). This is the iteration when the modified Zeroing Algorithm reverts to the unmodified Zeroing Algorithm. Thus for \(m = 2, \gamma_1 = 1, \) \(\gamma_2 = -1 \), we have \(Q_2(r) = -r^k (r - 1) \). Recall that this configuration of the modified Zeroing Algorithm results in the "minimal" derived PLRR of a given ZLRR. So, as \(r \to 1 \), we have \(Q_2(r) \to 0^- \). (Recall that \(Q_2(r) \) is equivalent to \(Q_0(r) \) of the unmodified Zeroing Algorithm.) Then by Theorem 4.5 we know that since \(Q_0(r) \to 0^- \), it also follows that \(a_1 \to 0 \) and thus the principal root of the Binet expansion of \(q(1,t) \) takes longer and longer to dominate, meaning that \(t_0 \to \infty \). \[\square \]

Note that the above conclusions only apply to ZLRR's whose roots have multiplicity 1. Extending Theorem 4.5 to cover ZLRR's with roots of any multiplicity is more difficult because the Binet expansion of \(q(1,t) \) becomes more complicated, which negates the use of Vandermonde matrices in the proof of Theorem 4.5. In the more general case, we conjecture the following.

Conjecture 4.8. If the roots of \(P(x) \) are \(r_1, r_2, \ldots, r_i \), with respective multiplicities \(1, m_2, \ldots, m_i \), such that \(m_j \geq 1 \) with \(2 \leq j \leq i \leq k \), then for the coefficient \(a_1 \) of the principal root in the Binet expansion of \(q(1,t) \) we have

\[a_1 = \frac{Q_0(r_1)}{\prod_{j=2}^{i} (r_1 - r_j)^{m_j}} . \quad (4.20) \]
In order to work towards finding the true bound of the Zeroing Algorithm, we also wish to quantify the relationship between $Q_0(r)$ and the run-time beyond the general tendencies that our current results provide. Notably, Theorem 4.5 suggests that as $Q_0(r) \to 0^-$, the run-time becomes unbounded, since the principal root in the Binet expansion of $q(1,t)$ will take longer and longer to dominate.

Some experimentation provides a way to visualize the relationship; see Figure 1.

Figure 1. The results of a MATLAB simulation that generated 50 random $P(x)$ polynomials for each degree 3 to 6, and sampled 5,000 random $Q_0(x)$’s for each random $P(x)$. A strong inverse relationship can be seen between $Q_0(r)$ and the run-time.

The above observations inspire us to conjecture the following concerning the bound of the Zeroing Algorithm:

Conjecture 4.9. $Q_0(r)$ and the run-time have an inverse relationship.

5. Conclusion and Future work

We have introduced two distinct ways to consider decompositions arising from ZLRS’s.

- As we saw from the first method, we can define decompositions in such a way that we have existence, but not uniqueness. Is there a different definition such that we have uniqueness, but not existence? Is it possible to have both existence and uniqueness, or can we prove that having both is generally impossible for ZLRS’s?

- In terms of bounding the run-time of the Zeroing Algorithm, the next steps are to prove Conjectures 4.8 and 4.9 or similar run-time results if it turns out that these do not hold.

- The Zeroing Algorithm has proven a powerful tool for studying linear recurrences analytically; how does it provide information on more discrete questions such as decompositions with ZLRS’s? Are specific sets of initial values necessary for a decomposition to have desirable properties? Are there such properties that are inherent in the recurrence relation itself, rather than being contingent on a specific sequence produced by the initial values?
Consider the recurrence relation
\[H_{n+1} = 2H_{n-1} + H_{n-2}, \]
which has characteristic polynomial \(P(x) = x^3 - 2x - 1 \) (principal root \(r = (1 + \sqrt{5})/2 \)), where we have the coefficients \(c_1 = 0, c_2 = 2, c_3 = 1 \). Suppose we are given \(\beta_1 = 3, \beta_2 = -2, \beta_3 = -5 \); we run the algorithm as follows:

\[
\begin{array}{cccc}
3 & -2 & -5 & \quad Q_0(x) = 3x^2 - 2x - 5 \\
-3 & 0 & 6 & 3 \\
\hline
-2 & 1 & 3 \\
2 & 0 & -4 & -2 \\
\hline
1 & -1 & -2 \\
-1 & 0 & 2 & 1 \\
\hline
-1 & 0 & 1 \\
1 & 0 & -2 & -1 \\
\hline
0 & -1 & -1 & Q_4(x) = 0x^2 - x - 1
\end{array}
\]

We reach termination on step 4, since \(Q_4 \) does not have positive coefficients. Note that the Zeroing Algorithm is named for the first (omitted) coefficient of 0 following each step.

