Properties of Multidimensional Vector Zeckendorf
Representations

Ivan Bortnovskyi?, Julian Duvivier®, Pedro Espinosa®, Michael Lucas?®, Steven J.
Miller¢, Tiancheng Pan®, Arman Rysmakhanov®, Jana Vranesko®, Ren Watsond, and
Steven Zanetti®

aDepartment of Pure Mathematics and Mathematical Statistics, University of Cambridge,
Cambridge, United Kingdom, CB3 OWA: PDepartment of Mathematics, Reed College,
Portland, OR, 97202; °Department of Mathematics, Williams College, Williamstown, MA,
01267; 9Department of Mathematics, University of Texas at Austin, Austin, TX 78712;
°Department of Mathematics, University of Michigan, Ann Arbor, MI 48109

ARTICLE HISTORY
Compiled October 15, 2025

Article type: research

ABSTRACT

Zeckendorf’s Theorem says that for all & > 3, every nonnegative integer has a
unique k-Zeckendorf representation as a sum of distinct k-bonacci numbers, where
no k consecutive k-bonacci numbers are present in the representation. Anderson and
Bicknell-Johnson [I] extend this result to the multidimensional context: letting the
k-bonacci vectors f(z € ZF! be given by io = 6, X_i =& forl <i<k-—1,
and Xn = Zle Xn_i for all n € Z, they show that for all kK > 3, every Vv € A
has a unique k-bonacci vector Zeckendorf representation, a sum of distinct k-bonacci
vectors where no k consecutive k-bonacci vectors are present in the representation.
Their proof provides an inductive algorithm for finding such representations. We
present two improved algorithms for finding the k-bonacci vector Zeckendorf rep-
resentation of v and analyze their relative efficiency. We utilize a projection map
Sp : ZF71 = Zso, introduced in [1], that reduces the study of k-bonacci vector rep-
resentations to the setting of k-bonacci number representations, provided a lower
bound is established for the most negatively indexed k-bonacci vector present in
the k-bonacci vector Zeckendorf representation of V. Using this map and a bijec-
tion between ZF~! and Z>¢, we further show that the number of and gaps between
summands in k-bonacci vector Zeckendorf representations exhibit the same proper-
ties as those in k-Zeckendorf representations and that k-bonacci vector Zeckendorf
representations exhibit summand minimality.

KEYWORDS
Fibonacci numbers; Zeckendorf’s Theorem; Lekkerkerker’s Theorem

Ren Watson: renwatson@utexas.edu

The first listed author was supported by The Winston Churchill Foundation of the United States. The NSF grant
DMS2242623 supported the second, third, seventh, eighth, ninth, and tenth listed authors, and the third, seventh,
and eighth authors were supported by Williams College and the Finnerty fund. Finally, the fourth and sixth listed
authors were supported by the Dr. Herchel Smith Fellowship Fund.

1. Introduction

1.1. History and Motivation

A beautiful theorem of Zeckendorf [11] states that every nonnegative integer n can be
written uniquely as a sum of non-consecutive Fibonacci numbers. E] We refer to this
representation as the Zeckendorf decomposition of n. Zeckendorf decompositions
and their generalizations have been the subject of extensive previous study; for in-
stance, see [3, 4, [, [7, [8, 9] [10]. One natural extension of the Fibonacci sequence is as
follows, where the Fibonacci numbers are given by taking k& = 2.

Definition 1.1 (k-bonacci Sequence). For a fized choice of k, the k-bonacci se-
quence {x,} || is given by z, =0 for —k+2<n <0, 1 =1, and x, = Zle Tpi
for alln € Z.

The original proof of Zeckendorf’s Theorem, via the greedy algorithm for k& = 2,
naturally extends to k > 3, giving the following result. Note that the restriction ¢ > 2
is imposed to guarantee x1 = x9 = 1 are not both allowed in the decomposition, as
this would result in loss of uniqueness of decomposition.

Theorem 1.2 (Zeckendorf). Every nonnegative integer n can be written uniquely as
a sum of distinct k-bonacci numbers n =), c;v; such that ¢; € {0,1} for all i and
no k consecutive ¢;’s are equal to 1.

For a fixed k, we refer to the unique representation of n given by Theorem as
the k-Zeckendorf representation of n. Formally, the greedy algorithm used to find
the k-Zeckendorf representation of a positive integer n is as follows.

Definition 1.3 (k-bonacci Number Greedy Algorithm). For a fized k > 1 and positive
integer n, the k-bonacci number greedy algorithm finds the unique k-Zeckendorf
representation of n as follows.

(1) Initialize R :==n.

(2) Find 1 > 2 maximal such that xy, < R.

(8) Reset R:= R — xy,.

(4) If R =0, the algorithm terminates. Else, repeat step (2) to find €y > 2 maximal
such that x4, < R and reset R := R — xy,. Repeat this process until R = 0. The
finite sum .o, xy, forms the k-Zeckendorf representation of n.

This paper extends the study of multidimensional Zeckendorf representations initi-
ated by Anderson and Bicknell-Johnson [I]. Before stating our results, we introduce
relevant notation and prior results.

Definition 1.4 (k-bonacci Vectors). The k-bonacci vectors X; € ZF1 are given
byXo=0,X_,=6; for1<i<k—1, and X, :ZleXn_i for alln € Z.

The notion of k-Zeckendorf representations for nonnegative integers extends natu-
rally to representations of vectors v € Z¥~! as sums of k-bonacci vectors.

Theorem 1.5. [1, Theorem 2] Every Vv € ZF~! has a unique representation Vv =

—

Zi21 ¢;X_; such that ¢; € {0,1} for all i and no string of k consecutive ¢;’s is equal

1We define these by F; = 1, F = 2 and Fp4+1 = Fn + Fy—1; otherwise, we lose uniqueness.

2Because k is fixed, we suppress it in the notation for ease of reading.

2

to 1.

For instance, taking k& = 3, the first several 3-bonacci vectors are given by:

Then the unique representation of (7, 0) satisfying the criteria of Theorem is given
by

(7a0) = (571)+(270)+(_17_1)+(170)
= X+ X ,+X 3+X ;.

Definition 1.6 (Satisfying Representation). For v € ZF~!, a representation v =

—

ZiZI ;X _; such that all ¢; € {0,1} and no string of k consecutive ¢;’s are equal to 1 is
called a satisfying representation (SR) of V, and the unique such representation of

—

Vv may be denoted SR(V). A representation V.= .., ¢;X_; such that all ¢; € {0,1, 2},
no string of k consecutive c;’s are nonzero, and only one string of consecutive nonzero
¢i’s contains any 2’s is called a nearly satisfying representation (NSR) of v.

