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Abstract. Zeckendorf proved that any positive integer has a unique decomposition as
a sum of non-consecutive Fibonacci numbers, here indexed by F1 = 1, F2 = 2, Fn+1 =
Fn + Fn−1. Motivated by this result, Baird et al. [3] defined the two-player Zeckendorf
game, in which two players take turns acting on a multiset of Fibonacci numbers that always
sums to N . The game terminates when no possible moves remain, which importantly always
happens, and the final player to perform a move wins. Notably, Baird et al. [3] empirically
studied the setting of random games, in the sense that the game proceeds by always choosing
an available move uniformly at random, and conjecture that as the input N → ∞, the
distribution of random game lengths converges to a Gaussian.

We study various combinatorial questions concerning the Zeckendorf game. We found
that the sum of the number of times certain moves are performed is constant. We prove
that the number of shortest games on input N is at least

∏n−2
k=1 Cat(Fk), where n denotes the

index of the largest Fibonacci number in the Zeckendorf decomposition of N and Cat(Fk) is
the Fkth Catalan number. The works of Baird et al. [3] and Cuzensa et al. [5] determined
how to play in order to achieve the shortest and longest possible Zeckendorf game on a given
input N , respectively: we improve the current understanding of achievable game lengths by
establishing that for any input N , the range of possible game lengths constitutes an interval
of natural numbers; in other words, for every input N , every game length between the
shortest and longest game lengths can be achieved by some Zeckendorf game.

Motivated towards the resolution of the Gaussianity conjecture, we also initiate the study
of probabilistic aspects of random Zeckendorf games. In particular, we study two probability
measures on the space of all Zeckendorf games on input N : the uniform measure, and the
measure induced by choosing moves uniformly at random at any given configuration. We
show under both measures that in the limit N → ∞, both players win with probability
1
2 when playing under the random game setting. We also find natural partitions of the
collection of all Zeckendorf games of a fixed input N , on which we observe weak convergence
to a Gaussian in the limit N → ∞. We conclude the work with many open problems.
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1. Introduction

The Fibonacci numbers are widely considered to be the most interesting and well-known
recursive sequence in mathematics. In this article, we shall index the Fibonacci numbers by
F1 = 1, F2 = 2, and for general n ≥ 3, Fn = Fn−1 + Fn−2. Zeckendorf proved the following
fundamental theorem: the decomposition in the proceeding theorem is referred to as the
Zeckendorf decomposition of the positive integer N .

Theorem 1.1 ([9]). Every positive integer N can be decomposed uniquely into a sum of
distinct, non-consecutive Fibonacci numbers.

Inspired by this result, the authors of [3] constructed the two-player Zeckendorf game.

Definition 1.2 ([3]). Given input N ∈ N, the Zeckendorf game is played on the multiset
S = {FN

1 } of Fibonacci numbers. On each turn, a player can act on the multiset by
performing one of the following moves if it is available.

(1) If we have two consecutive Fibonacci numbers Fk−1, Fk for some k ≥ 2, then we can
replace them by Fk+1, denoted Fk−1 ∧ Fk → Fk+1.

(2) If we have two instances of the same Fibonacci number Fk, then
(a) If k = 1, we can play F1 ∧ F1 → F2.
(b) If k = 2, we can play F2 ∧ F2 → F1 ∧ F3.
(c) If k ≥ 3, we can play Fk ∧ Fk → Fk−2 ∧ Fk+1.

The two players alternate turns until no playable moves remain. The last player to move
wins the game.

Observe that the moves of the game are consistent with the Fibonacci recurrence: we
either combine two consecutive terms, or split terms with multiple instances. Perhaps more
intuitively, we can understand the game as acting on a row of bins, with bin k corresponding
to the Fibonacci number Fk and its height being the multiplicity of Fk in the multiset.

1.1. Prior Work. The article [3] introduces the two-player Zeckendorf game, determine
upper and lower bounds on the length of a game on input N (showing in particular that
the game always terminates), and shows non-constructively that Player 2 has the winning
strategy for all N ≥ 2. In particular, they provide the following explicit formula for the length
of the shortest Zeckendorf game on input N , achieved by only playing combine moves.

Theorem 1.3 ([3]). The number of combine moves in any Zeckendorf game on input N is
is N − Z(N). Furthermore, any such shortest game terminates in N − Z(N) moves, where
Z(N) is the number of terms in the Zeckendorf decomposition of N .
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The works [7] and [5] successively improved the upper bound of [3] on the length of a
Zeckendorf game on fixed input N ; the former article finds a deterministic game which has
longest possible length for input N , while the latter generalizes this paradigm. We frequently
make use of the following two results from [5] in our arguments. We note that although the
following result provides a strategy to achieve a longest game, finding a convenient closed
form for the length of the longest game for non-Fibonacci input N remains open (with the
case of Fibonacci input treated by [5]).

Theorem 1.4 ([5]). The longest game on any N is achieved by applying split moves or
combine 1s (in any order) whenever possible, and, if there is no split or combine 1 move
available, combine consecutive indices from smallest to largest.

Theorem 1.5 ([5]). A Zeckendorf game on input N can be played with strictly splitting
and combine 1 moves if and only if N = Fk − 1 for some k ≥ 2.

Finally, we remark that analogous two-player games have been developed for other recur-
rences: the work [2] extends [3] by defining and studying such games for recursive sequences

defined by linear recurrence relations of form Gn =
∑k

i=1 cGn−i (c = k − 1 = 1 yielding
the Fibonacci numbers), again giving lower and upper bounds on game lengths (including
showing termination) and showing non-constructively that Player 2 has a winning strategy,
while [4] similarly studies recurrences of form an+1 = nan + an−1.

1.2. Notation and Conventions. We let C1 denote the combine move F1 ∧F1 → F2, and
(for k ≥ 2) let Ck denote the combine move Fk−1 ∧ Fk → Fk+1. Let S2 denote the splitting
move 2F2 → F1 ∧ F3, and (for k ≥ 3) let Sk denote the splitting move 2Fk → Fk−2 ∧ Fk+1.
We prefix a particular type of move with M to denote the number of such moves (e.g. MC1

denotes the number of C1s in a game).
We let Z(N) denote the number of terms in the Zeckendorf decomposition of N . We

loosely refer to the number of instances of Fk as the height of bin k, denoted hk; it will
usually be clear from context at which point in the game the quantity hk refers to. When
discussing the height of bin k after a specific number m of moves in the game, we notate
this by hk(m). For λ ∈ N, we shall also occasionally use the shorthand [λ] = {1, 2, . . . , λ}.

In this work, we shall generally work under the assumption that Fn ≤ N < Fn+1 for some
n ∈ N (i.e. n is the index of the largest Fibonacci number that is no larger than N)1. While
proving Theorem 1.9, we occasionally refer to moves C1, S2, . . . , Sn−1 as Type A moves,
and all other moves (namely, moves Ck for k ≥ 2) as Type B moves. The work [5] also
achieved an understanding of precisely when playing strictly Type A moves throughout the
whole game is possible.

