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ABSTRACT
We introduce and analyze the ordered Zeckendorf game, a novel combinatorial two-
player game inspired by Zeckendorf’s Theorem, which guarantees a unique decom-
position of every positive integer as a sum of non-consecutive Fibonacci numbers.
Building on the original Zeckendorf game—previously studied in the context of un-
ordered multisets—we impose a new constraint: all moves must respect the order
of summands. The result is a richer and more nuanced strategic landscape that
significantly alters game dynamics.

Unlike the classical version, where Player 2 has a dominant strategy for all n > 2,
our ordered variant reveals a more balanced and unpredictable structure. In partic-
ular, we find that Player 1 wins for nearly all values n ≤ 25, with a single exception
at n = 18. This shift in strategic outcomes is driven by our game’s key features:
adjacency constraints that limit allowable merges and splits to neighboring terms,
and the introduction of a switching move that reorders pairs.

We prove that the game always terminates in the Zeckendorf decomposition—now
in ascending order—by constructing a strictly decreasing monovariant. We further
establish bounds on game complexity: the shortest possible game has length exactly
n−Z(n), where Z(n) is the number of summands in the Zeckendorf decomposition

of n, while the longest game exhibits quadratic growth, with M(n) ∼ n2

2
as n → ∞.

Empirical simulations suggest that random game trajectories exhibit log-normal
convergence in their move distributions. Overall, the ordered Zeckendorf game en-
riches the landscape of number-theoretic games, posing new algorithmic challenges
and offering fertile ground for future exploration into strategic complexity, proba-
bilistic behavior, and generalizations to other recurrence relations.
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1. Introduction

1.1. History and Motivation

The Fibonacci sequence is given by F1 = 1, F2 = 2, and Fi = Fi +Fi−1 for i ≥ 2. Zeck-
endorf’s Theorem [9] states that every positive integer can be uniquely represented
as a sum of non-consecutive Fibonacci numbers, noting that in order to guarantee
uniqueness it is necessary that we have only one term equal to 1. This decomposition
can be efficiently obtained via a greedy algorithm, and its structural and probabilistic
properties have been extensively investigated across combinatorics, number theory,
and discrete mathematics. A game-theoretic interpretation of the theorem was first
proposed in [2], where two players alternately perform legal replacements on a multiset
of Fibonacci numbers until reaching the unique Zeckendorf decomposition. A formal
definition of the classical Zeckendorf Game is given below.

Definition 1.1 (The Two Player Zeckendorf Game). At the beginning of the game,
there is an unordered list of n 1’s: F1 ∧ F1 ∧ · · · ∧ F1. Players alternate turns, and on
each turn, a player may make one of the following moves.

(1) Merging: Replace Fi ∧ Fi+1 with Fi+2.
(2) Merging Ones: Replace F1 ∧ F1 with F2.
(3) Splitting: Replace Fi ∧ Fi with Fi+1 ∧ Fi−2 for i > 2.
(4) Splitting Twos: Replace F2 ∧ F2 with F3 ∧ F1.

The game ends when no further moves can be made.

In the classical Zeckendorf game, the order of summands is irrelevant—players
operate on unordered collections of Fibonacci numbers, applying merge or split op-
erations regardless of position. It is known that in this formulation, Player 2 has a
winning strategy for all n > 2, which significantly limits the strategic complexity of
the game [1].

To address these limitations and explore deeper combinatorial structures, we intro-
duce a new variant: the ordered Zeckendorf game. In our version, the game begins with
an ordered n-tuple of F1 = 1, and all allowed moves are restricted to adjacent ele-
ments. The resulting dynamics differ significantly from those in the unordered setting,
as adjacency constraints restrict player choices and emphasize positional strategy. Re-
markably, we find that for all n ≤ 25—with the sole exception of n = 18, where
Player 2 has a winning strategy—Player 1 can force a win. This is in sharp contrast
to the classical game and suggests that the introduction of order restores balance and
increases strategic depth.

Our variant introduces a novel move: the switch, which allows players to swap
adjacent elements out of order. This rule further enhances the game’s complexity,
producing larger game trees and requiring careful local planning. The interaction
between merging, splitting, and switching operations creates a rich environment for
strategic exploration, raising new algorithmic and theoretical questions.

