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Abstract. Given a recurrence sequence H , with Hn = c1Hn−1 + · · · + ctHn−t where
ci ∈ N0 for all i and c1, ct ≥ 1, the generalized Zeckendorf decomposition (gzd) of m ∈ N0

is the unique representation of m using H composed of blocks lexicographically less than
σ = (c1, . . . , ct). We prove that the gzd of m uses the fewest number of summands among
all representations of m using H , for all m, if and only if σ is weakly decreasing. We develop
an algorithm for moving from any representation of m to the gzd, the analysis of which
proves that σ weakly decreasing implies summand minimality. We prove that the gzds of
numbers of the form v0Hn+· · ·+vℓHn−ℓ converge in a suitable sense as n → ∞; furthermore
we classify three distinct behaviors for this convergence. We use this result, together with
the irreducibility of certain families of polynomials, to exhibit a representation with fewer
summands than the gzd if σ is not weakly decreasing.

1. Introduction

Base-d number systems, with d ∈ N≥2 have been used for millennia. A natural question
is whether there exist number systems whose base is non-integral, or whose terms are not
simply a geometric progression. Two closely related approaches to answering this question
are β-expansions and linear numeration systems.

If β ∈ R>1, then given x ∈ R+, one may form the β-expansion of x by first finding
the largest k ∈ Z such that βk ≤ x < βk+1, then recording xk = ⌊x/βk⌋, and finally
repeating the above procedure on x − xkβ

k. One obtains a representation x = xkβ
k +

xk−1β
k−1 + · · · . Rényi [Rén57] first introduced β-expansions in the more general context

of representing numbers using monotonic functions (here f(x) = x/β), and Parry [Par60]
subsequently proved many fundamental results specific to β-expansions. They have been
studied extensively in ergodic theory and dynamical systems (see, e.g., [Bla89]) with many
interesting connections to number theory (see, e.g., [Ber77, Sch80]).

An alternative line of thought originates from recognizing {1, d, d2, . . . } as an order-one
linear recurrence sequence H = {Hn}

∞
n=0, with H0 = 1 and Hn = dHn−1. In general, given

a linear recurrence sequence H , one may study representations of integers as sums of non-
negative integral multiples of terms in H . In the computer science literature, these are
known as linear numeration systems, and they have been studied largely from an automata
theory perspective (see, e.g., [Fro92, Sha94]). However, such number systems have appeared
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under a variety of names, such as G-ary expansions (with G a linear recurrence sequence,
see [PT89, GT90, GTNP94]), or without a clear name (e.g., [Fra85]). One of the earliest and
most celebrated results on linear numeration systems is Zeckendorf’s theorem, which states
that every integer can be uniquely expressed as a sum of nonconsecutive Fibonacci numbers
(provided we define them by F1 = 1, F2 = 2, and Fn+1 = Fn+Fn−1). Though the theorem is
often attributed to Zeckendorf [Zec72], the result was proven earlier by Lekkerkerker [Lek52]
and is implicit in the work of Ostrowski [Ost22].

It is immediate to see that the usual base-d representation is the result of greedily rep-
resenting a number using powers of d. Thus, given a recurrence sequence, it is natural to
study the representation obtained via the greedy algorithm, which is known as the normal
representation (see, e.g., [Fro92]). Alternatively, one may view the base-d number system as
only permitting representations which are built out of the digits {0, 1, . . . , d−1}. Thus, given
a recurrence sequence, one may instead seek simple rules designating which representations
are considered allowable, and which guarantee existence and uniqueness of a representation
for every integer (for example, only considering representations built from a fixed family of
digits). A particularly natural such rule is called the generalized Zeckendorf decomposition
(gzd) and is the focus of this paper. While in some cases the gzd is the same as the normal
representation, they are in general not the same (see Section 4.3).

The gzd is only defined for linear recurrence sequences of the form Hn = c1Hn−1 + · · ·+
ctHn−t with c1, ct ≥ 1 and ci ∈ N0, and generated by “ideal” initial conditions H−(t−1) =
· · · = H−1 = 0 and H0 = 1. We call such a sequence a positive linear recurrence sequence
(PLRS). We call σ = (c1, . . . , ct) the signature of the recurrence sequence; given σ, we
let Hσ denote the corresponding recurrence sequence. The gzd was introduced for PLRSs
independently by Hamlin and Webb [HW12], and Miller and Wang [MW12], though smaller
classes of signatures had been considered previously [Fra85, GTNP94]. Several authors have
given evidence that this is the largest class of signatures for which Zeckendorf’s theorem
extends in a simple way [HW12, CFH+16]. One main reason is because if c1 = 0 or ci < 0,
then Hσ is no longer strictly increasing and xt − c1x

t−1 − · · · − ct no longer necessarily has
a unique dominating positive root (see also Proposition 4.2).

Classically many authors have studied the number of summands in the Zeckendorf de-
composition (e.g., [Lek52], among others). More recently, various authors have studied
questions related to the number of summands in the generalized Zeckendorf decomposition
([PT89, GT90, GTNP94, MW12], among others).

We are particularly interested in the number of summands in the gzd as compared to
other representations of the same integer. We call a representation of m summand minimal
if no other representation of m uses fewer summands. We say that a PLRS H is summand
minimal if the gzd using H is summand minimal for all m. We completely classify which
PLRSs are summand minimal.

Theorem 1.1. A positive linear recurrence sequence with signature (c1, . . . , ct) is summand
minimal if and only if c1 ≥ c2 ≥ · · · ≥ ct.

Let Fin(β) denote the set of real numbers with finite β-expansions. Theorem 1.1 is strik-
ingly similar to the following result of Frougny and Solomyak [FS92].

Theorem 1.2 (Theorem 2 of [FS92]). Let β be the dominating root of a polynomial of the
form xt − c1x

t−1 − · · · − ct with ci ∈ N and c1 ≥ c2 ≥ · · · ≥ ct ≥ 1. Then,

Fin(β) = Z[β−1]+ := Z[β−1] ∩ R+. (1.1)
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Summand minimality is closely related to (and may be seen as a strengthening of) Equation
(1.1). In Section 7 we more thoroughly explain the relationship between Theorem 1.1 and
Theorem 1.2.

In Section 2, we discuss the generalized Zeckendorf theorem for PLRSs, and introduce
the notions of borrowing and carrying. In Section 3, we show that σ weakly decreasing
implies summand minimality by exhibiting a simple algorithm for moving from an arbitrary
representation to the gzd when σ is weakly decreasing. Analysis of this algorithm shows
that the number of summands never increases along the way to the gzd, implying summand
minimality of Hσ. For the sake of moving the reader forward towards the techniques and
results of the second half, which we believe to be of greater significance, we relegate the
description of a more general algorithm (Algorithm A.1) for moving between representations
which works for all signatures, as well as a proof of its validity and termination, to Appendix
A.

To prove that summand minimality implies a weakly decreasing signature, we turn our
attention in a different direction. Given a finite string v = (v0, v1, . . . , vℓ), let Dn = v0Hn +
· · · + vℓHn−ℓ. We call D = {Dn} the derived sequence of H with respect to v. We study
the question of what the gzd of Dn looks like as n → ∞. Our main result is Theorem 5.1,
which essentially says that these gzds converge in a suitable sense. Additionally Theorem
5.1 classifies three distinct types of behavior for this convergence. Theorem 5.1 is closely
related to the following result of [GTNP94] (which, interestingly, utilizes Theorem 1.2 in its
proof).

Theorem 1.3 (Corollary 1 of [GTNP94]). Suppose H is a PLRS with weakly decreasing

signature. Let k ∈ N. Then the gzd of kHn is equal to
∑n+b

i=n−a riHn+i for all n with a, b, ri
constants. Furthermore,

∑b

i=−a riβ
i is the β-expansion of k. Thus in particular the number

of summands in the gzd of kHn does not change as n → ∞.

We remark briefly that using the terminology developed later in this paper (see Section
4), Theorem 1.3 says that if σ is weakly decreasing, then the derived sequence of Hσ with
respect to (k), call it D, is in Case 1 of Theorem 5.1, and thus D converges in gzd to
rbrb−1 · · · r0.r−1 · · · r−a.

In Section 4, we start by discussing relevant properties of linear recurrence sequences,
introduce derived sequences and extended representations, and discuss how the gzd is the
output of a modified greedy algorithm. In Section 5, we discuss convergence in gzd and
then state and prove Theorem 5.1. We believe Theorem 5.1 is of interest in its own right
independent of its use in proving Theorem 1.1. In Section 6, we first prove using a simple
trick that if σ does not satisfy the Parry condition (see Definition 2.4) and c1 6= 1, then
Hσ is not summand minimal. We then show that if σ does satisfy the Parry condition or
c1 = 1, and Hσ is summand minimal, then σ is weakly decreasing. The idea of the proof is
to consider the derived sequence of Hσ with respect to (c1+1). If we end up in Cases 2 or 3
of Theorem 5.1, then the gzd of (c1 +1)Hn has arbitrarily many summands for n large (and
in particular more than c1 + 1 summands), and thus Hσ is not summand minimal. We then
show that if σ satisfies the Parry condition and we are in Case 1 of Theorem 5.1 and Hσ

is summand minimal, then σ is weakly decreasing. The proof utilizes a theorem of Brauer
[Bra51] that xt − c1x

t−1 − · · ·− ct is irreducible in Q[x] if c1 ≥ · · · ≥ ct ≥ 1 with ci ∈ Z. The
case that c1 = 1 instead utilizes a theorem of Schinzel [Sch62] regarding the factorization
over Q[x] of the polynomials xr − 2xs + 1.
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2. Preliminaries

2.1. The generalized Zeckendorf decomposition. A (linear) recurrence sequence is a
sequence H = {Hn}

∞
n=ℓ which satisfies a linear recurrence relation, i.e., there exist constants

a0, a1, . . . , at ∈ C such that a0Hn + a1Hn−1 + · · ·+ atHn−t = 0 for all n ≥ t+ ℓ. In this case
we say that H satisfies the recurrence relation (a0, . . . , at). We call ℓ the minimal index of
H .