Anderson and Bicknell-Johnson [I] introduced the following scalar product, which
will allow us to utilize known results regarding the k-bonacci numbers in our analysis
of the k-bonacci vectors.

Definition 1.7 (k-bonacci Projection Map). Forn >k —2, let S, : ZF=1 — [0, z,,)
be the linear map

Sn(V) = V- (Tpn_1,s Tnk—1y) (mod zy,).

Lemma 1.8. [1, Lemma 3] We have S,(3°F_, ci)_i_i) =" ¢iwp; (mod).

Proof. For 0 <i<k-—1,
Sn(i_l) = e_; . (.’L’n_l, Cee ,xn,(k,l)) = Tpn—g-

For i > k, we have Sn(}_i_i) = z,—; (mod x,) by the recursive definitions of X_; and
ZTp_;. Linearity completes the proof. O

Lerr/lma_' 1.9. [1, Corollary 5] Suppose Vv = Zi‘il oX_; and V' = V + X,p =
ZM . X_; are SR’s and that p < M. Then M' < k + M.

i=1"1

For a fixed choice of k > 2 and ¥ € ZF7!, Anderson and Bicknell-Johnson’s [I]
proof of Theorem provides a recursive approach to finding the SR of ¥. A primary

focus of this paper is to provide an improved algorithmic approach for finding the SR
of V. Before stating our results, we recall the following definition.

Definition 1.10 (Big-O Notation). Let f(z) and g(z) be real-valued functions. We
say that f(x) = O(g(z)) if there exists some constant ¢ > 0 and xy € R such that
|f(z)] < clg(x)| for all x > xy.

1.2. Main Results

In order to compare our algorithmic approaches to finding the SR of ¥, we first provide
in Appendix[A]a more formal definition and complexity analysis of the algorithm given
by [1], yielding the following result.

Lemma 1.11. Let L be the number of summands in the SR of V € ZF~'. The recursive
algorithm for finding the SR of v in [1] runs in O(k - L - ||V||,) steps.

In Section [2, we establish two improved algorithmic approaches for finding the SR
of ¥ and provide an analysis of their relative efficiency. Both algorithms rely on the
following definition.

Definition 1.12 (Maximal k-bonacci index). The mazimal k-bonacci index of
v € ZF-1\{0} is

J(¥) = max{i € N| X_; appears in the SR of ¥}.

Both of our algorithms utilize the following modification of the k-bonacci number
greedy algorithm.

Definition 1.13 (Vector Zeckendorf Greedy Algorithm). Let & > 1 and Vv €
ZF=1\{0}. Suppose that j > J(V). Then the vector Zeckendorf greedy algorithm
for Vv proceeds as follows.

(1) Apply Sj1(V) =V (), ..., Tj11-k-1)) (mod zj41). A

(2) Use the k-bonacci number greedy algorithm to write Sj11(V) = Y1 cixjy1-
(mod z;41), where ¢; € 0,1 and no k consecutive ¢;’s are equal to 1.

(3) Output the representation y 1_, ¢;X_;.

Thus, our algorithmic approaches rely on finding efficient methods for obtaining a
value of j. The following lemma allows us to compute a value for j from any k-bonacci
vector decomposition of V.

Lemma 1.14. Suppose Vv = Ef\il X—n,- is any k-bonacci decomposition of V (not
necessarily an SR). Then

E(N —1)+ [max n; > J(V), (1.1)

so we can use j = k(N — 1) + max; n; in the vector Zeckendorf greedy algorithm.

Proof. The proof follows from inductive use of Lemma [1.9 O

The different values for j arise from different ways of constructing a k-bonacci
decomposition of V. The first relies on taking a series of small steps, consisting of

a combination of X_;, and the standard basis vectors {ﬁl}f;f, and obtains a larger
upper bound on j more quickly.

Definition 1.15 (Small Steps Bound for j). Fiz ¥ = (v1,vs,...,v5_1) € ZF-1\ {0}.
Proceed according to the following cases.

(1) If V contains some entry v; < 0, then let v,, be the maximally negative entry of
V. First, take vy, steps in direction X_j, = (—1,—1,...,—1); then, take v; — vy,
steps in direction i_j =€, for each j € {1,...,k}.

(2) If Vv contains no negative entries, then take v; steps in direction X,j for each
Jje{l, ...k}

This algorithm gives rise to the following bound on j.

Theorem 1.16. Let ¥V = (v1,va, ..., vp_1) € ZF"1\{0}. Ifv; < 0 for some i, then let
v be the negative entry of V that is largest in absolute value. Let jsq be defined by

. |Um |k + Zf;ll(vi — vk if v; <0 for some i
Jssb = I{:Zf:_ll vi—1 if v; >0 for alli.

Then jssp > J(V).

We verify in Proposition that this approach runs in O(k® ||V||) steps. We can
make the bound on j given by the left-hand side in ((1.1)) smaller by taking fewer steps.
This motivates a second approach, in which each step is chosen to bring us as close
as possible to V. Formally, this is given below.

Definition 1.17 (Large Steps Bound for j). Fiz v € Z*¥~!. Let ¥, = ¥, and given V;,
take n; € N such that H\?’, - X_ni H is minimal, and let Vi1 = V; — X_n Stop when
i=M+1 and ||[Va1lly > [|[Vally. Then, use the algorithm given in the small steps
bound to write Vy; = ZfiM X_p, with n; € {1,...,k}. This gives a decomposition
S N <

Vv=>.,X_,.

We use Lemma to compute
Jise = k(N — 1)—|—m?xni > J(V).
When k = 3, the large steps bound allows us to obtain a logarithmic bound for j.
We provide Python code carrying out these algorithms in the following Colab

file:

https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8KwilkH?
usp=sharing .

Theorem 1.18. Fiz k = 3. There exist cs,ds > 0 such that for all v € Z*\{0},

IN

Jisb cglog ||V, + ds.

Hence, we have jis = O(log||V||y) = O(log ||V||,,) by the Lipschitz equivalence of LP
norms.

https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?usp=sharing
https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?usp=sharing
https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?usp=sharing
https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?usp=sharing

We conjecture based on strong computational evidence that this result may be
extended to all k > 3.

Conjecture 1.19. Fiz k > 3. There exist c3,ds > 0 such that for all Vv € ZQ\{G},

IN

Jisb czlog ||V, + ds.

Hence, we have ji = O(log||V]l,) = O(log ||V||) by the Lipschitz equivalence of LP
norms.

In Section [3] we turn our attention to the number of and gaps between summands
in k-bonacci vector Zeckendorf representations. We show that they exhibit the same
properties as those in the one-dimensional case.