This paper presents a comprehensive analysis of the ordered Zeckendorf game,
combining theoretical results with computational observations. We prove that every
game terminates in the ascending Zeckendorf decomposition of n, using a carefully
constructed monovariant. We also establish lower and upper bounds on game length
and propose a conjectural strategy for maximizing the number of moves. Finally, we
investigate the distribution of random play lengths and observe evidence suggesting
convergence to a log-normal distribution.
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Our work contributes to an expanding literature on Zeckendorf-type games and gen-
eralized decompositions. For readers seeking additional context or further directions,
we recommend the following references:

• Beckwith et al. [3], on average gap distributions in generalized Zeckendorf de-
compositions,

• Kopp et al. [7], on the number of summands in Zeckendorf decompositions,
• Gueganic et al. [6], on limiting distributions in generalized settings,
• Baird-Smith et al. [1], on the generalized Zeckendorf game,
• Boldyriew et al. [4], on extensions to non-constant recurrence relations,
• Cusenza et al. [5], on multiplayer and alliance-based Zeckendorf games.

1.2. Main Results

We use Fi to denote the ith Fibonacci number, where F1 = 1, F2 = 2, and the
recurrence relation Fi+1 = Fi + Fi−1 holds for all i ≥ 2.

Definition 1.2 (The Two-Player Ordered Zeckendorf Game). At the start of the
game, the state is an ordered list of n copies of F1: (F1, F1, . . . , F1). Players alternate
turns, and on each turn, a player may perform one of the following five legal moves.

(1) Merging: Replace a pair of adjacent terms (Fi, Fi+1) with Fi+2.
(2) Merging Ones: Replace (F1, F1) with F2.
(3) Splitting: Replace a pair (Fi, Fi) with (Fi−2, Fi+1), for i > 2.
(4) Splitting Twos: Replace (F2, F2) with (F1, F3).
(5) Switching: Swap adjacent elements (Fi, Fj) → (Fj , Fi) whenever i > j.

The game ends when no further moves can be applied; that is, when the list of Fibonacci
numbers is strictly increasing and no merge or split move is possible.

These sum-preserving operations derive naturally from the Fibonacci recurrence
and the constraints imposed by ordering. Merges and splits allow construction and
deconstruction of Fibonacci terms, while switches restore ascending order to enable
further operations. Together, they encode a localized, combinatorial decision-making
framework that is both computationally rich and strategically deep.

Our main theoretical results fall into three broad categories: termination and cor-
rectness of the game, bounds on its length, and structural conjectures about optimal
play.

Theorem 1.3 (Termination and Final State). The ordered Zeckendorf game always
terminates in a finite number of moves. Moreover, the final state is the Zeckendorf
decomposition of n, expressed as a strictly increasing sequence of Fibonacci numbers.

The proof of this result proceeds by defining a suitable monovariant that decreases
strictly with each move. The monovariant simultaneously tracks disorder (via inver-
sions) and total weight (via the sum of Fibonacci indices), ensuring that the game
cannot cycle and must converge. Importantly, the final configuration must be the
unique Zeckendorf decomposition, as all alternative representations are eliminated by
the move set. Since the game always terminates in a unique configuration, we can
define natural extremal questions: What is the minimal number of moves required?
What is the maximum? We begin with the lower bound.

Proposition 1.4 (Shortest Game). The shortest possible game has length n−Z(n),
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where Z(n) is the number of terms in the Zeckendorf decomposition of n.

This minimal length corresponds to a greedy strategy in which players always com-
bine adjacent pairs as quickly and effectivelly as possible to reach the final state with
minimal intermediate steps.

At the other extreme, we are interested in how long the game can be prolonged
under optimal play designed to delay termination.

Theorem 1.5 (Upper Bound on the Maximal Game Length). Let M(n) denote the
maximal length of the Ordered Zeckendorf game on n. Then

M(n) ≤ n(n− 1)

2
.

To complement this upper bound, we provide a lower bound for M(n) by proposing
a specific strategy that aims to maximize the game length.

Definition 1.6 (Long Game Strategy). The Long Game Strategy (LGS) is defined
as the following priority-based strategy.

(1) Perform switch moves (in any order).
(2) Combine adjacent ones, starting from the left.
(3) Perform split moves, starting from the right.
(4) Perform merge moves, starting from the left.

Conjecture 1.7 (Strategy for Maximum Length). The LGS has the longest game
length.

