
Properties of Multidimensional Vector Zeckendorf
Representations

Ivan Bortnovskyia, Julian Duvivierb, Pedro Espinosac, Michael Lucasa, Steven J.
Millerc, Tiancheng Pana, Arman Rysmakhanovc, Iana Vraneskoc, Ren Watsond, and
Steven Zanettie

aDepartment of Pure Mathematics and Mathematical Statistics, University of Cambridge,
Cambridge, United Kingdom, CB3 0WA; bDepartment of Mathematics, Reed College,
Portland, OR, 97202; cDepartment of Mathematics, Williams College, Williamstown, MA,
01267; dDepartment of Mathematics, University of Texas at Austin, Austin, TX 78712;
eDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109

ARTICLE HISTORY

Compiled October 15, 2025

Article type: research

ABSTRACT
Zeckendorf’s Theorem says that for all k ≥ 3, every nonnegative integer has a
unique k-Zeckendorf representation as a sum of distinct k-bonacci numbers, where
no k consecutive k-bonacci numbers are present in the representation. Anderson and
Bicknell-Johnson [1] extend this result to the multidimensional context: letting the

k-bonacci vectors X⃗i ∈ Zk−1 be given by X⃗0 = 0⃗, X⃗−i = e⃗i for 1 ≤ i ≤ k − 1,

and X⃗n =
∑k

i=1 X⃗n−i for all n ∈ Z, they show that for all k ≥ 3, every v⃗ ∈ Zk−1

has a unique k-bonacci vector Zeckendorf representation, a sum of distinct k-bonacci
vectors where no k consecutive k-bonacci vectors are present in the representation.
Their proof provides an inductive algorithm for finding such representations. We
present two improved algorithms for finding the k-bonacci vector Zeckendorf rep-
resentation of v⃗ and analyze their relative efficiency. We utilize a projection map
Sn : Zk−1 → Z≥0, introduced in [1], that reduces the study of k-bonacci vector rep-
resentations to the setting of k-bonacci number representations, provided a lower
bound is established for the most negatively indexed k-bonacci vector present in
the k-bonacci vector Zeckendorf representation of v⃗. Using this map and a bijec-
tion between Zk−1 and Z≥0, we further show that the number of and gaps between
summands in k-bonacci vector Zeckendorf representations exhibit the same proper-
ties as those in k-Zeckendorf representations and that k-bonacci vector Zeckendorf
representations exhibit summand minimality.

KEYWORDS
Fibonacci numbers; Zeckendorf’s Theorem; Lekkerkerker’s Theorem

Ren Watson: renwatson@utexas.edu

The first listed author was supported by The Winston Churchill Foundation of the United States. The NSF grant

DMS2242623 supported the second, third, seventh, eighth, ninth, and tenth listed authors, and the third, seventh,

and eighth authors were supported by Williams College and the Finnerty fund. Finally, the fourth and sixth listed

authors were supported by the Dr. Herchel Smith Fellowship Fund.

1. Introduction

1.1. History and Motivation

A beautiful theorem of Zeckendorf [11] states that every nonnegative integer n can be
written uniquely as a sum of non-consecutive Fibonacci numbers. 1 We refer to this
representation as the Zeckendorf decomposition of n. Zeckendorf decompositions
and their generalizations have been the subject of extensive previous study; for in-
stance, see [3, 4, 5, 7, 8, 9, 10]. One natural extension of the Fibonacci sequence is as
follows, where the Fibonacci numbers are given by taking k = 2.

Definition 1.1 (k-bonacci Sequence). For a fixed choice of k, the k-bonacci se-

quence {xn} 2 is given by xn = 0 for −k + 2 ≤ n ≤ 0, x1 = 1, and xn =
∑k

i=1 xn−i

for all n ∈ Z.

The original proof of Zeckendorf’s Theorem, via the greedy algorithm for k = 2,
naturally extends to k ≥ 3, giving the following result. Note that the restriction i ≥ 2
is imposed to guarantee x1 = x2 = 1 are not both allowed in the decomposition, as
this would result in loss of uniqueness of decomposition.

Theorem 1.2 (Zeckendorf). Every nonnegative integer n can be written uniquely as
a sum of distinct k-bonacci numbers n =

∑
i≥2 cixi such that ci ∈ {0, 1} for all i and

no k consecutive ci’s are equal to 1.

For a fixed k, we refer to the unique representation of n given by Theorem 1.2 as
the k-Zeckendorf representation of n. Formally, the greedy algorithm used to find
the k-Zeckendorf representation of a positive integer n is as follows.

Definition 1.3 (k-bonacci Number Greedy Algorithm). For a fixed k > 1 and positive
integer n, the k-bonacci number greedy algorithm finds the unique k-Zeckendorf
representation of n as follows.

(1) Initialize R := n.
(2) Find ℓ1 ≥ 2 maximal such that xℓ1 ≤ R.
(3) Reset R := R− xℓ1.
(4) If R = 0, the algorithm terminates. Else, repeat step (2) to find ℓ2 ≥ 2 maximal

such that xℓ2 ≤ R and reset R := R− xℓ2. Repeat this process until R = 0. The
finite sum

∑
i≥1 xℓi forms the k-Zeckendorf representation of n.

This paper extends the study of multidimensional Zeckendorf representations initi-
ated by Anderson and Bicknell-Johnson [1]. Before stating our results, we introduce
relevant notation and prior results.

Definition 1.4 (k-bonacci Vectors). The k-bonacci vectors X⃗i ∈ Zk−1 are given

by X⃗0 = 0⃗, X⃗−i = e⃗i for 1 ≤ i ≤ k − 1, and X⃗n =
∑k

i=1 X⃗n−i for all n ∈ Z.

The notion of k-Zeckendorf representations for nonnegative integers extends natu-
rally to representations of vectors v⃗ ∈ Zk−1 as sums of k-bonacci vectors.

Theorem 1.5. [1, Theorem 2] Every v⃗ ∈ Zk−1 has a unique representation v⃗ =∑
i≥1 ciX⃗−i such that ci ∈ {0, 1} for all i and no string of k consecutive ci’s is equal

1We define these by F1 = 1, F2 = 2 and Fn+1 = Fn + Fn−1; otherwise, we lose uniqueness.
2Because k is fixed, we suppress it in the notation for ease of reading.

2

to 1.

For instance, taking k = 3, the first several 3-bonacci vectors are given by:

X⃗−1 = (1, 0),

X⃗−2 = (0, 1),

X⃗−3 = (−1,−1),

X⃗−4 = (2, 0),

X⃗−5 = (−1, 2),

X⃗−6 = (−2,−3),

X⃗−7 = (5, 1).

Then the unique representation of (7, 0) satisfying the criteria of Theorem 1.5 is given
by

(7, 0) = (5, 1) + (2, 0) + (−1,−1) + (1, 0)

= X⃗−7 + X⃗−4 + X⃗−3 + X⃗−1.

Definition 1.6 (Satisfying Representation). For v⃗ ∈ Zk−1, a representation v⃗ =∑
i≥1 ciX⃗−i such that all ci ∈ {0, 1} and no string of k consecutive ci’s are equal to 1 is

called a satisfying representation (SR) of v⃗, and the unique such representation of

v⃗ may be denoted SR(v⃗). A representation v⃗ =
∑

i≥1 ciX⃗−i such that all ci ∈ {0, 1, 2},
no string of k consecutive ci’s are nonzero, and only one string of consecutive nonzero
ci’s contains any 2’s is called a nearly satisfying representation (NSR) of v⃗.

Anderson and Bicknell-Johnson [1] introduced the following scalar product, which
will allow us to utilize known results regarding the k-bonacci numbers in our analysis
of the k-bonacci vectors.

