
A COLLECTION OF CENTRAL LIMIT TYPE RESULTS INGENERALIZED ZECKENDORF DECOMPOSITIONSRAY LI AND STEVEN J. MILLERAbstrat. Zekendorf's Theorem states that if the Fibonai numbers are indexed as F1 = 1,
F2 = 2, F3 = 3, F4 = 5, . . . , then every positive integer an be written uniquely as thesum of non-adjaent Fibonai numbers. This result an be generalized to ertain lassesof linear reurrene relations {Gn} with appropriate notions of deompositions. For manydeompositions, the distribution of the number of summands in the deomposition of an
M ∈ [Gn, Gn+1) is known to onverge to a Gaussian as n → ∞. This work disusses a moregeneral approah to proving this kind of asymptoti Gaussian behavior that also bypassestehnial obstrutions in previous approahes. The approah is motivated by the binomials
an,k =

(

n

k

). The binomials satisfy the reursion an,k = an−1,k + an−1,k−1 and are wellknown to have the property that the random variables {Xn}
∞

n=1 given by Pr[Xn = k] =
an,k/

∑

∞

i=0
an,i onverge to a Gaussian as n → ∞. This new approah proves that appropriatetwo-dimensional reurrenes exhibit similar asymptoti Gaussian behavior. From this, we anreprove that the number of summands in deompositions given by many linear reurrenerelations is asymptotially Gaussian and additionally prove that for any non-negative integer

g, the number of gaps of size g in the deomposition of an M ∈ [Gn, Gn+1) also onverges toa Gaussian as n → ∞. 1. Introdution1.1. History. The Fibonai numbers is a fasinating sequene with many properties andinteresting relationships; see for example [18℄. Zekendorf [30℄ proved that if the Fibonainumbers are de�ned by F1 = 1, F2 = 2, F3 = 3, F4 = 5, and in general Fn+1 = Fn + Fn−1,then every integer an be written as a sum of non-adjaent terms. The standard proof is bythe greedy algorithm: to deompose an integer M , repeatedly subtrat from M the largestFibonai number less than or equal to M . It is impossible that this proess hooses twoonseutive Fibonai numbers Fn−1 and Fn, as it would have hosen Fn+1 instead, and forthe same reason this proess never hooses the same Fibonai number twie.Zekendorf's theorem an be generalized to sequenes other than the Fibonai numbers.Consider for example the powers of 10 given by the reurrene Gn = 10Gn−1 and having values
G1 = 1, G2 = 10, G3 = 100, and in general Gn = 10n−1. For this sequene, a legal deompo-sition of a positive integer M is simply its base-10 representation. Note these deompositionsdisallow 10 or more opies of every distint term in the deomposition, while Fibonai de-ompositions disallow onseutive terms in deompositions. A general Zekendorf's theoreman be stated for linear reurrenes with nonnegative oe�ients and appropriately de�nedinitial onditions, and the proof has the same idea as the Fibonai ase (see Theorem 1.2).For even more examples of deompositions, see [1, 11℄ for signed deompositions, [10℄ for f -deomposition, and [6, 7, 8℄ for some reurrenes where the leading term vanishes, whih anlead to di�erent limiting behavior.The seond named author was partially supported by NSF grants DMS1265673 and DMS1561945. Theauthors thank their olleagues from Math 21-499 at Carnegie Mellon University and CANT 2016 for manyhelpful onversations.MONTH 2016 1