This conjecture is supported by exhaustive simulations, providing strong empirical
evidence for its effectiveness. Building on this, we establish a lower bound on the
maximal game length by following the LGS. This bound requires an auxiliary lemma
about the number of repetitions of Fi for i ≥ 3 under the LGS. As we establish
our lower bound for maximal game length by lower bounding the number of moves
necessary to satisfy certain criteria on the number of copies of F1 and F2 present in
the current decomposition, it is helpful to make the following distinction.

Definition 1.8 (Higher-Index Terms and Lower-Index Terms). We call a Fibonacci
number Fi a higher-index term if i ≥ 3, and a lower-index term if i ≤ 2.

Lemma 1.9 (Repetitions in Higher Index Terms). Suppose, at some moment, after
reordering and merging F1’s, the tuple has a form of

(lower-index terms, higher-index terms).

Then the higher-index terms subtuple is either of the following.

• There are no repeating Fibonacci numbers.
• There is a single repetition, of one of the following forms:

(1) F3, F3, Fi≥4, . . . ,
(2) F4, F4, Fi≥5, . . . ,
(3) . . . , Fj−x, Fj , Fj , Fi≥j+1, . . . , where x ≥ 3.

In particular, there is at most one repetition in the higher-index terms. A state-
transition graph is shown in Figure 1.1.
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Theorem 1.10 (Lower Bound of Maximal Game Length). The LGS takes at least

n2

2
− n logϕ(n) + o(n logϕ(n))

moves1.

It turns out that we can refine slightly a bound obtained in Theorem 1.5 by similar
expression:

Theorem 1.11 (Refined Upper Bound on the Maximal Game Length).

M(n) ≤ n2

2
− 1

32
n logϕ n + o(n logϕ n).

Combining the upper and lower bounds, we arrive at the following asymptotic
characterization.

Corollary 1.12 (Asymptotic Behavior of Maximal Game Length). We have

M(n) ∼ n2

2
as n → ∞.

Moreover, we can estimate an error by

n2

2
−M(n) = Θ(n logϕ(n)).

2. Termination and Final State

We begin by establishing an upper bound on maximal game length for the Ordered
Zeckendorf Game, providing as a corollary game termination and final state.

Proof of Theorem 1.5. We define a monovariant: for a state S = (Fi1 , . . . , Fik), let

f(S) =

k∑
j=1

(k + 1 − j)Fij .

Note that f(S) ≥
∑k

j=1 Fij = n.

Now, let us show that each legal move reduces this quantity.

• When merging (Fi, Fi+1) to Fi+2 in the jth position, the weights of all terms
to the left of (Fi, Fi+1) in S are decreased by 1. The change in the function at

1Here ϕ = 1+
√

5
2

is the golden ratio.
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(Fi, Fi+1) is

(k − j)Fi+2 − (k + 1 − j)Fi − (k − j)Fi+1

= (k − j)(Fi+2 − Fi − Fi+1) − Fi

= −Fi

< 0.

• When splitting (Fi, Fi) to (Fi−2, Fi+1), the weights on all other terms stay the
same. The change in the function is therefore

(k + 1 − j)Fi−2 + (k − j)Fi+1 − (k + 1 − j)Fi − (k − j)Fi

= (k − j)(Fi−2 + Fi+1 − 2Fi) + Fi−2 − Fi

= −Fi−1

< 0.

• When splitting (F2, F2) to (F1, F3), the weights on all other terms stay the same.
The change in the function is therefore

(k + 1 − j)F1 + (k − j)F3 − (k + 1 − j)F2 − (k − j)F2

= (k − j)(F1 + F3 − 2F2) + F1 − F2

= −1.

• When merging ones, the weights of all summands to the left are decreased by
at least 1, and the value of the function at the pair of ones decreases by 1, so
the function decreases.

• When switching (Fij , Fij+1), given that Fij > Fij+1 , the weights of all other
summands stay the same, so the change in the function is

(k + 1 − j)Fij+1 + (k − j)Fij − (k + 1 − j)Fij − (k − j)Fij+1

= Fij+1 − Fij

< 0.

Since f begins at n(n+ 1)/2, decreases by at least 1 per move, and ends at at least
n, the number of moves is bounded above by

(
n
2

)
. The final configuration must be

the ordered Zeckendorf decomposition because any configuration not satisfying the
Zeckendorf condition allows further moves, which consequentually proves Theorem
1.3.

