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Abstract. Zeckendorf’s theorem states that every positive integer can be written uniquely
as the sum of non-consecutive shifted Fibonacci numbers {Fn}, where we take F1 = 1 and
F2 = 2. This has been generalized for any Positive Linear Recurrence Sequence (PLRS), which
informally is a sequence satisfying a homogeneous linear recurrence with a positive leading
coefficient and non-negative integer coefficients. In this and the preceding paper we provide
two approaches to investigate linear recurrences with leading coefficient zero, followed by non-
negative integer coefficients, with differences between indices relatively prime (abbreviated
ZLRR), via two different approaches. The first approach involves generalizing the definition
of a legal decomposition for a PLRS found in Koloğlu, Kopp, Miller and Wang. We prove that
every positive integer N has a legal decomposition for any ZLRR using the greedy algorithm.
We also show that a specific family of ZLRRs lost uniqueness of decompositions. The second
approach converts a ZLRR to a PLRR that has the same growth rate. We develop the Zeroing
Algorithm, a powerful helper tool for analyzing the behavior of linear recurrence sequences.
We use it to prove a very general result that guarantees the possibility of conversion between
certain recurrences, and develop a method to quickly determine whether a sequence diverges
to +∞ or −∞, given any real initial values. This paper investigates the second approach.
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1. Introduction and Definitions

1.1. History and Past Results. The Fibonacci numbers are one of the most well-known
and well-studied mathematical objects, and have captured the attention of mathematicians
since their conception. This paper focuses on a generalization of Zeckendorf’s theorem, one
of the many interesting properties of the Fibonacci numbers. Zeckendorf [Ze] proved that
every positive integer can be written uniquely as the sum of non-consecutive Fibonacci
numbers (called the Zeckendorf Decomposition), where the (shifted) Fibonacci numbers1 are
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . . This result has been generalized to other types of recur-
rence sequences. We set some notation before describing these generalizations.

Definition 1.1 ([KKMW], Definition 1.1, (1)). We say a recurrence relation is a Positive
Linear Recurrence Relation (PLRR) if there are non-negative integers L, c1, . . . , cL such
that

Hn+1 = c1Hn + · · ·+ cLHn+1−L, (1.1)
with L, c1 and cL positive.

Definition 1.2 ([KKMW], Definition 1.1, (2)). We say a sequence {Hn}∞n=1 of positive integers
arising from a PLRR is a Positive Linear Recurrence Sequence (PLRS) if H1 = 1, and
for 1 ≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1. (1.2)

We call a decomposition N =
∑m

i=1 aiHm+1−i of a positive integer, and its associated sequence
{ai}mi=1, legal if a1 > 0, the other ai ≥ 0, and one of the following holds.

• Condition 1: We have m < L and ai = ci for 1 ≤ i ≤ m,
• Condition 2: There exists s ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, . . . , as−1 = cs−1, as < cs,

as+1, . . . , as+` = 0 for some ` ≥ 0, and {as+`+i}m−s−`i=1 is legal.
Additionally, we let the empty decomposition be legal for N = 0.

Informally, a legal decomposition is one where we cannot use the recurrence relation to re-
place a linear combination of summands with another summand, and the coefficient of each
summand is appropriately bounded; other authors [DG, Ste] use the phrase G-ary decom-
position for a legal decomposition. For example, if Hn+1 = 3Hn + 2Hn−1 + 4Hn−2, then
H5+3H4+2H3+3H2 is legal, whileH5+3H4+2H3+4H2 is not (we can replace 3H4+2H3+4H2

with H5), nor is 6H5 + 2H4 (the coefficient of H5 is too large).

We now state an important generalization of Zeckendorf’s Theorem, and then describe what
object we are studying and our results. See [BBGILMT, BM, BCCSW, CFHMN, CFHMNPX,
DFFHMPP, Ho, MNPX, MW, Ke, Len] for more on generalized Zeckendorf decompositions,
and [GT, MW] for a proof of Theorem 1.3.

Theorem 1.3 (Generalized Zeckendorf’s theorem for PLRS). Let {Hn}∞n=1 be a Positive Linear
Recurrence Sequence. Then

(1) there is a unique legal decomposition for each non-negative integer N ≥ 0, and
(2) there is a bijection between the set Sn of integers in [Hn, Hn+1) and the set Dn of legal

decompositions
∑n

i=1 aiHn+1−i.
1If we use the standard initial conditions then 1 appears twice and uniqueness is lost.
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GENERALIZING ZECKENDORF’S THEOREM

While this result is powerful and generalizes Zeckendorf’s theorem to a large class of re-
currence sequences, it is restrictive in that the leading term must have a positive coefficient.
We examine what happens in general to existence and uniqueness of legal decompositions if
c1 = 0. Some generalizations were studied in [CFHMN, CFHMNPX] on sequences called the
(s, b)-Generacci sequences. In-depth analysis was done on the (1, 2)-Generacci sequence, later
called the Kentucky sequence, and the Fibonacci Quilt sequence; the first has uniqueness of
decomposition while the second does not.

Definition 1.4. We say a recurrence relation is an s-deep Zero Linear Recurrence Rela-
tion (ZLRR) if the following properties hold.

(1) Recurrence relation: There are non-negative integers s, L, c1, . . . , cL such that

Gn+1 = c1Gn + · · ·+ csGn+1−s + cs+1Gn−s + · · ·+ cLGn+1−L, (1.3)

with c1, . . . , cs = 0 and L, cs+1, cL positive.
(2) No degenerate sequences: Let S = {m | cm 6= 0} be the set of indices of positive

coefficients. Then gcd(S) = 1.

We impose the second restriction to eliminate recurrences with undesirable properties, such
as Gn+1 = Gn−1 + Gn−3, where the odd- and even-indexed terms do not interact. Any se-
quence satisfying this recurrence splits into two separate, independent subsequences. Also note
that 0-deep ZLRRs are just PLRRs whose sequences and decomposition properties are well-
understood.

A natural question to ask is how decomposition results for PLRSes may be extended to
sequences satisfying ZLRRs; we offer two approaches toward addressing it. [MMMS1] focuses
on generalizing Zeckendorf’s theorem directly to sequences satisfying ZLRSes, while this pa-
per develops a method to convert ZLRRs to PLRRs whose sequences have nice decomposition
properties (Theorem 1.3).

We develop a powerful helper tool in analyzing linear recurrences, the Zeroing Algorithm;
we give a full introduction of how it works in Section 3. It is worth noting that this method has
more uses than that of generalizing Zeckendorf’s theorem. As the first method required specific
initial conditions, converting ZLRRs to PLRRs requires no specificity of initial conditions. We
have yet to formally describe a manner to use this method to obtain meaningful results about
decompositions, but our hope is that others can use the Zeroing Algorithm to do so. For the
rest of this section, for completeness, we review some standard concepts. See for example
Section 3 of [Go] and Section 9 of [MT-B], and for applications, see [BBGILMT].

Definition 1.5. Given a recurrence relation

an+1 = c1an + · · ·+ ckan+1−k, (1.4)

we call the polynomial

P (x) = xk − c1 xk−1 − c2 xk−2 − · · · − ck (1.5)

the characteristic polynomial of the recurrence relation. The degree of P (x) is known as
the order of the recurrence relation.

For the rest of the paper we focus on the second approach, converting ZLRR to PLRR. The
following definition makes the concept of conversion precise:
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Definition 1.6. We say that a recurrence relation Rb is derived from another recurrence
relation Ra if

Pb(x) = Pa(x)Q(x),

where Pa(x) and Pb(x) are the characteristic polynomials of Ra and Rb respectively, as defined
by equation (1.5), and Q(x) is some polynomial with integer coefficients with Q(x) not being
the zero polynomial.