THE FIBONACCI QUARTERLYMany questions an be asked about deompositions. To begin, one must understand theaverage number of summands in a deomposition. Lekkerkerker [21℄ proved for Fibonainumbers that the average number of summands of an M ∈ [Fn, Fn+1) is n/(ϕ2 + 1), where
ϕ is the golden mean. For many general sequenes {Gn}, the average number of summandsin the orresponding deomposition of an M ∈ [Gn, Gn+1) is An + B + o(1) for onstants Aand B, meaning the quantity grows linearly [4, 9, 14, 15, 16, 17, 20℄ and lower order terms arewell behaved [25℄. Note that when {Gn} is powers of a �xed base b, the number of summandsorresponds to the sum of digits funtion.After determining the mean, it remains to determine the variane, or in general, the distri-bution of the number of summands. For many deompositions, �utuations about the meanhave been shown to onverge to a Gaussian [3, 8, 13, 15, 16, 17, 20, 23, 24, 25, 26, 27, 28, 29℄.Kolo�glu, Kopp, Miller and Wang [19℄ adopt a more ombinatorial approah to prove that thenumber of summands in the deomposition for Fibonai numbers onverges to a Gaussian.They expliitly ount with Stirling's formula the number of M with exatly k summands in thedeomposition, whih they prove is a binomial oe�ient. Using this approah they also exatlydetermine the mean and variane of the number of summands over M ∈ [Fn, Fn+1). Millerand Wang [25℄ extend these results to general linear reursive sequenes with positive integeroe�ients; the method from [19℄ annot be arried over diretly as there is not a tratablelosed form expression for the number of M with exatly k summands. Their approah usesappropriately seleted generating funtions to ompute the moments of the number of sum-mands and show that suh moments, appropriately normalized, onverge to the moments ofthe standard normal.Additionally we an analyze the gaps of deompositions. One an ask the same questionsabout the mean, variane, and general distribution of the gaps of deomposition. Bekwith etal. [2℄ and Bower et al. [5℄ (see also [12℄) proved results on the distribution of gaps in manygeneralized deompositions arising from linear reurrenes. In partiular, they proved that theaverage number of size-g gaps in an M ∈ [Gn, Gn+1) deays exponentially as g grows anddetermined that the distribution of the longest gap between summands behaves similarly tothe distribution of the longest run of heads in tossing a biased oin. Li and Miller [22℄ provethe analogue of Miller and Wang's [25℄ results for gaps, proving linearity of mean and varianeas well as asymptoti normality for size-g gaps.We survey results on generalized Zekendorf deompositions in �1.2 and �1.3 and outlineproofs of asymptoti Gaussianity in �2 and �3. Though these results an be established ingeneral [22℄, we fous on the ase of Fibonai numbers to highlight the ideas and tehniques.1.2. Deompositions. Before our main disussion, we introdue some notation and basifats about Zekendorf Deompositions.De�nition 1.1. A positive linear reurrene sequene (PLRS) is a sequene {Gn} satisfying

Gn = c1Gn−1 + · · · + cLGn−L (1.1)with non-negative integer oe�ients ci with c1, cL, L ≥ 1 and initial onditions G1 = 1 and
Gn = c1Gn−1 + c2Gn−2 + · · ·+ cn−1G1 + 1 for 1 ≤ n ≤ L.We an generalize Zekendorf's Theorem to PLRS. Essentially, the notion of a legal deom-position means that when we write an M as a sum of terms of the sequene that we annotuse the reurrene relation to replae onseutive terms with another term in the sequene.2 VOLUME, NUMBER



CENTRAL LIMIT TYPE RESULTS IN ZECKENDORF DECOMPOSITIONSTheorem 1.2 (Generalized Zekendorf Theorem). Let {Gn} be a positive linear reurrenesequene. For eah integer M > 0, there exists a unique legal deomposition
M =

N
∑

i=1

aiGN+1−i (1.2)with a1 > 0 and the other ai ≥ 0, and one of the following two onditions, whih de�ne a legaldeomposition, holds.(1) We have N < L and ai = ci for 1 ≤ i ≤ N .(2) There exists an s ∈ {1, . . . , L} suh that a1 = c1, a2 = c2, . . . , as−1 = cs−1 and as < cs,
as+1, . . . , as+ℓ = 0 for some ℓ ≥ 0, and {bi}

N−s−ℓ
i=1 (with bi = as+ℓ+i) is either legal orempty.Given {Gn} a PLRS, and positive integer M , we an rewrite the legal deomposition givenby Theorem 1.2 as

M =

N
∑

i=1

aiGN+1−i = Gi1 +Gi2 + · · ·+Gik . (1.3)for some positive integer k = a1+a2+· · ·+aN and i1 ≥ i2 ≥ · · · ≥ ik. With this representation,we say M has k summands in the deomposition (or simply, M has k summands). The gapsin the deomposition of M are the numbers i1 − i2, i2 − i3, . . . , ik−1 − ik (for example, 101 =
F10+F5+F3+F1, and thus has gaps 5, 2, and 2). We often refer to the gaps in the deompositionof M as simply the gaps of M . Let kΣ(M) denote the number of summands of M and kg(M)the number of gaps of size g in M 's deomposition. Note that if M has k summands, then Mhas k − 1 gaps. In this sense, kg(M) is a deomposition of kΣ(M), as