Proof of Theorem 1.3. Proof of Theorem 1.3 follows as an immediate corollary
from the above proof of the Theorem 1.5.

3. Game Length: More Bounds and Extremes

In order to establish a lower bound for maximal game length, we first prove our
structural lemma verifying the existence of at most one repetition in the higher-
index terms of a current decomposition in a LGS game. A state-transition graph
accompanying this proof is shown in Figure 1.1.
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Proof of Lemma 1.9. We proceed by an inductive argument to prove the transi-
tions shown in Figure 1.1. Namely, at the start of the game, higher-index terms does
not contain any elements, so it is in No Repetitions state. We prove that regardless of
the move higher-index terms remains in one of four states described above.

For the rest of the proof we suppose there are at least two consecutive F2 terms.
Suppose that after reordering and merging F1’s we are in No Repetitions state. Then,
according to the priority of moves in the LGS algorithm, the next move will involve
splitting two rightmost F2’s.

In the first case, we remain in the same game state. In the second, if there is no
F3 at the beginning of higher-index terms, then we still remain in No Repetitions,
otherwise we transition into State 1.

In State 1, we have to split two F3’s into F1, F4, so that after reordering and merging
of F1’s higher-index terms will be of the form:

F4, Fi≥4, . . .

If i > 4, then we get back to the No Repetitions, otherwise we transition into State 2.
In the State 2, we have to split two F4’s into F2, F5 resulting higher-index terms to

be

F5, Fi≥5, . . . .

If i > 5 then we get to the No Repetitions state, or otherwise into State 3, as there
are no F3 or F4 terms directly to the left of the leftmost F5.

In the State 3, we have to split two Fj ’s making higher-index terms of the form

. . . , Fj−x, Fj−2, Fj+1, Fi≥j+1, . . . .

Note that since x ≥ 3, terms Fj−x and Fj−2 are different, so there will be no repetition
in this pair. The only repetition can be in the pair Fj+1, Fi≥j+1 if i = j + 1. Then we
remain in State 3, otherwise we go back to No Repetitions, concluding the proof.

Utilizing the above result, we are now able to establish our lower bound for maxi-
mum game length.

Proof of Theorem 1.10. For the lower bound, we begin the game by merging
the leftmost two copies of F1, then moving the copy of F2 created by this move to
the rightmost end of the tuple via n − 2 switch moves. We are left with the tuple
(F1, F1, ..., F1, F2). As no more switch moves remain, we repeat this process: letting k
denote the number of copies of F1 remaining, we merge the leftmost two copies of F1

into a copy of F2 in a single move and then perform k − 2 switch moves to move the
new copy of F2 to the right of the k−2 remaining copies of F1, yielding in k−1 moves
a tuple consisting of k − 2 copies of F1 to the left of n−k−2

2 copies of F2. We continue
iterating this process until k ≤ 2, noting that we begin with k = n and decrement k

by 2 at each iteration. Thus, this portion of the games terminates in
∑⌊n−2

2
⌋

j=0 n−2j−1

moves. If n is odd, this summation is equal to (n− 1) + (n− 3) + ... + 1 = n2

4 moves
and this portion of the game terminates at the tuple (F1, F2, F2, ...F2), and if n is

even, this summation is equal to (n− 1) + (n− 3) + ...+ 2 = (n−1)2

4 + n−1
2 = n2−1

4 and
this portion of the game terminates at the tuple (F2, F2, ..., F2).
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Table 3.1. Sequence of moves to introduce F1 on the left in case (2).

State Moves
(F2, . . . , F2, F3, F3, higher-index terms) 0
(F2, . . . , F2, F1, F4, higher-index terms) 1
(F1, F2, . . . , F2, F4, higher-index terms) ≥ k − cn

Table 3.2. Sequence of moves to introduce F1 on the left in case (2).