Since the roots of Pa are contained in Pb, any sequence satisfying the recurrence relation Ra
also satisfies Rb, which implies that the two recurrence relations yield the same sequence if the
initial values of {bn}∞n=1 satisfy the recurrence relation Ra. This provides motivation for why
the idea of a derived PLRR is relevant. To continue, we recall a useful object.

Definition 1.7. We call a root r of a polynomial principal if
(1) it is a positive root of multiplicity 1, and
(2) has magnitude strictly greater than that of any other root.2

In Lemma 2.1, we prove that the characteristic polynomial of any PLRR or ZLRR has a
principal root.

1.2. Main Results. We now state a main result, which has two important corollaries that
guarantee the possibility of conversion between certain linear recurrences; the Zeroing Algo-
rithm itself provides a constructive way to do so. We provide some examples of running the
Zeroing Algorithm in Appendix A.

Theorem 1.8. Given some PLRR/ZLRR, let P (x) denote its characteristic polynomial, and
r its principal root. Suppose we are given an arbitrary sequence of real numbers γ1, γ2, . . . , γm,
and define, for t ≤ m,

Γt(x) := γ1 x
t−1 + γ2 x

t−2 + · · ·+ γt−1 x+ γt. (1.6)

If Γm(r) > 0, there exists a polynomial p(x), divisible by P (x), whose first coefficients are γ1
through γm, with no positive coefficients thereafter.

Corollary 1.9. Given arbitrary integers γ1 through γm with Γm(r) > 0, there is a recur-
rence derived from P (x) which has first coefficients γ1 through γm with no negative coefficients
thereafter.

Corollary 1.10. Every ZLRR has a derived PLRR.

We list some examples of ZLRRs with the derived PLRRs that are found with the Zeroing
Algorithm in Appendix B.

A natural question of interest that arises in the study of recurrences is the behavior of the size
of terms in a recurrence sequence. The Fibonacci sequence behaves like a geometric sequence
whose ratio is the golden ratio, and there is an analogous result for general linear recurrence
sequences, proven in [BBGILMT].

Theorem 1.11. Let P (x) be the characteristic polynomial of some linear recurrence relation,
and let the roots of P (x) be denoted as r1, r2, . . . , rj, with multiplicities m1,m2, . . . ,mj ≥ 1,

2Note that, by definition, the principal root is unique.
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respectively.

Consider a sequence {an}∞n=1 of complex numbers satisfying the recurrence relation. Then
there exist polynomials q1, q2, . . . , qj, with deg(qi) ≤ mi − 1, such that

an = q1(n) rn1 + q2(n) rn2 + · · ·+ qj(n) rnj . (1.7)

Definition 1.12. We call (1.7) the Binet expansion of the sequence {an}∞n=1, in analogy to
the Binet Formula that provides a closed form for Fibonacci numbers.

If given a PLRR/ZLRR with some real initial values, one might ask whether the terms
eventually diverge to positive infinity or negative infinity. 3 One approach is to compute as
many terms as needed for the eventual behavior to emerge; unfortunately, this could be very
time-consuming. One could alternately solve for the Binet expansion, which often requires an
excessive amount of computation.

The fact that the characteristic polynomials for PLRR/ZLRRs have a principal root r allows
for a shortcut. Consider the Binet expansion of a ZLRS/PLRS; the coefficient attached to the rn
term, whenever nonzero, indicates the direction of divergence. We develop the following method
to determine the sign of this coefficient from the initial values of the recurrence sequence.

Theorem 1.13. Given a ZLRS/PLRS {an}∞n=1 with characteristic polynomial P (x) and real
initial values a1, a2, . . . , ak, consider the Binet expansion of {an}∞n=1. The sign of the coefficient
attached to rn equals the sign of

Q(x) := a1 x
k−1 + (a2 − d2)xk−2 + (a3 − d3)xk−3 + · · ·+ (ak − dk) (1.8)

evaluated at x = r, where

di = a1 ci−1 + a2 ci−2 + · · ·+ ai−1 c1 =

i−1∑
j=1

aj ci−j . (1.9)

In Section 4 we investigate the run-time of the Zeroing Algorithm, and discover that the
run-time depends exclusively on the initial configuration of the algorithm. Particularly, we
show that ZLRRs with principal root closest to 1 will take the longest to be converted into a
derived PLRR by the Zeroing Algorithm. We conclude in Section 5 with some open questions
for future research.

2. Eventual Behavior of Linear Recurrence Sequences

In this section, we introduce important lemmas related to the roots of characteristic poly-
nomials. In the celebrated Binet’s Formula for Fibonacci numbers, the principal root of its
characteristic polynomial (i.e., the golden ratio) determines the behavior of the sequence as
nearly geometric, with the golden ratio being the common ratio. We extend this characteriza-
tion of near-geometric behavior to more general linear recurrences.

2.1. Properties of Characteristic Polynomials. Lemma 2.2 characterizes the limiting be-
havior of recurrence relations of the form (1.4), with ci non-negative integers for 1 ≤ i ≤ k and
ck > 0. We first state important consequences of the definition of the principal root.

Lemma 2.1. Consider P (x) as in (1.5) and let S := {m | cm 6= 0}. Then

3Note that we allow the initial values to be arbitrary real numbers, which would result in the sequence taking
on one of three behaviors: diverging to +∞, diverging to −∞, or oscillating in sign and having magnitude o(rn).
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(1) there exists exactly one positive root r, and this root has multiplicity 1,
(2) every root z ∈ C satisfies |z|≤ r, and
(3) if gcd(S) = 1,4 then r is the unique root of greatest magnitude.

Proof. By Descartes’s Rule of Signs, P (x) has exactly one positive root of multiplicity one,
completing the proof of Part (1).

Now, consider any root z ∈ C of P (x); we have zk = c1z
k−1 + c2z

k−2 + · · ·+ ck. Taking the
magnitude, we have

|z|k = |zk| = |c1zk−1 + c2z
k−2 + · · ·+ ck| ≤ |c1zk−1|+|c2zk−2|+ · · ·+ |ck|

= c1|z|k−1+c2|z|k−2+ · · ·+ ck, (2.1)

which implies P (|z|) ≤ 0. Since P (x) becomes arbitrarily large with large values of x, we
see that there is a positive root at or above |z| by the Intermediate Value Theorem, which
completes the proof of Part (2).

Finally, suppose gcd(S) = 1. Suppose to the contrary that a non-positive root z satisfies
|z|= r; we must have P (|z|) = 0, which implies

|zk| = |c1 zk−1 + c2 z
k−2 + · · ·+ ck| = |c1 zk−1|+|c2 zk−2|+ · · ·+ |ck|. (2.2)

This equality holds only if the complex numbers c1 zk−1, c2 zk−2, . . . , ck share the same argu-
ment; since ck > 0, zk−j must be positive for all cj 6= 0. This implies zk, as a sum of positive
numbers, is positive as well. Writing z = |z| eiθ, we see that the positivity of zk = |z|k eikθ
implies kθ is a multiple of 2π, and consequently, θ = 2πd/k for some integer d. We may reduce
this to 2πd′/k′ for relatively prime d′, k′.

Let J := S ∪ {0}. Since zk−j is positive for all j ∈ J , we see that 2πd′ (k − j)/k′ is an
integer multiple of 2π, so k′ divides d′ (k − j); as d′ and k′ are relatively prime we have k′
divides k − j. Since the elements of J have greatest common divisor 1, so do5 the elements of
K := {k − j | j ∈ J}. Since k′ divides every element of K, we must have k′ = 1, so θ = 2πd′

and thus z is a positive root. This is a contradiction, completing the proof of Part (3). �

Next, we state a lemma that sheds light on the growth rate of the terms of a ZLRR/PLRR
with a specific set of initial values.