Definition 1.7 (k-bonacci Projection Map). For n ≥ k − 2, let Sn : Zk−1 → [0, xn)
be the linear map

Sn(v⃗) = v⃗ · (xn−1, ..., xn−(k−1)) (mod xn).

Lemma 1.8. [1, Lemma 3] We have Sn(
∑p

i=1 ciX⃗−i) ≡
∑p

i=1 cixn−i (mod xn).

Proof. For 0 ≤ i ≤ k − 1,

Sn(X⃗−i) = e⃗i · (xn−1, . . . , xn−(k−1)) = xn−i.

For i ≥ k, we have Sn(X⃗−i) ≡ xn−i (mod xn) by the recursive definitions of X⃗−i and
xn−i. Linearity completes the proof.

Lemma 1.9. [1, Corollary 5] Suppose v⃗ =
∑M

i=1 ciX⃗−i and v⃗′ = v⃗ + X⃗−p =∑M ′

i=1 c
′
iX⃗−i are SR’s and that p ≤ M . Then M ′ ≤ k +M .

For a fixed choice of k ≥ 2 and v⃗ ∈ Zk−1, Anderson and Bicknell-Johnson’s [1]
proof of Theorem 1.5 provides a recursive approach to finding the SR of v⃗. A primary

3

focus of this paper is to provide an improved algorithmic approach for finding the SR
of v⃗. Before stating our results, we recall the following definition.

Definition 1.10 (Big-O Notation). Let f(x) and g(x) be real-valued functions. We
say that f(x) = O(g(x)) if there exists some constant c > 0 and x0 ∈ R such that
|f(x)| ≤ c|g(x)| for all x ≥ x0.

1.2. Main Results

In order to compare our algorithmic approaches to finding the SR of v⃗, we first provide
in Appendix A a more formal definition and complexity analysis of the algorithm given
by [1], yielding the following result.

Lemma 1.11. Let L be the number of summands in the SR of v⃗ ∈ Zk−1. The recursive
algorithm for finding the SR of v⃗ in [1] runs in O(k · L · ∥v⃗∥1) steps.

In Section 2, we establish two improved algorithmic approaches for finding the SR
of v⃗ and provide an analysis of their relative efficiency. Both algorithms rely on the
following definition.

Definition 1.12 (Maximal k-bonacci index). The maximal k-bonacci index of
v⃗ ∈ Zk−1\{0⃗} is

J(v⃗) := max{i ∈ N | X⃗−i appears in the SR of v⃗}.

Both of our algorithms utilize the following modification of the k-bonacci number
greedy algorithm.

Definition 1.13 (Vector Zeckendorf Greedy Algorithm). Let k > 1 and v⃗ ∈
Zk−1\{0⃗}. Suppose that j ≥ J(v⃗). Then the vector Zeckendorf greedy algorithm
for v⃗ proceeds as follows.

(1) Apply Sj+1(v⃗) = v⃗ · (xj , . . . , xj+1−(k−1)) (mod xj+1).

(2) Use the k-bonacci number greedy algorithm to write Sj+1(v⃗) =
∑j

i=1 cixj+1−i

(mod xj+1), where ci ∈ 0, 1 and no k consecutive ci’s are equal to 1.

(3) Output the representation
∑j

i=1 ciX⃗−i.

Thus, our algorithmic approaches rely on finding efficient methods for obtaining a
value of j. The following lemma allows us to compute a value for j from any k-bonacci
vector decomposition of v⃗.

Lemma 1.14. Suppose v⃗ =
∑N

i=1 X⃗−ni is any k-bonacci decomposition of v⃗ (not
necessarily an SR). Then

k(N − 1) + max
1≤i≤N

ni ≥ J(v⃗), (1.1)

so we can use j = k(N − 1) + maxi ni in the vector Zeckendorf greedy algorithm.

Proof. The proof follows from inductive use of Lemma 1.9.

The different values for j arise from different ways of constructing a k-bonacci
decomposition of v⃗. The first relies on taking a series of small steps, consisting of

4

a combination of X⃗−k and the standard basis vectors {X⃗i}k−1
i=1 , and obtains a larger

upper bound on j more quickly.

Definition 1.15 (Small Steps Bound for j). Fix v⃗ = (v1, v2, . . . , vk−1) ∈ Zk−1 \ {0⃗}.
Proceed according to the following cases.

(1) If v⃗ contains some entry vi < 0, then let vm be the maximally negative entry of

v⃗. First, take vm steps in direction X⃗−k = (−1,−1, ...,−1); then, take vj − vm
steps in direction X⃗−j = e⃗j for each j ∈ {1, ..., k}.

(2) If v⃗ contains no negative entries, then take vj steps in direction X⃗−j for each
j ∈ {1, ..., k}.

This algorithm gives rise to the following bound on j.

Theorem 1.16. Let v⃗ = (v1, v2, . . . , vk−1) ∈ Zk−1 \{0⃗}. If vi < 0 for some i, then let
vm be the negative entry of v⃗ that is largest in absolute value. Let jssb be defined by

jssb :=

{
|vm|k +

∑k−1
i=1 (vi − vm)k if vi < 0 for some i

k
∑k−1

i=1 vi − 1 if vi ≥ 0 for all i.

Then jssb ≥ J(v⃗).

We verify in Proposition 2.5 that this approach runs in O(k3 ∥v⃗∥∞) steps. We can
make the bound on j given by the left-hand side in (1.1) smaller by taking fewer steps.
This motivates a second approach, in which each step is chosen to bring us as close
as possible to v⃗. Formally, this is given below.

Definition 1.17 (Large Steps Bound for j). Fix v⃗ ∈ Zk−1. Let v⃗1 = v⃗, and given v⃗i,

take ni ∈ N such that
∥∥∥v⃗i − X⃗−ni

∥∥∥
2
is minimal, and let v⃗i+1 = v⃗i − X⃗−ni. Stop when

i = M + 1 and ∥v⃗M+1∥2 ≥ ∥v⃗M∥2. Then, use the algorithm given in the small steps

bound to write v⃗M =
∑N

i=M X⃗−ni with ni ∈ {1, . . . , k}. This gives a decomposition

v⃗ =
∑N

i=1 X⃗−ni.

We use Lemma 1.14 to compute

jlsb := k(N − 1) + max
i

ni ≥ J(v⃗).

When k = 3, the large steps bound allows us to obtain a logarithmic bound for j.

We provide Python code carrying out these algorithms in the following Colab
file:
https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?

usp=sharing .

Theorem 1.18. Fix k = 3. There exist c3, d3 > 0 such that for all v⃗ ∈ Z2\{0⃗},

jlsb ≤ c3 log ∥v⃗∥2 + d3.

Hence, we have jlsb = O(log ∥v⃗∥2) = O(log ∥v⃗∥∞) by the Lipschitz equivalence of Lp

norms.

5

https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?usp=sharing
https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?usp=sharing
https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?usp=sharing
https://colab.research.google.com/drive/1MNQNCxUA83AshL2vjkcXCuvpVs8Kw1kH?usp=sharing

We conjecture based on strong computational evidence that this result may be
extended to all k ≥ 3.

Conjecture 1.19. Fix k ≥ 3. There exist c3, d3 > 0 such that for all v⃗ ∈ Z2\{0⃗},

jlsb ≤ c3 log ∥v⃗∥2 + d3.

Hence, we have jlsb = O(log ∥v⃗∥2) = O(log ∥v⃗∥∞) by the Lipschitz equivalence of Lp

norms.

In Section 3, we turn our attention to the number of and gaps between summands
in k-bonacci vector Zeckendorf representations. We show that they exhibit the same
properties as those in the one-dimensional case.

Definition 1.20. For n ≥ 0, let Dn :=
{
v⃗ ∈ Zk−1 : J(v⃗) ≤ n

}
.