State Moves
(F2, . . . , F2, F2, F2, higher-index terms) 0
(F2, . . . , F2, F1, F3, higher-index terms) 1
(F1, F2, . . . , F2, F3, higher-index terms) ≥ k − cn − 2

Now, we suppose the tuple has size k and we write it as
(F2, . . . , F2, higher-index terms), where higher-index terms denote terms that
are at least F3. We consider the number of moves taken to convert it into the
(k−1)-tuple (F2, . . . , F2, higher-index terms). Note that the first k-tuple only contains
a copy of F1 when n is odd and k = ⌈n2 ⌉. We ignore this case in our calculations
as it only increases game length. By Lemma 1.9, there is at most one repeated
higher-index term, so the number of higher-index terms is bounded by ℓ − 1, where
Fℓ is the maximal Fibonacci summand in the Zeckendorf decomposition of n. By [2],
ℓ ≤ logϕ(

√
5n + 1/2), so the number of higher-index terms is bounded by

cn logϕ(
√

5n + 1/2) − 1. (3.1)

Hence, there are at least k − cn − 1 lots of F2 in the k-tuple.

We assume that there are at least four lots of F2 and that there are no lots of
F1. This holds for cn + 5 ≤ k ≤ ⌊n2 ⌋. Then after reordering and splitting the
higher-index terms, we have two cases:

(1) F3 is repeated,
(2) no higher-index terms are repeated.

Tables 3.1 and 3.2 show the paths to the state where the tuple has a copy of F1 on
the left in each of cases (1) and (2).

After some reordering moves and merging of higher-index terms, we have one of
the following cases:

(1) F3 is repeated,
(2) no higher-index terms are repeated.

The sequences of moves in each case are shown in Tables 3.3 and 3.4.
This shows that the number of moves between the game state becoming a k-tuple

Table 3.3. Sequence of moves until the first merge move in case (1).

State Moves
(F1, F2, . . . , F2, F3, F3, higher-index terms) 0
(F1, F2, . . . , F2, F1, F4, higher-index terms) 1
(F1, F1, F2, . . . , F2, F4, higher-index terms) ≥ k − cn − 2

(F2, F2, . . . , F2, F4, higher-index terms) ≥ k − cn − 1
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Table 3.4. Sequence of moves until the first merge move in case (2).

State Moves
(F1, F2, . . . , F2, F2, F2, higher-index terms) 0
(F1, F2, . . . , F2, F1, F3, higher-index terms) 1
(F1, F1, F2, . . . , F2, F3, higher-index terms) ≥ k − cn − 4

(F2, F2, . . . , F2, F3, higher-index terms) ≥ k − cn − 3

and a k − 1-tuple is at least 2k − 2cn − 5, with cn given by equation (3.1).

Now we count the number of moves:

M(n) ≥ n2

4
+

⌊n
2
⌋∑

k=cn+5

(2k − 2cn − 5)

=
n2

4
+ ⌊n

2
⌋
(
⌊n

2
⌋ + 1

)
− (cn + 5)(cn + 6) − (2cn + 5)

(
⌊n

2
⌋ − cn − 5

)
=

n2

2
− ncn + o(n log(n))

=
n2

2
− n logϕ(n) + o(n log(n))

as required.

By analyzing a least decrement of the monovariant from switching and merging
moves, we can now establish a refined upper bound with n logϕ(n) term.

Proof of Theorem 1.11. We shall think of F1’s as an ordered set of stones that are
rearranged in piles according to the rules of the game. For example, a pile F4 consists
of five F1 stones. Note that at the start of the game, each F1 forms a separate pile by
itself. We say that a stone is being manipulated if the pile in which it lies is involved
in splitting or merging.

Recall the monovariant defined in the proof of Theorem 1.5: for a current decom-
position S = (Fi1 , . . . , Fik), we let

f(S) =
k∑

j=1

(k + 1 − j)Fij .

We first show that each splitting and merging move decreases f by at least cN ,
with c a fixed constant and N the number of stones being manipulated in the move.
We also refer to a minimal decrement of f for each type of move, which is given in
the proof of Theorem 1.5.

We consider four cases.

• When merging Fi−2, Fi−1, we have N = Fi, and f decreases by at least Fi−2 ≥
1
4Fi = 1

4N .
• When splitting Fi, Fi, we have N = 2Fi, and f decreases by at least Fi−1 ≥

1
2Fi = 1

4N .

• When splitting F2, F2, we have N = 4, and f decreases by 1 = 1
4N .

• When merging F1, F1, f decreases by at least 1. Noting that N = 2, we have
1 ≥ 1

4N .
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Hence, taking c = 1
4 , our claim follows. So, to estimate the minimum amount that f

decreases due to merging and splitting moves, we can estimate the individual contri-
bution of each stone. As we have shown that f decreases by at least c each time an
individual stone is manipulated, then overall, f decreases by at least∑

i

c · #of manipulations of i-th stone.

