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ABSTRACT. A beautiful theorem of Zeckendorf states that every intege be written uniquely as
the sum of non-consecutive Fibonacci numbiefs}s,. A setS C Z |s said to satisfy Benford’s
law if the density of the elements $ with leading digitd is log;, (1 + - ) in other words, smaller
leading digits are more likely to occur. We prove thatpas> oo, for a randomly selected integer
m in [0, F,,;+1) the distribution of the leading digits of the Fibonacci suamds in its Zeckendorf
decomposition converge to Benford’s law almost surely. i@sults hold more generally, and instead
of looking at the distribution of leading digits one obtasimilar theorems concerning how often
values in sets with density are attained.
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1. INTRODUCTION
1.1. History.

The Fibonacci numbers have fascinated professional maiti@ems and amateurs for centuries.
The purpose of this article is to review the connection betwavo interesting results, namely
Zeckendorf's theorem and Benford’s law of digit bias, andliscuss density results that arise in
special subsets of the Fibonacci numbers.

A beautiful theorem due to Zeckendoit [Ze] states that eyasitive integer may be written
uniquely as a sum of non-adjacent Fibonacci numbers. Tinelatd proof is by straightforward
induction and the greedy algorithm (though see [KKIMW] foraanbinatorial approach). For this
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theorem to hold we must normalize the Fibonacci numberskigdaF; = 1 andF; = 2 (and of
coursel,, 1 = F, + F,_1), for if our series began with twi's or with a 0 the decompositions of
many numbers into non-adjacent summands would not be unique

In 1937 the physicist Frank Benford [Bénf], then working feeneral Electric, observed that
the distributions of the leading digits of numbers in maral Bnd mathematical data sets were not
uniform. In fact, the leading digits of numbers from vari@agirces such as atomic weights, base-
ball statistics, numbers in periodicals and values of nra#tecal functions or sequences seemed
biased towards lower values; for instance, a leading digit occurred abou80% of the time,
while a leading digit o occurred less thas% of the time. We now say a data set satisfies Ben-
ford’s law (baseB) if the probability of a first digit bas® of d islog;(1+1/d), or more generally
the probability that the significallis at mosts is log(s). Benford's law has applications in disci-
plines ranging from accounting (where it is used to deteeid) to zoology and population growth,
and many areas between. While this bias is often initiallpssing, it is actually very natural as
Benford’s law is equivalent to the logarithms of the set geaquidistributed modulo 1. For more
on Benford's law se€ [Hil, HIZ, MiT-E, Rai], as well ds [Milpf a compilation of articles on its
theory and applications.

Obviously, we would not be discussing Benford’s law if it haal connection to the Fibonacci
numbers. A fascinating result, originally publishedin [BBee also [MiT-B| Was]), states that the
Fibonacci numbers follow Benford’s law of digit bidghere are many questions that may be asked
concerning the connection between the Fibonacci number8anford’s law. This research was
motivated by the study of the distribution of leading digifd~ibonacci summands in Zeckendorf
decompositions. Briefly, our main result is that the disttidn of leading digits of summands in
Zeckendorf decompositions converges to Benford’s law. i@sult is more universal, and in fact
holds for special sequences with density. We first set sortegian, and then precisely state our
results.

1.2. Preliminaries.

LetS C {F;}$2,, and letq(S, n) be the density of over the Fibonacci numbers in the interval
0, F},]. Thatis,

#{F, €S :1<i<n}

q(S,n) = - (1.1)
Whenlim,, ., ¢(S, n) exists, we define thasymptotic density(S) as
q(S) = li_>m q(S,n). (1.2)

For the sake of completeness, we define a mapping betweenghe@integers and their Zeck-
endorf decompositions. We first note thdegal Zeckendorf decomposition is the unique decom-
position of a number into non-adjacent Fibonacci numbers.

Definition 1.1. Letm € N. The function ZD injectively maps eaeh € N to the set of its
Zeckendorf summands. Conversely, Zihjectively maps each legal set of Zeckendorf summands
to the positive integer that set represents.

hf 2 > 0 we may writer = Sp(2)105(*), whereSp(x) € [1, B) is the significand anél(z) € Z is the exponent.