Finally, the present article initiates the study of random Zeckendorf games. Here, we let
ΩN denotes the (finite) collection of all Zeckendorf games on input N , with FN = 2ΩN the
associated σ-algebra, and express a given Zeckendorf game G ∈ ΩN as a (finite) sequence of
λ moves, written as G = (M1,M2, . . . ,Mλ). We study two probability measures to complete
the space (ΩN ,FN): the uniform measure µN , defined by

µN(G) =
1

|ΩN |
for all G ∈ ΩN

1This is why we have elected to deviate from notation traditionally used in papers concerning this game.
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and the probability measure PN induced by choosing, at every configuration along a given
game, uniformly at random among available moves, defined by

PN(G) =
λ∏

k=1

1

num. playable moves after (M1, . . . ,Mk−1)
for G = (M1,M2, . . . ,Mλ) ∈ ΩN .

All of the results we derive in this context apply to both probability spaces.

1.3. Main Results. The work [5] determines an upper bound on the length of a game on
input N . We improve this upper bound using similar techniques as in the work [3].

Theorem 1.6. The length of a Zeckendorf game on input N is upper-bounded by⌊
φ2N − ZI(N) − 2Z(N) + (φ− 1)

⌋
where ZI(N) represents the index sum of the Zeckendorf decomposition of N . Furthermore,
the bound is sharp for infinitely many N .

Much of our work was inspired by the following conjecture (the only one still unresolved
in the paper it was introduced in), initially posed by [3], which concerns distributional
properties of the length of random Zeckendorf games on input N in the limit N → ∞.

Conjecture 1.7 ([3, 7]). In the limit N → ∞, the distribution of the number of moves
in a random Zeckendorf game on input N converges to a Gaussian, with expectation and
variance approximately 0.215N .

As such, many of our main results have largely arisen from attempting to understand those
aspects of Zeckendorf games which may potentially aid in resolving the aforementioned con-
jecture (and in striving to determine what such aspects are). First, we have the following
lower bound on the number of shortest Zeckendorf games of length N . Intuitively, if the
distribution of random game lengths were indeed Gaussian, this should be an extreme un-
derestimate compared to the number of ways to achieve other game lengths (shortest games
involve the fewest number of decisions, so one might naturally expect that the probability
of achieving one via a random game is larger than longer games), yet it still explodes in N .

Theorem 1.8. Let Fn ≤ N < Fn+1. Then the number of shortest Zeckendorf games with
input N is at least

∏n−2
k=1 Cat(Fk), where Cat(Fk) denotes the Fkth Catalan number.

The shortest game and longest game were studied in [3] and [5], respectively. It is natural
to ask whether every game length between the shortest and longest game length is achievable:
we resolve this in the affirmative.

Theorem 1.9. For any input N to the Zeckendorf game, let M denote the length of the
longest Zeckendorf game with input N . Then for any m satisfying N − Z(N) ≤ m ≤ M ,
there exists a Zeckendorf game of length m on input N . In other words, the set of achievable
game lengths constitutes an interval in the natural numbers.

We also study the winning odds of players in the limit N → ∞ of infinite input when
studying random Zeckendorf games, for which one might expect that both players win with
probability 1

2
in the limit if if Conjecture 1.7 holds as the variance of the conjectured Gaussian

grows with N . We establish that this is indeed true by proving a much more general result:
we can understand Theorem 1.10 as saying that in the limit of infinite input, a Z-player
random Zeckendorf game is fair, in the sense that all Z players have the same probability of
winning.
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Theorem 1.10. For any integer Z ≥ 1 and z ∈ {0, 1, . . . ,M − 1}, we have that

lim
N→∞

µN(Game length equals z mod Z) = lim
N→∞

PN(Game length equals z mod Z) =
1

Z
.

Taking Z = 2 in Theorem 1.10 above yields the following result for the classical two-player
Zeckendorf game.

Theorem 1.11. For the two-player Zeckendorf game, in the limit N → ∞ under both
probability measures µN and PN , Player 1 and Player 2 are equally likely to win. Explicitly,

lim
N→∞

µN(Player 1 wins) = lim
N→∞

µN(Player 2 wins) =
1

2
,

lim
N→∞

PN(Player 1 wins) = lim
N→∞

PN(Player 2 wins) =
1

2
.

Finally, we establish that there exist natural ways to partition the collection of Zeckendorf
games ΩN on input N so that the distribution of game lengths over the corresponding
classes are nearly Gaussian with high probability in the limit N → ∞. The construction of
the subsets RP

N ⊂ ΩN and RS
N ⊂ ΩN , and the sets AN(R), is elaborated in Propositions 4.8

and 4.9.

Theorem 1.12. For R ∈ RP
N , let FR

N (x) : R → [0, 1] denote the distribution function
corresponding to game lengths in AN(R) over the conditional distribution induced by PN ,
normalized to have expectation 0 and variance 1. Let Φ : R → [0, 1] denote the distribution
function of the standard normal. Then for any ϵ > 0,

lim
N→∞

PN

(
sup
x∈R

∣∣∣FR
N (x) − Φ(x)

∣∣∣ ≥ ϵ

)
= 0.

Similarly, for R ∈ RS
N , let FR

N (x) : R → [0, 1] denote the distribution function corresponding
to game lengths in AN(R) over the conditional distribution induced by PN , normalized to
have expectation 0 and variance 1. Then for any ϵ > 0,

lim
N→∞

PN

(
sup
x∈R

∣∣∣FR
N (x) − Φ(x)

∣∣∣ ≥ ϵ

)
= 0.

The analogous results hold for the uniform measure µN .

2. Structural Results

In this section, we include some straightforward, but fundamental results concerning the
nature of the Zeckendorf game; some of these will be invoked in proofs of deeper theorems.

2.1. Combinatorial Observations. We begin by exploring some basic properties of the
Zeckendorf game, observable by studying deterministic subroutines of moves.

Proposition 2.1. Consider any decomposition of N into a sum of (possibly non-distinct,
non-consecutive) Fibonacci numbers: this decomposition can be achieved via a sequence of
combine moves from the starting configuration of the Zeckendorf game.

Proof. We “play the game in reverse”: consider the configuration corresponding to this
decomposition, and construct a sequence of moves by always taking the game piece not in
the first bin and farthest out, and replace it as the result of a combine move. Specifically,
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if k ≥ 3, then replace Fk by {Fk−2, Fk−1}; if k = 2, replace with 2F1. Then reverse all the
moves to get a Zeckendorf game from the initial state to this state. □

The following is an easy consequence of Theorem 1.4 above, which states that the longest
game paradigm from the starting position extends to intermediate game positions on input N
which are given by converting Fn − 1 instances of F1 = 1 into the Zeckendorf decomposition
of Fn − 1, where n denotes the index of the largest Fibonacci number in the Zeckendorf
decomposition of the input N .

Lemma 2.2. Let n denote the index of the largest Fibonacci number in the Zeckendorf
decomposition of the input N . A longest Zeckendorf game from an intermediate configuration
given by converting Fn − 1 instances of 1 into the Zeckendorf decomposition of Fn − 1 is
given by greedily playing any Type A move whenever possible, and if no such Type A move
can be played, play the available Type B move with the smallest index.