Lemma 2.2. For a PLRR/ZLRR, let r be the principal root of its characteristic polynomial
P (x). Then, given initial values ai = 0 for 0 ≤ i ≤ k − 2, ak−1 = 1, we have

lim
n→∞

an
rn

= C, (2.3)

where C > 0. Furthermore, the sequence {an}∞n=1 is eventually monotonically increasing.

Proof. Since r has multiplicity 1, q1 is a constant polynomial. To see geometric behavior, we
note that

lim
n→∞

an
rn

= lim
n→∞

q1(n)

(
rn

rn

)
+ lim
n→∞

q2(n)
(r2
r

)n
+ · · ·+ lim

n→∞
qj(n)

(rj
r

)n
. (2.4)

4Note that this is Condition 2 from Definition 1.4, and thus met by all s-deep ZLRRs.
5Observe that k is in both J and K. Suppose to the contrary that some q > 1 divides every element of K;

then, every element of {k − κ | κ ∈ K} = J is divisible by q, which is impossible.
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Since |r|> |ri| for all 2 ≤ i ≤ j, each limit with a (ri/r)
n term disappears, leaving just q1,

which must be positive, since the sequence an does not admit negative terms.

To see that an is eventually increasing, consider the sequence

An := an+1 − an
= (q1r1 − q1) rn1 + (q2(n+ 1) r2 − q2(n)) rn2 + · · ·+ (qj(n+ 1) rj − qj(n)) rnj . (2.5)

A similar analysis shows

lim
n→∞

(q2(n+ 1) r2 − q2(n)) rn2 + · · ·+ (qj(n+ 1) rj − qj(n)) rnj
(q1 r1 − q1) rn1

= 0, (2.6)

implying that the term (q1r1− q1) rn1 grows faster than the sum of the other terms; thus An is
eventually positive as desired. �

Corollary 2.3. For a PLRR/ZLRR, let r be the principal root of its characteristic polynomial
P (x). Then, given initial values satisfying ai ≥ 0 for 0 ≤ i ≤ k − 1 and ai > 0 for some
0 ≤ i ≤ k − 1, we have

lim
n→∞

an
rn

= C, (2.7)

where C > 0. Furthermore, the sequence {an}∞n=1 is eventually monotonically increasing. That
is, Lemma 2.2 extends to any set of non-negative initial values that are not all zero.

Proof. We first note that the derivation of (1.7) does not rely on the initial values; any sequence
satisfying the recurrence takes on this form.

Since one of the initial values a0, a1, . . . , ak−1 is a positive integer, we know that one of
ak, ak+1, . . . , a2k−1 is also a positive integer by the recurrence relation, which forces an to be at
least an−k. Define i ∈ [k, 2k− 1] to be an index such that ai is positive. Consider the sequence
bn = an+i−k+1, which has bk−1 = ai > 0. By the recurrence relation, we have bn ≥ an for all n,
which would be impossible if the Binet expansion of bn had a non-positive coefficient attached
to the rn term. Eventual monotonicity thus follows. �

2.2. A Generalization of Binet’s Formula. In general, the Binet expansion of a recurrence
sequence is quite unpleasant to compute or work with. However, things become much simpler
when the characteristic polynomial has no multiple roots. In that case, we may construct an
explicit formula for the nth term of the sequence, given a nice set of initial values. Keeping in
mind that linear combinations of sequences satisfying a recurrence also satisfy the recurrence,
one could construct a formula for the nth term given arbitrary initial values.

Theorem 2.4. Consider a ZLRR with characteristic polynomial P (x) that does not have mul-
tiple roots, and initial values ai = 0 for 0 ≤ i ≤ k − 2, ak−1 = 1. Then each term of the
resulting sequence may be expressed as

an = c1 r
n
1 + c2 r

n
2 + · · ·+ ck r

n
k , (2.8)

where the ri are the distinct roots of P (x), and ci = 1/P ′(ri).

Before providing a proof of Theorem 2.4, we illustrate with a motivating example: Binet’s
Formula.

Example 2.5. Consider the Fibonacci Numbers with F0 = 0, F1 = 1. Let P (x) = x2 − x− 1,
which has roots α = (1 +

√
5)/2 and β = (1 −

√
5)/2. Then P ′(x) = 2x − 1 and it is easy to
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verify that 1/P ′(α) = 1/
√

5 and 1/P ′(β) = −1/
√

5, leading to the well known Binet formula
for the Fibonacci numbers.

We now prove Theorem 2.4.

Proof. Since each root has multiplicity 1, the existence of such explicit form follows from the
Binet expansion (see Theorem 1.11), so we are left to prove that ci = 1/P ′(ri). Using the
initial values, we see that the ci are solutions to the linear system


1 1 1 · · · 1
r1 r2 r3 · · · rk
r21 r22 r23 · · · r2k
...

...
...

. . .
...

rk−11 rk−12 rk−13 · · · rk−1k




c1
c2
c3
...
ck

 =


0
0
0
...
1

 . (2.9)

Denote the matrix above by A, let Ai be the matrix formed by replacing column i of A with
the column vector of zeroes and a single 1 in the bottom-most index, and let Mki be the k, i
minor matrix of A formed by deleting row k and column i. A standard application of Cramer’s
rule yields:

ci = (−1)k+i

 ∏
1≤ a< b≤ k
a, b 6= i

(rb − ra)

/
 ∏

1≤ a< b≤ k
(rb − ra)



= (−1)k+i
/ ∏

1≤ a< b≤ k
a= i or b= i

(rb − ra)


=

(−1)k+i

(ri − r1)(ri − r2) · · · (ri − ri−1)(ri+1 − ri) · · · (rk−1 − ri)(rk − ri)

=
(−1)k+i(∏i−1

j=1(ri − rj)
)

(−1)k−i
(∏k

j= i+1(ri − rj)
)

= 1

/ ∏
1≤ j≤ k
j 6= i

(ri − rj). (2.10)

Note that the product is simply the function

f(x) =
∏

1≤j≤ k
j 6= i

(x− rj) (2.11)
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evaluated at x = ri. To evaluate this, we may rewrite

f(ri) = lim
x→ ri

f(x) = lim
x→ ri

∏
1≤ j≤ k
j 6= i

(x− rj)

= lim
x→ ri

(x− ri)
(x− ri)

∏
1≤ j≤ k
j 6= i

(x− rj) = lim
x→ ri

∏
1≤ j≤ k(x− rj)

x− ri

= lim
x→ ri

P (x)

x− ri
, (2.12)

which equals P ′(ri) by L’Hôpital’s rule. We thus have ci = 1/f(ri) = 1/P ′(ri), completing the
proof. �

3. The Zeroing Algorithm and Applications

An alternate approach to understanding decompositions arising from ZLRRs is to see if
for every ZLRR one could associate a PLRR with similar behavior: a derived PLRR. In this
section, we develop the machinery of the Zeroing Algorithm, which is an extremely powerful
tool for understanding recurrence sequences analytically. We prove a very general result about
derived recurrences that implies every ZLRS has a derived PLRS.

3.1. The Zeroing Algorithm. Consider some ZLRS/PLRS with characteristic polynomial

P (x) := xk − c1 xk−1 − c2 xk−1 − · · · − ck, (3.1)

and choose a sequence of k real numbers β1, β2, . . . , βk; the βi are considered the input of the
algorithm. For nontriviality, the βi are not all zero. We define the Zeroing Algorithm to be
the following procedure. First, create the polynomial

Q0(x) := β1 x
k−1 + β2 x

k−2 + · · ·+ βk−1 x+ βk. (3.2)

Next, for t ≥ 1, define a sequence of polynomials

Qt(x) := xQt−1(x)− q(1, t− 1)P (x), (3.3)

indexed by t, where q(1, t) is the coefficient of xk−1 in Qt(x). We terminate the algorithm at
step t if Qt(x) does not have positive coefficients. An example run of the Zeroing Algorithm is
provided in Appendix A.