SupposeH is a recurrence sequence with minimal index −(t−1). We say H has ideal initial
conditions if H−(t−1) = · · · = H−1 = 0 and H0 = 1. We shall be particularly interested in
the case where H has ideal initial conditions and Hn = c1Hn−1+ · · ·+ ctHn−t with c1, ct ≥ 1
and ci ∈ N0. In this case we call σ = (c1, . . . , ct) the signature of H and we say that H is
a positive linear recurrence sequence (PLRS) (except when Hn = Hn−1 with H0 = 1, which
we do not consider to be a valid PLRS). A PLRS with signature σ will be denoted by Hσ.

Definition 2.1. Suppose ρ = (rn, rn−1, . . . , rℓ) is a tuple of non-negative integers. Let
ρ′ =

∑s

i=ℓ riHi. We say that ρ is a representation of ρ′ using H .

Definition 2.2. Suppose σ = (c1, . . . , ct). Then (b1, . . . , bk) is called an allowable block (or
valid block) if k ≤ t, bi = ci for i < k, and 0 ≤ bk < ck. We say that a representation is
allowable if it is composed of concatenated allowable blocks.

Example 2.1. If σ = (4, 3, 2) then the set of allowable blocks is

{(0), (1), (2), (3), (4, 0), (4, 1), (4, 2), (4, 3, 0), (4, 3, 1)}.

If σ = (2, 0, 0, 3) then the allowable blocks are

{(0), (1), (2, 0, 0, 0), (2, 0, 0, 1), (2, 0, 0, 2)}.

Theorem 2.1 (Generalized Zeckendorf theorem; Theorem 1.1 in [HW12] and Theorem
1.1 in [MW12]). Given a PLRS, Hσ, every non-negative integer m has a unique allowable
representation using Hσ.

Definition 2.3. The representation as in Theorem 2.1 is called the generalized Zeckendorf
decomposition (gzd). Given m ∈ N0, we let GZD(m) denote the gzd of m.

Example 2.2. Suppose σ = (1, 1), the signature for the Fibonacci numbers. The allowable
blocks are {(0), (1, 0)}. Therefore, Theorem 2.1 implies that every integer has a unique
representation composed of (0) and (1, 0), which is Zeckendorf’s theorem.

The next definition is most often used in the context of β-expansions. It was first noted
by Parry [Par60] to be of great importance in the study of β-expansions.

Definition 2.4. A string (c1, . . . , ct) is said to satisfy the Parry condition if all of the
following hold:

(c1, c2, . . . , ct) >lex (c2, c3, . . . , ct, 0),

(c1, c2, . . . , ct) >lex (c3, . . . , ct, 0, 0),

...

(c1, c2, . . . , ct) >lex (ct, 0, . . . , 0).

(2.2)

Remark 2.1. Prior to the work of Hamlin and Webb [HW12], and Miller and Wang [MW12],
the generalized Zeckendorf theorem was only known in the case where σ satisfies the Parry
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condition (in particular, when σ is weakly decreasing). In that case, a representation ρ =
(rn, . . . , r0) is allowable if and only if (ri−1, . . . , ri−t) <lex (c1, . . . , ct) = σ for all i (see, e.g.,
[GTNP94]).

2.2. Borrowing and carrying. Suppose H = Hσ with σ = (c1, . . . , ct). If t ≥ 2, then H
contains zeros, namely H−1, . . . , H−(t−1). Let ρ = (rn, . . . , r−(t−1)). Clearly

∑n
i=−(t−1) rsHs =

∑n
i=0 rsHs. Thus any ri with −(t − 1) ≤ i ≤ −1 may be changed to an arbitrarily large

number without having a meaningful effect on ρ as a representation of ρ′. Because of this
we shall always assume that any representation has all of its negative index entries equal to
∞. We use the shorthand ∞t−1 to denote ∞, . . . ,∞

︸ ︷︷ ︸
t−1

. The utility of using these infinities

shall become clear momentarily.
The signature provides a way of moving between representations of the same number. For

example, if σ = (10), one representation for 312 is (3, 1, 2) (indeed, this is the gzd). However,
we may also represent 312 as (2, 11, 2) (by “borrowing” from the 100’s place). Analogously,
say we have the representation (6, 23, 4). Since the 10’s place currently has 23 ≥ 10, we can
“carry” to the 100’s place to get the representation (7, 13, 4), and then carry again to get
(8, 3, 4).

The ideas of “borrowing” and “carrying” from base-d arithmetic extend to all recurrences.
For example, suppose σ = (2, 1). Then Hσ = {0, 1, 2, 5, 12, . . .}. Given the representation
(3, 0, 0,∞) (which represents 15 = 3 · 5), we can “borrow” from index 2 to get the represen-
tation (2, 2, 1,∞) (which still represents 15 = 2 · 5 + 2 · 2 + 1 · 1). If we subsequently borrow
from index 1, we get (2, 1, 3,∞ + 1). If we extend our arithmetic to include ∞ such that
∞± n = ∞ for any n < ∞, and ∞ · 0 = 0, then we can still “borrow” even when it results
in terms accumulating in the “infinities places.”

Suppose now we have the representation (3, 4,∞) (with σ = (2, 1) as before). Since
3 ≥ 2 = c1 and 4 ≥ 1 = c2, we can “carry” to index 2 to get (1, 1, 3,∞). We can carry again
to index 1 to get the representation (1, 2, 1,∞− 1) = (1, 2, 1,∞). Thus, using ∞ also allows
us to “carry” even when the carry operation utilizes the infinities places.

Definition 2.5. Let ρ = (rn, rn−1, . . . , r0,∞t−1) be a representation using Hσ with σ =
(c1, . . . , ct). Let B(ρ, i) and C(ρ, i) be defined as

B(ρ, i) := (rn, . . . , ri − 1, ri−1 + c1, . . . , ri−t + ct, ri−(t+1), . . . , r0,∞t−1),

C(ρ, i) := (rn, . . . , ri + 1, ri−1 − c1, . . . , ri−t − ct, ri−(t+1), . . . , r0,∞t−1).

We call the application of B(ρ, i) borrowing from i and the application of C(ρ, i) carrying to
i (see Tables 1 and 2).

Remark (↓)/Index (→) n · · · i i− 1 · · · i− t i− (t+ 1) · · · 0 −1 · · · −(t− 1)

ρ rn · · · ri ri−1 · · · ri−t ri−(t+1) · · · r0 ∞ · · · ∞
Borrow from i. −1 c1 · · · ct

B(ρ, i) rn · · · ri − 1 ri−1 + c1 · · · ri−t + ct ri−(t+1) · · · r0 ∞ · · · ∞

Table 1. Borrow from i.
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Remark (↓)/Index (→) n · · · i i− 1 · · · i− t i− (t+ 1) · · · 0 −1 · · · −(t− 1)

ρ rn · · · ri ri−1 · · · ri−t ri−(t+1) · · · r0 ∞ · · · ∞
Carry to i. 1 −c1 · · · −ct
C(ρ, i) rn · · · ri + 1 ri−1 − c1 · · · ri−t − ct ri−(t+1) · · · r0 ∞ · · · ∞

Table 2. Carry to i.

Definition 2.6. Let ρ = (rn, . . . , r0,∞t−1) be a representation using Hσ. We say that we
are able to carry to i if ri−j ≥ cj for all 1 ≤ j ≤ t, i.e., (ri−1, . . . , ri−t) ≥ (c1, . . . , ct) pointwise.

Remark 2.2. When we borrow from/carry to an index i ≥ t, the change in the number
of summands is ±(−1 + c1 + · · ·+ ct). When we borrow from/carry to an index i < t, the
change in the number of summands is ±(−1 + c1 + · · ·+ ci). Notice that if we borrow from
an index i and then carry to an index j with j > i, then the net change in the number of
summands is non-positive.

3. Weakly decreasing signature implies summand minimality

Proposition 3.1. Suppose σ is weakly decreasing. Then Hσ is summand minimal.

Proof. Suppose σ is weakly decreasing. Let

ρ = ρ1 = (rn, . . . , r0,∞t−1)

be a non-allowable representation using Hσ. Let i1 be the largest index such that

(ri1−1, . . . , ri1−t) ≥lex (c1, . . . , ct), (3.3)

which must exist by Remark 2.1. If we are able to carry to i1, then we let ρ2 = C(ρ1, i1).
Then ρ2 clearly has at most as many summands as ρ1.

If we are not able to carry to i1, then we find the largest j1 (necessarily less than t) such
that

ri1−1 ≥ c1,

...

ri1−(j1−1) ≥ cj1−1,

ri1−j1 > cj1 .

We then borrow from i1 − j1 to obtain ν1 = B(ρ1, i1 − j1) = (sn, . . . , s0,∞t−1). Notice that

si1−1 = ri1−1 ≥ c1,

...

si1−(j1−1) ≥ cj1−1,

si1−j1 = ri1−j1 − 1 ≥ cj1,

si1−(j1+1) = ri1−(j1+1) + c1 ≥ c1 ≥ cj1+1, (3.4)

... (3.5)

si1−t = ri1−t + ct−j1 ≥ ct−j1 ≥ ct. (3.6)
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Thus we are able to carry to i1 (the fact that σ is weakly decreasing is used in Equations
(3.4)-(3.6)). Let ρ2 = C(ν1, i1). Since i1 > i1 − j1 (as 1 ≤ j1 ≤ t), the number of summands
in ρ2 is less than or equal to the number of summands in ρ1 by Remark 2.2.

We repeat the above procedure to find i2 such that Equation (3.3) holds, with i1 replaced
by i2, and rk now representing the entries of ρ2, etc. If this procedure terminates, which is
to say that at the ℓth iteration such an iℓ is not found, then ρℓ is allowable and hence is
the gzd of ρ′ (see Remark 2.1). Since the number of summands never increases, we conclude
that Hσ is summand minimal. The proof that this procedure terminates can be found in
Appendix A (as well as a description and proof of termination of a more general algorithm
for moving from any representation to the gzd for all signatures). �

Example 3.1. To illustrate the proof of Proposition 3.1, we consider the example with
σ = (3, 2, 1, 1) and ρ = (3, 2, 1, 0, 4, 3, 0,∞3).

Remark (↓)/Index (→) 7 6 5 4 3 2 1 0 −1 −2 −3 Representation

(4, 3, 0,∞) >lex

(3, 2, 1, 1), so i1 = 3.
We cannot carry as
(4, 3, 0,∞) 6≥ σ point-
wise.