Proof. If a game achieved by playing Type A moves whenever possible from this configuration
were not maximal (i.e. there existed a Zeckendorf game of strictly larger length), then by
initially playing the longest game on input Fn−1 via all Type A moves (possible by Theorem
1.5), we can play the game exactly according to Theorem 1.4 but fail to achieve a game of
maximal length, contradicting Theorem 1.4. □

Using similar techniques as in [3], we derive the following results in order to improve the
upper bound found in [5].

Lemma 2.3. Let n be the largest summand in the Zeckendorf decomposition of N , we get
that for any 2 ≤ k ≤ n− 1, the following sum is constant:

MSk + MCk + MCk+1 + · · · + MCn−1.

Proof. Consider the following relabeling of the board:

F1 · · · Fk Fk+1 − 1 Fk+2 − 2 Fk+3 − 4 Fk+4 − 7 · · ·

where after the kth bin, the value of a bin is equal to one less than the sum of the values
of the two bins which precede it. We get that only the moves Sk, Ck, Ck+1, . . . can change
the weighted sum of the tokens by the relabeled values, and each of these moves reduce
the sum by 1. Since we have a fixed initial sum N and a fixed ending sum depending on
the Zeckendorf Decomposition of N , we get that the sum of those moves must be constant
regardless of how the game is played. □

Lemma 2.4. For any Zeckendorf game starting with N tokens,

MC1 −MS2 ≈ (2 − φ)N

with approximation error ≤ φ− 1.

Proof. Similarly, we prove this with a relabeling of the board

2 3 5 · · · Fk+1 · · ·

and observing that the sum of token values goes from 2N to ∼ φN with the sum decreasing
by 1 only by performing C1 and increasing by 1 only by performing S2. Note that the
final sum is equal to shifting each Zeckendorf summands of N forward by one, which is

approximated by multiplying each by φ. By Binet’s formula, we have Fk = φk+1−(−1/φ)k+1
√
5
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due to how we index the Fibonacci sequence. Thus, the error of approximating the summand
Fk+1 with φFk is ∣∣∣∣∣(φk+1 − (−1/φ)k+1)φ− (φk+2 − (−1/φ)k+2)√

5

∣∣∣∣∣ =
φ2 + 1

φk+2
√

5

The largest error happens when N = F1 + F3 + F5 + . . . with error at most

φ2 + 1

φ3
√

5

 ∞∑
i=0

1

φ2i

 =
φ2 + 1

φ3(1 − 1/φ2)
√

5
=

1

φ
= φ− 1

which yields the desired. □

As a corollary, we prove Theorem 1.6.

Theorem 1.6. The length of a Zeckendorf game on input N is upper-bounded by⌊
φ2N − ZI(N) − 2Z(N) + (φ− 1)

⌋
where ZI(N) represents the index sum of the Zeckendorf decomposition of N . Furthermore,
the bound is sharp for infinitely many N .

Proof. Using the relabeling of the board given by

3 4 5 · · · k + 2 · · ·

We get that

2MC1 + 2MC2 + 3MC3 + 4MC4+ · · · = 3N − 2Z(N) − ZI(N)

+MS3 + MS4+ . . .

Applying Lemma 2.4, we get

MC1 + 2MC2 + 3MC3 + 4MC4+ · · · ≤ 3N − 2Z(N) − ZI(N)

+(2 − φ)N − (φ− 1) + MS2 + MS3 + MS4+ . . .

Thus, if we subtract the excess MC2 + 2MC3 + 3MC4 + . . . from the left hand side, we get
the upper bound

MC1 + MC2 + MC3 + MC4+ · · · ≤ (1 + φ)N − 2Z(N) − ZI(N) + (φ− 1)

+MS2 + MS3 + MS4+ . . .

which we round down as the number of all moves performed is an integer. Note that if we
consider N = Fn − 1 then we get that there are no C2, C3, . . . performed within the longest
game. Furthermore, if we consider N = F2n − 1, then our approximation error is less than
1 and thus must be sharp after rounding down. □

Recall that [3] proved non-constructively that Player 2 always has a winning strategy:
finding such a winning strategy remains open. It is generally believed ([8]) that the key to
such a strategy lies in understanding “parity swaps”: distinct sequences of moves of differing
length which yield the same effect on the board. The following definition follows from the
easy observation that whenever playable, the sequences of moves

Sk → Sk−1 → · · · → Sk−ℓ+1 → Ck−ℓ Ck−ℓ → Sk−ℓ+1 → · · · → Sk−1 → Sk

both have the same effect on the board as the move Ck, for some k ≥ 2.
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Definition 2.5. For any ℓ ≥ 0 and k ≥ 2, call a sequence of moves of form Sk → Sk−1 →
· · · → Sk−ℓ+1 → Ck−ℓ an (ℓ, k)-prefix, and a sequence of moves of form Ck−ℓ → Sk−ℓ+1 →
Sk−ℓ+2 → · · · → Sk an (ℓ, k)-suffix. We call an (ℓ, k)-prefix a prefix of Ck, and an (ℓ, k)-suffix
a suffix of Ck.

It should be emphasized that an (ℓ, k)-prefix or (ℓ, k)-suffix corresponds to an equivalent
action as the combine move Ck, for all lengths ℓ ≥ 0 and k ≥ 2; the combine move is
thus “expanded” via a sequence of ℓ splitting moves with contiguous indices. The next
result captures the intuition that the variation in game lengths is entirely due to the parity
swaps described in Definition 2.5, namely by describing arbitrary Zeckendorf games via
permutations of suffixes.

Proposition 2.6. Any Zeckendorf game on input N can be achieved by taking a shortest
game, expanding combine moves via suffixes, then shifting the splitting moves.

Proof. For an arbitrary Zeckendorf game, greedily take the earliest split move of a game, move
it back to be played as early as possible, and compress it into a combine move. Proceed
similarly until we only have combine moves, from which we achieve the original game by
reversing the compressions and playing split moves later. □

We can interpret the statement of Proposition 2.6 as saying that we can greedily embed
an arbitrary Zeckendorf game on input N into a shortest game on input N in a natural way.

2.2. Shortest Games. Proposition 2.6 suggests that a study of shortest Zeckendorf games
might be fruitful, as any particular Zeckendorf game can be understood as an extension and
permutation of a particular shortest game. We first observe the following.

Proposition 2.7. Shortest games are exactly those games which strictly use combine moves.
Furthermore, such a game exists for any input N , and the multiset of combine moves for
any such shortest game is unique.

Proof. A move decreases the number of pieces by at most one, so N−Z(N) lower-bounds the
number of moves necessary, achieved exactly by those games using strictly combine moves;
such games exist by Proposition 2.1. To establish uniqueness of the multiset of combine
moves for any such game, say Fn ≤ N < Fn+1, and study bin k for 1 ≤ k ≤ n. Moves
affecting hk are known precisely: letting the Zeckendorf decomposition of N be denoted
(z1, z2, . . . , zn) (where zi ∈ {0, 1}), this yields the system

N − 2MC1 −MC2 = z1

MC1 −MC2 −MC3 = z2

. . .