Let Fl be the largest term in Zeckendorf decomposition of n. At the end of the game,
a pile Fl contains Fl stones. Note that when some stone is being manipulated, the
index of the pile in which it lies can increase by at most 2: when merging Fi−2, Fi−1,
the largest index increment of a stone is from a pile Fi−2 to a pile Fi; when splitting
Fi, Fi or combining F1, F1, the largest index increment of a stone is from a pile Fi to
a pile Fi+1.

Thus, each stone that ended the game in the pile Fl was manipulated at least
l − 1

2
times. Note that Fl ≥ n/2 and l−1 ≥ logϕ(n)/2 for sufficiently large n. So, as a result
of splitting and merging moves, f decreases in the course of the game by at least

cFl
l − 1

2
≥ c · n

2
·

logϕ n

4
=

1

32
n logϕ n.

Thus, as we showed in the proof of Theorem 1.5 that each switching move decreases
f by at least 1, there can be no more than

n(n− 1)

2
− 1

32
n logϕ n

switching moves. The total number of splitting and merging moves cannot exceed
3n + 1 by [?, Theorem 1.3]. Hence, the total number of moves is at most:

n(n− 1)

2
− 1

32
n logϕ n + 3n + 1 =

n2

2
− 1

32
n logϕ n + o(n logϕ n),

as required.

The longest-game strategy described in Conjecture 1.7 is supported by empirical
simulations. However, a rigorous proof establishing its optimality remains an open
problem.

We also remark that in the proof above, we can improve a constant before n logϕ(n)
term up to 1/(8ϕ) ≈ 0.077 by noting that, asymptotically, Fl ≥ n/ϕ and l ≥ logϕ(n).
However, assuming that LGS algorithm indeed gives a maximal game length, numer-
ical simulations show that the constant before the n logϕ(n) term is at least 0.4 and
should be much lower that 1, as demonstrated on Figure 6.3. Hence, while Theorem

1.10 and Theorem 1.11 allow us to establish asymptotic behaviour of
n2

2
− M(n),

they contain too crude estimates to give an insight for the explicit constant before
n logϕ(n).

We now establish a sharp lower bound for minimum game length, remarking that
this is equivalent to the minimum game length of the classical Zeckendorf Game and
is achieved via a game where no switch moves occur.
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Proof of Proposition 1.4. To prove the following proposition, we use the total
number of summands as a monovariant, which decreases with each move. Note that
switch and split moves preserve the total number of summands, while a merge reduces
it by one. Since the game starts with n summands (all F1) and ends with Z(n)
summands (the number of terms in the Zeckendorf decomposition of n), the minimum
number of moves required to reach the terminal state is n− Z(n).

This bound is achieved by applying the greedy algorithm for constructing the Zeck-
endorf decomposition with the fewest possible moves. Starting from the initial config-
uration of n copies of F1, we repeatedly merge adjacent Fibonacci numbers from right
to left to create the largest possible Fibonacci term at each step. Once the largest term
is formed, we leave it in place and recursively apply the same strategy to the remain-
ing entries to its left. Each merge reduces the total number of summands by one, and
the process continues until the configuration matches the Zeckendorf decomposition
of n.

It is worth highlighting an intriguing phenomenon that emerges when analyzing
randomly played games, in which each legal move is chosen with equal probability.
The empirical evidence gathered from extensive simulations motivates the following
conjecture.

Conjecture 3.1. As n → ∞, the distribution of the number of moves in a randomly
played game, where all legal moves are equally likely, converges to a log-Gaussian
distribution. Under these conditions, the game dynamics are sufficiently symmetric
such that each player is equally likely to win.

This conjecture is supported by simulation data presented in Figure 6.1 and Fig-
ure 6.2, which suggest that the observed move counts exhibit the heavy-tailed, right-
skewed characteristics consistent with a log-Gaussian distribution. Furthermore, the
symmetry in the outcome frequencies aligns with the theoretical expectation of equal
win probabilities for both players under a uniformly random move selection process.