Suppose that given the same recurrence relation, and initial values \(a_0 = 3, a_1 = -2, a_3 = 1 \), we wish to determine whether the recurrence sequence diverges to negative infinity.

Using the method introduced in Theorem 1.13, we first determine the values of
\[d_2 = a_1c_1 = 0, \quad d_3 = a_1c_2 + a_2c_1 = 6, \]
from which we construct
\[Q(x) = a_1x^2 + (a_2 - d_2)x + (a_3 - d_3) = 3x^2 - 2x - 5. \]
We have \(Q(r) = 3r^2 - 2r - 5 = 3(r+1) - 2r - 5 = r - 2 < 0 \), which predicts that \(\{a_n\} \) diverges to negative infinity.

Manually computing the terms gives
\[3, -2, 1, -1, 0, -1, -2, -3, -5, -8, -13, \ldots, \]
which confirms our prediction.
Appendix B. List of ZLRR’s and derived ZLRR’s

1. Recurrence: \(G_{n+1} = G_{n-1} + G_{n-2} \), \(P(x) = x^3 - 0 \cdot x^2 - x - 1 \).

\[
\begin{array}{ccc}
\gamma_1 & = & 1 \\
\gamma_2 & = & -1 \\
\gamma_3 & = & 0
\end{array}
\]

\[
\begin{array}{c|cc}
\gamma_1 & 1 & -1 \\
\gamma_2 & 0 & 1 \\
\gamma_3 & 0 & 0 & -1
\end{array}
\]

\[
Q_1(x) = 0x^2 - x - 1
\]

\[
Q_2(x) = -x^2 + 0x + 1
\]

\[
Q_3(x) = 0x^2 + 0x - 1
\]

Derived characteristic polynomial: \(x^5 - x^4 - 0 \cdot x^3 - 0 \cdot x^2 - 0 \cdot x - 1 \), which corresponds to the derived PLRR \(H_{n+1} = H_n + H_{n-4} \).

2. Current ZLRR: \(G_{n+1} = G_{n-1} + G_{n-2} + G_{n-3} \).

Current characteristic polynomial: \(x^4 - x^2 - x - 1 \).

Derived characteristic polynomial: \(x^6 - x^5 - x^2 - 1 \).

Derived PLRR: \(H_{n+1} = H_n + H_{n-3} + H_{n-5} \).

3. Current ZLRR: \(G_{n+1} = 2G_{n-1} + 2G_{n-2} \).

Current characteristic polynomial: \(x^3 - 2x - 2 \).

Derived characteristic polynomial: \(x^5 - x^4 - 2x - 4 \).

Derived PLRR: \(H_{n+1} = H_n + 2H_{n-3} + 4H_{n-4} \).

4. Current ZLRR: \(G_{n+1} = 19G_{n-1} + 38G_{n-4} \).

Current characteristic polynomial: \(x^5 - 19x^3 - 38 \).

Derived characteristic polynomial: \(x^{29} - x^{28} - 3106001172680577x^4 - 40586681545596725x^3 - 4277914985538462x^2 - 170201741455942x - 81203021913963806 \).

Derived PLRR: \(H_{n+1} = H_n + 3106001172680577H_{n-24} + 40586681545596725H_{n-25} + 4277914985538462H_{n-26} + 170201741455942H_{n-27} + 81203021913963806H_{n-28} \).

5. Current ZLRR: \(G_{n+1} = 6G_{n-1} + 3G_{n-2} + 5G_{n-3} \).

Current characteristic polynomial: \(x^4 - 6x^2 - 3x - 5 \).

Derived characteristic polynomial: \(x^{10} - x^9 - 69x^3 - 1669x^2 - 722x - 1245 \).

Derived PLRR: \(H_{n+1} = H_n + 69H_{n-6} + 1669H_{n-7} + 722H_{n-8} + 1245H_{n-9} \).

6. Current ZLRR: \(G_{n+1} = G_{n-2} + G_{n-3} \).
Current characteristic polynomial: \(x^4 - x - 1 \).

Derived characteristic polynomial: \(x^{20} - x^{19} - 4x^3 - x^2 - 1 \).

Derived PLRR: \(H_{n+1} = H_n + 4H_{n-16} + H_{n-17} + H_{n-19} \).

7. Current ZLRR: \(G_{n+1} = 3G_{n-2} + G_{n-3} + 3G_{n-4} \).

Current characteristic polynomial: \(x^5 - 3x^2 - x - 3 \).

Derived characteristic polynomial: \(x^{13} - x^{12} - 14x^4 - 3x^3 - 54x^2 - 4x - 39 \).