MCn−3 −MCn−2 −MCn−1 = zn−2

MCn−2 −MCn−1 = zn−1

MCn−1 = zn = 1

from which it easily follows that this system must have a unique solution. □

Proposition 2.8. For n = n(N) and any δ ∈ (0, 1),

lim
N→∞

max
G∈ΩN

#{Ck ∈ G, k > δn}
#{Combine moves in G}

= lim
N→∞

max
G∈ΩN

#{Ck ∈ G, k > δn}
N − 1

= 0.
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Proof. For G ∈ ΩN , consider all combine moves Ck with k > δn; each such combine move
corresponds to a particular token “jumped,” for which we consider all combine moves with
index ≤ δn that led this token to land in this position, of which there must be at least ⌊δn/2⌋.
The sets of combine moves with index ≤ δn corresponding to distinct combine moves with
index > δn are observed to be disjoint, so

#{Ck ∈ G, k > δn}
N − 1

≤ 1

⌊δn/2⌋ + 1

which vanishes as N → ∞. □

Proposition 2.7 yields the following interesting lower bound2 on the number of shortest
Zeckendorf games with input N .

Theorem 1.8. Let Fn ≤ N < Fn+1. Then the number of shortest Zeckendorf games with
input N is at least

∏n−2
k=1 Cat(Fk), where Cat(Fk) denotes the Fkth Catalan number.

Proof. It suffices to study N = Fn, since the number of distinct shortest Zeckendorf games
is increasing in N : for input N ̸= Fn, one can first play a shortest Zeckendorf game on
input Fn, then proceed by always playing the rightmost available combine move to achieve a
shortest game on input N by Proposition 2.7. (See Lemma 3.1, where we understand this as
incrementing instances of F1s after playing a shortest game on Fn.) The Zeckendorf decom-
position is (z1, z2, . . . , zn−1, zn) = (0, 0, . . . , 0, 1), where zi denotes the number of instances
of Fi in the decomposition. By Proposition 2.7, there exists a unique multiset of combine
moves constituting a shortest game: by solving the system above, this multiset is defined by

(MC1,MC2, . . . ,MCn−1) = (Fn−2, Fn−3, Fn−4, . . . , F3, F2, F1, F0)

where we let F0 = 1. A permutation of these moves constitutes a game if and only if every
move is valid, i.e. no move would force the height of any bin to become negative. Specifically,
at any intermediate point in the sequence, the number of C1s played is no less than the sum
of the number of C2s and C3s performed (bin 2 is nonnegative), the number of C2s is no less
than the number of C3s and C4s performed (bin 3 is nonnegative), and so on, to the number
or Cn−2s being no less than the number of Cn−1s performed (bin n− 1 is nonnegative). (We
need not study bin 1 or bin n, which will necessarily always have nonnegative height.)

Let us restrict our attention to the moves C1, C2, C3 (i.e. moves affecting the height of bin
2): the number of permutations of these moves such that the number of C1s played being
no less than the sum of the number of C2s and C3s performed holds at any point in the
game is in bijective correspondence with Dyck paths on n = Fn−2 (specifically, C1 ↔ U ;
C2, C3 ↔ D), the number of which is Cat(Fn−2). Similarly, by studying moves affecting bin
k ≥ 2, we achieve bijective correspondences with Dyck paths on n = Fn−k.

For any choice of Dyck paths on n = Fn−2, Fn−3, . . . , F1, denoted D2,D3, . . . ,Dn−1, respec-
tively, there exists a shortest Zeckendorf game on input N where the ordering of the relevant
moves is consistent with the bijections described above. To construct such a game, begin
by placing 2Fn−2 moves along a line, labeling Fn−2 of them as C1 in a manner consistent
with D2 (C1 ↔ U). Among the Fn−2 = Fn−3 +Fn−4 unlabeled moves, label Fn−3 of them as
C2 (importantly, including the first D move) in a manner consistent with D3 (not too many
unlabeled moves between consecutive instances of C2) and the other Fn−4 as C3.

2One might expect the lower bound of Theorem 1.8 to be somewhat loose, as much is lost when crudely
pursuing the interweaving of the various Dyck paths (see the proof for details).
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Now add Fn−5 instances of C4 to complete D3 (include all missing C4 ↔ D moves) while
respecting D4 (not too many unlabeled moves between consecutive instances of C3). Specifi-
cally, construct a labeling of the Fn−3 = Fn−4 +Fn−5 D moves in D3 with Fn−4 C3s and Fn−5

C4s such that the first D is labeled C3, and there are not too many unlabeled moves between
consecutive instances of C3 (with respect to D4). Insert C4s to be adjacent of established
instances of C3 to be consistent with this labeling.

Continue by similarly adding, for k ≥ 5, Fn−k−1 instances of Ck, completing Dk−1 while
respecting Dk, until we add F0 = 1 instance of Cn−1 such that we complete Dn−1. This results
in a shortest Zeckendorf game with the ordering of the relevant moves being consistent with
D2,D3, . . . ,Dn−1. □

3. The Set of Possible Game Lengths Constitute An Interval

In this section, we prove Theorem 1.9, which we restate below.

Theorem 1.9. For any input N to the Zeckendorf game, let M denote the length of the
longest Zeckendorf game with input N . Then for any m satisfying N − Z(N) ≤ m ≤ M ,
there exists a Zeckendorf game of length m on input N . In other words, the set of achievable
game lengths constitutes an interval in the natural numbers.

We begin by establishing some intermediate results that we shall invoke in the proof of
the main theorem. In the first lemma, in discussing the position given by the Zeckendorf
decomposition of N − 1, we refer to the terminal position of the Zeckendorf game when
played on input N − 1.

Lemma 3.1. Consider the Zeckendorf game on input N , satisfying Fn ≤ N < Fn+1, from
the position given by the Zeckendorf decomposition on N − 1 (as specified above) with an
additional instance of 1. There is a unique sequence of moves from this configuration to the
Zeckendorf decomposition of N , all of which are combine moves. Furthermore, the number
of such combine moves performed is bounded by ⌊n/2⌋.
Proof. Since no moves can be played from the Zeckendorf decomposition on N − 1, any
playable move from this position (on input N) is necessarily either C1 or C2, possible if and
only if F1 = 1 or F2 = 2 is in the Zeckendorf decomposition of N − 1, respectively (such
cases are disjoint, since the Zeckendorf decomposition on N−1 does not contain consecutive
Fibonacci numbers); otherwise, no moves can be played. We study both cases.

• If the Zeckendorf decomposition of N−1 contains an instance of F1, then after playing
C1, it is easy to see that the only possible move is C3 (iff the decomposition of N − 1
contains an F3), then C5 (iff the decomposition of N − 1 contains an F5), and so on,
until we exhaust all playable moves.

• If the Zeckendorf decomposition of N−1 contains an instance of F2, then after playing
C2, it is easy to see that the only possible move is C4 (iff the decomposition of N − 1
contains an F4), then C6 (iff the decomposition of N − 1 contains an F6), and so on,
until we exhaust all playable moves.