°The main idea of the proof is to note thag; (1+2‘/5) is irrational, and then use Weyl's criterion and Binet’s

formula to show the logarithms of the Fibonacci numbers eogw to being equidistributed modulo 1.
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For example, ZD10) = {2,8} and ZD ({8, 34}) = 42; however, ZD ({8, 13}) is undefined,
as21 = 8 + 13 is not a legal Zeckendorf decomposition.

Let m € N be chosen uniformly at random from the interf@lF,,,,). We define two useful
random variables:

X,(m) = #ZD(m), Yu(m) := #ZD(m)N S. (1.3)

In our main result, we show that the density%in a typical Zeckendorf decomposition is asymp-
totic to the density of' in the set of Fibonacci numbers.

Theorem 1.2(Density Theorem for Zeckendorf Decompositianisgt S C { F; }22, with asymp-
totic densityg(S) in the Fibonacci numbers. For € N chosen uniformly at random from the
interval [0, F},11), let X,,(m) andY,,(m) be defined as above. Then for any 0, we have with
probability 1 + o(1) that
Y, (m)
Xn(m)
We now define a method of constructing a random Zeckendodrdposition, which plays a
central role in our proofs. Essentially, we want to sele@tradom subset of the Fibonacci numbers
which satisfy the criterion of being a legal Zeckendorf daposition. We fix a probability <

(0,1) and letA,,(p) be a random subset of Fibonacci numbers at nigstLet Aq(p) = 0, and
defineA,, (p) recursively forn > 0 as follows. We set

— q(9)| < e. (1.4)

An—l(p) |f Fn—l € An—l(p)
A,(p) = ¢ A,_1(p) UF, with probabilitypif F,, 1 ¢ A, 1(p) (1.5)
An_1(p) otherwise,
and define
Alp) = JAnp). (1.6)

This random process leads to the following result.

Theorem 1.3(Density Theorem for Random Decompositianisgt S C {F;}:°, have asymptotic
densityg(.S) over the Fibonacci numbers. Then, with probabilityy N A(p) has asymptotic density
q(S)in A(p).

We use Theoreri 1.3 with the clever choice of probabilitypof= 1/,? to prove Theorem
[1.2. The reason for this choice is that this random Zeckdndlromposition is similar to the
Zeckendorf decomposition of an integer chosen uniformhaatiom.

We now describe some situations where Thedrerh 1.3 appliesteTare many interesting sit-
uations where5' C {F;}:°, has a limiting density over the Fibonacci numbers. As thefdtci
numbers follow Benford’s law, the sgf; of Fibonacci number with a fixed leading digit< d < 9
has asymptotic density(S;) = log (1 + 1/d) in the Fibonacci numbers. By an extension of Ben-
ford’s law, the Fibonacci numbers in which a finite amounte#ding digits are fixed also have
asymptotic density over the Fibonacci numbers. Converaglyould fix a finite set of digits at the
right and obtain similar results. For example, if we lookieg Fibonacci numbers modutave get
1,0,1,1,0,1,1,0,...; thus in the limit one-third of the Fibonacci numbers arerg\and the as-
ymptotic density exists. These arguments immediatelyyrBginford behavior of the Zeckendorf

decompositions.
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FIGURE 1. Comparison of the frequencies of leading digits in Zedkehde-
compositions and Benford’s law. Left: All integers [ifiys, Fys) (Solid curve is a
chi-square distribution with 8 degrees of freedom). Rightarge random integer,
approximatelyr.94 - 10509 (solid curve isl /(x log(10)), the Benford density).

Corollary 1.4 (Benford Behavior in Zeckendorf DecompositionB)x positive integersd) and B,
and let

Dp = {(dy,....dp):dy >1,d; €{0,1,...,B—1}}; (1.7)
to each(d,, ...,dp) € Dp we associate the sét;, 4, of Fibonacci numbers whose significand
startsd;.dsds - - - dp. With probability1, for each(dy,...,dp) we haveS, . 4, N A(p) equals
log(dy.daods - - - dp), and thus with probability Benford’s law holds.

.....

Proof. As D is fixed and finite, there are only finitely many starting bleéér significands irD .