4. Game Winning Strategy

Through exhaustive simulations, we investigated the existence of deterministic win-
ning strategies for both players in the Two-Player Ordered Zeckendorf Game. Our
computational experiments reveal that Player 1 possesses a winning strategy for all
initial values up to n = 17. At n = 18, we observe the first instance where Player
2 can force a win under optimal play, indicating a potential transition point in the
game’s strategic landscape. Interestingly, in all simulated games for n ≤ 25, Player 2
is only able to force a win once, suggesting that Player 1 generally has a significant
advantage, especially for smaller values of n.

Due to the combinatorial explosion in the number of game states and legal move
sequences, a full resolution of the winner for n > 25 was computationally infeasible.
The structure of the game tree grows rapidly with n, and optimal strategies require
deep lookahead and pruning heuristics that go beyond naive enumeration.

The existence of a general winning strategy for either player remains an open prob-
lem. Furthermore, due to the game’s nontrivial dynamics and the subtle impact of
move orderings on future legal moves, it is possible that the game exhibits regions of
alternating player advantage or chaotic behavior in terms of outcome predictability.
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Future work could include developing a minimax-based heuristic search with alpha-
beta pruning to more efficiently explore deeper game trees and extract structural
insights into what governs winning positions. Additionally, identifying game invariants
or monotonic features that correlate with winning states could pave the way toward
a formal characterization of optimal strategies.

5. Conclusion

We have introduced and analyzed a novel ordered variant of the Zeckendorf game.
We established key theoretical results, including termination guarantees, asymptotic
bounds on the maximum number of moves, and lower bounds on the minimal number
of required moves. Our study combines combinatorial structure with game dynamics,
revealing rich mathematical behavior in even small initial configurations.

Despite our progress, many open questions remain.

• Optimal Strategy Characterization: Can we rigorously prove the existence and
form of an optimal winning strategy for Player 1 or Player 2 across all n? Is
the observed dominance of Player 1 for small n a universal phenomenon, or do
other exceptions arise at larger scales?

• Maximal Game Length Proof: While we conjecture a quadratic asymptotic
growth and provide a priority-based strategy achieving near-maximal length,
a formal proof of optimality remains open. Can analytic or combinatorial tools
be developed to close this gap?

• Generalizations to Other Recurrences: How does the introduction of order and
switching moves affect games based on generalized Fibonacci sequences, such
as k-bonacci sequences or non-constant recurrences? Do analogous termination
and length results hold?

• Probabilistic Analysis of Random Play: Our empirical evidence suggests a log-
Gaussian distribution of move counts under uniform random play. Can this
distribution be derived rigorously? What are the deeper probabilistic and ergodic
properties of the random dynamics?

• Computational Complexity and Algorithmic Approaches: Given the rapid
growth of the game tree, can efficient algorithms or heuristics be developed to
determine winning positions for larger n? Are there polynomial-time methods
to approximate optimal strategies or game lengths?

• Structural Invariants and Monovariants: Are there additional invariants or
monotonic quantities beyond those currently identified that govern the evolution
of game states? How might these guide strategic reasoning or simplify analysis?

• Multiplayer or Alliance Variants: Extending to more than two players or coop-
erative alliances—how do order and adjacency constraints reshape the strategic
landscape? Can these variants be fully characterized or related to known com-
binatorial game theory frameworks?

These questions point toward deeper connections with additive number theory, algo-
rithmic game theory, and dynamical systems. We believe this variant offers a promising
platform for further exploration of combinatorial games and integer representations.

All simulations and visualizations used in our analysis were implemented in Python
and C++, and the full codebase is publicly available at https://github.com/

vraneskoy/zeckendorf_ordered_game.
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6. Appendix

The figures 6.1 and 6.2 provide computational evidence in support of Conjecture 3.1.
Corollary 1.12 gives us an error term in our upper bound on maximal game length

of n2/2−M(n) = Θ(n logϕ(n)). The figure 6.3 provides an estimation for the constant
before the n logϕ(n) term.
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1 2

3

No Repetitions

Figure 1.1. Directed graph showing the possible ways to move between game states in Lemma 1.9

Figure 6.1. Frequency graphs of the number of moves in 10,000 simulations of the Zeckendorf Game with random

moves when n = 150 with the best fit log Gaussian over the data points.

Figure 6.2. The distribution of outcomes for 10,000 random games for n = 150.
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Figure 6.3. As n → ∞, the ratio
n2

2
−M(n)

n logϕ(n)
converges to a number bigger than 0.4 and much lower than 1.
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