In both cases, it is straightforward to confirm that we cannot play strictly more than ⌊n/2⌋
such combine moves, as otherwise there must be an instance of Fk for k either n+ 1 or n+ 2
after completing this sequence of moves, a contradiction on N < Fn+1. □

We shall also frequently use the following lemma. Intuitively, this states that if we have
isolated the Zeckendorf game to a suffix of bins all of height 0 or 1, and this suffix is separated
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from earlier bins by a bin of height 0 (say bin k), then we can ignore bins 1, . . . , k for the
remainder of the game.

Lemma 3.2. For some 1 ≤ k ≤ n, let (x1, x2, . . . , xk, xk+1, . . . , xn) denote the heights of
bins 1, . . . , n at some point during a Zeckendorf game, with xi denoting the height of bin i.
Assume xi ∈ {0, 1} for k ≤ i ≤ n, xk = 0, no playable moves involving bins 1, . . . , k exist,
and we play according to Theorem 1.4. Then heights x1, . . . , xk remain fixed for the rest of
the game.

Proof. We prove this on k = n − j by induction on 0 ≤ j ≤ n − 2. The statement trivially
holds if j ∈ {0, 1, 2}; assuming it for all values less than j ≥ 3, if xk+1 = 0 or xk+2 = 0 we
can apply the induction hypothesis to j−1 or j−2, respectively, so assume xk+1 = xk+2 = 1.
Take r ≤ n to be largest possible such that xk+1 = · · · = xr = 1: the game proceeds by
playing according to Theorem 1.4, i.e. by playing the sequence of moves

(Ck+1 → Sk+3 → Sk+4 → · · · → Sr) → (Ck+1 → Sk+3 → · · · → Sr−2) → . . .

where the final subsequence of moves, either Ck+1 or Ck+1 → Sk+3, depends on the parity
of r − k. It follows immediately by studying the moves involved that x1, . . . , xk remain
unchanged during this sequence. Following this sequence, we have xr = 0: invoke the
induction hypothesis on k = r (i.e. n− r < j) afterwards to complete the proof. □

We now proceed with the proof of Theorem 1.9.

Proof of Theorem 1.9. We have confirmed this statement for N ≤ F6−1 = 12 via a computer
check. Thus, for N ≥ F6 = 13, assume the statement holds for all input sizes at most N − 1:
we aim to show the result holds for N . We explicitly specify that Fn ≤ N < Fn+1.

Let I ′1 denote the interval (by induction hypothesis) of possible Zeckendorf game lengths
for input N − 1: by Lemma 3.1, if we include an additional instance of F1 to the Zeckendorf
decomposition of N−1, there is a sequence of combine moves from the resulting configuration
to the Zeckendorf decomposition of N . On input N , consider initially playing the Zeckendorf
game (to completion) as if the input were N − 1, then executing this sequence of moves to
terminate the game. Let I1 = [L1, R1] denote the interval I ′1 shifted by the length of this
sequence: by the preceding description, it follows that every game length in I1 is achievable
for input N . Furthermore, L1 = N−Z(N), since the game length L1 as studied above results
from playing strictly combine moves (see Lemma 3.1), which necessarily yields a shortest
game by Proposition 2.7, and for which the length is N − Z(N) by Theorem 1.3.

By Theorem 1.5, it is possible to play the Zeckendorf game on input Fn − 1 strictly using
Type A moves. Let I ′2 denote the interval (by induction hypothesis) of possible Zeckendorf
game lengths for input Fn−1 ≤ N−1: on input N , consider initially playing the Zeckendorf
game (to completion) as if the input were Fn−1, then executing the longest possible sequence
of moves from the resulting position to terminate the game. Let I2 = [L2, R2] denote the
interval I ′2 shifted by the number of moves of this longest sequence. By Theorem 1.4, R2 is
necessarily the length of the longest Zeckendorf game on input N , since the above approach
is consistent with playing Type A moves whenever possible.

Thus, it suffices to show that L2 ≤ R1 to complete the induction and establish the theorem,
as this yields that I1 ∪ I2 = [L1, R2] is an interval of achievable game lengths on input N ,
with the endpoints being the shortest and longest possible game lengths for input N .
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The known game with length R1 corresponds to playing the longest game on input N − 1,
then performing the unique sequence of combine moves to achieve the Zeckendorf decompo-
sition of N ; by Theorems 1.4 and 1.5, we can take the first phase of this game (longest game
on input N − 1) as playing the longest game on input Fn − 1, then playing the longest re-
maining game (on input N−1). The known game with length L2 corresponds to playing the
shortest game on input Fn−1, then playing the longest remaining game until we achieve the
Zeckendorf decomposition of N . By Lemma 2.2, we can take the second phase of this game
(playing the longest remaining game) as playing consistent to Theorem 1.4 until achieving
the Zeckendorf decomposition.

We henceforth denote these games with length R1 and L2 by G1 and G2, respectively, which
we depict as follows; “longest on k” indicates that during this phase, we think of the game
as being played on input k, and leaving the appropriate number of instances of F1 = 1 in
the first bin fixed.

G1 :
[
(Longest on Fn − 1) → (longest remaining on N − 1)

]
→ (combine moves on N)

G2 : (Shortest on Fn − 1) → (longest remaining on N)

Denoting the difference between the lengths of the longest and shortest games on input Fn−1
by ℓ(n), game G1 took exactly ℓ(n) more moves than game G2 on input Fn − 1. However,
G2 may take longer afterwards to finish the game on input N : we aim to show that the
discrepancy in the game lengths after initially playing on input Fn− 1 is dominated by ℓ(n),
from which we conclude that G2 is no longer than G1, i.e. that L2 ≤ R1. In particular, it
certainly suffices to show that the first two segments of G1 involve at least as many moves
as the first two segments of G2 to establish the result: this is how we shall proceed.

By Theorem 1.4 and Lemma 2.2, we can choose how we would like to play a longest game
after playing the game on input Fn−1 (specifically, we can fix an ordering on Type A moves
which determines what we play when given multiple Type A moves): until the two games
diverge3, pursue a longest remaining game by always playing the rightmost Type A move
whenever a Type A move is playable. Following this ordering on Type A moves, we study
the first move on which games G1 and G2 deviate. This move is necessarily either C1 or C2

in game G2 (the move must not have been playable in game G1, and thus must involve bin
1), and by the ordering on Type A moves established before, bins 2, 3, . . . , n are either 0 or
1 when it is played. We perform casework on which move the two games deviate on.

Case 1: Move is C1. In game G1, this configuration can be represented by the vector
(1, x2, x3, . . . , xn), where xi ∈ {0, 1} for i ≥ 2 denotes the height of the ith bin (the first entry
would be a 2 for game G2). Let us first study the setting x2 = 0, and consider what happens
after game G2 plays C1. If x3 = 0, then by Lemma 3.2 applied to k = 3, both games are
consistent on bins 4, . . . , n so that game G2 takes one more move than G1 to finish. Otherwise
(i.e. x3 = 1), Lemma 3.2 on k = 2 yields that game G1 works strictly over bins 3, . . . , n, and
Lemma 3.2 on k = 1 yields that game G2 works strictly over the bins 2, . . . , n (i.e. bin 1
becomes irrelevant). Thus, the resulting setting corresponds exactly to Case 2 over the n−1
bins 2, . . . , n; here, we have an upper bound of n − 1 for the number of additional moves
G2 takes, for a total upper bound of (n − 1) + 1 = n (with the C1 in G2) for the number of
additional moves G2 takes.