To understand the algorithm through linear recurrences, we denote by q(n, t) the coefficient
of xk−n in Qt(x), where n ranges from 1 to k. The recurrence relation on the polynomials (3.3)
yields the following system of recurrence relations

q(1, t) = q(2, t− 1) + c1 q(1, t− 1), (3.4)
q(2, t) = q(3, t− 1) + c2 q(1, t− 1),

...
q(k − 1, t) = q(k, t− 1) + ck−1 q(1, t− 1),

q(k, t) = ck q(1, t− 1),

with initial values

q(1, 0) = β1, q(2, 0) = β2, · · · , q(k, 0) = βk.
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Note that if q(1, t) through q(k, t) are all non-positive, then so are q(1, t+1) through q(k, t+1);
the same holds for nonnegativity.

Lemma 3.1. The sequence q(1, t) satisfies the recurrence specified by the characteristic poly-
nomial P (x). For each 1 ≤ n ≤ k, q(n, t) is a positive linear combination of q(1, t − j),
j = 1, ..., i+ 1:

q(n, t) = cn q(1, t− 1) + cn+1 q(1, t− 2) + · · ·+ ck q(1, t− (k + 1− n))

=
k−n∑
i=0

cn+i q(1, t− (i+ 1)). (3.5)

Proof. We first examine the sequence q(1, t). For t ≥ k, we have

q(1, t) = c1 q(1, t− 1) + q(2, t− 1)

= c1 q(1, t− 1) + c2 q(1, t− 2) + q(3, t− 2)

...
= c1 q(1, t− 1) + c2 q(1, t− 2) + · · ·+ ck−1 q(1, t− (k − 1)) + q(k, t− (k − 1))

= c1 q(1, t− 1) + c2 q(1, t− 2) + · · ·+ ck−1 q(1, t− (k − 1)) + ck q(1, t− k), (3.6)

which is what we want.

The proof for q(n, t) is similar:

q(n, t) = cn q(1, t− 1) + q(n+ 1, t− 1)

= cn q(1, t− 1) + cn+1 q(1, t− 2) + q(n+ 2, t− 2)

= cn q(1, t− 1) + cn+1 q(1, t− 2) + cn+2 q(1, t− 3) + q(n+ 3, t− 3)

...
= cn q(1, t− 1) + cn+1 q(1, t− 2) + · · ·+ q(n+ (k − n), t− (k − n))

= cn q(1, t− 1) + cn+1 q(1, t− 2) + · · ·+ q(k, t− (k − n))

= cn q(1, t− 1) + cn+1 q(1, t− 2) + · · ·+ ck q(1, t− (k − n+ 1)), (3.7)

as desired. �

Now we may prove a very useful result.

Lemma 3.2. Let r be the principal root of P (x). Consider the Binet expansion of the sequence
q(n, t) (indexed by t) for each n. The sign of the coefficient attached to the term rt equals the
sign of Q0(r).

Proof. Recall the recurrence relation Qt(x) = xQt−1(x) − q(1, t − 1)P (x). Evaluating at
x = r, the P (x) term drops out and we have Qt(r) = r Qt−1(r). Iterating this procedure gives
rtQ0(r).

Recalling that q(n, t) is defined to be the coefficient of xk−n in Qt(x), we have

rtQ0(r) = Qt(r) = rk−1 q(1, t) + rk−2 q(2, t) + · · ·+ r q(k − 1, t) + q(k, t). (3.8)

Note that this implies that the sequence Qt(r) satisfies the recurrence specified by P (x) as
well. Since each q(n, t) is a positive linear combination of q(1, t − j), j = 1, ..., i + 1, they all
have the same sign on the coefficient of the rt term in their explicit expansion as a sum of
geometric sequences, and this sign equals the sign of the coefficient of rt in the expansion of
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Qt(r). It remains to show the sign in Qt(r) equals the sign of Q0(r).

Consider the quantity limt→∞Qt(r)/r
t, which extracts the coefficient of the rt term in Qt(r).

Since Qt(r) = rtQ0(r), we have

lim
t→∞

Qt(r)

rt
= lim

t→∞

rtQ0(r)

rt
= Q0(r) (3.9)

as desired. �

We can now establish an exact condition on when the Zeroing Algorithm terminates.

Theorem 3.3. Let Q0(x) be as defined in (3.2) and let r be the principal root of P (x) . The
Zeroing Algorithm terminates if and only if Q0(r) < 0.

Proof of Theorem 3.3. If Q0(r) < 0, then the coefficient of rt in the expansion of q(n, t) is also
negative for each n; this implies q(n, t) diverges to negative infinity, and that there must be
some t when q(n, t) is non-positive for each n.

For the other direction, if Q0(r) ≥ 0 then suppose to the contrary that there is some t0
where q(n, t0) ≤ 0 for all n. Then we would have

rt0 Q0(r) = Qt0(r) = rk−1 q(1, t0) + rk−2 q(2, t0) + · · ·+ r q(k− 1, t0) + q(k, t0) ≤ 0, (3.10)

which implies Q0(r) ≤ 0, forcing Q0(r) = 0.

Notice that this equality only occurs when q(1, t0) = q(2, t0) = · · · = q(k, t0) = 0. This
implies for each n, q(n, t) = 0 for all t > t0, so each q(n, t) is identically zero, which contradicts
our assumption of non-triviality. �

3.2. A General Conversion Result. Now that we have developed the main machinery of the
Zeroing Algorithm, we can prove a very general result on converting between linear recurrences.

Proof of Theorem 1.8. For ease of notation, extend the γ sequence by setting γi = 0 for i > m.
We modify the Zeroing Algorithm slightly to produce the desired p(x).

Consider a sequence of polynomials Qt(x) of degree at most k − 1, with

Q1(x) = γ1 (P (x)− xk),

Qt(x) = xQt−1(x)− (q(1, t− 1)− γt)P (x)− γt xk, (3.11)

where again, q(n, t) denotes the coefficient of xk−n in Qt(x). Note that after iterationm, γt = 0
and we have the unmodified Zeroing Algorithm again.

Lemma 3.4. Define pt(x) := xk Γt(x) +Qt(x). At each iteration t, we have the following:
i) P (x) divides pt(x),
ii) the first t coefficients of pt(x) are γ1 through γt, and
iii) Qt(r) = −rk Γt(r).