3 2 1 0 4 3 0 ∞ ∞ ∞ ρ = ρ1

Since r3−1 = 4 ≥ c1 = 3
and r3−2 = 3 > 2 = c2,
we have j1 = 2. We thus
borrow from i1 − j1 = 1.

-1 3 2 1 1

We can carry to i1 = 3
as (3, 2, 3,∞) ≥ σ point-
wise.

3 2 1 0 4 2 3 ∞ ∞ ∞ ν1 = B(ρ1, 1)

1 -3 -2 -1 -1
(3, 2, 1, 1) ≥lex σ, so i2 =
7.

3 2 1 1 1 0 2 ∞ ∞ ∞ ρ2 = C(ν1, 3)

We can carry immedi-
ately to i2.

1 -3 -2 -1 -1

i3 does not exist, so ρ3 is
the gzd of ρ′.

1 0 0 0 0 1 0 2 ∞ ∞ ∞ ρ3 = C(ρ2, 7)

Note that 13 = # of summands of ρ1 ≥ # of summands of ρ2 ≥ # of summands of ρ3 = 4.

We remark that the the procedure used in the proof of Proposition 3.1 is similar to the
algorithm used by Frougny and Solomyak in [FS92] to prove Theorem 1.2.

4. Preliminaries, round two

We now turn our attention towards proving Theorem 5.1, which says in essence that
certain natural sequences of numbers (so-called derived sequences; see Definition 4.2) have
convergent gzds. To make this notion precise, we must review some fundamental results
about recurrence sequences, and introduce some new notation and terminology.
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4.1. Recurrence sequences. Suppose H = {Hn}
∞
n=0 is a recurrence sequence (not neces-

sarily a PLRS). For each recurrence relation a = (a0, . . . , at) that H satisfies, we have an
associated polynomial Pa(x) := a0x

t + a1x
t−1 + · · ·+ at. Let

I(H) := {Pa ∈ C[x] : H satisfies a}.

It is immediate to see that I(H) is an ideal in C[x]. Since C[x] is a principal ideal domain,
there is a unique monic polynomial of minimal degree which generates I(H). We call this
polynomial the minimal polynomial of H . The following is almost certainly a known result,
though we were unable to find a clear reference in the literature. We prove it in Appendix
B for completeness.

Proposition 4.1. Suppose H is a recurrence sequence generated by the recurrence relation
a = (1,−a1, . . . ,−at) with ideal initial conditions. Then Pa is the minimal polynomial of H.

In particular, any PLRS has P(1,−c1,...,−ct) as its minimal polynomial.
One of the most fundamental results about recurrence sequences is the following (for a

proof, see Corollary 2.24 in [Ela99]).

Theorem 4.1. Let a = (a0, a1, . . . , at) be a recurrence relation. Let λ1, . . . , λs be the distinct
roots of Pa. Suppose λi is a root of multiplicity mi. Then a sequence H satisfies a if and
only if

Hn = p1(n)λ
n
1 + · · ·+ ps(n)λ

n
s , (4.7)

where pi(n) is a polynomial of degree at most mi − 1.

Given a polynomial f , we say that a root β of f dominates or is dominating if |β| ≥ |λi|
for all roots λi of f . We say that a monic polynomial is of positive type if it is of the form
f = xt − c1x

t−1 − · · · − ct with c1, ct ≥ 1 and ci ≥ 0 and f 6= x − 1. Thus PLRSs have
minimal polynomials of positive type by Proposition 4.1. The following result has been
rederived several times. We include its proof in Appendix C for completeness.

Proposition 4.2. Suppose f is a polynomial of positive type. Then f has a unique real
positive dominating root β of multiplicity one with β > 1. All other roots are non-positive.

Corollary 4.1. Suppose H is a positive linear recurrence sequence generated by ideal initial
conditions and with minimal polynomial f . Let β = λ1 be the dominating root. Then p1(n)
as in Equation (4.7) is a positive constant, c.

Proof. Since β is a simple root, the polynomial p1(n) must be degree 0, and hence is equal
to some constant c. If c = 0, then by Theorem 4.1, the polynomial f(x)/(x− β) is in I(H),
contradicting the fact that f(x) is the minimal polynomial. Since β dominates and c 6= 0,
past some point, cβn and Hn always have the same sign. However, clearly βn is always
positive, and Hn is always positive, so c > 0. �

Corollary 4.2. Suppose f is a polynomial of positive type. Let β be its dominating root.
Then f(x)/(x− β) has no positive dominating root.

Corollary 4.2 will be used critically with the following result of Bell and Gerhold [BG07].

Theorem 4.2 (Theorem 2 of [BG07]). Suppose H is a (real) non-zero recurrence sequence
with no positive dominating root. Then the sets {n ∈ N : Hn > 0} and {n ∈ N : Hn < 0}
are both infinite.
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In particular, if f is of positive type, then a recurrence sequence whose minimal polynomial
divides f/(x − β) will oscillate between positive and negative infinitely often. This will be
crucial in the proof of Case 2 of Theorem 5.1.

In the sequel, the letter β will always refer to the dominating root of a polynomial of
positive type.

4.2. Extended representations and derived sequences. Suppose v = (v0, v−1, . . . , v−n)
is a finite string with integer entries. We let [v] denote the map from Z to Z defined by
[v](i) = vi for −n ≤ i ≤ 0, and [v](i) = 0 otherwise. Alternatively, we can think of [v] as
the Z-indexed bi-infinite string with v “placed” at the zero index and padded with zeros
everywhere else. We shall make use of both perspectives.

Definition 4.1. We call a map γ : Z → Z an extended representation if γ has compact
support in the discrete topology.

If the support of γ is contained in N0, as before (see Definition 2.1) we define γ′ as

γ′ := γ(0)H0 + γ(1)H1 + · · · .

We can think of γ′ as the number represented by γ using the sequence H .
Let E denote the space of all extended representations. Let S : E → E denote the shift

map on extended representations, that is

Sn(γ)(i) := γ(i− n).

If we instead think of γ as a Z-indexed bi-infinite string with indices increasing from right
to left (as is the case for usual base-d number systems), then Sn(γ) is the result of shifting
γ to the left by n places (in case n is negative, then Sn(γ) is the result of shifting γ to the
right by −n places).

If γ is an extended representation, then

L(γ) := sup supp γ,

R(γ) := inf supp γ,

where supp γ is the support of γ. At times we shall represent an extended representation as

γ = γ(L(γ)) γ(L(γ)− 1) · · · γ(0).γ(−1) · · ·γ(R(γ)),

with the decimal point lying between the zeroeth and minus first positions. We will also
use the notation (x1 · · ·xj)

m to denote x1 · · ·xj concatenated with itself m times. We let
(x1 · · ·xj)

ω denote x1 · · ·xj concatenated with itself a countably infinite number of times.
Given a finite string v = (v0, . . . , vn), we define the polynomial

Pv(x) := v0x
n + · · ·+ vn.

Given an extended representation γ, we define the rational function,

Qγ(x) :=
∑

γ(i)xi.

Given γ, we may also define the polynomial

Pγ(x) := x−R(γ)Qγ(x).

Remark 4.1. In the sequel we will often be interested in the sign of Pγ(β). Since β > 0,
the signs of Pγ(β) and Qγ(β) are always the same.
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Definition 4.2. Given a finite string v = (vk, . . . , v0) (resp., extended representation γ) and
a recurrence sequence H , we define the derived sequence of H with respect to v (resp., γ),
denoted D = Der(v,H) (resp., D = Der(γ,H)), with

Dn := vkHn + vk−1Hn−1 + · · ·+ v0Hn−k

(resp., Dn :=
∑

i

γ(i) Hn+i).

Some terms of D may be undefined; however, past some finite point, all subsequent terms
of D are defined. Because we will almost always only care about sufficiently large terms of
D, we do not worry about this issue.

Proposition 4.3. Let H be a recurrence sequence and let D be the derived sequence of H
with respect to some finite string or extended representation. Then every recurrence relation
satisfied by H is also satisfied by D.

Proof. For simplicity, we focus on the derived sequence with respect to v = (vk, . . . , v0).
The proof for the case of the derived sequence with respect to an extended representation is
virtually identical.

Suppose H is a recurrence sequence with f ∈ I(H). Let the roots of f be λ1, . . . , λs. By
Theorem 4.1, we can write Hn as

Hn =

s∑

i=1

pi(n)λ
n
i .

We are interested in

Dn = vkHn + · · ·+ v0Hn−k

=

k∑

j=0

vj

( s∑

i=1

pi(n− j)λn−j
i

)

=
∑

j

vj

(
∑

i

pi(n− j)λ−j
i λn

i

)

=
∑

i

(
∑

j

vj pi(n− j)λ−j
i

)

λn
i .

(4.8)

Notice that
∑

j vj pi(n− j)λ−j
i is a polynomial in n of degree at most equal to the degree of

pi. Thus, by Theorem 4.1, we conclude that f ∈ I(D). �

Remark 4.2. It is possible for D to satisfy more recurrence relations than H . For example,
if v is some finite string and H satisfies v, then D is identically zero and thus satisfies every
recurrence relation. In fact, we have that D is identically zero if and only if H satisfies v.

Remark 4.3. Suppose H is a PLRS with minimal polynomial f and D = Der(v,H). Since
β is a simple root, the coefficient of βn in the last line of Equation (4.8) is cPv(β). Since
c > 0 by Corollary 4.1, we have that if Pv(β) > 0, then D is eventually always positive. If
Pv(β) < 0, then D is eventually always negative. Lastly, if Pv(β) = 0, then the minimal
polynomial for D divides f/(x − β) and thus D oscillates between positive and negative
infinitely often by Corollary 4.2 and Theorem 4.2.
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4.3. Gzd as output of a greedy algorithm. In linear numeration systems, one studies
the representation obtained by the usual greedy algorithm. However, the gzd is not always
the output of this greedy algorithm. For example, suppose H = H(1,3). Consider the derived
sequence for (2). The dominating root of the minimal polynomial, x2−x−3, is β ≈ 2.303 > 2.
Since Hn+1/Hn → β as n → ∞, when applying the above greedy algorithm to 2Hn for n
sufficiently large, no term with index greater than n is ever selected. Therefore the greedy
algorithm selects two Hn terms and then terminates. However Sn([2]) is not the gzd for 2Hn

since it is not composed of allowable blocks.
However, the gzd is the output of a different greedy algorithm, namely the one which

greedily selects allowable blocks as noted in [HW12]. To formally describe this algorithm,
we first set some notation. Suppose our signature is (c1, . . . , ct). Let A = c1 + · · ·+ ct. The
set of allowable blocks has a natural ordering, namely

(0) < (1) < · · · < (c1 − 1) < (c1, 0) < · · · < (c1, c2, . . . , ct − 1).