Definition 1.20. Forn >0, let D, = {\7 cZF1: J(¥) < n}

Definition 1.21. For n > 0, consider the discrete outcome space D, \ D,_1 with
probability measure

pa4) = — AL A p\D L

Tp+2 — Tp4l

Note |Dp,\ Dy—1] = Tpi2—Tpi1, so this is the uniform measure. We define the random
variable K,, by setting K, (V) equal to the number of summands of Vv € D, \ D,_1 in
its SR.

Definition 1.22. Let Vv € D,, \ D,,_1, and let k(V) denote the number of summands
in the SR of V. Let {rj};(:vl) be the set of indices present in the SR of V.

e Spacing gap measure: We define the spacing gap measure of V by

K(¥)

1
Vi () = WZ(Hx— (rj —rj-1)), (1.2)

=2

where § is the Dirac delta functionalﬂ We do not include the gap to the first
summand, as this is not a gap between summands; for almost all V, one extra
gap 1s negligible in the limat.

e Average spacing gap measure: The SR of V has k(V) — 1 gaps. Thus the total
number of gaps for all v € D,, \ D,,_1 is

Ngaps(n) = > (k(¥)—1). (1.3)

_;GDH\D?L—l

3Thus for any continuous function f we have S22 f(@)6(z — a)dx = f(a); we may view §(z — a) as representing
a unit point mass concentrated at a.

We define the average spacing gap measure for all Vv € D, \ D,—1 by

) K(¥)
Un(T) 1= m GGD;Dn_l ; §(z— (rj —rj-1))
- Y @) = D). (1.4)

Negaps(n) VeD\Dp 1

If P,(l) is the probability of getting a gap of length | among all gaps from the
decompositions of all Vv € D,, \ D,_1, then

n—1

va(z) = Y Pu(l)d(z —1). (1.5)

=0

Theorem 1.23. Let K, be the random variable of Definition and denote its
mean by pu,. Then there exist constants Crex > 0 (the constant in the Generalized
Lekkerkerker’s Theorem for PLRS’s [10, Theorem 1.2 (Generalized Lekkerkerker)]),
d, and 1 € (0,1) depending only on k such that

pn = Cren +d+o(77).

The mean p, and variance o2 of K,, grow linearly in n, and (K, — u,)/o, converges
weakly to the standard normal N(0,1) as n — oo.

The following is a standard lemma which helps us state a result on the distribution
of gaps.

Lemma 1.24 (Generalized Binet’s Formula). Let A1,..., \x be the roots of the char-
acteristic polynomial for the k-bonacci sequence, which is

plz) = aF -2 —...—zx—-1=0. (1.6)

Order the roots so that |A\1| > -+ > |\g|. Then Ay > 1 is the unique positive real root,
and there exist constants such that

Tny1 = @A} 4+ O(nF2AD). (1.7)

Theorem 1.25. Let A\; > 1 denote the largest root (in absolute value) of the charac-
teristic polynomial for the k-bonacci sequence, and let ay be the leading coefficient in
the generalized Binet expansion. Let P, (1) be the probability of having a gap of length
I among the decompositions of Vv € D, \ Dy_1, and let P(l) = lim, o P, (I). Then

0 ifl=0
P(l) = SN (g —2a1) +ar) ifl=1 (1.8)
(A —1)2 (Ci) AT if1>2.

In particular, the probability of having a gap of length | > 2 decays geometrically, with
decay constant the largest root of the characteristic polynomial.

We further extend the study of summand minimality to the multidimensional case,
giving the following.

Theorem 1.26. Let Vv € Z*"'. Then SR(V) = Y .+, e;X_; is summand minimal:
that is, there is no way to write V as a linear combination of k-bonacci vectors with
nonnegative integer coefficients using strictly fewer terms.

2. Improved Algorithms for Finding Vector Representations

In this section, we fix a choice of k > 1 and v € Z*"1\{0}, noting that the SR of
0 is the empty representation. We provide two algorithms to compute the SR of v
which improve the algorithmic approach of [I]. We first show how to use the greedy
algorithm to find the vector decomposition of v for a specific j.

Lemma 2.1. Letk > 1 and v € Zk_l\{ﬁ} Let Sj+1 (_/") = 25:1 CiTjt+1—i (IIlOd :Ej+1)
be the output of the vector Zeckendorf greedy algorithm for v. Then > 1_; ;X _; is the
SR of V.

Proof. This follows because the map S;; is injective on the set of vectors with SRs
whose indices are bounded by j. O

2.1. Small Steps Algorithm
Let k > 1 and ¥ € Z*"\{0}. Lemma requires us to have a value of j before
using the vector Zeckendorf greedy algorithm to generate the SR of V. We verify the

small steps bound on j by writing V as a linear combination of {X_i}le and applying

Lemma [T.14l

Proof of Theorem [1.16. First, suppose that v; < 0 for some i € {1,...,k—1}. Note
that for any choice of k > 1, X_ = (—1,—1, ..., —1). Hence we can write

k—1
Vo= Jom| X+) (0 — o)X
i=1
By Lemma we have
k—1
J(‘_;) < |Um“€ + Z('Uz - Q}m)k = Jssbs
i=1

Otherwise, v; > 0 for every i € {1, ...,k — 1}. In this case, we write

Again, by Lemma [1.14

k—1 k—1
J(_;) < k(sz—1>+k—1 = kZU,’-l :jssb-
i=1 i=1

8

O]

Remark 2.2. The bound jss generated by the small steps algorithm is larger than
necessary even for small k and vectors with relatively small integer entries. The fol-
lowing examples illustrate this.

Example 2.3. Consider v = (2,—2). As k =3, we get j = 2(3) +4(3) = 18. Then
S19(2,—2) = 2(19513) — 2(10609) (mod 35890) = 17808 (mod 35890).
The k-bonacci number greedy algorithm gives the decomposition

17808 10609 + 5768 + 927 + 504

= X17 + 216 + T13 + X9

= Z19-2 +T19-3+ T19-6 + T19-7-

Then the SR of (2, —2) is X _g+X_3+X_g+X_7 = (0,1)4+(—1, —1)+(=2, =3)+(5,1).

Example 2.4. Consider v.= (3,0). As k = 3, we get j = 3-3 -1 = 8. Then
S9(3,0) = 3-44 (mod 81) = 51. The k-bonacci number greedy algorithm gives the
decomposition

51 = 4447

rg + Ts

= T9-1 1+ T9—4.

So the SR of (3,0) is X_; +X_4 = (1,0) + (2,0).
The following proposition is proved in Appendix [A]
Proposition 2.5. The time complezity of the small steps algorithm is O(k*||V||).