kΣ(M) = 1 +
∞
∑

g=0

kg(M). (1.4)Throughout this paper we let KΣ,n denote the random variable equal to kΣ(M) for an Mhosen uniformly from [Gn, Gn+1) and let Kg,n denote a random variable equal to kg(M) foran M hosen uniformly from [Gn, Gn+1).1.3. Asymptoti normality theorems. Versions of the next result are known for manysequenes; see for example [13, 15, 16, 17, 20, 23, 25, 26, 27, 28, 29℄ (we espeially follow belowthe approah in [25℄, as the authors there work with PLRS). Note that the �rst part of thetheorem regarding µn generalizes Lekkerkerker's [21℄ work for Fibonai numbers.Theorem 1.3. Let {Gn} be a PLRS. Let KΣ,n be the random variable de�ned above andsuppose it has mean µn and variane σ2
n. There exists positive onstants A and C and realonstants B and D suh that

µn = An+B + o(1)

σ2
n = Cn+D + o(1). (1.5)Furthermore (KΣ,n − µn)/σn onverges weakly to the standard normal N(0, 1) as n → ∞.Li and Miller [22℄ prove the following result on gaps of deompositions. The omputationof µg,n was known by Bower et al. [2℄, exept for the lower order terms. Bower et al. furtheromputed the leading oe�ient A. Li and Miller provide formulas for expliitly omputing Aand C from the reurrene relation, though they do not follow through the omputation as itis not neessary for their main result on asymptoti Gaussianity. To the authors' knowledge,MONTH 2016 3



THE FIBONACCI QUARTERLYthe rest of Theorem 1.4 is new. Note that in the ase of the Fibonai numbers eah M hasno gaps of size 0 or 1 so the random variable Kg,n is always 0. We therefore must be arefulto exlude suh ases from the result.Theorem 1.4 (Gaussian Behavior for Gaps of Deompositions). Let g ≥ 0 be a �xed positiveinteger and let {Gn} be a PLRS with the additional onstraint that all cis are positive. Let Kg,nbe the random variable de�ned above and suppose it has mean µg,n and variane σ2
g,n. Supposethere exists n0 ∈ N suh that Kg,n is non-trivial for n ≥ n0. There exists positive onstants Aand C and real onstants B and D suh that

µg,n = An+B + o(1)

σ2
g,n = Cn+D + o(1). (1.6)Furthermore (Kg,n − µg,n)/σg,n onverges weakly to the standard normal N(0, 1) as n → ∞.In the next setion, we outline two proofs of Theorem 1.3 when {Gn} is the Fibonainumbers. The �rst is given by Miller and Wang [25℄ and the seond is given by Li and Miller[22℄. We then show in the following setion how the later proof extends to proving Theorem1.4. 2. Gaussian Number of Summands2.1. Generating Funtion Approah. We sketh the proof by Miller and Wang [25, 26℄of Theorem 1.3 in this subsetion. Though the theorem holds in general, we restrit ourdisussion here to the Fibonai numbers to highlight the main ideas, and we fous on theproof of asymptoti normality, as the linearity of mean and variane follow as intermediateresults.Miller and Wang use the Method of Moments to prove onvergene to a Gaussian. TheMethod of Moments states that if the moments of a sequene of random varianes onvergesto the moments of a Gaussian distribution, the sequene onverges in distribution to thatGaussian. Reall that the odd moments of the standard normal N(0, 1) are 0 and that theeven moments are (2m− 1)!! = (2m− 1) · (2m− 3) · · · 1.Lemma 2.1 (Method of Moments). Suppose X1,X2, . . . are random variables suh that forall integers m ≥ 0, we have

lim
n→∞

E[X2m
n ] = (2m− 1)!! and lim

n→∞
E[X2m+1

n ] = 0. (2.1)Then the sequene X1,X2, . . . onverges weakly in distribution to the standard normal N(0, 1).Thus, setting
µ̃n(m) = E [(KΣ,n − µn)

m] , (2.2)we have
E

[(

KΣ,n − µn

σn

)m]

=
µ̃n(2m)

µ̃n(2)m
(2.3)where µn = E[KΣ,n] and σ2

n = Var[KΣ,n]. It thus su�es to prove for all m
lim
n→∞

µ̃n(2m)