Let vi denote the ith smallest block with respect to this ordering (with v0 = (0) and vA−1 =
(c1, c2, . . . , ct − 1)). Let

γi,n := Sn([vi]),

with 1 ≤ i ≤ A− 1 and n ∈ Z. Let

Λ := {γi,n : supp γi,n ⊂ N0}.

The elements of Λ have a natural total ordering, namely γi1,n1
> γi2,n2

iff γ′
i1,n1

> γ′
i2,n2

. Let
Λi denote the ith smallest element of Λ. One can easily verify (see [HW12]) that

· · · < γ1,n < γ2,n < · · · < γA−1,n < γ1,n+1 < · · · . (4.9)

Suppose m ∈ N. We may obtain a representation of m by first finding the largest index
i1 such that Λ′

i1
≤ m but Λ′

i1+1 > m. We then repeat this process on m− Λ′
i1
to obtain Λi2 ,

etc. This process terminates after finitely many steps. Let k denote the number of steps
involved.

Proposition 4.4 (See Theorem 1.1 of [HW12]). Let m ∈ N. Then the representation
Λi1 + Λi2 + · · · + Λik is the gzd of m. In particular, the supports of Λij and Λiℓ do not
intersect unless j = ℓ.

In the sequel, “the greedy algorithm” will always refer to the greedy algorithm of Propo-
sition 4.4.

Let Γ denote the set of all γi,n. We can place a total ordering on the elements in Γ using
Equation (4.9). Let Γ0 (arbitrarily) be defined as γ1,0 and let Γn with n ∈ Z denote the
element in Γn which is n terms larger than Γ0.

5. Convergence of gzds of a derived sequence

Given a PLRS H , what is the relationship between the gzds of elements in Der(v,H)
where v is some finite string? Briefly, Theorem 5.1 says that this sequence of gzds converges
in an exact sense with one pseudo-exception. We now define exactly what we mean by
convergence.

Definition 5.1. Let D = Der(v,H). We define the normalized gzd of Dn as

NGZD(Dn) := S−n(GZD(Dn)).
11



(Note that the normalized gzd takes as input not just an integer, but an integer and the
index at which that integer occurs in some sequence.) We say that D converges to α in
gzd if NGZD(Dn) converges to α pointwise (when viewed as maps Z → Z with the discrete
topology).

We extend the term allowable representation to mean any extended representation of the
form Γi1+Γi2+· · · such that supp Γij∩ supp Γik = ∅ unless j = k. We shall in general assume
that allowable representations have finitely many terms (those with infinitely many terms will
be called infinite allowable representations). Any time we write an allowable representation
as Θ1 +Θ2 + · · · with Θj = Γij for some ij , we shall assume that L(Θk) > R(Θℓ) whenever
k > ℓ.

Example 5.1. Let H be the Fibonacci sequence, and let v = (2). Since 2Hn = Hn+1+Hn−2,
we have that NGZD(Dn) = 10.01 for all n ≥ 2. Thus clearly D converges to 10.01 in gzd.

We now state our main theorem regarding convergence of gzds.

Theorem 5.1. Suppose H is a PLRS with signature (c1, . . . , ct) and minimal polynomial f .
Let v be a finite string with Pv(β) > 0. Let D = Der(v,H). Exactly one of the following
happens:

(1) There exists an allowable representation α such that P[v]−α is a multiple of f . Then
D converges to α in gzd.

(2) There exists an allowable representation α = Sk([a1, a2, . . . , aℓ]) with aℓ 6= 0 such that
P[v]−α(β) = 0, but P[v]−α is not a multiple of f . Let K = Der([v]− α,H). Define

D+ = {Dn : Kn ≥ 0},

D− = {Dn : Kn < 0}.

Then the sets D+ and D− are both infinite, D+ converges to α in gzd, and D−

converges to Sk([a1, a2, . . . , aℓ−1, (aℓ − 1), (c1, c2, . . . , (ct − 1))ω]) in gzd.
(3) There does not exist an allowable representation α such that P[v]−α(β) = 0. Then D

converges in gzd to an infinite allowable representation.

Given a signature σ (or a PLRS Hσ) and a finite string v with Pv(β) > 0, we may refer
to “being in” Case 1, 2, or 3 of Theorem 5.1, by which we mean that the hypotheses and
conclusions of the respective case apply.

Before proving Theorem 5.1, we give examples of each of the three cases.

Example 5.2. Suppose H has signature (4, 2, 1). Let v = (5, 1, 1, 3) and D = Der(v,H).
Then D converges to γ = 10.324 in gzd. Notice that

P[v]−γ = (5x3 + x2 + x+ 3)− (x4 + 3x2 + 2x+ 4)

= −x4 + 5x3 − 2x2 − x− 1

= (x3 − 4x2 − 2x− 1)(−x+ 1).

Thus P[v]−α is a multiple of the minimal polynomial. Properly interpreted, Theorem 1.2 of
Frougny and Solomyak [FS92] implies that if the signature is weakly decreasing, then given
any finite string v with Pv(β) > 0, we are always in Case 1 of Theorem 5.1. The special case
when v = (k) is the content of Theorem 1.3 of [GTNP94].
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Example 5.3. We present an example of Case 2, which is the most subtle of the cases. The
following example is adapted from Example 1 of [FS92]. Let σ = (2, 1, 0, 2). Let v = (3, 0, 2).
Below is a table showing the normalized gzd of some elements of D.

n Normalized gzd of Dn

6 10.2001
7 10.12101
8 10.200001
9 10.121012
10 10.20000001
11 10.121012101

The even index elements inD converge in gzd to 10.2, and the odd index elements converge
in gzd to 10.1(2101)ω. Note that 10.1(2101)ω is the allowable representation which is “just less
than” 10.2 (entirely analogously to how in the usual base-10 system, 0.9ω is the representation
“just less than” 1.0). The minimal polynomial of H is x4 − 2x3 − x2 − 2, which factors over
Z[x] as (x3 − 3x2 + 2x − 2)(x + 1). Notice that β is a root of x3 − 3x2 + 2x − 2. Let
α = S1([1, 0, 2]) = 10.2. Then P[v]−α = −x3 + 3x2 − 2x+ 2, which has β as a root but is not
a multiple of the minimal polynomial of H .

Example 5.4. The following example is adapted from Example 2 of [FS92]. Let σ =
(2, 0, 1, 1). Let v = [3]. No α exists such that P[v]−α(β) = 0. Furthermore, D converges in
gzd to 10.111(00021)ω.

In preparation for the proof of Theorem 5.1, we prove several simple ancillary lemmas.

Lemma 5.1. For all n ∈ Z, we have QΓn+1−Γn
(β) = βR(Γn).

Proof. If Γn+1 6= Ss([1]) for some s, then the result is obvious. If Γn+1 = Ss([1]), then the
result is also obvious since βt − (c1β

t−1 + · · ·+ (ct − 1)) = 1. �

Lemma 5.2. Assume n > m.

(1) Then QΓn
(β) > QΓm

(β).
(2) We have (Sk(Γn))

′ > (Sk(Γm))
′ for all k for which both sides of the inequality are

defined.
(3) If Pv(β) > 0, then there exists a unique k ∈ Z such that for all ℓ ≤ k, we have

P[v]−Γℓ
(β) ≥ 0, and for all ℓ > k, we have P[v]−Γℓ

(β) < 0.

Proof. (1) follows immediately from Lemma 5.1. (2) is simply a restatement of Equation
(4.9). (3) follows almost immediately from (1). First, note that as n → −∞, we have
QΓn

(β) → 0, and as n → ∞, we have QΓn
(β) → ∞. Thus by (1) and the preceding

observations, we have that Q[v]−Γn
(β) monotonically goes to Q[v](β) > 0 as n → −∞ and to

−∞ as n → ∞. Therefore, utilizing Remark 4.1, there must be a unique k such that for all
ℓ ≤ k, we have P[v]−Γℓ

(β) ≥ 0, and for all ℓ > k, we have P[v]−Γℓ
(β) < 0. �

Remark 5.1. Let v be such that Pv(β) > 0. Suppose Γk ∈ Γ. Let E = Der([v] − Γk, H)
and F = Der([v] − Γk+1, H). If Es ≥ 0 and Fs < 0, then since the gzd is the output of the
greedy algorithm of Proposition 4.4, it follows from (2) of Lemma 5.2 that Γk is the first
block of NGZD(Ds).

We call Γk as in (3) of Lemma 5.2 the first candidate block of [v]. We shall denote the
first candidate block by Ω1. If P[v]−Ω1

(β) > 0, then we may apply Lemma 5.2 to [v] − Ω1
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to obtain some block Ω2 which we call the second candidate block. We may repeatedly
apply Lemma 5.2 to obtain the kth candidate block, Ωk, as long as P[v]−(Ω1+···+Ωk−1)(β) 6=
0. If P[v]−(Ω1+···+Ωk)(β) 6= 0, we say that the asymptotic greedy algorithm continues. If
P[v]−(Ω1+···+Ωk)(β) = 0, we call Ω1 + · · ·+ Ωk the output of the asymptotic greedy algorithm
for [v]. If the asymptotic greedy algorithm always continues, we instead call

∑∞

j=1Ωj the

output of the asymptotic greedy algorithm for [v].

Remark 5.2. Suppose Ω1 is the first candidate block of [v]. If P[v]−Ω1
(β) 6= 0, then by

Remark 4.3, there exists an N such that for s > N , Es is always positive and Fs is always
negative. Then by Remark 5.1, Ω1 is the first block of NGZD(Ds). Repeated application of
this argument shows that if Ω1 + · · ·+Ωk is the output of the asymptotic greedy algorithm,
then Ω1 + · · ·+ Ωk−1 are the first k − 1 blocks of NGZD(Ds) for s sufficiently large.