The time complexity of the algorithm in [I] is O(k - L - [|[V]|;) (see Appendix [A)),
where L is the number of summands in the decomposition of V. For fixed k, this
is O(||V||, log [|¥]|,,)- As well as being slow, calculating the SR of Vv requires us to

calculate all of the SRs along a path from 0 to V.

The time complexity of the Small Steps Algorithm is O(k?® ||V||,) [see Appendix
[A]. For fixed k, it is O(||V||,,). Although this is an improvement over the algorithm
in [1], Example demonstrates that we end up working with very large numbers,
even for small k and vV with small integer entries. This arises from the linear bound
for J(v). This motivates our second algorithm, which finds an improved bound on j.

2.2. Large Steps Algorithm
We first illustrate the Large Steps Algorithm with an example.

Example 2.6. Consider v .= (2,—-2). We let V1 = (2,—2). The closest 3-bonacci
vector to v is X_4 = (2,0). Then we take 3 = v1 — X_4 = (0,—2). The closest
S-bonacci vector to Vo is X_3 = (—=1,-1), so we set V3 = Vo — X 5= (1,—1). The
closest 3-bonacci vector to ¥3 is X1 = (1,0), so we set ¥4 = V5 — X_1 = (0,—1).

Now, subtracting off the closest 3-bonacci vector to \24 would not reduce the size, so we
use the small steps algorithm to write V4 = X_3 + X _o. This gives the decomposition

v = X 4 +2X_3+2X_4,
and Lemma tells us that
jlsb = 443-4=16.

We now proceed as before with the vector Zeckendorf greedy algorithm.

Example 2.7. Consider v = (3,0). We let vi = (3,0). The closest 3-bonacci vector
to v is X_4 = (2,0), so we set vo = Vi — X_4 = (1,0) = X_;. This gives the
decomposition

vV = X—4 +X—17
which translates to
Jisv = 4+3-1=7

by Lemma[1.14 We then proceed with the vector Zeckendorf greedy algorithm.

2.3. Analysis of Large Steps Algorithm

We now utilize a geometric argument to prove that the value j;4, provided by the large
step algorithm is logarithmic in ||V, for k& = 3. We conjecture that this is true for
all k.

Proof of Theorem . We prove the following statements.

(1) There exist natural numbers P and M such that for any sequence of P consecu-
tive 3-bonacci vectors starting at X_, forn>M , and any wedge in R? centered
about 0 with angle 27 /3, one of the 3-bonacci vectors lies in the wedge.

(2) There exist A < 1 and R > 0 such that for any v € Z* with ||V||, > R, there

exists }Z_n with

(3) There exist constants c3 and ds such that

Jiss < czlog ||V, + ds.

Proof of : We claim that P = M = 9 are sufficient for & = 3. We first rewrite
the 3-bonacci vectors in C, letting Z_,, = ®(X_,,), where ®(vy,v2) = vy + ive. Then
Z_y satisfies the recurrence relation Z_,, = Z_(,_3) — Z_(n_2) — Z_(n—1) for n > 2 with

10

Zy=0,7Z_1=1,and Z_5 =14. Then, we solve the recurrence relation to get

Z,n — Ar"eme—i—Br”e*me—i—Ce”,

where
r = 1.3562,
0 = 2.1762,
e = 0.5437,
A = —0.4578 — 0.3103¢,
B = —0.0612 — 0.0259¢,
C = 0.5190 + 0.33621,

each to 4 decimal places.

| B| + €"|C|

Bl +€"C|

Figure 2.1. A figure displaying a circle in which Z_,, must fall. We use this to approximate the argument of
Z_y.

Figure shows that the difference in angle between Z_,, and Ae™ is at most

arcsin (W), which decreases monotonically in n to

B
arcsin |]A] ~ 0.1204 (to 4 decimal places).

For n > 9, we have

arcsin <|B‘ + ||i|| (e/7) > < 0.121.

Hence, for n,m > 9, we have

arg(Z_m) —arg(Z_,) € ((m —n)0 — 0.242, (m — n)0 + 0.242). (2.1)

11

Consider for n > 9, the numbers Z_,,, Z_(,11), - - -, Z_(n48)- To show that every cone
with semiangle 7/3 contains one of these numbers, we show that the angle between
every two adjacent lines in Figure is less than 27/3 .

Zn
Z—n 3
Z—n 6
Z*TE.*S
Z77’1ﬁ5
Z*T{,*Z

Z—n—l

Zin74 Zf'n.f'f

Figure 2.2. Nine consecutive Z_;’s. We aim to show that the angle between each pair of adjacent lines is less
than 27/3.

By (2.1]), we have

arg(Z_(m+6)) — arg(Z_,) € (0.2490,0.7331) C (0,27/3)
arg(Z_(n41)) — arg(Z_(nye)) € (1.4432,1.9273) C (0,27/3)
arg(Z_(im) — arg(Z—(ns1)) € (0.2490,0.7331) C (0,27 /3)
arg(Z_(n+2)) — arg(Z_(n47)) € (1.4432,1.9273) C (0,27/3)
arg(Z_(n+s)) — arg(Z_(n42)) € (0.2490,0.7331) C (0,27/3)

arg(Z_n) — arg(Z_(n4s)) € (1.1976,1.6817) C (0,27/3).

This completes the proof of .
Proof of : By the triangle inequality, we have

Al = |Blr" = [Cle" < [Xonlla < A"+ [Blr" + [Ce”
This shows that ||X_, |2 is increasing for n > 1.

For v with ||[V|s > 2(|A|rP+M=1 4+ |BlrP+M=1 4 |C|eP+HM 1) = 682496, let X _,, be
the smallest 3-bonacci vector such that the upper bound of its norm is greater than
3 [[¥]l5- Consider some 3-bonacci vector X_, (with N <n—P <n' <n-—1) that

12

lies in the cone with axis passing through v and semiangle 7/3. We have

IX_wll2 > [Alr" = [Blr" —|Cle™
- \A\r”' — |B|r”’ — |C|6", 1 191
— |AJrm + |Blr™ + |Clen 2 2
|A|r=P — |Blr"F —|Cle P 1
> ¥l

|A|r™ + | B|r™ + |Clen 2
|A|7"M - |B|TM — |C’|6M 1
= |A[rMAP £ [B[pMtP 4 |[C|eMtP 2

191l

since the fraction in the penultimate line is increasing in n and n > M + P. Plugging
in our values of A, B, C,r, e and rounding down, we have

. 1 .
IX-wllz = 5719l

where v = 7.714 x 10~*. This shows that the region E in_Figure contains a 3-
bonacci vector. We therefore bound the distance from v to X_,,» by the distance from
Vv to the furthest point from Vv in E. Hence, we have that

2
R V3. 1 .
¥ =X s < (2 191)+ (50-21983)
1 S
< SVIF =729,
=)\||‘7||27

where A = 0.9998073.