Proof. A straightforward induction argument suffices for all of them.
i) We have

p1(x) = xk γ1(x) +Q1(x) = xk γ1 + γ1 (P (x)− xk) = γ1 P (x). (3.12)
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Assuming P (x) divides pt(x), we have

pt+1(x) = xk Γt+1(x) +Qt+1(x)

= xk (γ1 x
t + γ2 x

t−1 + · · ·+ γt+1) +Qt+1(x)

= x · xk (γ1 x
t−1 + γ2 x

t−2 + · · ·+ γt) + γt+1 x
k + xQt(x)

− (q(1, t)− γt+1)P (x)− γt+1 x
k

= x (xk ( γ1 x
t−1 + γ2 x

t−2 + · · ·+ γt) +Qt(x))− (q(1, t)− γt+1)P (x)

= x pt(x)− (q(1, t)− γt+1)P (x), (3.13)

which is divisible by P (x) by the inductive hypothesis.

ii) We first prove that Qt(x) has degree at most k − 1. This is certainly true for Q1(x) =
γ1(P (x)− xk). Assume Qt(x) as degree at most k − 1; we then have

Qt+1(x) = xQt(x)− (q(1, t)− γt+1)P (x)− γt+1 x
k. (3.14)

It is evident that the highest power of x to appear is xk, which has coefficient

q(1, t)− (q(1, t)− γt+1)− γt+1 = 0. (3.15)

From the construction pt(x) := xk Γt(x) + Qt(x). It is evident that the first t coefficients are
just those of Γt(x).

iii) We have
Q1(r) = γ1 (P (r)− rk) = −rk γ1. (3.16)

Suppose Qt(r) = −rk Γt(r); we have

Qt+1(r) = r Qt(r)− (q(1, t)− γt+1)P (r)− γt+1 r
k

= r (−rk Γt(r))− γt+1 r
k

= −rk (r Γt(r) + γt+1)

= −rk Γt+1(r). (3.17)

�

Now we have Qm(r) = −rm Γm(r) < 0, since Γm(r) > 0. Running the Zeroing Algorithm
starting with Qm(x) yields some Qm+t0(x) that does not have positive coefficients. We see that
since pm+t0(x) = xk Γm+t0(x) +Qm+t0(x) is divisible by P (x), has its initial m+ t0 coefficients
as γ1 through γm followed by t0 0’s, and thus does not have positive coefficients after γm; we
may choose p(x) = pm+t0(x). �

Corollary 3.5. Given γ1 = 1 and arbitrary integers γ2 through γm with Γm(r) > 0, there is
a recurrence derived from P (x) whose characteristic polynomial has its first coefficients as γ1
through γm with no positive coefficients thereafter.

Proof. Consider p(x) from Theorem 1.8, whose first coefficients are γ1 through γm. Since
γ1 = 1, p(x) is the characteristic polynomial of a linear recurrence. In fact, since γ2 through
γm are integers, p(x), and thus the recurrence, has integer coefficients. �

Corollary 3.6. Every ZLRR has a derived PLRR.
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Proof. Take m = 2, γ1 = 1, γ2 = −1. We thus have Γm(r) = r− 1 > 0, as shown in the section
on characteristic polynomials. We can thus find a p(x) whose first two coefficients are 1, −1
with no positive coefficients thereafter; this is the characteristic polynomial of a PLRR. �

Note that a ZLRR does not have a unique derived PLRR; the Zeroing Algorithm simply
produces a PLRR whose characteristic polynomial takes the coefficients 1, −1, a bunch of 0’s,
and up to k nonzero terms at the end, where k is the degree of the characteristic polynomial of
the ZLRR. In fact, for any positive integer n less than the principal root of a ZLRR, there exists
a derived PLRR with leading coefficients 1,−n; this is seen by taking γ2 = −n in Corollary
3.6. In Appendix B, we provide an example conversion of a ZLRR to a PLRR, as well as a list
of ZLRRs and their derived PLRR that comes from the Zeroing Algorithm.

3.3. Fast Determination of Divergence Using the Zeroing Algorithm. Finally, we have
all of the tools necessary to prove our final result, which predicts the direction of divergence of
a PLRS/ZLRS using its initial values. An example prediction is given in Appendix A.

Proof of Theorem 1.13. We set Q0(x) = Q(x) and run the Zeroing Algorithm; we have proved
that the sequence q(1, t) follows the linear recurrence and has behavior determined by Q0(r).
Thus, it suffices to show that q(1, t) has the same initial values as at; explicitly, q(1, t− 1) = at
for 1 ≤ t ≤ k.

We first notice, from the recurrences on q(n, t) (equation 3.4), that

q(1, t) = c1 q(1, t− 1) + q(2, t− 1)

= c1 q(1, t− 1) + c2 q(1, t− 2) + q(3, t− 2)

...
= c1 q(1, t− 1) + c2 q(1, t− 2) + · · ·+ ct q(1, 0) + q(t+ 1, 0)

= c1 q(1, t− 1) + c2 q(1, t− 2) + · · ·+ ct q(1, 0) + (αt+1 − dt+1). (3.18)

Now we proceed by strong induction. By construction, q(1, 0) = a1. For some t, assume
q(1, τ − 1) = aτ for all 1 ≤ τ < t. We thus have

q(1, t) = c1 q(1, t− 1) + c2 q(1, t− 2) + · · ·+ ct q(1, 0) + (at+1 − dt+1)

= (c1 at + c2 at−1 + · · ·+ ct a1) + at+1 − dt+1

= dt+1 + at+1 − dt+1

= at+1 (3.19)

as desired. �

4. Investigating the Run-Time of the Zeroing Algorithm

Consider the Unmodified Zeroing Algorithm as in the preceding section for an arbitrary
ZLRR. Theorem 3.3 states that the eventual behavior of the Zeroing Algorithm can be deter-
mined solely by the sign of Q0(x). In this section we work to bound the run-time of the Zeroing
Algorithm, and demonstrate that Q0(x) is also the primary determinant of the run-time. One
difficulty with bounding the Zeroing Algorithm is that each coefficient of Qt(x) must diverge
to negative infinity for the algorithm to terminate. Thus, each coefficient must be tracked. We
begin by showing how all coefficients can be accounted for by keeping track of q(1, t) alone.

Proposition 4.1. After the step at which the sequence q(1, t) becomes non-positive, the Zeroing
Algorithm will terminate within the next k − 2 steps.
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Proof. We assume that Q0(r) < 0, and the Zeroing Algorithm does indeed terminate. Consider
the relationships between coefficient sequences starting with Equation (3.4). Since we are
dealing with ZLRRs, c1 = 0, we have q(1, t) = q(2, t − 1). Thus, it must be the case that
q(2, t) will become fully negative exactly one step before q(1, t). Note also that q(k, t) becomes
fully negative one step after q(1, t). Following this, in the worst case the coefficient sequences
q(k−1, t), . . . , q(3, t) will become fully negative in consecutive steps after q(k, t). This amounts
to a maximum of k−2 steps that the algorithm can take after q(1, t) becomes fully negative. �

Remark 4.2. To determine the runtime, we see that it suffices to determine the iteration when
q(1, t) becomes nonpositive. Recall that q(1, t) satisfies the recurrence specified by P (x) (Lemma
3.1), and thus has a Binet expansion using the roots of P (x) (Theorem 1.11), with the coeffi-
cients of those roots in the expansion being determined by the k initial values q(1, 0), . . . , q(1, k−
1). By equation 3.4, we can obtain the initial values

q(1, j) = βj+1 +

j∑
i=2

ci q(1, j − i). (4.1)

for 0 ≤ j ≤ k − 1.

Recall that P (x) has a principal root r, which determines the behavior of q(1, t), as it “dom-
inates” the behavior of the other roots of P (x) in the Binet expansion. Therefore, we now turn
our attention to the principal coefficient, which we define to be the coefficient of the principal
root in the Binet expansion. For this principal coefficient determines the behavior of r in the
Binet expansion, and thus the behavior of q(1, t). We begin with key notation. (Note that in
the remainder of this section, we may refer to the principal root r as r1 for ease of indexing.)

Definition 4.3. We denote the nth degree Elementary Symmetric Polynomial of k items
by

Sn(x1, . . . , xk) = x1x2 · · ·xn + · · ·+ xk+1−n · · ·xk =
∑

1≤i1<i2<···<in≤k
xi1 · · ·xin (4.2)

where 1 ≤ n ≤ k. If n = 0, we define S0(x1, . . . , xk) = 1.

Lemma 4.4. Consider P (x) in (3.1). Then we have

r1 = −S1(r2, . . . , rk), (4.3)

and
S1(r2, . . . , rk)Sn−1(r2, . . . , rk) = Sn(r2, . . . , rk) + (−1)ncn. (4.4)

Proof. For an arbitrary polynomial of the form ak x
k + · · · + a1 x + a0 with roots r1, . . . , rk,

Vieta’s Formulas can be written as

Sn(r1, . . . , rk) = (−1)n
ak−n
ak

, for 1 ≤ n ≤ k.