Lemma 5.3. Let βt = c1β
t−1 + c2β

t−2 + · · · + ct. Let γ = 0.(c1c2 · · · (ct − 1))ω. Then
Qγ(β) = 1. In particular, if δ = Sk([1, (−c1,−c2 . . . ,−ct +1)n]) for any finite n and k, then
Qδ(β) > 0.

Proof. We have βt − 1 = c1β
t−1 + · · · + (ct − 1). Recall from Proposition 4.2 that β > 1.

Therefore,

Qγ(β) = (c1β
t−1 + · · ·+ (ct − 1))(β−t + β−2t + · · · )

= (βt − 1)
β−t

1− β−t

= 1.

�

Lemma 5.4. Suppose γ is an allowable representation with support in Z\N0. Then Qγ(β) <
1.

Proof. Suppose ε = 1.0. We shall modify ε using borrows to end up with an extended
representation δ such that Qδ(β) = 1 and Qδ(i) ≥ Qγ(i) for all i, with strict inequality
for at least one i. Suppose γ = Θ1 + · · · + Θk. Since c1 ≥ 1, by borrowing once from
each of the places between 0 and L(Θ1) + 1, we end up with an extended representation, η,
with η(L(Θ1) + 1) ≥ 1. Then, by borrowing from L(Θ1) + 1, we end up with an extended
representation, ν, which pointwise dominates Θ1 with strict dominance in at least one index
(e.g., if Θ1 = Sk([c1, . . . , cr−1, ℓ]) with ℓ < cr, then ν(k − r) > ℓ = Θ1(k − r)). Inductively,
we can carry out the above procedure to get an extended representation which pointwise
dominates γ and has strict inequality in at least one index. �

Corollary 5.1. Suppose α = Θ1 + · · · + Θk is an allowable representation with Θ1 = Γn.
Then QΓn+1−α(β) > 0.

Proof. By Lemmas 5.1 and 5.4,

QΓn+1−α(β) = Q(Γn+1−Θ1)−(Θ2+···+Θk)(β)

= QΓn+1−Γn
(β)−QΘ2+···+Θk

(β)

> βR(Θ1) − βR(Θ1)

= 0.

�
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Lemma 5.5. Suppose there exists an allowable sequence α = Θ1 + · · · + Θk such that
P[v]−α(β) = 0. Then α is the output of the asymptotic greedy algorithm for [v].

Proof. We first show that Θ1 is the first candidate block for [v]. Suppose Θ1 = Γn. Suppose
Γj is the true first candidate block for [v]. Since P[v]−Γn

(β) > P[v]−α(β) = 0 (assuming k > 1),
we know that j ≥ n. However, by Corollary 5.1, we know that Q[v]−Γn+1

(β) < Q[v]−α(β) = 0.
Thus j ≤ n, so j = n. Since P[v]−Γn

(β) > 0, the asymptotic greedy algorithm continues.
We may inductively apply the above argument, at the ℓth step replacing [v] with [v] −

(Θ1 + · · · + Θℓ−1) until ℓ = k. This shows that α is the output of the asymptotic greedy
algorithm. �

Proof of Theorem 5.1. Suppose there exists an allowable representation α such that P[v]−α(β) =
0. By Lemma 5.5 we know that α is the output of the asymptotic greedy algorithm for [v],
that is α = Ω1 + · · ·+ Ωk.

Suppose P[v]−α is a multiple of f . Then by Remark 4.2, Der([v]−α,H) is identically zero.
Thus α must be the normalized gzd for all Ds ∈ D. Thus clearly D converges to α in gzd.
This handles Case 1.

Suppose P[v]−α is not a multiple of f . Let K = Der([v]− α,H). Then K is nonzero and
satisfies the recurrence relation f/(x− β) by Remark 4.3. By Corollary 4.2, f/(x− β) has
no positive root, so by Theorem 4.2, K is positive and negative infinitely often. Thus the
sets D+ and D− as defined in the statement of Theorem 5.1 are infinite.

By Remark 5.2, we know that for s sufficiently large, the first k−1 blocks of the normalized
gzd of Ds are δ = Ω1 + · · ·+ Ωk−1. Suppose Ωk = Γn.

First suppose Ds ∈ D+. Since Ks ≥ 0 and P[v]−(Ω1+···+Ωk−1+Γn+1)(β) < 0, by Remark
5.2, for s sufficiently large, Γn is the kth block of NGZD(Ds). Thus NGZD(Ds) = α + εs
for s sufficiently large and Ds ∈ D+. We claim that L(εs) → −∞ as s → ∞. Since
Q[v]−α−Γm

(β) < 0 for any m, for s sufficiently large Γm is never the (k + 1)th block selected
by the greedy algorithm. Thus the claim is proved, so D+ converges to α in gzd.

Now suppose Ds ∈ D−. We first claim that Γn−1 is the kth block chosen by the greedy algo-
rithm for all s sufficiently large. This follows from the fact thatKs < 0 but Q[v]−(δ+Γn−1)(β) >
0, and Remark 5.2.

Let R′ := R(δ + Γn−1). We claim that the next block chosen is η = SR′−1([c1, . . . , ct −
1]) for s sufficiently large. By Proposition 4.4, the largest possible block next chosen by
the greedy algorithm is η (since chosen blocks have non-intersecting supports). Thus if
Q[v]−δ−Γn−1−η(β) > 0, η must always be chosen by the greedy algorithm for s sufficiently
large. Using Lemmas 5.1 and 5.3, we have

Q[v]−δ−Γn−1−η(β) = Q[v]−δ−Γn
(β) +QΓn−Γn−1

(β) +Q−η(β)

> βR(Γn−1) − βR(Γn−1)

= 0.

At the bth step, the largest possible next block chosen is ηb := S−bt(η). However, by Lemma
5.3, Q[v]−δ−Γn−1−η−η1−···−ηb(β) > 0. This handles Case 2.

Lastly, Case 3 follows immediately from earlier discussion. �

Remark 5.3. The utility of Theorem 5.1 to the summand minimality question is as follows.
Given Hσ, suppose we can find some string v with non-negative entries such that we are not
in Case 1 of Theorem 5.1. Then since Sk([v]) has a fixed number of summands, but in Cases
2 and 3 of Theorem 5.1 the number of summands in the gzd of Sk([v]) grows arbitrarily
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large, Hσ must not be summand minimal. As we shall see, in most cases, taking v = (c1+1)
(where (c1, c2, . . . , ct) is the signature of H) suffices.

6. Summand minimality implies weakly decreasing signature

Interestingly, if we have a PLRS whose signature does not satisfy the Parry condition and
c1 6= 1, then we can find a simple example of a non-gzd representation with fewer summands
than the gzd.

Proposition 6.1. Suppose H is a positive linear recurrence sequence whose signature does
not satisfy the Parry condition and c1 ≥ 2. Then H is not summand minimal.

Proof. Suppose the signature is (c1, . . . , ct). Suppose i is the smallest index such that

(ci+1, . . . , ct, 0, . . . , 0) ≥lex (c1, . . . , ct)

(see Equation (2.2) of Definition 2.4). Then there exists some j ≥ 1 such that ci+k = ck
for k < j and ci+j > cj. Consider the representation (c1, . . . , ci + 1, 0, . . . , 0

︸ ︷︷ ︸
j−1

,∞t−1). This is

clearly not an allowable sequence. By borrowing from the jth place (whose entry is ci + 1),
we get

(c1, . . . , ci, c1, c2, . . . , cj ,∞t−1) = (c1, . . . , ci, ci+1, ci+2, . . . , ci+j−1, cj,∞t−1).

Since cj < ci+j , we get that the above representation is the gzd. The change in the number
of summands is c1 + · · ·+ cj − 1 ≥ 1 since c1 ≥ 2. �

Example 6.1. Let σ = (5, 4, 2, 1, 5, 4, 3, 7). Then the representation (5, 4, 2, 2, 0, 0, 0,∞) has
as its gzd (5, 4, 2, 1, 5, 4, 2,∞), which has more summands.

Lemma 6.1. Suppose σ satisfies the Parry condition, the length of σ is at least two, and
c1 ≥ 2. Let D = Der((c1 + 1), H). Then there exists an N such that for s > N , we have
NGZD(Ds) = S1([1]) + εs with L(εs) < 0.

Proof. We first prove the following inequalities and then explain how they imply the result:

β < c1 + 1, (6.10)

2β > c1 + 1, (6.11)

β > c1. (6.12)

Let f be the minimal polynomial. Then

f(c1) = ct1 − c1c
t−1
1 − c2c

t−2
1 − · · · − ct = −c2c

t−2
1 − · · · − ct < 0

since σ has length at least two. Since a ≥ β =⇒ f(a) ≥ 0, we conclude that c1 < β
(Equation (6.12)).

Since σ satisfies the Parry condition, c1 ≥ ct ≥ 0 for all t. Thus, if |z| ≤ c1 + 1,

|c1(z)
t−1 + c2(z)

t−1 + · · ·+ ct| ≤ c1(1 + (c1 + 1) + · · ·+ (c1 + 1)t−1)

= (c1 + 1)t − 1.

Therefore we have |zt| > |c1z
t−1 + c2z

t−2 + · · · + ct| for |z| = c1 + 1; by Rouché’s theorem,
the polynomials zt and f(z) have the same number of zeros in |z| ≤ c1 + 1, namely t zeros.
Thus β < c1 + 1 (Equation (6.10)).

Lastly, we have β > c1 so 2β > 2c1 and 2c1 ≥ c1 + 1 if c1 ≥ 1 (Equation (6.11)).
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By Equation (6.10), we get that P[c1+1]−S1([1])(β) > 0. Since c1 ≥ 2, we have that (1)
is an allowable block. Let Γn = S1([1]). Note that Γn+1 must start with a 2 (again since
c1 ≥ 2). Then P[c1+1]−Γn+1

(β) < P[c1+1]−S1([2])(β) < 0 by Equation (6.11). Therefore S1([1])
is the first candidate block for [c1+1] and the asymptotic greedy algorithm continues. Since
P[c1+1]−S1([1])−[1](β) = −β + c1 < 0 by Equation (6.12), we know that the second candidate
block must be less than [1]. In particular, the second block of NGZD(Ds) must be less
than [1] for s sufficiently large, which is to say that L(εs) < 0 as in the statement of the
lemma. �

Note that Lemma 6.1 is not necessarily true if c1 = 1. For example, if σ = (1, 0, 0, 1), then
NGZD(Ds) = S2([1]) + εs for s sufficiently large.