Definition 1.21. For n > 0, consider the discrete outcome space Dn \ Dn−1 with
probability measure

Pn(A) =
|A|

xn+2 − xn+1
, A ⊂ Dn \Dn−1.

Note |Dn\Dn−1| = xn+2−xn+1, so this is the uniform measure. We define the random
variable Kn by setting Kn(v⃗) equal to the number of summands of v⃗ ∈ Dn \Dn−1 in
its SR.

Definition 1.22. Let v⃗ ∈ Dn \Dn−1, and let κ(v⃗) denote the number of summands

in the SR of v⃗. Let {rj}κ(v⃗)j=1 be the set of indices present in the SR of v⃗.

• Spacing gap measure: We define the spacing gap measure of v⃗ by

νv⃗;n(x) :=
1

κ(v⃗)− 1

κ(v⃗)∑
j=2

δ (x− (rj − rj−1)) , (1.2)

where δ is the Dirac delta functional.3 We do not include the gap to the first
summand, as this is not a gap between summands; for almost all v⃗, one extra
gap is negligible in the limit.

• Average spacing gap measure: The SR of v⃗ has κ(v⃗) − 1 gaps. Thus the total
number of gaps for all v⃗ ∈ Dn \Dn−1 is

Ngaps(n) :=
∑

v⃗∈Dn\Dn−1

(κ(v⃗)− 1) . (1.3)

3Thus for any continuous function f we have
∫∞
−∞ f(x)δ(x− a)dx = f(a); we may view δ(x− a) as representing

a unit point mass concentrated at a.

6

We define the average spacing gap measure for all v⃗ ∈ Dn \Dn−1 by

νn(x) :=
1

Ngaps(n)

∑
v⃗∈Dn\Dn−1

κ(v⃗)∑
j=2

δ (x− (rj − rj−1))

=
1

Ngaps(n)

∑
v⃗∈Dn\Dn−1

(κ(v⃗)− 1) νv⃗;n(x). (1.4)

If Pn(l) is the probability of getting a gap of length l among all gaps from the
decompositions of all v⃗ ∈ Dn \Dn−1, then

νn(x) =
n−1∑
l=0

Pn(l)δ(x− l). (1.5)

Theorem 1.23. Let Kn be the random variable of Definition 1.21 and denote its
mean by µn. Then there exist constants CLek > 0 (the constant in the Generalized
Lekkerkerker’s Theorem for PLRS’s [10, Theorem 1.2 (Generalized Lekkerkerker)]),
d, and γ1 ∈ (0, 1) depending only on k such that

µn = CLekn+ d+ o(γn
1).

The mean µn and variance σ2
n of Kn grow linearly in n, and (Kn − µn)/σn converges

weakly to the standard normal N(0, 1) as n → ∞.

The following is a standard lemma which helps us state a result on the distribution
of gaps.

Lemma 1.24 (Generalized Binet’s Formula). Let λ1, . . . , λk be the roots of the char-
acteristic polynomial for the k-bonacci sequence, which is

p(x) := xk − xk−1 − · · · − x− 1 = 0. (1.6)

Order the roots so that |λ1| ≥ · · · ≥ |λk|. Then λ1 > 1 is the unique positive real root,
and there exist constants such that

xn+1 = a1λ
n
1 +O(nk−2λn

2). (1.7)

Theorem 1.25. Let λ1 > 1 denote the largest root (in absolute value) of the charac-
teristic polynomial for the k-bonacci sequence, and let a1 be the leading coefficient in
the generalized Binet expansion. Let Pn(l) be the probability of having a gap of length
l among the decompositions of v⃗ ∈ Dn \Dn−1, and let P (l) = limn→∞ Pn(l). Then

P (l) =


0 if l = 0

λ−1
1 (1

CLek
)(λ1(1− 2a1) + a1) if l = 1

(λ1 − 1)2
(

a1
CLek

)
λ−l
1 if l ≥ 2.

(1.8)

In particular, the probability of having a gap of length l ≥ 2 decays geometrically, with
decay constant the largest root of the characteristic polynomial.

7

We further extend the study of summand minimality to the multidimensional case,
giving the following.

Theorem 1.26. Let v⃗ ∈ Zk−1. Then SR(v⃗) =
∑

i≥1 ciX⃗−i is summand minimal:
that is, there is no way to write v⃗ as a linear combination of k-bonacci vectors with
nonnegative integer coefficients using strictly fewer terms.

2. Improved Algorithms for Finding Vector Representations

In this section, we fix a choice of k > 1 and v⃗ ∈ Zk−1\{0⃗}, noting that the SR of
0⃗ is the empty representation. We provide two algorithms to compute the SR of v⃗
which improve the algorithmic approach of [1]. We first show how to use the greedy
algorithm to find the vector decomposition of v⃗ for a specific j.

Lemma 2.1. Let k > 1 and v⃗ ∈ Zk−1\{0⃗}. Let Sj+1(v⃗) =
∑j

i=1 cixj+1−i (mod xj+1)

be the output of the vector Zeckendorf greedy algorithm for v⃗. Then
∑j

i=1 ciX⃗−i is the
SR of v⃗.

Proof. This follows because the map Sj+1 is injective on the set of vectors with SRs
whose indices are bounded by j.

2.1. Small Steps Algorithm

Let k > 1 and v⃗ ∈ Zk−1\{0⃗}. Lemma 2.1 requires us to have a value of j before
using the vector Zeckendorf greedy algorithm to generate the SR of v⃗. We verify the
small steps bound on j by writing v⃗ as a linear combination of {X⃗−i}ki=1 and applying
Lemma 1.14.

Proof of Theorem 1.16. First, suppose that vi < 0 for some i ∈ {1, ..., k−1}. Note

that for any choice of k > 1, X⃗−k = (−1,−1, ...,−1). Hence we can write

v⃗ = |vm| X⃗−k +

k−1∑
i=1

(vi − vm)X⃗−i.

By Lemma 1.14, we have

J(v⃗) ≤ |vm|k +
k−1∑
i=1

(vi − vm)k = jssb,

Otherwise, vi ≥ 0 for every i ∈ {1, ..., k − 1}. In this case, we write

v⃗ =
k−1∑
i=1

viX⃗−i.

Again, by Lemma 1.14,

J(v⃗) ≤ k

(
k−1∑
i=1

vi − 1

)
+ k − 1 = k

k−1∑
i=1

vi − 1 = jssb.

8

Remark 2.2. The bound jssb generated by the small steps algorithm is larger than
necessary even for small k and vectors with relatively small integer entries. The fol-
lowing examples illustrate this.

Example 2.3. Consider v⃗ = (2,−2). As k = 3, we get j = 2(3) + 4(3) = 18. Then

S19(2,−2) ≡ 2(19513)− 2(10609) (mod 35890) ≡ 17808 (mod 35890).

The k-bonacci number greedy algorithm gives the decomposition

17808 = 10609 + 5768 + 927 + 504

= x17 + x16 + x13 + x9

= x19−2 + x19−3 + x19−6 + x19−7.

Then the SR of (2,−2) is X⃗−2+X⃗−3+X⃗−6+X⃗−7 = (0, 1)+(−1,−1)+(−2,−3)+(5, 1).

Example 2.4. Consider v⃗ = (3, 0). As k = 3, we get j = 3 · 3 − 1 = 8. Then
S9(3, 0) = 3 · 44 (mod 81) = 51. The k-bonacci number greedy algorithm gives the
decomposition

51 = 44 + 7

= x8 + x5

= x9−1 + x9−4.

So the SR of (3, 0) is X⃗−1 + X⃗−4 = (1, 0) + (2, 0).

The following proposition is proved in Appendix A.

Proposition 2.5. The time complexity of the small steps algorithm is O(k3 ∥v⃗∥∞).