µ̃n(2)m
= (2m− 1)!! and lim

n→∞

µ̃n(2m+ 1)

µ̃n(2)
m+ 1

2

= 0. (2.4)Our goal therefore is to ompute µ̃n(m) for all nonnegative integers m.4 VOLUME, NUMBER



CENTRAL LIMIT TYPE RESULTS IN ZECKENDORF DECOMPOSITIONSFor n, k ≥ 0, let pn,k be the number of M ∈ [Fn, Fn+1) with exatly k summands in itsZekendorf deomposition. Then Pr[KΣ,n = k] =
pn,k∑

∞

k=0
pn,k

. Note that if M ∈ [Fn, Fn+1), thenthe deomposition of M begins with Fn. Furthermore
M − Fn ∈ [0, Fn−1) = {0}

n−2
⋃

i=1

[Fi, Fi+1), (2.5)from whih we establish
pn,k = pn−2,k−1 + pn−3,k−1 + · · ·

pn−1,k = pn−3,k−1 + pn−4,k−1 + · · · . (2.6)Subtrating the seond line from the �rst gives the two-dimensional reursive formula
pn,k = pn−1,k + pn−2,k−1. (2.7)Let

G(x, y) :=
∑

n,k≥0

pn,kx
kyn

Pn(x) :=

∞
∑

k=0

pn,kx
k

Ωn := Pn(1) =

∞
∑

k=0

pn,k = Fn+1 − Fn (2.8)so that
G(x, y) =

∑

n≥0

Pn(x)y
n. (2.9)To �nish the problem it su�es to ompute Pn(x). Indeed, we know Pn(1) =

∑

k≥0 pn,k =

Fn+1 − Fn and if we know Pn(x), we an determine
µn :=

P ′
n(1)

Pn(1)
. (2.10)Taking appropriate derivatives of Pn(x)/x

µn , we have
µ̃n(1) = E[(KΣ,n − µn)

0] = 1

µ̃n(1) = E[KΣ,n − µn] = 0

µ̃n(2) = E[(KΣ,n − µn)
2] =

1

Pn(1)
· x

(

x

(

Pn(x)

xµn

)′)′
∣

∣

∣

∣

∣

x=1

µ̃n(3) = E[(KΣ,n − µn)
3] =

1

Pn(1)
· x

(

x

(

x

(

Pn(x)

xµn

)′)′
)′∣
∣

∣

∣

∣

x=1

(2.11)and so on, whih allows us to ompute the moments µ̃n(m) of KΣ,n − µn.Miller and Wang's tehnique for omputing Pn(x) is the following. Using (2.7) and theinitial onditions of the reursion, we have
G(x, y) =

xy

1− y − xy2
. (2.12)MONTH 2016 5



THE FIBONACCI QUARTERLYDeomposing this with partial frations, we write
−

y

y1(x)− y2(x)

(

1

y − y1(x)
−

1

y − y2(x)

) (2.13)where y1(x) and y2(x) are the roots of 1− y − xy2. Rewriting 1
y−y1(x)

as −(1− y
y1(x)

)−1 andusing power series expansion, we an ompute Pn(x).This onludes the sketh of Miller and Wang's proof of Theorem 1.3 when {Gn} is theFibonai numbers. For general reursions {Gn}, the proof is similar, but the more ompliatedgenerating funtions lead to signi�antly more involved omputations.2.2. Reursive Generating Funtion Approah. Li and Miller [22℄ present a new approahfor obtaining Central Limit type results like Theorem 1.3, and while their main result is provingthe asymptoti normality of the number of gaps, we �rst illustrate the approah by disussingits appliation to the number of summands.While the previous approah uses partial frations to ompute Pn(x), this new approahomputes Pn(x) reursively, using the nie reursive behavior of the oe�ients in (2.7). Thishas several bene�ts. First, we don't need to worry about initial onditions of the reurrene.Not only does this save tedious alulations, but it shows that the reurrene relation of pn,kis the only thing on whih Gaussian behavior depends. Additionally, this approah gives ageneral framework for haraterizing Gaussian behavior arising in two-dimensional reursions,from whih we an also prove that the number of gaps approahes a Gaussian.To begin, de�ne
Pn(x) :=