Theorem 6.1. Suppose σ satisfies the Parry condition and c1 6= 1 and σ is not weakly
decreasing. Then H = Hσ is not summand minimal.

Proof. Let D = Der(c1+1, H). We shall show that there exists an s such that the number of
summands in Ds is greater than c1 +1. By Remark 5.3, if we are in Case 2 or 3 of Theorem
5.1, then we are done. Suppose instead that we are in Case 1 of Theorem 5.1. We proceed
by contradiction.

If we are in Case 1, then there exists an α such that g := −P[v]−α is a multiple of f , the
minimal polynomial of H . By Lemma 6.1,

g = xr+1 − (c1 + 1)xr + b1x
r−1 + · · ·+ br

for some bi ≥ 0. The number of summands in α is S := 1 +
∑

bi. If S > c1 + 1, then Hσ is
not summand minimal, so we may assume S ≤ c1 + 1.

We know that g = fh for some h. Since the leading coefficient of f is 1, by long division
of polynomials we conclude that h must have integer coefficients (this is essentially Gauss’
lemma). Let Σ(p) represent the sum of coefficients of a polynomial p. Notice that Σ(fh) =
Σ(f)Σ(h). Note that Σ(fh) = Σ(g) = S − (c1 + 1) ≤ 0. We know S ≥ 1, with equality
if and only if bi = 0 for all i. However, if bi = 0 for all i, then g = x − c1 and σ = (c1),
contradicting the fact that σ is not weakly decreasing. Thus S ≥ 2.

Since S ≥ 2, we have |Σ(g)| ≤ c1 − 1. We know that |Σ(f)| = |1− c1− · · ·− ct| ≥ c1 since
t ≥ 2 and ct ≥ 1. Since |Σ(g)| is an integer multiple of |Σ(f)|, but |Σ(g)| ≤ c1 − 1 < c1 ≤
|Σ(f)|, we must have that Σ(g) = 0, which is to say that S = c1+1 and x = 1 is a root of g.

When we factor out x− 1 from g, we are left with

g = (x− 1)(xr − c1x
r−1 − (c1 − b1)x

r−2 − (c1 − b1 − b2)x
r−3 − · · · − (c1 − b1 − · · · − br−1)).

Let q = g/(x− 1). Notice that c1 ≥ c1 − b1 ≥ · · · ≥ c1 − b1 − · · · − br−1 > 0. Therefore by a
theorem of Brauer (Theorem 2 of [Bra51]), q is irreducible in Q[x]. Since g has a factorization
over Q[x] as g = fh, we must have that f = q and h = (x − 1). However, this contradicts
the fact that the signature was assumed to not be weakly decreasing. Thus either we are
in Case 1 of Theorem 5.1 but Hσ is not summand minimal, or else we are not in Case 1 of
Theorem 5.1, in which case Hσ is again not summand minimal from previous discussion. �

Lastly, we need to check the case when c1 = 1. We again examine the gzd of elements in
D = Der(2, H) (note that c1 + 1 = 2). For a given H = Hσ, if we are in Cases 2 or 3 of
Theorem 5.1, then H is not summand minimal. Thus we assume we are in Case 1. Suppose
there exists an α such that g = P[2]−α is a multiple of f . If H is summand minimal, then
0 ≤ Σ(g) ≤ 2. Clearly Σ(g) 6= 2 (since then the gzd of Ds would have no nonzero terms for
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all s). Suppose Σ(g) = 1. Then α = Sr([1]) for some r. We cannot have r ≤ 0 since the
terms of H are monotonically increasing. Thus in such a case g = xr−2. Then g has all roots
of the same modulus, so g cannot be a multiple of f (which has one root of strictly greater
modulus than all the rest), unless r = 1, in which case the signature is (2) contradicting
the fact that c1 = 1. Thus Σ(g) = 0. We clearly can’t have α = Sr([2]) since [2] is not
an allowable block. Thus, α = Sa([1]) + Sb([1]) for some a and b, so 2Hn = Hn+a +Hn+b.
We cannot have one of a or b (or both) equal to 0 since then Hn = Hn+a. We can’t have
both a < 0 and b < 0 because then Hn > Hn+a and Hn > Hn+b, so 2Hn > Hn+a + Hn+b.
Similarly, we cannot have both a > 0 and b > 0. Thus one is greater than zero and one is
less. Thus g = xr − 2xs + 1 with r > s. We utilize the following theorem of Schinzel [Sch62]
which appears in English in [FS99].

Theorem 6.2 (Theorem 1 of [Sch62]). Let g(r, s) = xr − 2xs + 1 with r, s ∈ N and r > s.
Let d = gcd(r, s). The polynomial

h(r, s) =
g(r, s)

xd − 1
= xr−d + xr−2d + · · ·+ xr − xr−d − xr−2d − · · · − 1

is irreducible for all r, s except for (r, s) = (7k, 2k) or (7k, 5k), in which case h(r, s) factors
into irreducible pieces

h(r, s) = (x3k + x2k − 1)(x3k + xk + 1) and (x3k + x2k + 1)(x3k − xk − 1),

respectively.

Proposition 6.2. Suppose f is of positive type. Then f ∤ g(r, s) for any r, s except for
r = s+ 1, in which case f = xr−1 − xr−2 − · · · − 1.

Proof. For now assume (r, s) 6= (7k, 2k) of (7k, 5k). Suppose f | g(r, s). We know that f
cannot be a product of cyclotomic polynomials since β > 1 by Proposition 4.2. Therefore,
h(r, s) | f .

If d = 1, then g(r, s) = h(r, s)(x − 1). We know that x − 1 ∤ f because f has only one
positive root, β. Thus if f | g(r, s), then f = h(r, s) which is impossible unless r = s+ 1.

Suppose d > 1. Suppose f = h(r, s) · p with p | xd − 1 and x − 1 ∤ p. Then p must have
symmetric coefficients (products of cyclotomic polynomials other than x−1 have symmetric
coefficients). Suppose p = xℓ + a1x

ℓ−1 + · · ·+ a1x+ 1. Then

f(x) = (xr−d + xr−2d + · · ·+ xr − xr−d − · · · − 1)(xℓ + a1x
ℓ−1 + · · ·+ a1x+ 1).

The coefficient of xr−d+ℓ−1 in f is a1 since the xr−d−1 coefficient of h(r, s) is 0, and the
coefficient of x in f is −a1 since the x coefficient of h(r, s) is 0. Since f is of positive type
and of degree xr−d, the xr−d−1 coefficient must be negative implying that a1 < 0. Then
−a1 > 0, implying that the x coefficient of f is positive, contradicting the fact that f is of
positive type. Thus in fact f ∤ g(r, s).

Lastly, we must handle the case when (r, s) = (7k, 2k) or (7k, 5k). Suppose (r, s) =
(7k, 2k). Let I1 = x3k + x2k − 1 and I2 = x3k + xk + 1. The previous argument still implies
that f 6= h(r, s) ·p = I1 · I2 ·p. Thus, if f | g(r, s), then either f = I1 ·p or f = I2 ·p. Suppose
f = I1 · p. Notice that I1 = g(4k, k)/(xk − 1) = h(4k, k), so the previous argument again
applies. Suppose instead that f = I2 · p. Neither I2 nor p has positive roots, so f 6= I2 · p.
The argument for (r, s) = (7k, 2k) is virtually identical. �

Corollary 6.1. Suppose σ has c1 = 1 and is not weakly decreasing. Then H = Hσ is not
summand minimal.
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Proof. Let f be the minimal polynomial. Let v = (2). By the previous discussion, if we are in
Case 1 of Theorem 5.1 and H is summand minimal, then there exists some polynomial g(r, s)
which is a multiple of f . However, by Proposition 6.2, this is impossible. Therefore either
we are in Case 1 but H is not summand minimal, or else we are in Cases 2 or 3 of Theorem
5.1, so the number of summands in the gzd of elements of Der(2, H) grows arbitrarily large,
and in particular larger than 2. Therefore in all cases H is not summand minimal. �

Combining Proposition 6.1, Theorem 6.1, and Corollary 6.1, we conclude that if σ is not
weakly decreasing, then Hσ is not summand minimal.

7. Concluding remarks

Suppose β is the dominating root of the polynomial of positive type xt − c1x
t−1 − · · · − c1

and let σ = (c1, . . . , ct). If σ satisfies the Parry condition, we say that β is a simple Parry
number (in the β-expansion literature, σ is sometimes denoted by d(1, β)). Extrapolating
from our previous definition, we say that β is summand minimal if for all x ∈ Z+[β

−1],
the number of summands in the β-expansion of x is less than or equal to the number of
summands in any other representation of x as a sum of positive integral multiples of powers
of β. We note that the techniques of this paper immediately demonstrate the following.

Proposition 7.1. Suppose β is a simple Parry number whose corresponding polynomial is
irreducible in Q[x]. Then β is summand minimal if and only if σ is weakly decreasing.

One may then ask

Question 1. Are there simple Parry numbers β so that β is summand minimal but d(1, β)
is not weakly decreasing?

We conjecture that the answer to this question is no.
It is clear that summand minimality implies that

Fin(β) = Z+[β
−1].

One may also wonder about the related issue of whether

Fin(β) = Z[β−1]+. (7.13)

If β is a simple Parry number, then Z+[β
−1] = Z[β−1]+ (see [FS92]). Equation (7.13) is

known in the literature as property (F). Frougny and Solomyak [FS92] were the first to
systematically investigate which β satisfy property (F), with Theorem 1.2 being the first de-
finitive result on the matter. Notice that a simple Parry number β with d(1, β) = (c1, . . . , ct)
satisfies property (F) if and only if for all v such that Pv(β) > 0, we end up in Cases 1
or 2 of Theorem 5.1 (with H = H(c1,...,ct)). To the best of the authors’ knowledge, to date
there does not exist a simple characterization of those β which satisfy property (F) (see, e.g.,
[ABB+05]). Thus it is interesting that, at least in the gzd case, the issue of summand mini-
mality has a simple characterization (weakly decreasing signature), but the related question
of property (F) for β-expansions has an apparently more complicated answer.