]

Figure 2.3. Figure showing a region E which is guaranteed to contain a 3-bonacci vector.

13

Proof of : The large step algorithm gives a decomposition

N
V= X, (2.2)
i=1

To prove that N is finite, from the previous statement we obtain
- - i—1 || =
Vill, < AlVial, < - < XV, (2.3)
Now, for k = 3, at most the last two terms are from the case where no largest step

exists, so Vx_1 has norm at least 1, and none of the v;’s for i < N — 1 are (—1,0) or
(0, —1). Therefore, 1 < AN=2||¥||,, so we obtain the bound

log([I¥Vll)
log(1¥]) | 2.4
log(1/X) " -
By Lemma we have
Jisv < 3()+ie{0,%??§V+1}n 7

Finally, we bound the possible values of n; that can appear in the decomposition
of V. Statement ensures that || X_,,||2 < 2||V|,, and we know by the triangle
inequality that || X_p,[l2 > (JA| — |B|)r™ — |Cle™ > (|A| — |B|)r™ — |Cle. Hence,
(IA[= [B])r™ < 2|Vl + |Cle, so

20, +Cle
10g(AL TBT)

; 2.6
= logr (26)
Putting this all together, we have
. 2|[¥[l,+Cle
g (losll) Y, ()
Jisb = log(1/X) logr
. 2+|Cle 1=)
g (o9 Y | o (19
log(1/X) logr
3 1 . log(2 + |Cle) — log(|A] — |B|)
= 1 .
<10g(1/)\) * logr) og(II¥ll2) + <3 * logr
Plugging values in for A\, r, A, B, and C', we have c3 ~ 15570 and d3 = 5.018, rounded
up to 4 significant figures. O

This proof not only shows the existence of constants c3 and ds, but also gives us
their values. However, the value of ¢35 exhibited in this proof is too large for practical

use. A computation over all vectors v with ||V|| < 100 suggests that c3 = 15,d = 10

is sufficient. We also support this with a scatter plot for 1000 randomly generated
vectors with L* norm at most 10000.

14

160

140 4

120 1

100 1

60 -
40 1
20 - —— j=15log(||v]|2) + 10
® j=jib
0 2000 4000 6000 8000 10000 12000 14000

V12

Figure 2.4. Scatter plot of j;, and the proposed upper bound with 1000 randomly generated vectors

We give the time-complexity of the algorithm in the next proposition.

Proposition 2.8. For fixed k, the time complexity of the large step algorithm is
O([¥]ls0)-

We prove Proposition [2.8]in Appendix [A]

2.4. Relative Efficiency of Algorithms for Finding SRs

In summary, we have two methods to find a value of j for the vector Zeckendorf greedy
algorithm. For each fixed k, jss = O(||V]|,), but assuming Conjecture we have
Jisb = O(log || V]|). Considering k fixed, both methods have the same time-complexity,
but the slowest part of each method is the greedy algorithm. We gain more insight
into the running time by considering how long it takes to calculate jsq and jjs. The
proofs in Appendix [A| show that the calculation of jsg takes O(1) operations, and
that the calculation of jis, takes O((log ||V]|,,)?) operations for fixed .

3. Properties of Vector Representations

3.1. Owerview

The one-dimensional k-Zeckendorf representation possesses many interesting proper-
ties. The number of summands in decompositions of integers in [z, Z,+1) converges
to a Gaussian distribution, and the distribution of gaps between summands follows
geometric decay. Furthermore, the decompositions exhibit summand minimality; that
is, there is no way to express any nonnegative integer n as a linear combination of k-
bonacci numbers with nonnegative integer coefficients using strictly fewer terms than
the k-Zeckendorf representation.

We show that vector Zeckendorf representations have extremely similar properties

15

(Theorems|1.23] |1.25 and |1.26)). A useful strategy is to reduce the problem to the one-
dimensional case by considering appropriate bijections between subsets of Z*~! and
subsets of Z>p. An example of such a map is S,, in Definition The following map,
first observed by Anderson and Bicknell-Johnson [I], also provides valuable insight.

Remark 3.1. The satisfying sequences {c;} in TheOTem are essentially the same
as k-Zeckendorf representations for non-negative integers (as in Theorem . This
gives a bijection between ZF~1 and Z>y.

Recall that D, = {\7’ cZF1: J(¥) < n}, as given in Definition Then, the
following result is a more precise statement of Remark

Lemma 3.2. Define f : ZF' — 7> as follows. For any v € ZF' let ¥ =

—

D is1 @iX ;i be its (unique) SR. Let
f@ =) aix (3.1)
i>2
Then f is a bijection. For n > 0, the image of D,, under f is [0, x,+2) N Z.

Proof. Bijectivity follows from Theorem [1.2] and Theorem [I.5] For the final state-
ment, note that the non-negative integers with a k-Zeckendorf decomposition of the
form Z?;l c;z; are exactly the ones in [0, z,,42). O

The k-bonacci numbers belong to the class of Positive Linear Recurrence Re-
quences, which have been studied extensively (see [3, 4, [7, [9]). For these sequences,
the properties of decompositions are well-understood.

Definition 3.3. [/ We say a sequence {H,};>, of positive integers is a Positive
Linear Recurrence Sequence (PLRS) if the following properties hold.

(1) Recurrence relation: There are non-negative integers L,cy, ..., cr such that
Hn+1 = ClHn + -+ CLHn+1fL7

with L, cq and cp, positive.
(2) Initial conditions: Hy = 1, and for 1 < n < L we have

Hn+1 = ClHn + CQHn71 +---+ CnH1 + 1.
We call a decomposition Y | a;Hmi1-; of a positive integer N (and the sequence

{a;}",) legal if a; > 0, the other a; > 0, and one of the following two conditions
holds:

o We havem < L and a; = ¢; for1 <i<m.
e There exists s € {0,..., L} such that

ap = ¢, Qo = Cy, -+, Qg1 = Cs—1 and as < cs, (3.2)

Asi1y---,051¢ =0 for some £ >0, and {bi};zsfz (with b; = asye4;) is legal.

If Y0 aiHpmia—i is a legal decomposition of N, we define the number of sum-
mands (of this decomposition of N) to be ay + -+ + ap,.

16

Informally, a legal decomposition is one where we cannot use the recurrence rela-
tion to replace a linear combination of summands with another summand and the
coefficient of each summand is appropriately bounded.

Remark 3.4. The k-bonacci sequence {Tn41}52, is a PLRS with L = k and ¢ =
ce=cp = 1.