∞
∑

k=0

pn,kx
k

Ωn := Pn(1) =

∞
∑

k=0

pn,k = Fn+1 − Fn (2.14)as before and additionally de�ne
P̃n,0(x) :=

Pn(x)

xµ+1

P̃n,m(x) := (xP̃n,m−1(x))
′ (2.15)so that

E [(KΣ,n − µn)
m] = µ̃n(m) =

P̃n,m(1)

Ωn
. (2.16)Using (2.7) we dedue reursive relationships for Pn(x), Ωn and µn:

Pn(x) =

∞
∑

k=0

pn,kx
k =

∞
∑

k=0

(pn−1,k + pn−2,k−1) x
k = Pn−1(x) + xPn−2(x)

Ωn = Pn(1) = Pn−1(1) + 1 · Pn−2(1) = Ωn−1 +Ωn−2

µn =
P ′
n(1)

Ωn
=

P ′
n−1(1) + 1 · P ′

n−2(1) + Pn−2(1)

Ωn
=

Ωn−1

Ωn
µn−1 +

Ωn−2

Ωn
(µn−2 + 1).(2.17)Indution also gives reursive formulas for P̃n,m and µ̃n(m)6 VOLUME, NUMBER



CENTRAL LIMIT TYPE RESULTS IN ZECKENDORF DECOMPOSITIONS
P̃n,m =

m
∑

ℓ=0

(

m

ℓ

)

(

(µn−1 − µn)
ℓP̃n−1,m−ℓ(x) · x

µn−1−µn

+ (1 + µn−2 − µn)
ℓP̃n−2,m−ℓ(x) · x

1+µn−2−µn

)

µ̃n(m) =

m
∑

ℓ=0

(

m

ℓ

)(

Ωn−1

Ωn
(µn−1 − µn)

ℓµ̃n−1(m− ℓ) +
Ωn−2

Ωn
(1 + µn−2 − µn)

ℓµ̃n−2(m− ℓ)

)

.(2.18)The reursive formula for µn lets us prove µn is linear. Finally, (2.18) allows us to omputethe moments. By our earlier disussion, the following lemma implies Theorem 1.3.Lemma 2.2. For eah integer m ≥ 0, there exist polynomials Q2m of degree exatly m and
Q2m+1 of degree at most m suh that

µ̃n(2m) = Q2m(n) + o(1)

µ̃n(2m+ 1) = Q2m+1(n) + o(1). (2.19)Furthermore, there exists a onstant α suh that the leading oe�ient of Q2m is (2m−1)!!·αm.The idea for the proof is as follows. First, the lemma is true for m = 0 as µ̃n(0) = 1 and
µ̃n(1) = 0 for all n. For higher moments, note in the alulation of µn(m) in (2.18) thatthe oe�ients µn−i(m) of the mth moments sum to 1, the oe�ients of µ̃n−i(m − 1), the
(m−1)th moments, sum to 0, and the oe�ients of µ̃n−i(m−2), the (m−2)th moments, sumto (m2 ) · (onstant). This allows us to pin down the polynomial behavior of µn(m). The idea isthat if A is a degree d polynomial, then A(1) +A(2) + · · ·+A(n) is a degree d+1 polynomialin n. For example, by (2.18), eah seond moment is the weighted average of previous seondmoments plus a onstant, so the seond moments should be linear in n. Similarly, assuming thelemma is true for m = 0 and m = 1, eah fourth moment is the weighted average of previousfourth moments plus a linear in n, so the fourth moments grow quadratially in n. Beausethe oe�ients of the (m − 1)th moments in (2.18) sum to 0, the degrees of the polynomialsinrease by one with every two values of m as opposed to every one.The atual proof of this lemma is more involved as the oe�ients for our reursion (2.18) arenot �xed. For example, the oe�ients for µ̃n−1(m) and µ̃n−2(m) are Ωn−1/Ωn and Ωn−2/Ωn,respetively, whih vary with n. However these oe�ients onverge quikly to 1/ϕ and 1/ϕ2,respetively, where ϕ is the golden mean, so the moments µ̃n(m) still behave as we expet. Fora full proof, see Setion 2.3 of [22℄, partiularly Lemma 2.12.3. Gaussian Number of Gaps3.1. General Two Dimensional Reursions. The tehnique in �2.2 generalizes to two-dimensional reursions.Theorem 3.1 (Central Limit Theorem in 2D Reursions). Let i0 and j0 be positive integers.Let ti,j be real numbers for 1 ≤ i ≤ i0, 0 ≤ j ≤ j0 suh that for all i, t̂i :=