The time complexity of the algorithm in [1] is O(k · L · ∥v⃗∥1) (see Appendix A),
where L is the number of summands in the decomposition of v⃗. For fixed k, this
is O(∥v⃗∥∞ log ∥v⃗∥∞). As well as being slow, calculating the SR of v⃗ requires us to

calculate all of the SRs along a path from 0⃗ to v⃗.
The time complexity of the Small Steps Algorithm is O(k3 ∥v⃗∥∞) [see Appendix

A]. For fixed k, it is O(∥v⃗∥∞). Although this is an improvement over the algorithm
in [1], Example 2.3 demonstrates that we end up working with very large numbers,
even for small k and v⃗ with small integer entries. This arises from the linear bound
for J(v⃗). This motivates our second algorithm, which finds an improved bound on j.

2.2. Large Steps Algorithm

We first illustrate the Large Steps Algorithm with an example.

Example 2.6. Consider v⃗ = (2,−2). We let v⃗1 = (2,−2). The closest 3-bonacci

vector to v⃗ is X⃗−4 = (2, 0). Then we take v⃗2 = v⃗1 − X⃗−4 = (0,−2). The closest

3-bonacci vector to v⃗2 is X⃗−3 = (−1,−1), so we set v⃗3 = v⃗2 − X⃗−3 = (1,−1). The

closest 3-bonacci vector to v⃗3 is x⃗−1 = (1, 0), so we set v⃗4 = v⃗3 − X⃗−1 = (0,−1).

9

Now, subtracting off the closest 3-bonacci vector to v⃗4 would not reduce the size, so we
use the small steps algorithm to write v⃗4 = X⃗−3 + X⃗−2. This gives the decomposition

v⃗ = X⃗−4 + 2X⃗−3 + 2X⃗−1,

and Lemma 1.14 tells us that

jlsb = 4 + 3 · 4 = 16.

We now proceed as before with the vector Zeckendorf greedy algorithm.

Example 2.7. Consider v⃗ = (3, 0). We let v⃗1 = (3, 0). The closest 3-bonacci vector

to v⃗ is X⃗−4 = (2, 0), so we set v⃗2 = v⃗1 − X⃗−4 = (1, 0) = X⃗−1. This gives the
decomposition

v⃗ = X⃗−4 + X⃗−1,

which translates to

jlsb = 4 + 3 · 1 = 7

by Lemma 1.14. We then proceed with the vector Zeckendorf greedy algorithm.

2.3. Analysis of Large Steps Algorithm

We now utilize a geometric argument to prove that the value jlsb provided by the large
step algorithm is logarithmic in ∥v⃗∥∞ for k = 3. We conjecture that this is true for
all k.

Proof of Theorem 1.18 . We prove the following statements.

(1) There exist natural numbers P and M such that for any sequence of P consecu-

tive 3-bonacci vectors starting at X⃗−n for n ≥ M , and any wedge in R2 centered
about 0⃗ with angle 2π/3, one of the 3-bonacci vectors lies in the wedge.

(2) There exist λ < 1 and R > 0 such that for any v⃗ ∈ Z2 with ∥v⃗∥2 ≥ R, there

exists X⃗−n with ∥∥∥v⃗ − X⃗−n

∥∥∥
2

≤ λv⃗.

(3) There exist constants c3 and d3 such that

jlsb ≤ c3 log ∥v⃗∥2 + d3.

Proof of (1): We claim that P = M = 9 are sufficient for k = 3. We first rewrite
the 3-bonacci vectors in C, letting Z−n = Φ(X−n), where Φ(v1, v2) = v1 + iv2. Then
Z−n satisfies the recurrence relation Z−n = Z−(n−3)−Z−(n−2)−Z−(n−1) for n > 2 with

10

Z0 = 0, Z−1 = 1, and Z−2 = i. Then, we solve the recurrence relation to get

Z−n = Arneinθ +Brne−inθ + Cϵn,

where

r = 1.3562,

θ = 2.1762,

ϵ = 0.5437,

A = − 0.4578− 0.3103i,

B = − 0.0612− 0.0259i,

C = 0.5190 + 0.3362i,

each to 4 decimal places.

Figure 2.1. A figure displaying a circle in which Z−n must fall. We use this to approximate the argument of

Z−n.

Figure 2.1 shows that the difference in angle between Z−n and Aeinθ is at most

arcsin
(

|B|+|C|(ϵ/r)n
|A|

)
, which decreases monotonically in n to

arcsin
|B|
|A|

≈ 0.1204 (to 4 decimal places).

For n ≥ 9, we have

arcsin

(
|B|+ |C| (ϵ/r)n

|A|

)
≤ 0.121.

Hence, for n,m ≥ 9, we have

arg(Z−m)− arg(Z−n) ∈ ((m− n)θ − 0.242, (m− n)θ + 0.242). (2.1)

11

Consider for n ≥ 9, the numbers Z−n, Z−(n+1), . . . , Z−(n+8). To show that every cone
with semiangle π/3 contains one of these numbers, we show that the angle between
every two adjacent lines in Figure 2.2 is less than 2π/3 .

Figure 2.2. Nine consecutive Z−i’s. We aim to show that the angle between each pair of adjacent lines is less

than 2π/3.

By (2.1), we have

arg(Z−(n+6))− arg(Z−n) ∈ (0.2490, 0.7331) ⊆ (0, 2π/3)

arg(Z−(n+1))− arg(Z−(n+6)) ∈ (1.4432, 1.9273) ⊆ (0, 2π/3)

arg(Z−(n+7))− arg(Z−(n+1)) ∈ (0.2490, 0.7331) ⊆ (0, 2π/3)

arg(Z−(n+2))− arg(Z−(n+7)) ∈ (1.4432, 1.9273) ⊆ (0, 2π/3)

arg(Z−(n+8))− arg(Z−(n+2)) ∈ (0.2490, 0.7331) ⊆ (0, 2π/3)

arg(Z−n)− arg(Z−(n+8)) ∈ (1.1976, 1.6817) ⊆ (0, 2π/3).

This completes the proof of (1).

Proof of (2): By the triangle inequality, we have

|A|rn − |B|rn − |C|ϵn ≤ ∥X⃗−n∥2 ≤ |A|rn + |B|rn + |C|ϵn.

This shows that ∥X⃗−n∥2 is increasing for n > 1.

For v⃗ with ∥v⃗∥2 ≥ 2(|A|rP+M−1 + |B|rP+M−1 + |C|ϵP+M−1) = 682496, let X−n be
the smallest 3-bonacci vector such that the upper bound of its norm is greater than
1
2 ∥v⃗∥2. Consider some 3-bonacci vector X⃗−n′ (with N ≤ n − P ≤ n′ ≤ n − 1) that

12

lies in the cone with axis passing through v⃗ and semiangle π/3. We have

∥X⃗−n′∥2 ≥ |A|rn′ − |B|rn′ − |C|ϵn′

≥ |A|rn′ − |B|rn′ − |C|ϵn′

|A|rn + |B|rn + |C|ϵn
1

2
∥v⃗∥2

≥ |A|rn−P − |B|rn−P − |C|ϵn−P

|A|rn + |B|rn + |C|ϵn
1

2
∥v⃗∥2

≥ |A|rM − |B|rM − |C|ϵM

|A|rM+P + |B|rM+P + |C|ϵM+P

1

2
∥v⃗∥2 ,

since the fraction in the penultimate line is increasing in n and n ≥ M +P . Plugging
in our values of A,B,C, r, ϵ and rounding down, we have

∥X⃗−n′∥2 ≥ 1

2
γ ∥v⃗∥2 ,

where γ = 7.714 × 10−4. This shows that the region E in Figure 2.3 contains a 3-
bonacci vector. We therefore bound the distance from v⃗ to X⃗−n′ by the distance from
v⃗ to the furthest point from v⃗ in E. Hence, we have that

∥v⃗ − X⃗−n′∥2 ≤

√√√√(√
3

2
∥v⃗∥2

)2

+

(
1

2
(1− γ) ∥v⃗∥22

)
≤ 1

2

√
3 + (1− γ)2 ∥v⃗∥2

= λ ∥v⃗∥2 ,

where λ = 0.9998073.