3We shall assume this does happen, as otherwise the lengths of the second segments of G1 and G2 are
equal, and thus the inequality L2 ≤ R1 is immediate.
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Thus, assume x2 = 1, and let position k + 1, with k ≥ 2, denote the first index that is
0. Study the length-k prefix (1, 1, 1, . . . , 1) (in game G1; first entry is 2 in game G2) with no
zero entries; we can exactly describe how the two games proceed when playing according to
the longest game paradigm of Theorem 1.4.

• Game G1: We play the sequence of moves

(C2 → S3 → S4 → · · · → Sk) → (C2 → S3 → · · · → Sk−2) → . . .

continuing similarly until one of the first two bins is empty (so we cannot play C2).
In general, shorten the contiguous 1s down two indices and repeat until one of the
first two bins is empty (the bin which ends up empty depends on the parity of k).

• Game G2: We play the sequence of moves

(C1) → (S2) → (S3 → C1) → (S4 → S2) → . . .

continuing similarly until we play all splitting moves Sj for j ≤ k. In general, when
first playing Sj, we play the sequence Sj → Sj−2 → . . . (final move is S2 or C1,
depending on parity of j), and this continues until position k.

After these subroutines, it is straightforward to confirm that bin k is empty, bins k+1, . . . , n−
1 are all 0 or 1 with heights agreeing between G1 and G2, and no playable moves involving
bins 1, . . . , k exist. Thus, both games proceed strictly over bins k + 1 to n − 1 by Lemma
3.2, and perform the same sequence of moves; we need only compute the difference in the
lengths of these two subroutines on this prefix of length k.

• The length of the sequence of moves in the game of length L2 is{
2
∑(k−1)/2

j=1 j + k+1
2

k odd

2
∑k/2

j=1 j k even

• The length of the sequence of moves in the game of length R1 is{∑(k−1)/2
j=1 (k − 2j + 1) = 2

∑(k−1)/2
j=1 j k odd∑k/2

j=1(k − 2j + 1) =
∑k/2

j=1(2j − 1) = 2(
∑k/2

j=1 j) −
k
2

k even

We can thus study this difference exactly: the difference is given by
[
2
∑(k−1)/2

j=1 j + k+1
2

]
− 2

∑(k−1)/2
j=1 j = k+1

2
= ⌈k/2⌉ k odd

2
∑k/2

j=1 j −
∑k/2

j=1(2j − 1) = k
2

k even

so in general, the difference is bounded by ⌈n/2⌉ ≤ n.

Case 2: Move is C2. In game G1, this configuration can be represented by the vector
(0, x2, x3, . . . , xn), where xi ∈ {0, 1} for i ≥ 2 denotes the height of the ith bin (the first
entry would be a 1 for game G2) and x2 = 1 (since otherwise C2 cannot be played in game
G2). Let us first study the setting x3 = 0, and consider what happens after game G2 plays
C2. Applying Lemma 3.2 on k = 3 for G1 and k = 2 for G2 yield that both games work
strictly over bins 3, . . . , n, and this reduces to the same setting on the suffix of bins 3, . . . , n.
Say we reduce the problem to a suffix with length reduced by 2 in this manner m times, so
we study the case where x3 = 1 over n− 2m bins: by extracting the bound in the following
argument (i.e. the x3 = 1 case) for the number of additional moves G2 takes, this yields a
bound of m + (n− 2m) ≤ n.
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Thus, assume x3 = 1, and let position k + 1, with k ≥ 3, denote the first index that is
0. Study the length-k prefix (0, 1, 1, . . . , 1) (in game G1; first entry is 1 in game G2): we can
explicitly describe how the two games necessarily proceed when playing according to the
longest game paradigm.

• Game G1: We play the sequence of moves

(C3 → S4 → S5 → · · · → Sk) → (C3 → S4 → · · · → Sk−2) → . . .

continuing similarly until either bin 2 or bin 3 is empty (so we cannot play C3). In
general, shorten the contiguous 1s down two indices and repeat until either bin 2 or
bin 3 is empty (the bin which ends up empty depends on the parity of k).

• Game G2: This is exactly the same as game G1 in Case 1.

After these subroutines, it is straightforward to confirm that bin k is empty, bins k+1, . . . , n−
1 are all 0 or 1 with heights agreeing between G1 and G2, and no playable moves involving
bins 1, . . . , k exist. Thus, both games proceed strictly over bins k + 1 to n − 1 by Lemma
3.2, and perform the same sequence of moves; we need only compute the difference in the
lengths of these two subroutines on this prefix of length k.

The length of the sequence of moves in game G2 was computed in Case 1, while the length
of the sequence of moves in game G1 is{∑(k−1)/2

j=1 (k − 2j) =
∑(k−1)/2

j=1 (2j − 1) = 2(
∑(k−1)/2

j=1 j) − k−1
2

k odd∑(k−2)/2
j=1 (k − 2j) =

∑(k−2)/2
j=1 (2j − 1) = 2(

∑(k−2)/2
j=1 j) − k−2

2
k even.

so the difference is given by2
∑(k−1)/2

j=1 j −
[
2(
∑(k−1)/2

j=1 j) − k−1
2

]
= k−1

2
= ⌊k/2⌋ k odd[

2(
∑k/2

j=1 j) −
k
2

]
−
[
2(
∑(k−2)/2

j=1 j) − k−2
2

]
= k − 1 k even

so in general, the difference is bounded by max{⌊k/2⌋, k − 1} ≤ n− 1 ≤ n.

We observe that in both cases, the difference in the lengths of the second segments of
these games is bounded by n. We now show that the difference ℓ(n) between the lengths
of the longest and shortest games on input Fn − 1 is at least n for all n ≥ 6. One can
confirm, by playing a longest game according to Theorem 1.4 on input N = F6 − 1 = 12,
that ℓ(6) = 17− (12−Z(12)) = 17−9 ≥ 6; it is similarly easy to confirm that ℓ(4), ℓ(5) ≥ 1.
Since we have Fn+1−1 = (Fn−1) +Fn−1 ≥ (Fn−1) + (Fn−1−1), one can pursue a game on
input Fn+1 − 1 by first playing a game on input Fn − 1, then a game on input Fn−1 − 1, and
finally performing some fixed sequence of moves to completion. By combining respective
shortest games and longest games on input Fn − 1 and input Fn−1 − 1, we observe that
ℓ(n + 1) − ℓ(n) ≥ 1 for any n ≥ 6, and thus ℓ(n) ≥ n for all n ≥ 6 (recall ℓ(6) ≥ 6).

Therefore, we have that for all N ≥ F6 = 13,

R1 − L2 ≥ ℓ(n) −
[
(len. longest remaining on N) − (len. longest remaining on N − 1)

]
≥ ℓ(n) − n ≥ ℓ(n) − ℓ(n) = 0

from which we conclude that L2 ≤ R1. □
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4. Winning Odds in the Limit N → ∞

We dedicate this section to establishing Theorem 1.11, which follows as an immediate
corollary of Theorem 1.10: recall that Theorem 1.10 is given as follows.