Given the form of P (x) this simplifies to

cn = (−1)n+1Sn(r1, . . . , rk) (4.5)

for 1 ≤ n ≤ k. Then we know that c1 = r1 + r2 + · · · + rk. Thus (4.3) then follows from the
fact that c1 = 0, since we are dealing with the characteristic polynomial of a ZLRR.
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Then we have

Sn(r1, . . . , rk) =
∑

1≤i1<i2<···<in≤k
ri1 · · · rin

=
∑

2≤i1<i2<···<in≤k
ri1 · · · rin +

∑
2≤i1<i2<···<in−1≤k

r1ri1 · · · rik−1

= Sn(r2, . . . , rk) + r1Sn−1(r2, . . . , rk)

= Sn(r2, . . . , rk)− S1(r2, . . . , rk)Sn−1(r2, . . . , rk), (4.6)

which implies,

S1(r2, . . . , rk)Sn−1(r2, . . . , rk) = Sn(r2, . . . , rk)− Sn(r1, . . . , rk)

= Sn(r2, . . . , rk) + (−1)n(−1)n+1Sn(r1, . . . , rk)

= Sn(r2, . . . , rk) + (−1)n · cn. (4.7)

�

Theorem 4.5. Consider P (x) in (3.1). Suppose the roots of P (x), r1, . . . , rk, each have
multiplicity 1, and without loss of generality, suppose r1 > |r2|> · · · > |rk|, with r1 being the
principal root. Then, considering the Binet expansion q(1, t) = a1 r

t
1 + · · ·+ ak r

t
k we have

a1 =
Q0(r1)∏k

i=2(r1 − ri)
. (4.8)

Proof. Using Equation (4.1) to find the initial k values of q(1, t), we note that the coefficients
a1, · · · , ak are the solutions to the following linear system:

1 1 1 · · · 1
r1 r2 r3 · · · rk
r21 r22 r23 · · · r2k
...

...
...

. . .
...

rk−11 rk−12 rk−13 · · · rk−1k




a1
a2
a3
...
ak

 =


β1
β2

β2 + c2β1
...

βk +
∑k−1

i=2 ci q(1, k − 1− i)

 . (4.9)

To find a1, we can use Cramer’s Rule. Let A denote the matrix of roots. If we let A1 be the
matrix formed by substituting the first column of A with the column vector of initial terms of
q(1, t), then we have a1 = det(A1)/det(A). Because A is a Vandermonde matrix we have

det(A) =
∏

1≤i<j≤k
(rj − ri). (4.10)

We can then use the Laplace expansion to obtain

det(A1) =
k∑

n=1

q(1, n− 1)(−1)n+1 det(Mn1), (4.11)

where Mn1 is the n, 1 minor of A1.
Note that each minor – except for Mk1 – in (4.11) is not a Vandermonde matrix due to its

missing row of geometric terms. However, the determinants of these “punctured” Vandermonde
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matrices have a similar form to the determinant of a regular Vandermonde matrix involving
elementary symmetric polynomials of the roots. By the results found in [KKL], we can write

det(Mn1) = Sk−n(r2, . . . , rk) ·
∏

2≤i<j≤k
(rj − ri). (4.12)

So, we have

det(A1) =

k∑
n=1

q(1, n− 1) · (−1)n+1 · Sk−n(r2, . . . , rk) ·
∏

2≤i<j≤k
(rj − ri)


=

 ∏
2≤i<j≤k

(rj − ri)

 · k∑
n=1

[
q(1, n− 1) · (−1)n+1 · Sk−n(r2, . . . , rk)

]
. (4.13)

So, we can solve for a1.

a1 =
det(A1)

det(A)
=

∑k
n=1 q(1, n− 1) · (−1)n+1 · Sk−n(r2, . . . , rk)∏k

i=2(ri − r1)

=

∑k
n=1 q(1, n− 1) · (−1)n+1 · Sk−n(r2, . . . , rk)

(−1)k+1 ·
∏k
i=2(r1 − ri)

. (4.14)

Next, we shall demonstrate that

(−1)m+1 ·
m∑

n=1

βn r
m−n
1 =

m∑
n=1

q(1, n− 1) · (−1)n+1 · Sm−n(r2, . . . , rk) (4.15)

by induction on m. (However, we note that implicitly m ≤ k, since we have not defined βi
where i > k.)

When m = k, this implies that

(−1)k+1 ·Q0(r1) =
k∑

n=1

[
q(1, n− 1) · (−1)n+1 · Sm−n(r2, . . . , rk)

]
. (4.16)

Therefore, by simplifying (4.14) we have (4.8).

Base Case (m = 3): We have, by plugging in (4.5) and (4.6),
3∑

n=1

q(1, n− 1) · (−1)n+1 · S3−n(r2, . . . , rk)

= β1 S2(r2, . . . , rk)− β2 S1(r2, . . . , rk) + β1 c2 + β3

= β1 S2(r2, . . . , rk)− β2 S1(r2, . . . , rk) + β1

= β1 r
2
1 + β2 r1 + β3

= (−1)3+1 ·
3∑

n=1

βn r
3−n
1 (4.17)

Inductive Step: Assume (4.15) holds for all m′ < m. Then for m′ = m− 1 we have
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(−1)m ·
m−1∑
n=1

βnr
m−1−n
1 =

m−1∑
n=1

q(1, n− 1) · (−1)n+1 · Sm−1−n(r2, . . . , rk). (4.18)

So, we have

(−1)m+1 ·
m∑
n=1

βnr
m−n
1 = −r1 ·

m−1∑
n=1

[
q(1, n− 1) · (−1)n+1 · Sm−1−n(r2, . . . , rk)

]
+ βm

= S1(r2, . . . , rk) ·
m−1∑
n=1

[
q(1, n− 1) · (−1)n+1 · Sm−1−n(r2, . . . , rk)

]
+ βm

=

m−1∑
n=1

[
q(1, n− 1) · (−1)n+1 ·

[
Sm−n(r2, . . . , rk) + (−1)m−n · cm−n

]]
+ βm

=

m−1∑
n=1

[
q(1, n− 1) · (−1)n+1 · Sm−n(r2, . . . , rk)

]
+ (−1)m+1 ·

m−1∑
n=1

[q(1, n− 1) · cm−n] + βm

=
m∑
n=1

[
q(1, n− 1) · (−1)n+1 · Sm−n(r2, . . . , rk)

]
by (4.1). (4.19)

�

Corollary 4.6. As r → 1, we have t0 →∞, where t0 denotes the number of steps taken after
the modified Zeroing Algorithm of Lemma 3.4 reverts back to the unmodified form.

Remark 4.7. Corollary 4.6 tells us that ZLRRs with principal roots closest to 1 will take the
longest to convert into a derived PLRR.

Proof. From Lemma 3.4 we know that Qm(r) = −rk · Γm(r). This is the iteration when
the modified Zeroing Algorithm reverts to the unmodified Zeroing Algorithm. Thus for m =
2, γ1 = 1, and γ2 = −1, we have Q2(r) = −rk (r − 1). Recall that this configuration of the
modified Zeroing Algorithm results in the "minimal" derived PLRR of a given ZLRR. So, as
r → 1, we have Q2(r) → 0−. (Recall that Q2(r) is equivalent to Q0(r) of the unmodified
Zeroing Algorithm.) Then by Theorem 4.5 we know that since Q0(r)→ 0−, it also follows that
a1 → 0 and thus the principal root of the Binet expansion of q(1, t) takes longer and longer to
dominate, implying that t0 →∞. �

Note that the above conclusions only apply to ZLRRs whose roots have multiplicity 1. Ex-
tending Theorem 4.5 to cover ZLRRs with roots of any multiplicity is more difficult because the
Binet expansion of q(1, t) becomes more complicated, which negates the use of Vandermonde
matrices in the proof of Theorem 4.5. In the more general case, we conjecture the following.