Figure 2.3. Figure showing a region E which is guaranteed to contain a 3-bonacci vector.

13

Proof of (3): The large step algorithm gives a decomposition

v⃗ =
N∑
i=1

X⃗−ni . (2.2)

To prove that N is finite, from the previous statement we obtain

∥v⃗i∥2 ≤ λ ∥v⃗i−1∥2 ≤ · · · ≤ λi−1 ∥v⃗∥2 . (2.3)

Now, for k = 3, at most the last two terms are from the case where no largest step
exists, so v⃗N−1 has norm at least 1, and none of the v⃗i’s for i < N − 1 are (−1, 0) or
(0,−1). Therefore, 1 ≤ λN−2 ∥v⃗∥2, so we obtain the bound

N ≤
log(∥v⃗∥2)
log(1/λ)

+ 2. (2.4)

By Lemma 1.14, we have

jlsb ≤ 3(N − 1) + max
i∈{0,1,...,N+1}

ni. (2.5)

Finally, we bound the possible values of ni that can appear in the decomposition
of v⃗. Statement (2) ensures that ∥X⃗−ni∥2 ≤ 2 ∥v⃗∥2, and we know by the triangle

inequality that ∥X⃗−ni∥2 ≥ (|A| − |B|)rni − |C|ϵni ≥ (|A| − |B|)rni − |C|ϵ. Hence,
(|A| − |B|)rni ≤ 2 ∥v⃗∥2 + |C|ϵ, so

ni ≤
log
(

2∥v⃗∥2+|C|ϵ
|A|−|B|

)
log r

. (2.6)

Putting this all together, we have

jlsb ≤ 3

(
log(∥v⃗∥2)
log(1/λ)

+ 1

)
+

log
(

2∥v⃗∥2+|C|ϵ
|A|−|B|

)
log r

≤ 3

(
log(∥v⃗∥2)
log(1/λ)

+ 1

)
+

log
(

2+|C|ϵ
|A|−|B| ∥v⃗∥2

)
log r

=

(
3

log(1/λ)
+

1

log r

)
log(∥v⃗∥2) +

(
3 +

log(2 + |C|ϵ)− log(|A| − |B|)
log r

)
.

Plugging values in for λ, r, A,B, and C, we have c3 ≈ 15570 and d3 ≈ 5.018, rounded
up to 4 significant figures.

This proof not only shows the existence of constants c3 and d3, but also gives us
their values. However, the value of c3 exhibited in this proof is too large for practical
use. A computation over all vectors v⃗ with ∥v⃗∥∞ ≤ 100 suggests that c3 = 15, d = 10
is sufficient. We also support this with a scatter plot for 1000 randomly generated
vectors with L∞ norm at most 10000.

14

Figure 2.4. Scatter plot of jlsb and the proposed upper bound with 1000 randomly generated vectors

.

We give the time-complexity of the algorithm in the next proposition.

Proposition 2.8. For fixed k, the time complexity of the large step algorithm is
O(∥v⃗∥∞).

We prove Proposition 2.8 in Appendix A.

2.4. Relative Efficiency of Algorithms for Finding SRs

In summary, we have two methods to find a value of j for the vector Zeckendorf greedy
algorithm. For each fixed k, jssb = O(∥v⃗∥∞), but assuming Conjecture 1.19, we have
jlsb = O(log ∥v⃗∥∞). Considering k fixed, both methods have the same time-complexity,
but the slowest part of each method is the greedy algorithm. We gain more insight
into the running time by considering how long it takes to calculate jssb and jlsb. The
proofs in Appendix A show that the calculation of jssb takes O(1) operations, and
that the calculation of jlsb takes O((log ∥v⃗∥∞)2) operations for fixed k.

3. Properties of Vector Representations

3.1. Overview

The one-dimensional k-Zeckendorf representation possesses many interesting proper-
ties. The number of summands in decompositions of integers in [xn, xn+1) converges
to a Gaussian distribution, and the distribution of gaps between summands follows
geometric decay. Furthermore, the decompositions exhibit summand minimality; that
is, there is no way to express any nonnegative integer n as a linear combination of k-
bonacci numbers with nonnegative integer coefficients using strictly fewer terms than
the k-Zeckendorf representation.

We show that vector Zeckendorf representations have extremely similar properties

15

(Theorems 1.23, 1.25, and 1.26). A useful strategy is to reduce the problem to the one-
dimensional case by considering appropriate bijections between subsets of Zk−1 and
subsets of Z≥0. An example of such a map is Sn in Definition 1.7. The following map,
first observed by Anderson and Bicknell-Johnson [1], also provides valuable insight.

Remark 3.1. The satisfying sequences {ci} in Theorem 1.5 are essentially the same
as k-Zeckendorf representations for non-negative integers (as in Theorem 1.2). This
gives a bijection between Zk−1 and Z≥0.

Recall that Dn =
{
v⃗ ∈ Zk−1 : J(v⃗) ≤ n

}
, as given in Definition 1.20. Then, the

following result is a more precise statement of Remark 3.1.

Lemma 3.2. Define f : Zk−1 → Z≥0 as follows. For any v⃗ ∈ Zk−1, let v⃗ =∑
i≥1 aiX⃗−i be its (unique) SR. Let

f(v⃗) :=
∑
i≥2

ai−1xi. (3.1)

Then f is a bijection. For n > 0, the image of Dn under f is [0, xn+2) ∩ Z.

Proof. Bijectivity follows from Theorem 1.2 and Theorem 1.5. For the final state-
ment, note that the non-negative integers with a k-Zeckendorf decomposition of the
form

∑n+1
i=2 cixi are exactly the ones in [0, xn+2).

The k-bonacci numbers belong to the class of Positive Linear Recurrence Re-
quences, which have been studied extensively (see [3, 4, 7, 9]). For these sequences,
the properties of decompositions are well-understood.

Definition 3.3. [4] We say a sequence {Hn}∞n=1 of positive integers is a Positive
Linear Recurrence Sequence (PLRS) if the following properties hold.

(1) Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L,

with L, c1 and cL positive.
(2) Initial conditions: H1 = 1, and for 1 ≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1.

We call a decomposition
∑m

i=1 aiHm+1−i of a positive integer N (and the sequence
{ai}mi=1) legal if a1 > 0, the other ai ≥ 0, and one of the following two conditions
holds:

• We have m < L and ai = ci for 1 ≤ i ≤ m.
• There exists s ∈ {0, . . . , L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1 and as < cs, (3.2)

as+1, . . . , as+ℓ = 0 for some ℓ ≥ 0, and {bi}m−s−ℓ
i=1 (with bi = as+ℓ+i) is legal.

If
∑m

i=1 aiHm+1−i is a legal decomposition of N , we define the number of sum-
mands (of this decomposition of N) to be a1 + · · ·+ am.

16

Informally, a legal decomposition is one where we cannot use the recurrence rela-
tion to replace a linear combination of summands with another summand and the
coefficient of each summand is appropriately bounded.

Remark 3.4. The k-bonacci sequence {xn+1}∞n=1 is a PLRS with L = k and c1 =
· · · = cL = 1.

3.2. Distribution of the Number of Summands

Lemma 3.2 relates the number of summands in vector Zeckendorf representations to
those in k-Zeckendorf representations. Then, it is no surprise that the distribution of
the number of summands converges to a Gaussian.

Proof of Theorem 1.23. Follows from [10, Theorems 2 and 3].