Theorem 1.10. For any integer Z ≥ 1 and z ∈ {0, 1, . . . ,M − 1}, we have that

lim
N→∞

µN(Game length equals z mod Z) = lim
N→∞

PN(Game length equals z mod Z) =
1

Z
.

The case Z = 2 gives Theorem 1.11.

Theorem 1.11. For the two-player Zeckendorf game, in the limit N → ∞ under both
probability measures µN and PN , Player 1 and Player 2 are equally likely to win. Explicitly,

lim
N→∞

µN(Player 1 wins) = lim
N→∞

µN(Player 2 wins) =
1

2
,

lim
N→∞

PN(Player 1 wins) = lim
N→∞

PN(Player 2 wins) =
1

2
.

4.1. Partitioning the Collection of Possible Games. As observed in Definition 2.5,
for k ≥ 2, the sequence4 (Sk, Ck−1) is a (1, k)-prefix. We establish some notation to use
later: define RN ∈ FN to be the collection5 of all Zeckendorf games on input N such that
(for all k ≥ 2) any instance of the sequence (Sk, Ck−1) is immediately preceded by Sk+1; in
other words, RN is the collection of all Zeckendorf games on input N such that there are no
(1, k)-prefixes for any k ≥ 2. We can express this collection as

RN =
{

(M1, . . . ,Mλ) ∈ ΩN : (Mi,Mi+1) = (Sk, Ck−1) =⇒ Mi−1 = Sk+1 ∀ i ∈ [λ− 1], k ≥ 2
}
.

For a game R = (M1,M2, . . . ,Mλ) ∈ RN , construct the subset of indices IN(R) to denote
all combine moves in R, not involved in a sequence (Sk, Ck−1) for k ≥ 2, for which the latter
bin has height at least 2 (i.e. combine moves Ck for k ≥ 2 replaceable with a (1, k)-prefix):

IN(R) =
{
i ∈ [λ] : Mi = Ck, Mi−1 ̸= Sk+1, hk(i) ≥ 2 for some k ≥ 2

}
.

Now, construct the formal sequence of moves M(R) = (M̃1, M̃2, . . . , M̃λ) by replacing Mi by
a symbol Ek (the subscript being the corresponding k ≥ 2) for all i ∈ IN(R); call M(R) the
base sequence of R ∈ RN . Let AN(R) ∈ FN denote the collection of all Zeckendorf games
resulting from replacing each instance of Ek in M by either Ck or the 1-prefix (Sk, Ck−1) (for
every k ≥ 2). We establish the following important result, which makes it clear why we have
pursued this construction in the manner that we did.

Lemma 4.1. The sets {AN(R) : R ∈ RN} partition ΩN .

Proof. We first show that the sets AN(R) are disjoint. Take distinct R1 = (M1
1 , . . . ,M

1
λ),R2 =

(M2
1 , . . . ,M

2
λ′) ∈ RN with base sequences M1(R1) = (M̃1

1 , M̃
1
2 , . . . , M̃

1
λ) and M2(R2) =

(M̃2
1 , M̃

2
2 , . . . , M̃

2
λ′), respectively. Since R1 ̸= R2, take smallest i for which M1

i ̸= M2
i =⇒

M̃1
i ̸= M̃2

i , and study the construction of any two games G1 ∈ AN(R1) and G2 ∈ AN(R2)
as described above. If G1 and G2 are consistent prior to M̃1

i and M̃2
i (i.e. for k ≥ 2, all Ek

are replaced by the same choice of Ck or (Sk, Ck−1)), which is certainly the only way the
two games remain equal up to this point of their construction, then we necessarily produce

4We deviate from notation earlier in the paper and write move sequences as tuples.
5We elect to use the notation RN as we think of these games on input N as representatives of the

corresponding classes AN (R) that we define later in this discussion.
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a difference in the two games on M̃1
i and M̃2

i if M1
i = M̃1

i and M2
i = M̃2

i (M1
i ̸= M2

i ) or
M1

i ̸= M̃1
i and M2

i ̸= M̃2
i (M̃1

i = Ek1 , M̃2
i = Ek2 , k1 ̸= k2). If M1

i = M̃1
i and M2

i ̸= M̃2
i (say

M̃2
i = Ek, so necessarily M2

i = Ck and M2
i−1 ̸= Sk+1 for some k ≥ 2), then game G2 is next

filled with either Ck ̸= M1
i (M1

i = M2
i if Ck = M1

i ) or (Sk, Ck−1). In the latter case, if the two
games were equal after this, then necessarily (M1

i−1,M
1
i ,M

1
i+1) = (Sk+1, Sk, Ck−1) (by defi-

nition of IN(R1) and RN , M1
i+1 and M1

i−1 follow after establishing M1
i = Sk), contradicting

M2
i−1 ̸= Sk+1 (since M1

i−1 = M2
i−1 and M2

i = Ck, M̃2
i = Ek).

We therefore conclude that AN(R1) ∩ AN(R2) = ∅, i.e. the sets AN(R) for R ∈ RN are
disjoint; it remains to show that any game G ∈ ΩN is in some set AN(R). For G ∈ ΩN ,
let R be the game resulting from replacing every instance of the sequence (M,Sk, Ck−1),
M ̸= Sk+1 in game G by the sequence (M,Ck) (for k ≥ 2). The resulting game R is such
that (Mi,Mi+1) = (Sk, Ck−1) =⇒ Mi−1 = Sk+1 for all i ∈ [λ] and k ≥ 2: any sequence
(Mi−1,Mi,Mi+1) = (M,Sk, Ck−1) with M ̸= Sk+1 in R necessarily results from having
replaced (Sk−1, Ck−2) for Ck−1 in game G (as (Sk, Ck−1) would have been replaced by Sk+1

otherwise), but we know this does not occur by the description above, so we indeed have
R ∈ RN . Also, G ∈ AN(R): we can reverse all the replacements (Sk, Ck−1) ↔ Ck made in
achieving R from G, since the resulting Ck moves correspond to Ek (for some k ≥ 2) in the
base sequence M(R) as the preceding move is not Sk+1. □

Therefore, applying Lemma 4.1 and the law of total probability,

µN(Game length is z mod Z) =
∑

R∈RN

µN

(
Game length is z mod Z | AN(R)

)
· µN

(
AN(R)

)

PN(Game length is z mod Z) =
∑

R∈RN

PN

(
Game length is z mod Z | AN(R)

)
· PN

(
AN(R)

)(1)

so we can reduce proving Theorem 1.10 to establishing that the conditional probabilities for
R ∈ RN , with respect to both measures, overwhelmingly tend to 1

2
in the limit.