By Theoreni LB for each of thesg, ., N S(p) equals the corresponding Benford probability;
as the intersection of finitely many events that each happénprobability 1 happens with prob-
ability 1, we see that with probability, all the significands of lengt®y happen with the correct
probability. Sending) — oo yields the desired Benford behavior. O

As a check of our Benfordness results, we performed two grapperiments. The first was
an exhaustive search of alb € [Fy;, Fos) = [121393,196418). We performed a chi-square
goodness of fit test on the distribution of first digits of suamds for eachn and Benford’s law.
There are eight degrees of freedom, and 99.74% of the timetotsquare values were below the
95% confidence threshold of 15.51, and 99.99% of the timeweg below the 99% confidence
threshold of 20.09. We then randomly chose a numbéi Gf°°°, 10591 and found a chi-
square value of 8.749. See Figlte 1 for a comparison betweenktserved digit frequencies and
Benford's law.

To prove our main results we first state and prove some lemibast aandom legal decom-
positions. The key observation is that for an appropriatgaghof p, the setA(p) derived from
the random process defined [n{1.5) acts similarly to the &ed&rf decomposition of a randomly
chosen integem € [0, F,,.1). Theoren 1P thus becomes a consequence Thdorém 1.3, wéich w
prove through Chebyshev’s inequality.

2. PROOF OFTHEOREM[L.Z

In this section, we assume the validity of Theoremi 1.3 in otdeprove Theoremi 112. The
proof of Theorenl 1]3 is given i . 83. We begin with a useful lesron the probability our random

processA(p) equalsm; interestingly, we find that. € [0, F,,,) are almost uniformly chosen.
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Lemma 2.1. With A, (p) defined as if1.8), ZD*(A,.(p)) € [0, F,.;1) is arandom variable. For a
fixed integem € [0, F,+1) with the Zeckendorf decomposition= F,, + F,, + - - - + F,, , where
EeN, 1<a, a1 +1<as, ..., a1+ 1< a, we have

k(1 — p)n—2* if m € [0, F,)

2.1
pk(l _p)n—2k+l if m e [Fm Fn+1)- ( )

Prob (ZD7' (4,(p)) =m) = {

Proof. With probability(1—p)®~!p, F,, is the smallest element of,,(p). For; € Z, suppose that
F,,Fay,..., F,,_, bethej — 1 smallest elements of, (p). With probability (1 — p)%~%-1"2p,

F,, is the next smallest element df, (p); the reason we have a -2 in the exponent is that once we
selectl,, we cannot havé,, ,,, and thus there ar® — a; — 2 Fibonacci numbers betweé), .,

and F,,_; which we could have selected (but did not). Continuing, we D! (A4,(p)) = m

if and only if thek smallest elements o, (p) areF,,, F,,, ..., F,, andF; ¢ A,(p) for j > ay;

note ifa;, = n then we are done determining if we have or do not have summeads if a;, < n

we must elect not to havg,, .., . . ., F,, and thus need another— a;, — 1 factors ofl — p. Then,

by these calculations, ZD (A, (p)) = m with probability

k

Prob (ZD™' (A,(p)) = m) = (1—p)™~'p (H (1 —p)“"‘““‘zp> (1—p)" =%, (2.2)

Jj=2

whered, = 1if ax < n andl if ¢, = n. The first case happens whene [0, F;,) and the second
whenm € [F,, F,,+1); (2.1) now follows from simple algebra. O

The key idea in proving Theorem 1.2 is to consider the speciaé ofp = 1/¢? in Lemma

2.1, wherep := % is the golden medh.The reason this is an exceptionally useful choice is
that initially the probability of choosing: in our random procesd(p) depends on theumberof
summands ofn; however, forp = 1/¢? we havep”(1 — p)~2* = 1. Thus in this case, fomn an
integer in[0, F,,.1) we see tha{{2]2) reduces to

" if m €0, F,)

Prob (ZD—1 (An(¢—2)) = m) — {w_(nﬂ) fom € [Fu. o) (2.3)

¥

Note this is nearly independent of; all that matters is whether or not it is larger thaj. The
desired result follows from straightforward aIgeBra.
We now are ready to prove Theoréml1.2.