See [9, Section 4] for expressions characterizing the mean of the Gaussian for a
general PLRS. For the case of vector Zeckendorf representations, we also propose an
alternative way to find both the mean and the variance of the Gaussian by working
with binary words.

Definition 3.5. Let Wn,k be the set of binary words w = w1 · · ·wn ∈ {0, 1}n such
that

(1) w1 = 1 (the first bit is fixed to 1);
(2) w contains no substring of k consecutive 1’s.

Lemma 3.6. For each n ≥ 1 there exists a bijection

Φn : Dn \Dn−1 −→ Wn,k

such that, for every v⃗ ∈ Dn \Dn−1 with the SR coefficient vector

ε(v⃗) = (εn, εn−1, . . . , ε1) ∈ {0, 1}n,

εj =

{
1, if the jth summand appears in the SR of v⃗,

0, otherwise,

we have Φn(v⃗) = w, where wj = εj for 1 ≤ j ≤ n. The rules for the SR imply εn = 1
and no k consecutive 1’s appear in (εn, . . . , ε1), so Φn(v⃗) is well-defined and is in
Wn,k.

Proof. By definition of Dn \ Dn−1 and SR, each v⃗ has a unique coefficient vector
ε(v⃗) ∈ {0, 1}n indicating the presence or absence of each summand up to index n,
with εn = 1.

The rules for the SR correspond to forbidding k consecutive 1’s among the coeffi-
cients. Mapping coefficients to bits produces a well-defined w ∈ Wn,k.

The map is injective by the uniqueness of the SR, and surjective by reversing the
construction: read a word w ∈ Wn,k as a valid coefficient vector, then form the SR.

17

Definition 3.7. For n ≥ 1, we define the uniform probability measure on Wn,k:

P(W)
n (A) =

|A|
|Wn,k|

, A ⊆ Wn,k.

Define the random variable Xn : Wn,k → N as

Xn(w) = the number of 1’s in w, w ∈ Wn,k.

Using the bijection Φn from Lemma 3.6 and the uniform measure Pn on Dn \ Dn−1

from Definition 1.20, the pushforward measure (Φn)∗Pn equals P(W)
n . In particular, Xn

and Kn have the same distribution:

P(W)
n

(
Xn = t

)
= Pn

(
Kn = t

)
.

Counting binary words that avoid a pattern of k consecutive 1’s (also known as the
substring 1k) is a classical problem in combinatorics (see, for example, [6, Ch. I]); our
case only differs slightly in that the first bit is fixed to be 1.

We state a generating function for binary words that avoid 1k, in which x marks
the length and y marks the number of 1’s. We write

Fk(x, y) =
∑
n≥0

∑
m≥0

an,m xnym,

where an,m counts binary words of length n with exactly m total 1’s and with no
substring 1k.

Proposition 3.8 (From [2, Prop. 1]). For every fixed k ≥ 2, the generating function
for binary words avoiding 1k is

Fk(x, y) =
y
(
1 − (xy)k

)
y − xy2 − xy + (xy)k+1

.

Here x marks each letter and y marks each occurrence of the letter 1.

We now pass from the setting of Proposition 3.8 to our model Wn,k in Definition 3.5,
where the first bit is fixed to 1. Define

F fix
k (x, y) =

∑
n≥1

∑
m≥1

bn,m xnym,

where bn,m counts words in Wn,k of length n and with exactly m ones. Thus F fix
k (x, y)

is the generating function for our fixed-first-bit model, while Fk(x, y) is the generating
for the unrestricted-first-bit model (which also includes the empty word).

Proposition 3.9. For every fixed k ≥ 2, the generating function for binary words
that avoid 1k and have 1 fixed as the first bit is

F fix
k (x, y) =

(
1 − x

)
Fk(x, y) − 1,

18

where Fk(x, y) is the same as in Proposition 3.8. Equivalently,

F fix
k (x, y) =

(
1 − x

)
y
(
1 − (xy)k

)
y − xy2 − xy + (xy)k+1

− 1.

Proof. Every word counted by Fk(x, y) either starts with 0 or 1, or is the empty
word, which has weight 1. Let Fk,0(x, y) be the generating function for words starting
with 0, and Fk,0(x, y) for words starting with 1. Then Fk(x, y) can be decomposed as

Fk(x, y) = 1 + Fk,0(x, y) + Fk,1(x, y).

Adding a leading 0 to any word that avoids 1k results in a word that still avoids
1k and contributes weight x while contributing no factor of y. Similarly, removing the
first bit from any word that starts with 0 results in a word that avoids 1k. Therefore

Fk,0(x, y) = xFk(x, y).

By definition, F fix
k (x, y) is the generating function of words that avoid 1k and start

with 1, so

F start=1
k (x, y) = F fix

k (x, y).

Hence

Fk(x, y) = 1 + xFk(x, y) + F fix
k (x, y),

leading to

F fix
k (x, y) =

(
1 − x

)
Fk(x, y) − 1 =

(
1 − x

)
y
(
1 − (xy)k

)
y − xy2 − xy + (xy)k+1

− 1.

Having found the generating function, we may derive the exact mean and variance
of Kn. Throughout this derivation, let [x

n]G(x) denote the coefficient of xn in a series
G(x).

Remark 3.10. It is standard in analytic combinatorics (see, for example, [6, Section
III.2]) to identify combinatorial parameters with the random variables they induce
under uniform sampling: a parameter χ counting a statistic in objects of length n
becomes a random variable Xn when these objects are sampled uniformly. We cite
relevant results involving parameters as if they were expressed in terms of random
variables.

The following result is a consequence of [6, Proposition III.2].

Proposition 3.11. Let F (x, y) =
∑

n≥0

∑
m≥0 fn,m xnym be a generating function

where fn,m counts objects of size n with parameter value m. For the random variable

19

Yn obtained from uniform sampling of size-n objects, with distribution

P(Yn = m) =
fn,m∑
j≥0 fn,j

,

The expectation and variance of Yn are:

E[Yn] =
[xn] ∂F∂y (x, y)

∣∣
y=1

[xn]F (x, 1)
, Var(Yn) =

[xn]
(
∂2F
∂y2 + ∂F

∂y

)
(x, y)

∣∣
y=1

[xn]F (x, 1)
−
(
E[Yn]

)2
.

From here we apply Proposition 3.11 for Yn = Xm and F = F fix
k from Proposition

3.9.

Theorem 3.12 (Exact mean and variance). For every k ≥ 2 and n ≥ 1, let

Ak(x) = F fix
k (x, 1),

Bk(x) = ∂yF
fix
k (x, y)

∣∣
y=1

, and

Ck(x) =
(
∂2
yF

fix
k + ∂yF

fix
k

)
(x, y)

∣∣
y=1

.

Then the mean and variance of Xn under the uniform distribution on Wn,k can be
calculated using the expressions we have just defined as follows:

E[Xn] =
[xn]Bk(x)

[xn]Ak(x)
, Var(Xn) =

[xn]Ck(x)

[xn]Ak(x)
−
(
[xn]Bk(x)

[xn]Ak(x)

)2
.

The explicit forms of Ak, Bk, Ck are listed below:

Ak(x) =
x − xk

(1 − x)∆k(x)
=

x − xk

1 − 2x + xk+1
,

Bk(x) =
1(

(1 − x)∆k(x)
)2 [(x − kxk

)
(1 − x)∆k(x)

−
(
x − xk

) (
−x∆k(x) − (1 − x)

k−1∑
r=1

r xr+1
)]

,

20

Ck(x) =
1(

(1 − x)∆k(x)
)3 [(− k(k − 1)xk

) (
(1 − x)∆k(x)

)2
−
(
x − xk

) (
(1 − x)

(
−

k−1∑
r=2

r(r − 1)xr+1
)

+ 2x
k−1∑
r=1

r xr+1
)
(1 − x)∆k(x)

− 2
(
x − kxk

)
(1 − x)∆k(x)

(
−x∆k(x) − (1 − x)

k−1∑
r=1

r xr+1
)

+ 2
(
x − xk

) (
−x∆k(x) − (1 − x)

k−1∑
r=1

r xr+1
)2]

+ Bk(x),

where

∆k(x) = 1 −
k∑

j=1

xj .