Conjecture 4.8. If the roots of P (x) are r1, r2, . . . , ri, with respective multiplicities 1, m2,
. . . , mi such that mj ≥ 1 with 2 ≤ j ≤ i ≤ k, then for the coefficient a1 of the principal root
in the Binet expansion of q(1, t) we have

a1 =
Q0(r1)∏i

j=2(r1 − rj)mj
. (4.20)

In order to work towards finding the true bound of the Zeroing Algorithm, we also wish to
quantify the relationship between Q0(r) and the run-time beyond the general tendencies that
our current results provide. Notably, Theorem 4.5 suggests that as Q0(r)→ 0−, the run-time
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becomes unbounded, since the principal root in the Binet expansion of q(1, t) will take longer
and longer to dominate.

Some experimentation provides a way to visualize the relationship; see Figure 1.

Figure 1. The results of a MATLAB simulation that generated 50 random
P (x) polynomials for each degree 3 to 6, and sampled 5,000 random Q0(x)’s for
each random P (x). A strong inverse relationship can be seen between Q0(r)
and the run-time.

The above observations inspire us to conjecture the following concerning the bound of the
Zeroing Algorithm:

Conjecture 4.9. Q0(r) and the run-time have an inverse relationship.

5. Conclusion and Future work

We have introduced two distinct ways to consider decompositions arising from ZLRSes.

• As we saw from the first method, we can define decompositions in such a way that we
have existence, but not uniqueness. Is there a different definition such that we have
uniqueness, but not existence? Is it possible to have both existence and uniqueness, or
can we prove that having both is generally impossible for ZLRSes?

• In terms of bounding the run-time of the Zeroing Algorithm, the next steps are to prove
Conjectures 4.8 and 4.9, or similar run-time results if it turns out that these do not hold.

• The Zeroing Algorithm has proven a powerful tool for studying linear recurrences ana-
lytically; how does it provide information on more discrete questions such as decompo-
sitions with ZLRSes? Are specific sets of initial values necessary for a decomposition
to have desirable properties? Are there such properties that are inherent in the recur-
rence relation itself, rather than being contingent on a specific sequence produced by
the initial values?
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Appendix A. Some Examples of Running the Zeroing Algorithm

Consider the recurrence relation

Hn+1 = 2Hn−1 +Hn−2,

which has characteristic polynomial P (x) = x3−2x−1 (principal root r = (1 +
√

5)/2), where
we have the coefficients c1 = 0, c2 = 2, c3 = 1. Suppose we are given β1 = 3, β2 = −2, β3 = −5;
we run the algorithm as follows:

3 −2 −5 Q0(x) = 3x2 − 2x− 5
−3 0 6 3

−2 1 3 Q1(x) = −2x2 + x + 3
2 0 −4 −2

1 −1 −2 Q2(x) = x2 − x− 2
−1 0 2 1

−1 0 1 Q3(x) = −x2 − 0x+ 1
1 0 −2 −1

0 −1 −1 Q4(x) = 0x2 − x− 1

We reach termination on step 4, since Q4 does not have positive coefficients. Note that the
Zeroing Algorithm is named for the first (omitted) coefficient of 0 following each step.

Suppose that given the same recurrence relation, and initial values a0 = 3, a1 = −2, a3 = 1,
we wish to determine whether the recurrence sequence diverges to negative infinity.

Using the method introduced in Theorem 1.13, we first determine the values of

d2 = a1c1 = 0, d3 = a1c2 + a2c1 = 6,

from which we construct

Q(x) = a1x
2 + (a2 − d2)x+ (a3 − d3) = 3x2 − 2x− 5.

We have Q(r) = 3r2−2r−5 = 3(r+1)−2r−5 = r−2 < 0, which predicts that {an} diverges
to negative infinity.

Manually computing the terms gives

3, −2, 1, −1, 0, −1, −1, −2, −3, −5, −8, −13, . . . ,

which confirms our prediction.
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Appendix B. List of ZLRRs and derived ZLRRs

1. Recurrence: Gn+1 = Gn−1 + Gn−2, P (x) = x3 − 0x2 − x − 1.

γ1 = 1 0 -1 -1 Q1(x) = 0x2 − x− 1
-1 0 1 1

γ2 = −1 -1 0 1 Q2(x) = −x2 + 0x + 1
1 0 -1 -1

γ3 = 0 0 0 -1 Q3(x) = 0x2 + 0x− 1

Derived characteristic polynomial: x5 − x4 − 0x3 − 0x2 − 0x − 1, which corresponds to the
derived PLRR Hn+1 = Hn + Hn−4.

2. Current ZLRR: Gn+1 = Gn−1 + Gn−2 + Gn−3.

Current characteristic polynomial: x4 − x2 − x − 1.

Derived characteristic polynomial: x6 − x5 − x2 − 1.

Derived PLRR: Hn+1 = Hn + Hn−3 + Hn−5.

3. Current ZLRR: Gn+1 = 2Gn−1 + 2Gn−2.
Current characteristic polynomial: x3 − 2x − 2.

Derived characteristic polynomial: x5 − x4 − 2x − 4.

Derived PLRR: Hn+1 = Hn + 2Hn−3 + 4Hn−4.

4. Current ZLRR: Gn+1 = 19Gn−1 + 38Gn−4.

Current characteristic polynomial: x5 − 19x3 − 38.

Derived characteristic polynomial: x29 − x28 − 310601172680577x4 − 40586681545596725x3

− 4277914985538462x2 − 170201741455942x − 81203021913963806.

Derived PLRR: Hn+1 = Hn + 310601172680577Hn−24 + 40586681545596725Hn−25
+ 4277914985538462Hn−26 + 170201741455942Hn−27 + 81203021913963806Hn−28.

5. Current ZLRR: Gn+1 = 6Gn−1 + 3Gn−2 + 5Gn−3.

Current characteristic polynomial: x4 − 6x2 − 3x − 5.

Derived characteristic polynomial: x10 − x9 − 69x3 − 1669x2 − 722x − 1245.

Derived PLRR: Hn+1 = Hn + 69Hn−6 + 1669Hn−7 + 722Hn−8 + 1245Hn−9.

6. Current ZLRR: Gn+1 = Gn−2 + Gn−3.

20 VOLUME, NUMBER



GENERALIZING ZECKENDORF’S THEOREM

Current characteristic polynomial: x4 − x − 1.

Derived characteristic polynomial: x20 − x19 − 4x3 − x2 − 1.

Derived PLRR: Hn+1 = Hn + 4Hn−16 + Hn−17 + Hn−19.

7. Current ZLRR: Gn+1 = 3Gn−2 + Gn−3 + 3Gn−4.

Current characteristic polynomial: x5 − 3x2 − x − 3.

Derived characteristic polynomial: x13 − x12 − 14x4 − 3x3 − 54x2 − 4x − 39.

Derived PLRR: Hn+1 = Hn + 14Hn−8 + 3Hn−9 + 54Hn−10 + 4Hn−11 + 39Hn−12.

8. Current ZLRR: Gn+1 = Gn−2 + Gn−19.

Current characteristic polynomial: x20 − x17 − 1.

Derived characteristic polynomial: x358−x357− 4000705295x19− 7080648306x18− 575930712x17−
1937068817x16− 1082811308x15− 92014103x14− 2546102784x13− 1062101754x12− 372938426x11−
3264026504x10 − 996542899x9 − 834914708x8 − 4089249024x7 − 890353375x6 − 1541366894x5 −
5013188421x4 − 759208181x3 − 2567648478x2 − 6018966637x − 635668820.