Proof of Theorerh 1]2For a fixeds > 0, let

E(n,e) = {mEZ O [0, Foss) ‘Xn(m) . q(S)’ > g}. (2.4)

SFor us, the importance @fis that it is the largest root of the characteristic polynalfor the Fibonacci recurrence,
and by Binet’s formula it governs the growth of the sequence.
4As a quick check, noté&), o™ + (Fri1 — Fn)e~ (™t =1, as required for a probability.
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By Theoreni 1B, forn chosen uniformly at random from the integers(nF;, . ;), we have

Prob (m € E(n,¢)) = Fl
z€E(n,e) ntl
=0 Z Prob (ZD7' (A4,(¢7?)) = x)
zE€E(n,e)
= O (Prob (ZD™" (A.(¢7?)) € E(n,e))) = o(1). (2.5)
We conclude that th%t% - q(S)‘ < e with probability1 + o(1). O

3. PROOF OFTHEOREM[L. 3

In this section, we prove Theordm11.3. We first prove someulisghmas.
Lemma3.1.Let A(p) C {F,}>2, be constructed as iff.3)with probability parametep € (0, 1).
Then
P k
Prob (Fp € A = ——+40 . 3.1
rob (Fy, € A(p)) | (") (3.1)
Proof. By conditioning on whetheF),_, € A(p), we obtain a recurrence relatifin:

Prob (Fj, € A(p)) = Prob (Fj, € A(p) | Fi—2 € A(p)) - Prob (Fi—2 € A(p))
+ Prob (F, € A(p) | Fy_s & A(p)) - Prob (Fy_s ¢ A(p))
= p-Prob (Fy_» € A(p)) + p(1 — p) - Prob (Fj_2 ¢ A(p))
= p? - Prob (Fy_y € A(p)) +p — p*. (3.2)

As Prob (F; € A(p)) = pandProb (Fy € A(p)) = (1—p)p = p— p? we have
Prob (Fj, € A(p)) = (Prob (Fy € A(p)))” - Prob (Fy_y € A(p)) + Prob (Fy € A(p)). (3.3)
It is easy to show by induction that for &
k
Prob (F € A(p)) = Y (-1 = L+ 00, (3.4)

= 1+p

completing the proof. O
Lemma 3.2. Let W, be the random variable defined by, := #A,,(p). Then

E[W,] = %+0(1) and  Var(W,) = O(n). (3.5)

SWe can also give a simple heuristic suggesting the main tétheanswer. Fok: large, the probability, occurs
should roughly be the same as the probability that; is used; call this:. Thenz ~ (1 — z)p (to haveF}, we must
first not have takei,_, and then once this happens we choBseavith probabilityp), which impliesz ~ p/(1 + p)
as claimed.
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Proof. Define the indicator function (F}) for k € N by

o 1 if F, e A(p)
X(Fy) = {0 it B ¢ A(p). (3.6)

We note thatV,, = >, x(F};) and by linearity of expectation have

EW,] = ) E[(F)]

= i Prob (Fy, € A(p))

= 1, tom). 3.7)

To find the variance we use that it equal$V’?] — E[WW,,]2. Without loss of generality, when we
expand below we may assume< j and double the contribution of certain terms. As we cannot
haveF; and F;,, there are dependencies. While we could determine thengariexactly with a
bit more work, for our applications we only need to bound it$es of magnitude.

E[W,]

<

()

E Z< X(F5) - x(F5)
Z< E[x(ﬂ) - X(£3)]
jz; Prob (F; € A(p)) Prob (F; € A(p)|F; € A(p))

wZnPfOb (Fy e A(p)) +2 ) Prob(F; € A(p)) Prob (F; € A(p)|F; € A(p))

i<n i+2<j<n

O(n)+2 Y Prob(F; € A(p))Prob (Fj_i_1 € A(p))

i+2<j<n

om)+2 Y (1%) (140 (pmini=n))

i+2<j<n

O(n)+<%) +0< 3 pmin@ﬂ'—i)). (3.8)

i+2<j<n

For a fixedk = 1,2,...,n — 1, there are less than pairs (i, j) with k = ¢ < j — i and
i+ 2 < j < n. Similarly, there are less thanpairs(i,j) withk =i —j <i,i+2 < j < n.