3.2. Distribution of the Number of Summands

Lemma relates the number of summands in vector Zeckendorf representations to
those in k-Zeckendorf representations. Then, it is no surprise that the distribution of
the number of summands converges to a Gaussian.

Proof of Theorem [1.23. Follows from [10, Theorems 2 and 3]. O

See [0, Section 4] for expressions characterizing the mean of the Gaussian for a
general PLRS. For the case of vector Zeckendorf representations, we also propose an
alternative way to find both the mean and the variance of the Gaussian by working
with binary words.

Definition 3.5. Let W, i be the set of binary words w = wy ---wy, € {0,1}" such
that

(1) wy =1 (the first bit is fixved to 1);

(2) w contains no substring of k consecutive 1’s.

Lemma 3.6. For each n > 1 there exists a bijection
e, D\ Dpy — Wiy
such that, for every v € Dy, \ D,_1 with the SR coefficient vector

(V) = (ens€n—1,...,€1) € {0,1}",

1, if the 7' summand appears in the SR of V,

gj =
! 0, otherwise,

we have ®,(V) = w, where w; = ¢; for 1 < j <n. The rules for the SR imply e, =1

and no k consecutive 1’s appear in (ep,...,€1), so ©,(V) is well-defined and is in

Wik

Proof. By definition of D, \ D,,—; and SR, each Vv has a unique coefficient vector
e(v) € {0,1}" indicating the presence or absence of each summand up to index n,
with ¢, = 1.

The rules for the SR correspond to forbidding & consecutive 1’s among the coeffi-
cients. Mapping coefficients to bits produces a well-defined w € W, ;.

The map is injective by the uniqueness of the SR, and surjective by reversing the
construction: read a word w € W, ;, as a valid coefficient vector, then form the SR. [J

17

Definition 3.7. For n > 1, we define the uniform probability measure on Wy, j:

Al
PW)(4) = | . AC W
() ’Wn,k| — 7k
Define the random variable X, : Wy, — N as
X,(w) = the number of 1’s in w, w € Wy

Using the bijection ®,, from Lemma and the uniform measure P, on D, \ D,_1

from Definition the pushforward measure (®,,).P,, equals P, In particular, X,
and K,, have the same distribution:

PO (X, = t) = Py(K, = t).

Counting binary words that avoid a pattern of k£ consecutive 1’s (also known as the
substring 1¥) is a classical problem in combinatorics (see, for example, [6, Ch. I]); our
case only differs slightly in that the first bit is fixed to be 1.

We state a generating function for binary words that avoid 1%, in which 2 marks
the length and y marks the number of 1’s. We write

Fk(ﬂjvy) = Z Zan,mxnymv

n>0 m>0

where a,,,, counts binary words of length n with exactly m total 1’s and with no
substring 1*.

Proposition 3.8 (From [2, Prop. 1]). For every fized k > 2, the generating function
for binary words avoiding 1% is

y(1 — (zy)¥)

Fk(a;,y) = y — 22 — 1y + (xy)k+1‘

Here x marks each letter and y marks each occurrence of the letter 1.

We now pass from the setting of Propositionto our model W), ;, in Definition
where the first bit is fixed to 1. Define

Flgx($,y) = Z an,m‘rnyma

n>1 m>1

where by, ,,, counts words in W), ;, of length n and with exactly m ones. Thus F, ,f‘x(:v, Y)
is the generating function for our fixed-first-bit model, while Fj(x,y) is the generating
for the unrestricted-first-bit model (which also includes the empty word).

Proposition 3.9. For every fixed k > 2, the generating function for binary words
that avoid 1% and have 1 fized as the first bit is

F¥(@y) = (1 = 2) Fi(a,y) - 1,

18

where Fy(x,y) is the same as in Proposition . FEquivalently,

1 — = 1 — (zy)*
ey = Y (— y?)—y (l‘y +((jy))2“ -

Proof. Every word counted by Fy(x,y) either starts with 0 or 1, or is the empty
word, which has weight 1. Let Fj, o(z,y) be the generating function for words starting
with 0, and Fj,o(z,y) for words starting with 1. Then Fj(x,y) can be decomposed as

Fi(z,y) = 1 + Fro(z,y) + Frai(x,y).
Adding a leading 0 to any word that avoids 1* results in a word that still avoids

1¥ and contributes weight = while contributing no factor of 3. Similarly, removing the
first bit from any word that starts with 0 results in a word that avoids 1¥. Therefore

Fk,O(x7y) = ka(x7y)

By definition, F,?X(ac, y) is the generating function of words that avoid 1¥ and start
with 1, so

F = z,y) = FX(x,y).
Hence
Fi(z,y) = 1 + xF(z,y) + FX(z,y),
leading to

N 1 — 2)y(1 — (xy)k
Fkﬁ (z,y) = (1 — x) Fi(z,y) — 1 = ; (7 ");y (xy n (:rgz}y)z“ — 1.

O]

Having found the generating function, we may derive the exact mean and variance
of K,,. Throughout this derivation, let [z"]G(x) denote the coefficient of 2™ in a series

G(z).

Remark 3.10. [t is standard in analytic combinatorics (see, for example, [6, Section
II1.2]) to identify combinatorial parameters with the random wvariables they induce
under uniform sampling: a parameter x counting a statistic in objects of length n
becomes a random wariable X, when these objects are sampled uniformly. We cite
relevant results involving parameters as if they were expressed in terms of random
variables.

The following result is a consequence of [6, Proposition III.2].

Proposition 3.11. Let F'(x,y) = >.,502 >0 fam 2"y™ be a generating function
where f, m counts objects of size n with parameter value m. For the random variable

19

Y, obtained from uniform sampling of size-n objects, with distribution

fn,m

]P(Yn:m) = Z‘>0fnj’

The expectation and variance of Y, are:

2] 2 (),)
o Fw) 0 vah) =

From here we apply Proposition for Y, = X,, and F' = F,?X from Proposition
9.9l

E[Y,] =

Theorem 3.12 (Exact mean and variance). For every k > 2 andn > 1, let

Aple) = Fi¥(2,1),

Bk(flf) = ayka:iX(‘T7 y)‘y:p and

Ck(l') = (8§F,fx + ayFIEX)(iyy)‘y:y

Then the mean and variance of X, under the uniform distribution on W, can be
calculated using the expressions we have just defined as follows:

[2"] Cy(x) ([2"] B (x)
7] A ()

[2"] B (x)
[27] Ag(x)’

E[X,] = Var(X,) =

The explicit forms of Ay, Bi, Cy are listed below:

$—il7k l‘—$k

Ar(z) = 1 — 2)Ap(z) 1 — 2z + 2kl

20

where

Proof. By Proposition [3.9]

zy (1 — (xy)*')

Ff*(z,y) = (1 — 29) An(z,y)’

To make this simpler, set

N(z,y) = zy — ="y, Vix,y) = (1 — my) Ag(z,y).