∑j0
j=0 ti,j ≥ 0.Suppose that the polynomial T (x) = xi0 −

∑i0
i=1 t̂ix

i0−i has a unique, multipliity 1, maximummagnitude root λ1 > 0. Suppose pn,k is a two-dimensional reurrene sequene satisfying, forMONTH 2016 7



THE FIBONACCI QUARTERLY
n ≥ n0,

pn,k =

i0
∑

i=1

j0
∑

j=0

ti,jpn−i,k−j. (3.1)Suppose further that pn,k ≥ 0 for all n and k, pn,k = 0 when n < 0 or k < 0, �nitely many pn,kare nonzero for n < n0, and ∑∞
i=0 pn,i = Θ(λn

1 ). Let Xn be the random variable with mean µnand variane σ2
n whose mass funtion is proportional to pn,k over varying k so that

Pr[Xn = k] =
pn,k

∑∞
i=0 pn,i

. (3.2)There exist onstants A,B,C and D suh that µn = An+B + o(1), σ2
n = Cn+D+ o(1), and

A and C are expliitly omputable from the ti,js. Furthermore, if C is positive, (Xn − µn)/σnonverges weakly to the standard normal N(0, 1) as n → ∞.Outside of the tehnial requirement that ∑∞
i=0 pn,i = Θ(λn

1 ), there is no onstraint on theinitial onditions of pn,k. Note that in general the asymptoti behavior of reursive sequenesis not independent of the initial onditions. For example, the reursion bn = 5bn−1 − 6bn−2has the general solution bn = α · 3n + β · 2n, but if we hoose initial onditions b1 = 2, b2 = 4,then we have bn = 2n and the 3n term of the general solution vanishes. For this reason thetehnial onstraint is required to ensure the largest term of ∑∞
i=0 pn,i does not vanish.For intuition on the theorem, onsider the spei� ase of the two-dimensional reurrene

an,k = an−1,k+an−1,k−1 with initial ondition a0,0 = 1. This reurrene produes the binomials
an,k =

(

n
k

), and the random variables {Xn}
∞
n=1 given by Pr[Xn = k] = an,k/

∑∞
i=0 an,i are wellknown to onverge to a Gaussian as n → ∞. Additionally, for any disrete random variable

Yn taking on �nitely many integer values q1, . . . , qb ≥ 0 with probabilities r1, . . . , rb summingto 1, the Theorem applied to the sequene an,k =
∑b

i=1 rian−1,k−qi gives the lassial CentralLimit Theorem for Yn.We now show that Theorem 3.1 applies to gaps in Fibonai numbers. For disussion ongeneral reursions, see [22℄.Fix an integer g ≥ 2. Let pg,n,k denote the number of M ∈ [Fn, Fn+1) with exatly k gaps ofsize g in its deomposition. The deomposition of anM ∈ [Fn, Fn+1) begins with Fn andM−Fnis in [0, Fn−1). The term Fn is part of a gap of size g if and only if M − Fn ∈ [Fn−g, Fn−g+1).Thus we may write
pg,n,k =

(

n−g−1
∑

i=1

pg,i,k

)

+ pg,n−g,k−1 +





n−2
∑

i=n−g+1

pg,i,k





=

(

n−2
∑

i=1

pg,i,k

)

+ pg,n−g,k−1 − pg,n−g,k. (3.3)Shifting indies gives
pg,n−1,k =

(

n−3
∑

i=1

pg,i,k

)

+ pg,n−g−1,k−1 − pg,n−g−1,k. (3.4)Subtrating (3.4) from (3.3) and simplifying gives
pg,n,k = pg,n−1,k + pg,n−2,k + (pg,n−g,k−1 − pg,n−g,k − pg,n−g−1,k−1 + pg,n−g−1,k). (3.5)We an hek (3.5) satis�es the requirements for Theorem 3.1, implying Theorem 1.4. As atehnial detail, we must hek that the C given by Theorem 1.4 is positive. For sake of brevity,8 VOLUME, NUMBER