Proof. By Proposition 3.9,

F fix
k (x, y) =

xy
(
1 − (xy)k−1

)(
1 − xy

)
∆k(x, y)

, ∆k(x, y) = 1 − x − x2y − · · · − xkyk−1.

To make this simpler, set

N(x, y) = xy − xkyk, V (x, y) =
(
1 − xy

)
∆k(x, y).

From here we can write Fk as F fix
k = N/V .

Now we evaluate the derivatives at y = 1:

N(x, 1) = x − xk,
∂N

∂y
(x, y) = x − kxkyk−1 ⇒ ∂N

∂y
(x, 1) = x − kxk,

∂2N

∂y2
(x, y) = −k(k − 1)xkyk−2 ⇒ ∂2N

∂y2
(x, 1) = −k(k − 1)xk.

For the denominator,

V (x, 1) = (1 − x)∆k(x),

∂V

∂y
(x, y) = −x∆k(x, y) + (1 − xy)

∂∆k

∂y
(x, y),

so that

∂∆k

∂y
(x, y) = −x2 − 2x3y − · · · − (k − 1)xkyk−2,

21

∂V

∂y
(x, 1) = −x∆k(x) − (1 − x)

k−1∑
r=1

r xr+1.

Differentiating again,

∂2V

∂y2
(x, y) = (1 − xy)

∂2∆k

∂y2
(x, y) − 2x

∂∆k

∂y
(x, y),

with

∂2∆k

∂y2
(x, y) = −2x3 − 3 · 2x4y − · · · − (k − 1)(k − 2)xkyk−3,

so that

∂2V

∂y2
(x, 1) = (1 − x)

(
−

k−1∑
r=2

r(r − 1)xr+1
)

+ 2x
k−1∑
r=1

r xr+1.

Now we compute Ak, Bk, Ck. By definition,

Ak(x) =
N(x, 1)

V (x, 1)
=

x − xk

(1 − x)∆k(x)
,

which also equals (x − xk)/(1 − 2x + xk+1) since (1 − x)∆k(x) = 1 − 2x + xk+1.
For the first derivative, the quotient rule gives

∂

∂y

(
N

V

)
=

∂N
∂y · V − N · ∂V

∂y

V 2
.

Evaluating this at y = 1 and substituting in the four expressions N(x, 1), ∂N
∂y (x, 1),

V (x, 1), ∂V
∂y (x, 1) results in

Bk(x) =
1(

(1 − x)∆k(x)
)2 [(x − kxk

)
(1 − x)∆k(x)

−
(
x − xk

) (
−x∆k(x) − (1 − x)

k−1∑
r=1

r xr+1
)]

.

For the second derivative, we differentiate again:

∂2

∂y2

(
N

V

)
=

∂2N
∂y2 · V 2 − N · ∂2V

∂y2 · V − 2∂N
∂y · V · ∂V

∂y + 2N ·
(

∂V
∂y

)2
V 3

.

Evaluating at y = 1 and substituting ∂2N
∂y2 (x, 1),

∂2V
∂y2 (x, 1) together with the derived

22

expression gives:

∂2F fix
k

∂y2
(x, 1) =

1(
(1 − x)∆k(x)

)3 [(−k(k − 1)xk
) (

(1 − x)∆k(x)
)2

−
(
x − xk

) (
(1 − x)

(
−

k−1∑
r=2

r(r − 1)xr+1
)

+ 2x
k−1∑
r=1

r xr+1
)
(1 − x)∆k(x)

− 2
(
x − kxk

)
(1 − x)∆k(x)

(
−x∆k(x) − (1 − x)

k−1∑
r=1

r xr+1
)

+ 2
(
x − xk

) (
−x∆k(x) − (1 − x)

k−1∑
r=1

r xr+1
)2]

.

By definition,

Ck(x) =
∂2F fix

k

∂y2
(x, 1) + Bk(x).

Applying Proposition 3.11 to F = F fix
k gives:

E[Xn] =
[xn]Bk(x)

[xn]Ak(x)
, Var(Xn) =

[xn]Ck(x)

[xn]Ak(x)
−
(
[xn]Bk(x)

[xn]Ak(x)

)2
,

as was to be shown.

3.3. Distribution of Gaps Between Summands

Again, Lemma 3.2 allows us to reduce our analysis to the one-dimensional case. There
are results on limiting gap probabilities, longest gaps, and much more (see [3, 4]).

The Proof of Theorem 1.25. follows from [3, Theorem 1.5] and [4, Theorem 1.5].

3.4. Summand Minimality

We utilize the following definitions and result from [5].

Definition 3.13. For a PLRS given by the recurrence relation Hn+1 = c1Hn+ · · ·+
cLHn+1−L, we call σ = (c1, c2, .., cL) the signature of the PLRS.

As we observed in Remark 3.4, {xn+1}∞n=1 is a PLRS with L = k and c1 = · · · =
cL = 1. Kologlu et al. [7, Theorem 1.3] proved that every positive integer n has
a unique legal decomposition associated to a given PLRS, called the generalized
Zeckendorf decomposition of n. In the case of the k-bonacci sequence, this is
the unique decomposition given by Theorem 1.2. We will say that a PLRS {Hn}∞n=1

is summand minimal if no representation of any positive integer n as a linear
combination with nonnegative coefficients of terms in {Hn}∞n=1 uses fewer summands
than the generalized Zeckendorf decomposition of n.

23

Theorem 3.14. [5, Theorem 1.1] A PLRS with signature σ = (c1, c2, . . . , cL) is sum-
mand minimal if and only if c1 ≥ c2 ≥ · · · ≥ cL.

Theorem 3.14 gives the following as an immediate corollary.

Corollary 3.15. The k-bonacci number decomposition of n given by Theorem 1.2 is
summand minimal.

We are now able to prove the following.

Proof of Theorem 1.26. Consider any other representation v⃗ =
∑

i≥1 c
′
iX⃗−i of v⃗

as a linear combination of k-bonacci vectors with nonnegative integer coefficients.
Suppose the SR of v⃗ contains d summands and assume, for the sake of contradiction,
that this representation v⃗ =

∑
i≥1 c

′
iX⃗−i contains

∑
i≥1 c

′
i = c < d summands. Let m

be the maximal integer such that X⃗−m is present in one of the representations. By
Lemma 1.8, we have

Sm+1(

p∑
i=1

ciX⃗−i) =

p∑
i=1

cixm+1−i (mod xm+1)

and

Sm+1(

p∑
i=1

c′iX⃗−i) =

p∑
i=1

c′ixm+1−i (mod xm+1).

Observe that
∑p

i=1 cixm+1−i (mod xm+1) and
∑p

i=1 c
′
ixm+1−i (mod xm+1) contain,

respectively, d and c summands. Now, by definition of the SR,
∑p

i=1 cixm+1−i

(mod xm+1) has no k consecutive terms and ci ∈ {0, 1} for every i, so
∑p

i=1 cixm+1−i

(mod xm+1) must be the k-bonacci number decomposition of Sm+1(v⃗). Then Lemma
3.15 implies d ≤ c.

4. Future Work

A natural direction for further research concerns the behavior of the vector repre-
sentation algorithm for general k. We proved that for k = 3, the number of steps
required is logarithmic in the size of the vector, but for larger k, this remains conjec-
tural (see Conjecture 1.19). Formally, it is conjectured that for all k ≥ 3, there exist
constants ck, dk > 0 such that the algorithm completes in at most ck log |v|+dk steps.
Proving this conjecture for higher k and understanding the underlying combinatorial
mechanisms presents an important avenue for future research.