(z,1) = —k(k—1)z".

From here we can write F as Ff* = N/V.
Now we evaluate the derivatives at y = 1:
N
N(z,1) = =z — z*, a—(a:,y) =z — kafyFl =
dy
0?°N b b2 0?°N
92 (r,y) = —k(k—1)z"y = a9
For the denominator,

Vizg,1) = (1 — x) Ax(z),
ov 0A
oy @y = —ru(ey) + (1= ay)

so that
0A
Ty(xay) = -2 - 2% — - — (k-

21

Dz

N
oy (,1) = = — kat,

k-1
z,1) = —zAg(z) — (1 — x)ZrmTH.

r=1

iy
dy

Differentiating again,

0%V 0?Ay 0A
T?Jg(mvy) = (1 - xy)aiyg(may) - 23387y(3?,y),
with
2
Ol wy) = 27 — 3.2a% — o — (k= 1)k 2l
Yy
so that
aQV k—1 k—1
—(z,1) = (1 — 2)(—=Y r(r—1z") + 2erazT+1.
8y2 (r=2 > r=1

N(z,1) r — ¥
Viz,1) (1 — 2)Ap(z)’

which also equals (z — 2%)/(1 — 2z + 2%1) since (1 — x) Ax(x) = 1 — 2z + 2FL
For the first derivative, the quotient rule gives

Vv

9 (N eV — NG
Oy V2 ’

Evaluating this at y = 1 and substituting in the four expressions N(z, 1), %—];/(x, 1),
V(z,1), %—‘y/(aﬁ, 1) results in

Bi(z) = ! o[(@~ ket (1~) As(a)

(@ =) Ap(z))
k-1

- (z - l’k) (—I’Ak(l') - (1 — :U)erTJrl)].

r=1

For the second derivative, we differentiate again:

2
92N 92V ON oV oV
&Ny ayQ-VQ—N-ayQ-V—Za—y-V-a—y—i-QN-(@)
nP\V) V3 ’

92N
oy?

‘?;y‘z/ (z,1) together with the derived

Evaluating at y = 1 and substituting (z,1),

22

expression gives:

aZISXaZl = L —k(k— 1Dz (1 = z) Ap(x))”
k-1

— (v — 2 ((1 —z) (=) r(r—1z""") + Qerx”l) (1 — z) Ag(z)

r=1

k—1
— 2(z — k2") (1 — 2)Ap(z) <—a¢Ak(a:) - (1 - a:)erTH)

E
—

%
I
)

x>

+ 2(z — 2¥) (—:EAk(l’) - (1 —) _17“:5’”“)2}.

1

i
Il

By definition,

82Fﬁx
Ci(z) = Ty’;?(m,l) + Bg(z).

Applying Proposition to F' = F,fx gives:

B oy B1GE) (BB
BNl = eae VY T oA ([wn] Ak<x> ’
as was to be shown. Il

3.3. Distribution of Gaps Between Summands

Again, Lemma [3.2) allows us to reduce our analysis to the one-dimensional case. There
are results on limiting gap probabilities, longest gaps, and much more (see [3, [4]).

The Proof of Theorem [1.25]. follows from [3, Theorem 1.5] and [4, Theorem 1.5].
O

3.4. Summand Minimality

We utilize the following definitions and result from [5].

Definition 3.13. For a PLRS given by the recurrence relation Hppqw = c1Hy,+-- -+
c,Hpi1-1, we call 0 = (¢q,¢a,..,c1) the signature of the PLRS.

As we observed in Remark {zn11}52,isa PLRS with L=k and ¢; = --- =
¢, = 1. Kologlu et al. [7, Theorem 1.3] proved that every positive integer n has
a unique legal decomposition associated to a given PLRS, called the generalized
Zeckendorf decomposition of n. In the case of the k-bonacci sequence, this is
the unique decomposition given by Theorem We will say that a PLRS {H,,}>,
is summand minimal if no representation of any positive integer n as a linear
combination with nonnegative coefficients of terms in {H,,}>2 ; uses fewer summands
than the generalized Zeckendorf decomposition of n.

23

Theorem 3.14. [5, Theorem 1.1] A PLRS with signature o = (c1,¢2, ..., cr) is sum-
mand minimal if and only if 1 > ¢co > -+ > cp.

Theorem [3.14] gives the following as an immediate corollary.

Corollary 3.15. The k-bonacci number decomposition of n given by Theorem [1.3 is
summand minimal.

We are now able to prove the following.

Proof of Theorem [1.26. Consider any other representation v = >, cgi,i of v
as a linear combination of k-bonacci vectors with nonnegative integer coefficients.
Suppose the SR of Vv contains d summands and assume, for the sake of contradiction,
that this representation Vv = .., ¢;X_; contains) .., ¢, = ¢ < d summands. Let m

be the maximal integer such that X, is present in one of the representations. By
Lemma [1.8] we have

P p
Sm-l—l(z X)) = Z CiTmy1—i (mod Tpy1)
=1 i=1
and

p
Sm+1(ZC;’X—i) = Zcéme_i (mod Zy41)-
i=1

i=1

Observe that Y P | ¢;@mi1—; (mod i) and Y P | ¢xmi1—; (mod @p,q1) contain,
respectively, d and ¢ summands. Now, by definition of the SR, >0 | ¢;xmi1-i
(mod x,,41) has no k consecutive terms and ¢; € {0,1} for every 4, 0 Y b _| ¢iTmi1—;
(mod 2,4+1) must be the k-bonacci number decomposition of S,+1(V). Then Lemma
[B:15] implies d < c. O

4. Future Work

A natural direction for further research concerns the behavior of the vector repre-
sentation algorithm for general k. We proved that for & = 3, the number of steps
required is logarithmic in the size of the vector, but for larger k, this remains conjec-
tural (see Conjecture . Formally, it is conjectured that for all £ > 3, there exist
constants cg, d, > 0 such that the algorithm completes in at most ¢ log |v|+ dj steps.
Proving this conjecture for higher £ and understanding the underlying combinatorial
mechanisms presents an important avenue for future research.

During our work, we also observed that the sets D,, increasingly resemble Rauzy
fractals as n grows, displaying intricate self-similar structures. Despite this clear nu-
merical and visual evidence, we were not able to provide a rigorous proof of their
convergence. Establishing such a result, as well as understanding the precise geomet-
ric and combinatorial mechanisms behind this behavior, remains an interesting and
challenging direction for future research.