Though this paper completely resolves the issue of summand minimality of PLRSs, there
are several finer points to still be addressed. In Proposition 6.1, we exhibit just one number
for which there exists a non-gzd representation with fewer summands than the gzd. However,
in Theorem 6.1 and Corollary 6.1, we show that (c1 + 1)Hn has more summands than the
gzd infinitely often. One may then ask
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Question 2. If σ does not satisfy the Parry condition, does (c1+1)Hn have more summands
than the gzd infinitely often?

We conjecture that this question has a positive answer. One may also ask

Question 3. Given any σ which is not weakly decreasing, is there a simple characterization
of those m for which Hσ is not summand minimal?

Theorem 5.1 itself brings up many interesting further points of investigation. A natural
question is to quantify the rate at which the derived sequence converges in gzd. We personally
find Case 2 of Theorem 5.1 to be particularly interesting. In fact, we know of very few
examples of pairs v and Hσ which are in Case 2. Clearly a necessary condition is that
P(1,−c1,...,−ct) be reducible in Q[x]. It would be interesting to find nontrivial families of
examples of Case 2.

As noted in the introduction, Theorem 5.1 is closely related to Theorem 1.3. However,
Theorem 1.3 also asserts that Der((k), Hσ) converges in gzd to the β-expansion of k. We note
more generally that if σ satisfies the Parry condition, then for any v, we have that Der(v,Hσ)
converges in gzd to the β-expansion of Q[v](β) (when in Case 2, α as in the statement of
Theorem 5.1 is the β-expansion). From a theorem of Parry [Par60], the representation
that Der(v,Hσ) converges to is the β-expansion of some number, and it is straightforward
to see that it represents Q[v](β). When σ does not satisfy the Parry condition, then for
any v we have that Der(v,Hσ) still converges to a β-expansion of Q[v](β), though not the
β-expansion. Thus Theorem 5.1 implies that every element in Z[β−1]+ has a unique β-
representation

∑
riβ

i where the representation (. . . , ri, . . . ) is composed of allowable blocks
(and this representation differs from the usual β-expansion when the signature does not
satisfy the Parry condition). Future investigations may involve exploring these and other
implications of Theorem 5.1 regarding the connection between β-expansions and generalized
Zeckendorf decompositions.

Appendix A. Algorithm from any representation to the gzd

Definition A.1. Let ρ = (rn, . . . , r0,∞t−1) be a representation using Hσ. We say ρ is legal
up to s if (rn, . . . , rs) can be expressed as Λ1 ⊕ · · · ⊕Λj with each Λi an allowable block and
Λ1 6= (0) (where ⊕ represents concatenation).

Definition A.2. The minimum legal index (m.l.i.) of ρ is the smallest index s such that ρ
is legal up to s.

Notice that if σ = (c1, . . . , ct) and ρ is a representation whose m.l.i. is s, then rs−1 ≥ c1.
If rs−1 = c1, then rs−2 ≥ c2. At some point, we must either have that rs−j > cj , or for all
1 ≤ j < t, we have rs−j = cj and rs−t ≥ ct. This motivates the following definition.

Definition A.3. Suppose ρ has m.l.i. equal to s. Let j be the smallest index such that
rs−j > cj , or if rs−i = ci for all 1 ≤ i ≤ t, then let j = t. The violation index is s− j and we
call rs−j the violation.

Definition A.4. Suppose ρ has m.l.i. equal to s and violation index equal to j. Then
(rs−1, . . . , rs−(j−1)) = (c1, . . . , cj−1) is called the violation prefix. The prefix and the violation
together comprise the violation block.
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Remark A.1. A representation ρ can be decomposed as

ρ = Λ1 ⊕ · · · ⊕ Λj ⊕Ψ⊕ (rd, . . . , r0,∞t−1), (A.14)

with each Λi a valid block, and Ψ the violation block. For any Λi (or Ψ), we call the block
immediately to the left of Λi (or Ψ) as in Equation (A.14) the left neighbor block of Λi (or
Ψ). The left neighbor block of Λ1 is defined to be (0).

Definition A.5. Suppose ρ has m.l.i. s and violation index j. We say that ρ is semi-legal
up to q if q = s− j + 1. We call q the semi-legal index (s.l.i.).

Remark A.2. We note that the s.l.i. is the index to the left of the violation index, i.e., the
s.l.i. is the violation index plus one. Furthermore, the difference between the m.l.i. and the
s.l.i. is exactly the length of the violation prefix, which is 0 if the violation prefix is empty.

Remark A.3. The m.l.i. and the s.l.i. give us a way to quantify how “close” a representation
of m is to GZD(m). Definitions A.1, A.2 and A.5 imply that the m.l.i. and the s.l.i. of ρ are
both equal to 0 if and only if ρ is allowable.

Example A.1. Let σ = (3, 2, 4) and ρ = (3, 2, 1, 1, 3, 0, 3, 3, 5,∞2). Then

ρ =
(

3, 2, 1 , 1 , 3, 0 , 3, 3 , 5,∞2

)

,

where each closed box represents a valid block, and the right-opened box ( 3, 3 ) represents
the violation block. The violation index is 0, the s.l.i. is 1, and the m.l.i is 3. We are able
to carry to 3 (the m.l.i.) because r2 = 3 = c1, r1 = 3 > 2 = c2 and r0 = 5 > 4 = c3. After
carrying, we get (

3, 2, 1 , 1 , 3, 1 , 0 , 1 , 1 ,∞2

)

,

which is the gzd. We note that the m.l.i. and s.l.i. equal 0.

Now consider the same signature as Example A.1 but with ρ = (3, 2, 1, 1, 3, 0, 3, 3, 1,∞2).
The violation index, m.l.i., and s.l.i. are still the same but we are not able to carry because
r0 = 1 < 4 = c3. This motivates the following definitions.

Definition A.6. Suppose ρ has m.l.i. equal to s. We call s− ℓ the carry obstruction index
(c.o.i.) if for all 1 ≤ i < ℓ, we have rs−i ≥ ci and rs−ℓ < cℓ.

Definition A.7. Suppose ρ has m.l.i. equal to s. Then s− e is called the rightmost excess
index (r.e.i.) if e is the largest index such that for all i < e, we have rs−i ≥ ci and rs−e > ce.

Example A.2. Consider the aforementioned example with σ = (3, 2, 4) and ρ = (3, 2, 1, 1, 3,
0, 3, 3, 1,∞2). Here, m.l.i. = 3, s.l.i. = 2 and the violation index is 1. The c.o.i. is 0 and the
r.e.i. is 1 because r1 = 3 > c2 = 2. We can borrow from the r.e.i. to make our c.o.i. large
enough that we are able to carry. We demonstrate this in Table 3.

Remark (↓)/Index (→) 8 7 6 5 4 3 2 1 0 −1 −2

ρ 3 2 1 1 3 0 3 3 1 ∞ ∞
Borrow from 1. −1 3 2 4

3 2 1 1 3 0 3 2 4 ∞ ∞
Carry to 3. 1 −3 −2 −4

3 2 1 1 3 1 0 0 0 ∞ ∞

Table 3. Sequence of borrows and carries to move to the gzd.
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Remark A.3 explains how a representation can be thought of as being “far” from the gzd
if its m.l.i. and s.l.i. are large. As such, a potential way to turn any representation into the
gzd is to try decreasing the m.l.i. and s.l.i. of the representation to zero. To do so, one may
start by finding the first violation and attempting to “fix” it. Because any valid block is
lexicographically less than σ (see Definition 2.2), the entry at the violation index is always
“too large.” This suggests that we may try to carry in order to fix it, as in Example A.1. In
the case where we are not able to carry, which is to say that the c.o.i. exists, we would first
borrow from the r.e.i. in order to carry, as in Example A.2. As one performs these borrows
and carries to fix all possible violations, one would expect to decrease the m.l.i. and the s.l.i.
to zero to reach the gzd. Motivated by this intuition, we introduce Algorithm A.1. Although
there is some subtlety in the algorithm, this intuition is the key idea in the proof of validity.

Algorithm A.1.

Input: σ (the signature) and ρ (a representation of m using Hσ)
Output: the gzd of m
while the m.l.i. is not 0 do

if able to carry to m.l.i. then
carry to m.l.i.
while left neighbor block is (c1, . . . , ct) do

carry to next block
end

else
borrow from the r.e.i.

end

end

Example A.3. Let σ = (3, 2, 5). We apply Algorithm A.1 to ρ = (2, 3, 2, 4, 4, 3, 0, 0,∞2).

Remark (↓)/Index (→) 7 6 5 4 3 2 1 0 -1 -2

m.l.i. = 4, s.l.i. = 4, c.o.i. = 1, r.e.i. = 2. 2 3 2 4 4 3 0 0 ∞ ∞
Borrow from 2. -1 3 2 5
m.l.i. = 4, s.l.i. = 4, c.o.i. = 1, r.e.i. = 3. 2 3 2 4 4 2 3 2 ∞ ∞
Borrow from 3. -1 3 2 5
Able to carry. 2 3 2 4 3 5 5 7 ∞ ∞
Carry to 4. 1 -3 -2 -5
Left neighbor block = σ. 2 3 2 5 0 3 0 7 ∞ ∞
Carry to 7. 1 -3 -2 -5
m.l.i. = 1, s.l.i. = 1, able to carry. 3 0 0 0 0 3 0 7 ∞ ∞
Carry to 1. 1 -3 -2 -5
m.l.i. = 1, s.l.i. = 1, able to carry. 3 0 0 0 0 3 1 4 ∞ ∞
Carry to 1. 1 -3 -2 -5
m.l.i. = 0. We’ve reached the gzd. 3 0 0 0 0 3 2 1 ∞ ∞

To assist in the proof that Algorithm A.1 terminates in the gzd, we state and prove a few
lemmas. We first show that the s.l.i. weakly decreases in Lemma A.1. Then, we show that
the s.l.i. strictly decreases after finitely many steps in Lemma A.2. Finally, using those two
lemmas, we prove that the m.l.i. decreases to 0 in finitely many steps.