During our work, we also observed that the sets Dn increasingly resemble Rauzy
fractals as n grows, displaying intricate self-similar structures. Despite this clear nu-
merical and visual evidence, we were not able to provide a rigorous proof of their
convergence. Establishing such a result, as well as understanding the precise geomet-
ric and combinatorial mechanisms behind this behavior, remains an interesting and
challenging direction for future research.

24

Appendix A. Algorithm Complexity

In order to compare to the efficiency of our algorithms, we first provide the following
complexity analysis of the recursive algorithm given in [1].

Proof of Lemma 1.11. The algorithm described in [1] follows a recursive approach
to compute the Satisfying Representation (SR) of a vector v⃗. We distinguish two
cases based on the signs of the coordinates of v⃗.

Recursive Algorithm:

• Case 1: If v⃗ has any positive coordinate, say vi > 0, define w⃗ = v⃗ − e⃗i. Then
by definition,

SR(v⃗) = SR(w⃗) + e⃗i.

Since e⃗i is a standard basis vector, this expression is either:
◦ a Nearly Satisfying Representation (NSR),
◦ a valid SR, or
◦ an “almost SR,” where the only violation is a single block of 1’s of length
at most 2k − 1.

• Case 2: If all coordinates of v⃗ are non-positive, define

w⃗ = v⃗ + X⃗−k = v⃗ − (⃗e1 + e⃗2 + · · ·+ e⃗k−1).

Then we have:

SR(v⃗) = SR(w⃗) + X⃗−k.

The vector w⃗ has strictly larger entries than v⃗, so we recurse on w⃗. The resulting
expression SR(w⃗) + X⃗−k is either a valid SR, or one of the following:

◦ an NSR, or
◦ an “almost SR” with a single block of 1’s of length at most 2k − 1.

In either of these two cases, we proceed with a normalization step using the
“borrow-carry” operation as described in Lemma 4.

When v⃗ has positive coordinates, each operation v⃗ → v⃗− e⃗i reduces the ℓ1 norm of v⃗
by 1. Therefore, in the worst case, we perform this operation at most O(∥v⃗∥1) times.
Appending e⃗i to the representation costs O(1) per step. When we apply Lemma 4
to reduce blocks of 1’s (of length at most 2k − 1), we know from the Lemma that a
constant number (at most two) of “borrow-carry” operations suffices to restore the
SR condition. Each such operation affects a block of length O(k), so each normal-
ization step takes O(k) time. If the resulting expression is an NSR of length L (i.e.,
involving L summands), and we need to normalize it into an SR, then the total cost
of normalization is O(L · k).

Assuming we begin with a vector v⃗ ∈ Zk−1:

• We perform at most O(∥v⃗∥1) recursive steps.
• Converting each NSR to an SR costs O(L · k) time.

25

Therefore, the total worst-case time complexity is:

O(k · Lv1 · ∥v⃗∥1).

For comparison, we calculate the complexity of the small steps algorithm and the
large steps algorithm.

Proof of Proposition 2.5. We list the steps of the algorithm.

(i) Calculate j = jssb.
(ii) Calculate the first j k-bonacci numbers.
(iii) Apply the map Sj+1.
(iv) Apply the greedy algorithm to Sj+1(v⃗).

Now, we calculate the complexity of each step.

(i) Finding j = jssb takes O(k) operations.
(ii) Calculating one k-bonacci number takes O(k) operations, so calculating j k-

bonacci vectors takes O(kj) operations.
(iii) Evaluating Sj+1 requires a dot product modulo xj+1. The dot product takes

O(k) operations, and since xj+1 is approximately ∥v⃗∥∞ times smaller than the
dot product, using repeated subtractions gives us that the modulo calculation
takes O(∥v⃗∥∞) operations.

(iv) Applying the greedy algorithm requires O(j) checks and O(j) computations, so
it takes O(j) operations.

Since j = O(k2 ∥v⃗∥∞), the whole algorithm has time complexity O(k3 ∥v⃗∥∞).

Proof of Proposition 2.8. As before, we list the steps of the algorithm.

(i) Calculate all of the k-bonacci vectors X⃗−n with
∥∥∥X⃗−n

∥∥∥
2
≤ 2 ∥v⃗∥2. This takes

O(log ∥v⃗∥∞) steps.
(ii) Inductively:

(a) Find the closest k-bonacci vector to v⃗n. This takes O(log ∥v⃗∥2) steps.
(b) Set v⃗n+1. This takes O(1) steps.
(c) Check if ∥v⃗n+1∥2 < ∥v⃗n∥2. This also takes O(1) steps.

(iii) Apply the greedy algorithm. We know that this takes O(j + ∥v⃗∥∞) operations.

Since j = O(log ∥v⃗∥∞), the greedy algorithm takes O(∥v⃗∥∞) operations. The large
step algorithm for finding jlsb is O((log ∥v⃗∥∞)2), so the whole algorithm for each k is
linear in ∥v⃗∥∞.

Disclosure statement

No conflict of interest has been reported by the author(s).

References

[1] Anderson, P., Bicknell-Johnson, M. (2011). Multidimensional Zeckendorf rep-
resentations. Fibonacci Quart. 49(1):4–9.

26

[2] Báril, J. P., Kirgizov, O., Vajnovszki, V. (2022). Asymptotic bit frequency in Fi-
bonacci words and generalized Fibonacci words. Pure Math Appl. 30(1):23–30.

[3] Beckwith, O., Bower, A., Gaudet, L., Insoft, R., Li, S., Miller, S. J., Tosteson,
P. (2013). The average gap distribution for generalized Zeckendorf decomposi-
tions. Fibonacci Quart. 51(1):13–27.

[4] Bower, A., Insoft, R., Li, S., Miller, S. J., Tosteson, P. (2015). The distri-
bution of gaps between summands in generalized Zeckendorf decompositions.
Fibonacci Quart. 135:130–160.

[5] Cordwell, K., Hlavacek, M., Huynh, C., and Miller, S. J., Peterson, C., Vu, Y.,
Nhi T. (2018). Summand minimality and asymptotic convergence of generalized
Zeckendorf decompositions. Res. Number Theory 4(4):1–27.

[6] Flajolet, P., Sedgewick, R. (2009). Analytic Combinatorics. Cambridge Uni-
versity Press.

[7] Kologlu, M., Kopp, G., Miller, S. J. Wang, Y. (2011). On the number of sum-
mands in Zeckendorf decompositions. Fibonacci Quart. 49(1):116–130.

[8] Li, R., Miller, S. J. (2017). A collection of central limit type results in gener-
alized Zeckendorf decompositions. Fibonacci Quart. 55(5):105–114.

[9] Miller, S. J., Wang, Y. (2012). From Fibonacci numbers to central limit type
theorems. J. Combin. Theory Ser. A 119(7):1398–1413.

[10] Miller, S. J., Wang, Y. (2012). Gaussian behavior in generalized Zeckendorf
decompositions. Combinatorial and Additive Number Theory: CANT 2011 and
2012 159-173.

[11] Zeckendorf, E. (1972). Représentation des nombres naturels par une somme de
nombres de Fibonacci ou de nombres de Lucas. Bulletin de la Société Royale
des Sciences de Liège 41:179–182.

MSC2020: 11B39

27

	Introduction
	History and Motivation
	Main Results

	Improved Algorithms for Finding Vector Representations
	Small Steps Algorithm
	Large Steps Algorithm
	Analysis of Large Steps Algorithm
	Relative Efficiency of Algorithms for Finding SRs

	Properties of Vector Representations
	Overview
	Distribution of the Number of Summands
	Distribution of Gaps Between Summands
	Summand Minimality

	Future Work
	Algorithm Complexity