24

Appendix A. Algorithm Complexity

In order to compare to the efficiency of our algorithms, we first provide the following
complexity analysis of the recursive algorithm given in [I].

Proof of Lemma [1.11]. The algorithm described in [I] follows a recursive approach
to compute the Satisfying Representation (SR) of a vector v. We distinguish two
cases based on the signs of the coordinates of V.

Recursive Algorithm:

e Case 1: If V has any positive coordinate, say v; > 0, define w = vV — &;. Then
by definition,

SR(¥) = SR(W)+ &

Since €; is a standard basis vector, this expression is either:
o a Nearly Satisfying Representation (NSR),
o a valid SR, or
o an “almost SR,” where the only violation is a single block of 1’s of length
at most 2k — 1.

e Case 2: If all coordinates of vV are non-positive, define
W= V+X) = V- (& +&+-- +&_1)

Then we have:

—

SR(¥) = SR(W)+X_j.

The vector w has strictly larger entries than v, so we recurse on w. The resulting
expression SR(wW) + X_ is either a valid SR, or one of the following:

o an NSR, or

o an “almost SR” with a single block of 1’s of length at most 2k — 1.
In either of these two cases, we proceed with a normalization step using the
“borrow-carry” operation as described in Lemma 4.

When V has positive coordinates, each operation v — v — &; reduces the ¢; norm of v
by 1. Therefore, in the worst case, we perform this operation at most O(||V||1) times.
Appending €; to the representation costs O(1) per step. When we apply Lemma 4
to reduce blocks of 1’s (of length at most 2k — 1), we know from the Lemma that a
constant number (at most two) of “borrow-carry” operations suffices to restore the
SR condition. Each such operation affects a block of length O(k), so each normal-
ization step takes O(k) time. If the resulting expression is an NSR of length L (i.e.,
involving L summands), and we need to normalize it into an SR, then the total cost
of normalization is O(L - k).
Assuming we begin with a vector ¥ € ZF~1:

e We perform at most O(||V||1) recursive steps.
e Converting each NSR to an SR costs O(L - k) time.

25

Therefore, the total worst-case time complexity is:
O(k - Ly, - [V]l)-

O]

For comparison, we calculate the complexity of the small steps algorithm and the
large steps algorithm.

Proof of Proposition [2.5. We list the steps of the algorithm.

(i) Calculate j = jssp-

(ii) Calculate the first j k-bonacci numbers.
(iii) Apply the map S; ;.
(iv) Apply the greedy algorithm to S;ji;(V).

Now, we calculate the complexity of each step.

(i) Finding j = jss takes O(k) operations.

(ii) Calculating one k-bonacci number takes O(k) operations, so calculating j k-
bonacci vectors takes O(kj) operations.

(iii) Evaluating Sji; requires a dot product modulo z;;;. The dot product takes
O(k) operations, and since x4 is approximately ||V, times smaller than the
dot product, using repeated subtractions gives us that the modulo calculation
takes O(]|V||,,) operations.

(iv) Applying the greedy algorithm requires O(j) checks and O(j) computations, so
it takes O(j) operations.

Since j = O(k?* || V||,), the whole algorithm has time complexity O(k® || V|| .)- O
Proof of Proposition [2.8, As before, we list the steps of the algorithm.

(i) Calculate all of the k-bonacci vectors X_, with ”}Z_n
O(log ||V ,,) steps.
(ii) Inductively:
(a) Find the closest k-bonacci vector to ¥,. This takes O(log ||V||,) steps.
(b) Set V,11. This takes O(1) steps.
(c) Check if [|[Vp11]ly < ||[Vnlly- This also takes O(1) steps.
(iii) Apply the greedy algorithm. We know that this takes O(j + ||V,) operations.

< 2||¥||,. This takes
2

Since j = O(log ||V]|), the greedy algorithm takes O(||V||,) operations. The large
step algorithm for finding jis, is O((log ||V|| .)?), so the whole algorithm for each k is
linear in [|V]| .. O

Disclosure statement

No conflict of interest has been reported by the author(s).

References

[1] Anderson, P., Bicknell-Johnson, M. (2011). Multidimensional Zeckendorf rep-
resentations. Fibonacci Quart. 49(1):4-9.

26

[2] Baril, J. P., Kirgizov, O., Vajnovszki, V. (2022). Asymptotic bit frequency in Fi-
bonacci words and generalized Fibonacci words. Pure Math Appl. 30(1):23-30.

[3] Beckwith, O., Bower, A., Gaudet, L., Insoft, R., Li, S., Miller, S. J., Tosteson,
P. (2013). The average gap distribution for generalized Zeckendorf decomposi-
tions. Fibonacci Quart. 51(1):13-27.

[4] Bower, A., Insoft, R., Li, S., Miller, S. J., Tosteson, P. (2015). The distri-
bution of gaps between summands in generalized Zeckendorf decompositions.
Fibonacci Quart. 135:130-160.

[5] Cordwell, K., Hlavacek, M., Huynh, C., and Miller, S. J., Peterson, C., Vu, Y.,
Nhi T. (2018). Summand minimality and asymptotic convergence of generalized
Zeckendorf decompositions. Res. Number Theory 4(4):1-27.

[6] Flajolet, P., Sedgewick, R. (2009). Analytic Combinatorics. Cambridge Uni-
versity Press.

[7] Kologlu, M., Kopp, G., Miller, S. J. Wang, Y. (2011). On the number of sum-
mands in Zeckendorf decompositions. Fibonacci Quart. 49(1):116-130.

[8] Li, R., Miller, S. J. (2017). A collection of central limit type results in gener-
alized Zeckendorf decompositions. Fibonacci Quart. 55(5):105-114.

[9] Miller, S. J., Wang, Y. (2012). From Fibonacci numbers to central limit type
theorems. J. Combin. Theory Ser. A 119(7):1398-1413.

[10] Miller, S. J., Wang, Y. (2012). Gaussian behavior in generalized Zeckendorf
decompositions. Combinatorial and Additive Number Theory: CANT 2011 and
2012 159-173.

[11] Zeckendorf, E. (1972). Représentation des nombres naturels par une somme de
nombres de Fibonacci ou de nombres de Lucas. Bulletin de la Société Royale
des Sciences de Liége 41:179-182.

MSC2020: 11B39

27

	Introduction
	History and Motivation
	Main Results

	Improved Algorithms for Finding Vector Representations
	Small Steps Algorithm
	Large Steps Algorithm
	Analysis of Large Steps Algorithm
	Relative Efficiency of Algorithms for Finding SRs

	Properties of Vector Representations
	Overview
	Distribution of the Number of Summands
	Distribution of Gaps Between Summands
	Summand Minimality

	Future Work
	Algorithm Complexity