Lemma A.1. The semi-legal index (s.l.i.) monotonically decreases during Algorithm A.1.
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Proof. When performing Algorithm A.1, if we are not able to carry to the m.l.i., then the
s.l.i. either stays the same or decreases. Thus, for the purposes of proving the lemma, we
may suppose that we are able to carry.

Suppose the left neighbor block of the violation block is (c1, . . . , cℓ−1, dℓ) with dℓ < cℓ. If
dℓ < cℓ − 1, then we still have a valid block after carrying. The entries of ρ with indices
strictly between the old m.l.i. and the old s.l.i. become zero after carrying, and thus become
valid blocks. Therefore the s.l.i. will have either stayed the same or decreased.

Now instead suppose that dℓ = cℓ − 1 and ℓ < t. After carrying, our representation is of
the form

Λ1 ⊕ · · · ⊕ Λj ⊕ (c1, . . . , cℓ−1, cℓ, 0, . . . , 0, v − ck+1, . . . ),

where v is the original violation and the length of 0, . . . , 0 in the middle is the length of the
violation prefix before carrying.

We cannot have a violation before v − ck+1 because a violation requires that an entry is
greater than its corresponding entry in the signature; however, the first ℓ terms agree with
the signature and the remaining terms are all zero, so they are either equal to or less than the
corresponding terms in the signature. Therefore the earliest possible violation is at v− ck+1,
so in this case the s.l.i. either stays the same or decreases.

Finally, suppose ℓ = t and dℓ = ct − 1. After we carry, the left neighbor block of the
violation block is now (c1, . . . , ct), so we immediately carry again by Algorithm A.1. After
the carry, our representation looks like

Λ1 ⊕ · · · ⊕ Λj−1 ⊕ (c1, c2, . . . , cm − r, 0, . . . , 0
︸ ︷︷ ︸

t

, . . . ),

with r ≥ 0. If r ≥ 1, then clearly the s.l.i. has not increased. If m < t and r = 0, then since
we have t trailing zeros, the s.l.i. still has not increased ((c1, . . . , cm, 0, . . . , 0

︸ ︷︷ ︸
t

) is composed of

allowable blocks). If r = 0 and m = t, then by Algorithm A.1, we must carry yet again to
the next left neighbor block and repeat the above arguments. We know that at some point
the left neighbor block is not (c1, . . . , ct − 1) since there are finitely many nonzero blocks.
As such, at some point this process terminates without increasing the s.l.i. �

Lemma A.2. Suppose s.l.i. ≥ 1. Then, after finitely many steps of Algorithm A.1, the s.l.i.
decreases.

Proof. Let ρ be

ρ = Λ1 ⊕ · · · ⊕ Λj ⊕ (c1, . . . , cm, v, . . . ),

where 0 ≤ m < t, the violation is v, and each Λi is a valid block. Suppose Λj =
(c1, . . . , cℓ−1, dℓ), with dℓ < cℓ.

We now show that after finitely many steps, the value of v decreases. In performing Algo-
rithm A.1, every time we borrow, the value in the rightmost excess index (r.e.i.) decreases
by 1. If we keep borrowing and are never able to carry, then at some point we must have
decreased the value at the original r.e.i. to the point where it is no longer “excess”. At this
point, the r.e.i. increases, and so if we never carry, then after finite time the r.e.i. becomes
equal to the violation index. In that case, the next time we borrow, v decreases.

We are left to handle the case when we are able to carry. When we carry, v decreases
by cm+1 ≥ 0. If this amount is cm+1 ≥ 1, then clearly v decreases. Otherwise, cm+1 = 0
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(implying m ≥ 1). After carrying, we obtain

Λ1 ⊕ · · · ⊕ Λj−1 ⊕ (c1, . . . , cℓ−1, dℓ + 1, 0, . . . , 0
︸ ︷︷ ︸

m

, v, . . . ).

There are now m ≥ 1 zeros to the left of v. By Lemma A.1, after performing any possible
carries in the left neighbor blocks, the s.l.i. will at worst stay the same, in which case either
the s.l.i. decreases (as we ultimately want) or v remains the violation.

Assuming v remains the violation, then repeating the above arguments, we either have that
at some point we borrow from v, or else we carry. In the former case, v obviously decreases;
in the latter case, either v decreases or the violation block is of the form (c1, . . . , cq, v) with
cq+1 = 0. However at this point, since we’ve already carried once before (resulting in m
zeros to the left of v), we have that cq−m+1 = · · · = cq = 0. Since c1 6= 0, we must have that
q −m ≥ 1. Then, after the second carry, the number of zeros to the left of v increases by
q −m ≥ 1.

As Algorithm A.1 continues, we may repeat the above arguments implying that either the
s.l.i. decreases, or v eventually decreases, or the number of zeros preceding v grows larger
and larger. In the last case, eventually the number of zeros preceding v grows larger than t.
Then at the next step, either the s.l.i. decreases, or the violation prefix has zero length, in
which case v decreases by c1 ≥ 1 after the next carry.

Thus in all cases, either the s.l.i. decreases, or v decreases. However, if v continues to
decrease, then after finitely many steps v must be small enough that the s.l.i. decreases. �

Theorem A.1. Algorithm A.1 terminates in the gzd.

Proof. By Lemma A.2, the s.l.i. decreases to zero. Theorem A.1 holds if and only if the m.l.i.
decreases to zero after finitely many steps. Therefore, we need only show that when the s.l.i.
is zero, the m.l.i. goes to zero.

Suppose the s.l.i. is zero. If the m.l.i. is not equal to zero, then our representation is of
the form ρ = Λ1⊕· · ·⊕Λj ⊕ (c1, . . . , cm,∞t−1). Suppose Λj = (c1, . . . , cℓ−1, dℓ) with dℓ < cℓ.
We can immediately carry to the m.l.i. using the ∞ places, resulting in

Λ1 ⊕ · · · ⊕ Λj−1 ⊕ (c1, . . . , cℓ−1, dℓ + 1, 0, . . . , 0
︸ ︷︷ ︸

m

,∞t−1).

If dℓ + 1 < cℓ, then the m.l.i. is zero.
Otherwise, we have dℓ+1 = cℓ. If ℓ = t, then we carry to the left neighbor block as needed

which ultimately decreases the m.l.i. to zero. If ℓ < t, then unless cℓ+1 = · · · = cℓ+m = 0, we
are done. Otherwise, we must carry again, and the violation prefix grows larger. Repeating
the above arguments, we see that either the algorithm terminates with the m.l.i. equal to
zero, or else the violation prefix grows arbitrarily large. However, the violation prefix cannot
grow larger than t, so we must eventually end up in the former case. �

Appendix B. Proof of Proposition 4.1

Definition B.1. Let H be a sequence. Define Hn,k by

Hn,k =







Hn Hn+1 · · · Hn+k

Hn+1 Hn+2 · · · Hn+k+1
...

...
. . .

...
Hn+k Hn+k+1 · · · Hn+2k






.
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Matrices of the form Hn,k are known as Hankel matrices.
We need the following result of [Sal63].

Lemma B.1 (Lemma 3 of [Sal63]). A sequence satisfies some order-k linear recurrence if
and only if det(Hn,k) = 0 for all n.

Let Hℓ = {Hn}n≥ℓ denote the ℓth truncation of H , i.e., the sequence obtained by removing
the first ℓ− 1 terms.

Proposition B.1. Suppose f is the minimal polynomial for H. Then f is the minimal
polynomial for all truncations Hℓ.

Proof. Let H be some linear recurrence sequence and let f be the minimal polynomial for
H . Let f = xt − c1x

t−1 − · · · − ct. Note that ct 6= 0. We shall show that det(Hn,t−1) 6= 0 for
all n. Let D = det(H1,t−1). In particular we will show that | det(Hn,t−1)| = |cnt D|.

We proceed by induction. Suppose we have

Hn,t−1 =







Hn Hn+1 · · · Hn+t−1

Hn+1 Hn+2 · · · Hn+t

...
...

. . .
...

Hn+t−1 Hn+t · · · Hn+2t−2






.

We index our columns starting from zero. Notice that the 1st through (t − 1)th columns
appear as columns in Hn+1,t−1. Furthermore, notice that if we multiply the zeroth column by
ct and add to it ct−1 times the first column, plus ct−2 times the second column, plus etc., plus
c1 times the t− 1 column, then the columns of the resulting matrix agree with the columns
of Hn+1,t−1. The determinant has gone up by a factor of ct. In order to move the resulting
matrix to the form of Hn+1,t−1, we need to permute some columns, which may change the
sign of the determinant, but not the magnitude.

We know that f ∈ I(Hn). However, if f did not generate I(Hn), then there must be
some polynomial of lower degree in I(Hn). In particular, there must be some polynomial
of degree t − 1 in I(Hn). If this were so, then det(Hm,t−1) would be zero for all m ≥ n by
Lemma B.1, which is a contradiction. Therefore, we must have that f is the lowest degree
polynomial in I(Hn) for all n, and thus is the minimal polynomial for all Hn. �

Proof of Proposition 4.1. By Proposition B.1, it suffices to show that detH−(t−1),t−1 6= 0. It
is immediate from writing out the matrix H−(t−1),t−1 that by switching columns, we can make
it lower triangular with diagonal entries all equal to 1, and hence det(H−(t−1),t−1) = 1. �

Appendix C. Proof of Proposition 4.2

Proof of Proposition 4.2. Let A denote the companion matrix corresponding to f . All entries
in A are non-negative. It is straightforward to check that the tth power of A has all entries
positive. Hence A is a primitive matrix. Hence we may apply the Perron-Frobenius theorem
to conclude that f has a unique real dominating root of multiplicity one, call it β.

Notice that β ≥ c1 since f(c1) = −c2c
t−2
1 − · · · − ct ≤ 0. If t ≥ 2, then β > c1 = 1. If

c1 ≥ 2, then β ≥ 2. If c1 = 1 and t = 1, then f = x − 1 which we do not consider to be of
positive type.

Furthermore, notice that the coefficients of f have exactly one sign change. Therefore by
Descartes’ rule of signs, f must have at most one positive root, and hence exactly one. �
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