Derived PLRR: \(H_{n+1} = H_n + 14H_{n-8} + 3H_{n-9} + 54H_{n-10} + 4H_{n-11} + 39H_{n-12} \).

8. Current ZLRR: \(G_{n+1} = G_{n-2} + G_{n-19} \).

Current characteristic polynomial: \(x^{20} - x^{17} - 1 \).

Derived characteristic polynomial: \(x^{358} - x^{357} - 4000705295x^{19} - 7080648306x^{18} - 575930712x^{17} - 1937068817x^{16} - 1082811308x^{15} - 92014103x^{14} - 2546102784x^{13} - 1062101754x^{12} - 372938426x^{11} - 3264026504x^{10} - 996542899x^9 - 834914708x^8 - 4089249024x^7 - 890353375x^6 - 1541366894x^5 - 5013188421x^4 - 759208181x^3 - 256764878x^2 - 6018966637x - 635668820 \).

Derived PLRR: \(H_{n+1} = H_n + 4000705295H_{n-338} + 7080648306H_{n-339} + 575930712H_{n-340} + 1937068817H_{n-341} + 1082811308H_{n-342} + 92014103H_{n-343} + 2546102784H_{n-344} + 1062101754H_{n-345} + 372938426H_{n-346} + 3264026504H_{n-347} + 996542899H_{n-348} + 834914708H_{n-349} + 4089249024H_{n-350} + 890353375H_{n-351} + 1541366894H_{n-352} + 5013188421H_{n-353} + 759208181H_{n-354} + 256764878H_{n-355} + 6018966637H_{n-356} + 635668820H_{n-357} \).

9. Current ZLRR: \(G_{n+1} = G_{n-2} + G_{n-19} + G_{n-20} \).

Current characteristic polynomial: \(x^{21} - x^{18} - x - 1 \).

Derived characteristic polynomial: \(x^{156} - x^{155} - 16626x^{20} - 6x^{19} - 16814x^{18} - 4094x^{17} - 1037x^{16} - 6777x^{15} - 5088x^{14} - 1849x^{13} - 9106x^{12} - 6334x^{11} - 3060x^{10} - 12166x^9 - 7932x^8 - 4851x^7 - 16190x^6 - 10031x^5 - 7482x^4 - 21483x^3 - 12839x^2 - 11312x - 11809 \).

Derived PLRR: \(H_{n+1} = H_n + 16626H_{n-135} + 6H_{n-136} + 16814H_{n-137} + 4094H_{n-138} + 1037H_{n-139} + 6777H_{n-140} + 5088H_{n-141} + 1849H_{n-142} + 9106H_{n-143} + 6334H_{n-144} + 3060H_{n-145} + 12166H_{n-146} + 7932H_{n-147} + 4851H_{n-148} + 16190H_{n-149} + 10031H_{n-150} + 7482H_{n-151} + 21483H_{n-152} + 12839H_{n-153} + 11312H_{n-154} + 11809H_{n-155} \).

10. Current ZLRR: \(G_{n+1} = G_{n-1} + 2G_{n-2} + 2G_{n-4} + 3G_{n-5} \).

Current characteristic polynomial: \(x^6 - x^4 - 2x^3 - 2x - 3 \).

Derived characteristic polynomial: \(x^{11} - x^{10} - 2x^5 - 2x^4 - 15x^3 - x^2 - 7x - 15 \).
Derived PLRR: $H_{n+1} = H_n + 2H_{n-5} + 2H_{n-6} + 15H_{n-7} + H_{n-8} + 7H_{n-9} + 15H_{n-10}$.

11. Current ZLRR: $G_{n+1} = 40G_{n-3} + 52G_{n-4}$.

Current characteristic polynomial: $x^5 - 40x - 52$.

Derived characteristic polynomial: $x^{25} - x^{24} - 555888384x^4 - 1064960000x^3 - 519168000x^2 - 3308595200x - 4535145472$.

Derived PLRR: $H_{n+1} = H_n + 555888384H_{n-20} + 1064960000H_{n-21} + 519168000H_{n-22} + 3308595200H_{n-23} + 4535145472H_{n-24}$.

12. Current ZLRR: $G_{n+1} = G_{n-8} + G_{n-9}$.

Current characteristic polynomial: $x^{10} - x - 1$.

Derived characteristic polynomial: $x^{488} - x^{487} - 7634770044678x^6 - 16848326467063x^8 - 2519805215106x^7 - 29495744687667x^6 - 27304765351108x^5 - 19325535741204x^4 - 8910253837548x^3 - 1049595609091x^2 - 321640563521x - 1106933774826$.