7



Therefore, there are less tham pairs(i, j) for whichmin(i, j — i) = k. Thus

n—1
Z prinGi—d - < 2n2pk = O(n), (3.9)
i+2<j<n k=1
and therefore
n 2
EW?2] = (—p> +0(n) = E[W,]*+O(n). (3.10)
1+p
We conclude that
Var(W,,) = O(n), (3.11)
completing the proof. O

Corollary 3.3. Let I/, be the random variable defined BY,, := #A,(p). With probability
1+ o0(1),

np

— 213, 12
T+ <n (3.12)

‘ n

Proof. This follows immediately from Chebyshev’s inequality, as fargen we have

Prob VVn—ﬂ > n?3) < Prob |W, — E[W,]| > E[ZV"]
1+p n*/9

r n8/9
< % = o(1). (3.13)
O

Lemma 3.4.LetS C {F,}2, with asymptotic density(.S) in the Fibonacci numbers. Lét,
be the random variable defined & := #A, (p) N'S. Then

E[Z,) = ?p‘i(sp) + o(n)
Var(Z,) = o(n?). (3.14)

Proof. Define the indicator functiog( F}) for £ € N by

B 1 if Fj, € S
V(Fy) = {0 it £, ¢ S. (3.15)

8



Then we have

E[Z,] = ) 4(Fi)Prob (Fy € A(p))

k=1

= Zw Fy) <—+0( ))
B 1+pzw

_ mwpq(S)
= T + o(n) (3.16)

sincelim,, . ¢(S,n) = q(5).
Similarly to the calculation in Lemnia3.2, we compute

E[Z2] = Y w(F)v(F;)Prob (F; € A(p)) Prob (F; € A(p)|F; € A(p))

,j<n

— O(m)+2 3 G(F)b(E)Prob(F, € A(p)) Prob (Fj_i1 € A(p))

i+2<j<n

—ow+z Y wmeE) () (140 ()

i+2<j<n I+p

- O(n)+2<L)2 > w(E(E)

L+p/) =
2 npq(5)>2
= + . 3.17
o(n”) ( T+ (3.17)

In the calculation above, the only difficulty is in the secdadast line, where we argued that
the main term of theé and;j double sum was?¢(S5)?/2. To see this, note by symmetry that up
to contributions of siz€)(n) we can remove the restrictions oand; (and thus have each range
from 1 ton) if we then take half of the resulting sum. Thus, the restdaiouble sum becomes

5 (i (FY)) (ngn w(Fj)), which asn — oo converges td¢(S)n - ¢(S)n (up to an error of
sizeO(n), of course). Therefore, we have

Var(Z,) = E[Z%] —E[Z,)? = o(n?), (3.18)
which completes the proof. U

Corollary 3.5. Let Z,, be the random variable defined i, := #A,(p) NS, and letg(n) =
n'/?Var(Z,)~4. Then

E[Z.] ) Var(Z,)g(n)?
Prob ( |Z, — E[Z,]| > < ———2 = o). 3.19
(12 - Bz > 22 s — o) (3.19)
Proof. The proof follows immediately by Chebyshev’s inequalitydahe order of magnitude of
the various quantities. O

Armed with the above results, we can now prove our main theore
9



Proof of Theoreri 1]3Let

er(n) = n3,
_ 1 (E[Z,] ~ npq(S)
ea(n) = — (g(n) +'E[Zn] e ) (3.20)

Note that both are of ordex1). We combine Corollarids 3.3 ahd B.5 to see that with protigbil
1+ o(1) we have

npq(S)
<
Zy < L (ken),
n
s fpu —e1(n)). (3.21)
Therefore, for any > 0 we have with probability that
lim 22 < fi {0+ E0) g (3.22)
n—o00 n n—o0 1 — 61 (’n,)
A similar argument gives(S) as a lower bound fdim,, ., Z,,/W,, and thus with probability
lim Zn. = q(9), (3.23)
as desired. m

4. CONCLUSION AND FUTURE WORK

We were able to handle the behavior of almost all Zeckendecbohpositions by finding a
correspondence between these and a special random pnageasing the deterministic behavior
for eachm € [0, F},) with random behavior which is easier to analyze. The key mfsien was
that this correspondence held when choosirg1/¢%. This allowed us to prove not just Benford
behavior for the leading digits of summands in almost allkéedorf decompositions, but also
similar results for other sequences with density.

In future work we plan on revisiting these problems for moeegral recurrences, where there
is an extensive literature (see among others [[Al,|Day, DDKW/N\DDKMV/ EGNPT,[GT,
[GTNF,[Ke,[Len] MW/ MW2] Stel, Ste2]). Similar to other papirshe field (for example,
[KKMW] versus [MW], or [CEHMN1] versus[[CEFHMNR]), the arguemts are often easier for

the Fibonacci numbers, as we have simpler and more exmriitdlas at our disposal.
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