CENTRAL LIMIT TYPE RESULTS IN ZECKENDORF DECOMPOSITIONSwe do not inlude the formula for C in this artile, but the interested reader may see [22℄ fordisussion. 4. Further Work and Open QuestionsWe end with a few natural questions for future work. The �rst is to see how far Theorem 3.1an be generalized. Can we loosen any tehnial onditions? What about three-dimensionalrelations? What about in�nite sized reursions? For example, if we proved a similar theoremwith ti,j for bounded i and unbounded j, we might generalize the standard Central LimitTheorem for any integer valued random variable. This ontrasts with the urrent formulation,whih generalizes CLT only on integer random variables with �nite support.In Theorem 1.4, an one remove the additional onstraint on the PLRS that every oe�ient
ci must be positive and obtain the same results (that is, if some of ci are allowed to be zero)? Insome previous problems this onstraint on the ci's was to simplify the algebra, but for othersit was essential as otherwise very di�erent behavior emerges. What about arbitrary linearreursions where some oe�ients might be negative?Referenes[1℄ H. Alpert, Di�erenes of multiple Fibonai numbers, Integers: Eletroni Journal of Combinatorial Num-ber Theory 9 (2009), 745�749.[2℄ O. Bekwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. J. Miller and P. Tosteson, The Average GapDistribution for Generalized Zekendorf Deompositions, Fibonai Quarterly 51 (2013), 13�27.[3℄ I. Ben-Ari and S. J. Miller, A Probabilisti Approah to Generalized Zekendorf Deompositions, to appearin the Siam Journal on Disrete Mathematis. http://arxiv.org/abs/1405.2379.[4℄ E. Burger, D. C. Clyde, C. H. Colbert, G. H. Shin and Z. Wang, A Generalization of a Theorem ofLekkerkerker to Ostrowskiâ��s Deomposition of Natural Numbers, preprint, 2011.[5℄ A. Bower, R. Insoft, S. Li, S. J. Miller and P. Tosteson, The Distribution of Gaps between Summandsin Generalized Zekendorf Deompositions (and an appendix on Extensions to Initial Segments with IddoBen-Ari), Journal of Combinatorial Theory, Series A 135 (2015), 130�160.[6℄ M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, Generalizing Zekendorf's Theorem: TheKentuky Sequene, Fibonai Quarterly. 52 (2014), no. 5, 68�90.[7℄ M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, Legal Deompositions Arising from Non-positive Linear Reurrenes, preprint.[8℄ M. Catral, P. Ford, P. E. Harris, S. J. Miller, D. Nelson, Z. Pan and H. Xu, New Behavior in LegalDeompositions Arising from Non-positive Linear Reurrenes, preprint.[9℄ D. E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibonai Numbers, J. LondonMathematial Soiety 35 (1960), 143â��160.[10℄ P. Demontigny, T. Do, A. Kulkarni, S. J. Miller, D. Moon and U. Varma, Generalizing Zekendorf'sTheorem to f-deompositions, Journal of Number Theory 141 (2014), 136�158.[11℄ P. Demontigny, T. Do, A. Kulkarni, S. J. Miller and U. Varma, A Generalization of Fibonai Far-Di�ereneRepresentations and Gaussian Behavior, Fibonai Quarterly 52 (2014), no. 3, 247�273.[12℄ R. Dorward, P. Ford, E. Fourakis, P. E. Harris, S. J. Miller, E. Palsson and H. Paugh, IndividualGap Measures from Generalized Zekendorf Deompositions, to appear in Uniform Distribution Theory.http://arxiv.org/pdf/1509.03029v1.pdf[13℄ M. Drmota and J. Gajdosik, The distribution of the sum-of-digits funtion, J. Théor. Nombrés Bordeaux10 (1998), no. 1, 17�32.[14℄ P. J. Grabner and R. F. Tihy, Contributions to digit expansions with respet to linear reurrenes, J.Number Theory 36 (1990), no. 2, 160â��169.[15℄ N. Hamlin, Representing Positive Integers as a Sum of Linear Reurrene Sequenes, Abstrats of Talks,Fourteenth International Conferene on Fibonai Numbers and Their Appliations (2010), pages 2�3.[16℄ V. E. Hoggatt, Generalized Zekendorf theorem, Fibonai Quarterly 10 (1972), no. 1 (speial issue onrepresentations), pages 89�93.[17℄ T. J. Keller, Generalizations of Zekendorf's theorem, Fibonai Quarterly 10 (1972), no. 1 (speial issueon representations), pages 95�102.MONTH 2016 9

http://arxiv.org/abs/1405.2379
http://arxiv.org/pdf/1509.03029v1.pdf
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