Derived PLRR: $H_{n+1} = H_n + 7634770044678H_{n-478} + 16848326467063H_{n-479} + 2519805215106H_{n-480} + 29495744687667H_{n-481} + 27304765351108H_{n-482} + 19325535741204H_{n-483} + 8910253837548H_{n-484} + 1049595609091H_{n-485} + 321640563521H_{n-486} + 1106933774826H_{n-487}$.

13. Current ZLRR: $G_{n+1} = G_{n-2} + G_{n-4} + G_{n-6}$.

Current characteristic polynomial: $x^7 - x^4 - x^2 - 1$.

Derived characteristic polynomial: $x^{23} - x^{22} - x^6 - 6x^5 - x^4 - 6x^3 - x^2 - 3x - 2$.

Derived PLRR: $H_{n+1} = H_n + H_{n-16} + 6H_{n-17} + H_{n-18} + 6H_{n-19} + H_{n-20} + 3H_{n-21} + 2H_{n-22}$.

14. Current ZLRR: $G_{n+1} = 3G_{n-1} + 5G_{n-2}$.

Current characteristic polynomial: $x^3 - 3x - 5$.

Derived characteristic polynomial: $x^5 - x^4 - 2x^2 - 4x - 15$.

Derived PLRR: $H_{n+1} = H_n + 2H_{n-2} + H_{n-3} + 15H_{n-4}$.

15. Current ZLRR: $G_{n+1} = G_{n-6} + G_{n-12}$.

Current characteristic polynomial: $x^{13} - x^6 - 1$.

Derived characteristic polynomial: $x^{572} - x^{571} - 141734291356872x^{12} - 1386240086076478x^{11} - 3383864145243271x^{10} - 4628373080436668x^9 - 406919151013055x^8 - 2094637579574813x^7 - 39515423236030x^6 - 528518791140011x^5 - 176105564629423x^4 - 2792877805797871x^3$
\[\text{Derived characteristic polynomial:} \quad n^5 - 36n^3 + 9n^2 - 7n - 5 \]

16. Current ZLRR: \(G_{n+1} = G_{n-9} + G_{n-10} \).

Current characteristic polynomial: \(x^{11} - x - 1 \).

Derived characteristic polynomial: \(x^{665} - x^{664} - 17581679276200473x^{10} - 43065699679149511x^9 - 70765959937154578x^8 - 91624450164084254x^7 - 98016133194347743x^6 - 8680336058214690x^5 - 61120624939489989x^4 - 30036030033931493x^3 - 5927897678515792x^2 - 271244487753536x - 1643001862841472 \).

Derived PLRR: \(H_{n+1} = H_n + 17581679276200473H_{n-654} + 43065699679149511H_{n-655} + 70765959937154578H_{n-656} + 91624450164084254H_{n-657} + 98016133194347743H_{n-658} + 8680336058214690H_{n-659} + 61120624939489989H_{n-660} + 30036030033931493H_{n-661} + 5927897678515792H_{n-662} + 271244487753536H_{n-663} + 1643001862841472H_{n-664} \).

17. Current ZLRR: \(G_{n+1} = G_{n-1} + G_{n-6} \).

Current characteristic polynomial: \(x^7 - x^5 - 1 \).

Derived characteristic polynomial: \(x^{37} - x^{36} - 18x^6 - 2x^5 - 9x^4 - 2x^3 - 7x^2 - 9x - 4 \).

Derived PLRR: \(H_{n+1} = H_n + 18H_{n-30} + 2H_{n-31} + 9H_{n-32} + 2H_{n-33} + 7H_{n-34} + 9H_{n-35} + 4H_{n-36} \).

18. Current ZLRR: \(G_{n+1} = 2G_{n-2} + 3G_{n-3} + 5G_{n-5} \).

Current characteristic polynomial: \(x^6 - 2x^3 - 3x^2 - 5 \).

Derived characteristic polynomial: \(x^{19} - x^{18} - 75x^7 - 207x^4 - 708x^3 - 384x^2 - 370x - 740 \).

Derived PLRR: \(H_{n+1} = H_n + 75H_{n-13} + 207H_{n-14} + 708H_{n-15} + 384H_{n-16} + 370H_{n-17} + 740H_{n-18} \).

19. Current ZLRR: \(G_{n+1} = G_{n-1} + 2G_{n-2} \).

Current characteristic polynomial: \(x^3 - x - 2 \).

Derived characteristic polynomial: \(x^8 - x^7 - x^2 - x - 6 \). Derived PLRR: \(H_{n+1} = H_n + H_{n-5} + H_{n-6} + 6H_{n-7} \).
References

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
Email address: tmartinez@hmc.edu

Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267
Email address: sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu
Email address: cmm12@williams.edu
Email address: cs19@williams.edu