Derived PLRR: Hn+1 = Hn + 4000705295Hn−338 + 7080648306Hn−339 + 575930712Hn−340 +

1937068817Hn−341 + 1082811308Hn−342 + 92014103Hn−343 + 2546102784Hn−344 + 1062101754Hn−345 +

372938426Hn−346 + 3264026504Hn−347 + 996542899Hn−348 + 834914708Hn−349 + 4089249024Hn−350 +

890353375Hn−351 + 1541366894Hn−352 + 5013188421Hn−353 + 759208181Hn−354 + 2567648478Hn−355 +

6018966637Hn−356 + 635668820Hn−357.

9. Current ZLRR: Gn+1 = Gn−2 + Gn−19 + Gn−20.

Current characteristic polynomial: x21 − x18 − x − 1.

Derived characteristic polynomial: x156 − x155 − 16626x20 − 6x19 − 16814x18 − 4094x17 −
1037x16 − 6777x15 − 5088x14 − 1849x13 − 9106x12 − 6334x11 − 3060x10 − 12166x9 −
7932x8 − 4851x7 − 16190x6 − 10031x5 − 7482x4 − 21483x3 − 12839x2 − 11312x − 11809.

Derived PLRR: Hn+1 = Hn + 16626Hn−135 + 6Hn−136 + 16814Hn−137 + 4094Hn−138 +
1037Hn−139 + 6777Hn−140 + 5088Hn−141 + 1849Hn−142 + 9106Hn−143 + 6334Hn−144 +
3060Hn−145 + 12166Hn−146 + 7932Hn−147 + 4851Hn−148 + 16190Hn−149 + 10031Hn−150 +
7482Hn−151 + 21483Hn−152 + 12839Hn−153 + 11312Hn−154 + 11809Hn−155.

10. Current ZLRR: Gn+1 = Gn−1 + 2Gn−2 + 2Gn−4 + 3Gn−5.

Current characteristic polynomial: x6 − x4 − 2x3 − 2x − 3.

Derived characteristic polynomial: x11 − x10 − 2x5 − 2x4 − 15x3 − x2 − 7x − 15.
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Derived PLRR: Hn+1 = Hn + 2Hn−5 + 2Hn−6 + 15Hn−7 + Hn−8 + 7Hn−9 + 15Hn−10.

11. Current ZLRR: Gn+1 = 40Gn−3 + 52Gn−4.

Current characteristic polynomial: x5 − 40x − 52.

Derived characteristic polynomial: x25−x24− 555888384x4− 1064960000x3− 519168000x2−
3308595200x − 4535145472.

Derived PLRR: Hn+1 = Hn + 555888384Hn−20 + 1064960000Hn−21 + 519168000Hn−22
+ 3308595200Hn−23 + 4535145472Hn−24.

12. Current ZLRR: Gn+1 = Gn−8 + Gn−9.

Current characteristic polynomial: x10 − x − 1.

Derived characteristic polynomial: x488 − x487 − 7634770044678x9 − 16848326467063x8 −
25319805215106x7− 29495744687667x6− 27304765351108x5− 19325535741204x4− 8910253837548x3−
1049595609091x2 − 321640563521x − 1106933774826.

Derived PLRR: Hn+1 = Hn + 7634770044678Hn−478 + 16848326467063Hn−479 +

25319805215106Hn−480 + 29495744687667Hn−481 + 27304765351108Hn−482 + 19325535741204Hn−483 +

8910253837548Hn−484 + 1049595609091Hn−485 + 321640563521Hn−486 + 1106933774826Hn−487.

13. Current ZLRR: Gn+1 = Gn−2 + Gn−4 + Gn−6.

Current characteristic polynomial: x7 − x4 − x2 − 1.

Derived characteristic polynomial: x23 − x22 − x6 − 6x5 − x4 − 6x3 − x2 − 3x − 2.

Derived PLRR: Hn+1 = Hn + Hn−16 + 6Hn−17 + Hn−18 + 6Hn−19 + Hn−20 + 3Hn−21 +
2Hn−22.

14. Current ZLRR: Gn+1 = 3Gn−1 + 5Gn−2.

Current characteristic polynomial: x3 − 3x − 5.

Derived characteristic polynomial: x5 − x4 − 2x2 − 4x − 15.

Derived PLRR: Hn+1 = Hn + 2Hn−2 + Hn−3 + 15Hn−4.

15. Current ZLRR: Gn+1 = Gn−6 + Gn−12.

Current characteristic polynomial: x13 − x6 − 1.

Derived characteristic polynomial: x572−x571− 141734291356872x12− 1386240086076478x11−
3383864145243271x10− 4628373080436668x9− 4069191511013055x8− 2094637579574813x7−
395154232336030x6 − 528518791146011x5 − 1761055564629423x4 − 2792877805797871x3
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− 2780671348399214x2 − 1681201891412681x − 401879825813162.

Derived PLRR: Hn+1 = Hn + 141734291356872Hn−559 + 1386240086076478Hn−560
+ 3383864145243271Hn−561 + 4628373080436668Hn−562 + 4069191511013055Hn−563
+ 2094637579574813Hn−564 + 395154232336030Hn−565 + 528518791146011Hn−566
+ 1761055564629423Hn−567 + 2792877805797871Hn−568 + 2780671348399214Hn−569
+ 1681201891412681Hn−570 + 401879825813162Hn−571.

16. Current ZLRR: Gn+1 = Gn−9 + Gn−10.

Current characteristic polynomial: x11 − x− 1.

Derived characteristic polynomial: x665 − x664 − 17581679276200473x10 − 43065699679149511x9 −
70765959937154578x8 − 91624450164084254x7 − 98016133194347743x6 − 86803369058214690x5 −
61120624939489989x4 − 30036033003931493x3 − 5927897678515792x2 − 271244487735336x −
1643001862841472.

Derived PLRR: Hn+1 = Hn + 17581679276200473Hn−654 + 43065699679149511Hn−655
+ 70765959937154578Hn−656 + 91624450164084254Hn−657 + 98016133194347743Hn−658
+ 86803369058214690Hn−659 + 61120624939489989Hn−660 + 30036033003931493Hn−661
+ 5927897678515792Hn−662 + 271244487735336Hn−663 + 1643001862841472Hn−664.

17. Current ZLRR: Gn+1 = Gn−1 + Gn−6.

Current characteristic polynomial: x7 − x5 − 1.

Derived characteristic polynomial: x37 − x36 − 18x6 − 2x5 − 9x4 − 2x3 − 7x2 − 9x − 4.

Derived PLRR:Hn+1 = Hn + 18Hn−30 + 2Hn−31 + 9Hn−32 + 2Hn−33 + 7Hn−34 + 9Hn−35 +
4Hn−36.

18. Current ZLRR: Gn+1 = 2Gn−2 + 3Gn−3 + 5Gn−5.

Current characteristic polynomial: x6 − 2x3 − 3x2 − 5.

Derived characteristic polynomial: x19 − x18 − 75x5 − 207x4 − 708x3 − 384x2 − 370x− 740.

Derived PLRR: Hn+1 = Hn + 75Hn−13 + 207Hn−14 + 708Hn−15 + 384Hn−16 + 370Hn−17 +
740Hn−18.

19. Current ZLRR: Gn+1 = Gn−1 + 2Gn−2.

Current characteristic polynomial: x3 − x − 2.

Derived characteristic polynomial: x8 − x7 − x2 − x − 6. Derived PLRR: Hn+1 = Hn +
Hn−5 + Hn−6 + 6Hn−7.
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