4.2. Analysis. Define the random variable mN : ΩN → N first on R ∈ RN by mN(R) =
|IN(R)|, denoting the number of terms Ek (for k ≥ 2) in the base sequence of R, then
lift to arbitrary G ∈ ΩN by letting mN(G) = mN(R) for the unique R ∈ RN such that
G ∈ AN(R) (see Lemma 4.1).6 Fix R ∈ RN , and observe that on the event AN(R), mN(G)
for G ∈ AN(R) is the fixed constant |IN(R)|. Now construct corresponding Bernoulli random
variables XR

1 , XR
2 , . . . , XR

|mN (R)| : ΩN → {0, 1} for each of the instances of terms of form Ek
(for k ≥ 2) in the base sequence of R: here, XR

i (G) = 1 if and only if G ∈ AN(R) and G is
achieved by the ith instance of Ek in the base sequence R being the (1, k)-prefix (Sk, Ck−1).
Say we replaced this Ek with (Sk, Ck−1), and let ni denote the number of playable moves in
the game available in the turn immediately after playing Sk. We can say more about the
random variables XR

i defined here.

Lemma 4.2. Fix some R ∈ RN , and define the random variables XR
1 , XR

2 , . . . , XR
|mN (R)|

as above. When conditioned on AN(R), the random variables XR
1 , XR

2 , . . . , XR
|mN (R)| are

independent Bernoulli random variables with variable XR
i having parameter 1

2
under the

6In particular, mN (R) = log2(AN (R)).
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measure µN , and parameter pi = 1
1+ni

under the measure PN . Explicitly,

µN

(
XR

i = 1 | AN(R)
)

=
1

2
, PN

(
XR

i = 1 | AN(R)
)

=
1

1 + ni

.

Proof. Fix a random variable XR
i , and observe that for every particular setting of all other

Ek terms in R, there exist exactly two games in AN(R) faithful to this setting, corresponding
to choosing Ck and the (1, k)-prefix (Sk, Ck−1) for the ith such Ek. It follows immediately
that under the uniform measure µN , we indeed have µN

(
XR

i = 1 | AN(R)
)

= 1
2
, since in

particular there exists a bijection between games in the subset AN(R) with XR
i = 0 and

XR
i = 1 and all games in ΩN are given equal probability under the measure µN .
Under the probability measure PN , it is straightforward to observe that the game replacing

the ith instance of Ek by the (1, k)-prefix (Sk, Ck−1) requires an additional decision with
probability 1

ni
of yielding the desired Ck−1, and it thus follows that the parameter pi of the

Bernoulli random variable XR
i is given by

pi
1 − pi

=
1

ni

=⇒ pi =
1

1 + ni

.

To establish independence, it suffices to show that for any subset S ⊆
[
mN(R)

]
, we have

the identity

PN

(
XR

i = 1 iff i ∈ S | AN(R)
)

=
∏
i∈S

PN

(
XR

i = 1 | AN(R)
)
·
∏
j /∈S

PN

(
XR

j = 0 | AN(R)
)

=
∏
i∈S

pi ·
∏
j /∈S

(1 − pj).

We can relate the conditional probabilities
{
PN

(
XR

i = 1 iff i ∈ S AN(R)
)

: S ∈
[
mN(R)

]}
whenever S1 = S2∪{j} (for j ∈

[
mN(R)

]
): all choices for each term Ek but one are consistent

(namely, XR
j = 1 for the numerator in the following), and thus

PN

(
XR

i = 1 iff i ∈ S1 | AN(R)
)

PN

(
XR

i = 1 iff i ∈ S2 | AN(R)
) =

1

nj

=
pj

1 − pj
=

∏
i∈S1

pi ·
∏

j /∈S1
(1 − pj)∏

i∈S2
pi ·
∏

j /∈S2
(1 − pj)

.

Now, since we have the identity∑
S⊆[mN (R)]

PN

(
XR

i = 1 iff i ∈ S | AN(R)
)

= 1 =

mN (R)∏
i=1

(
pi + (1 − pi)

)

=
∑

S⊆[mN (R)]

∏
i∈S

pi ·
∏
j /∈S

(1 − pj)


and quotients between summands corresponding to two sets differing by one element are the
same, the summands on both sides for any subset S ⊆

[
mN(R)

]
are necessarily equal. More

specifically, letting p1 = PN

(
XR

i = 1 iff i ∈ ∅ | AN(R)
)

and p2 =
∏

i∈∅ pi ·
∏

j /∈∅(1 − pj),

by incrementally including elements to some S ⊆
[
mN(R)

]
we can write the corresponding

summands on the left and right hand sides as the same multiple of p1 and p2, respectively.
This reduces to p1 = p2, and thus summands corresponding to the same S are equal. Thus,
we have the desired identity for any subset S ⊆

[
mN(R)

]
. □
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Lemma 4.2 yields the following easy observation.

Corollary 4.3. Say Fn ≤ N < Fn+1, fix some R ∈ RN , and define the random variables
XR

1 , XR
2 , . . . , XR

mN (R) as above. Under the uniform measure µN , whenever R ∈ RN is such

that mN(R) > 0, µN

(
Player 1 wins | AN(R)

)
= 1

2
. Under the probability measure PN ,

when conditioned on the event AN(R), there are at most 2n distinct values of the parameters
pi = 1

1+ni
amongst the random variables XR

i , and for any such i, 1
2n−2

≤ pi ≤ 1
2
.

Proof. If mN(R) > 0, then the statement µN

(
Player 1 wins | AN(R)

)
= 1

2
follows immedi-

ately by applying the law of total probability on all settings of the Bernoulli random variables
(XR

2 , . . . , XR
mN (R)) ∈ {0, 1}mN (R)−1, namely since this further conditioning always yields a

conditional probability of 1
2

(see the proof of Lemma 4.2). At any point of a game G ∈ ΩN

satisfying Fn ≤ N < Fn+1, there are at most 2n−3 (and thus certainly at most 2n) playable
moves (and thus at most 2n − 3 distinct values of ni, and thus pi): the combine moves
C1, C2, . . . , Cn−1 and the splitting moves S2, S3, . . . , Sn−1. In particular, since ni ∈ [2n − 3]
for all i ∈

[
mN(R)

]
, it follows that 1

1+(2n−3)
≤ pi ≤ 1

1+1
, i.e. 1

2n−2
≤ pi ≤ 1

2
. □

We will also make use of the following lemma.

Lemma 4.4. Say Fn ≤ N < Fn+1.
7 For any c ∈ (0, φ) (with φ denoting the golden ratio),

lim
N→∞

µN

(
mN(G) ≥ cn

)
= 1, lim

N→∞
PN

(
mN(G) ≥ cn

)
= 1.

Proof. Fix c ∈ (0, φ), and consider a game G ∈ ΩN : for the representative R ∈ RN such
that G ∈ AN(R), every occurrence of the sequence (C1, C1, C2) corresponds to an element
of IN(R) (specifically the move C2, as it is not preceded by S3, and the latter two moves
are maintained in R; see the proof of Lemma 4.1), i.e. mN(G) = |IN(R)| is at least the
number of occurrences of the sequence (C1, C1, C2) in G. Letting N (G) denote the number
of occurrences of the sequence (C1, C1, C2) in the game G, it thus suffices to show that

lim
N→∞

µN

(
N (G) ≥ cn

)
= 1, lim

N→∞
PN

(
N (G) ≥ cn

)
= 1.

Proceed studying the probability measure PN ; the analysis carries over exactly8 when PN is
replaced with µN . By Corollary 4.3, at any move where h1 ≥ 5, the probability of achieving

the sequence (C1, C1, C2) is at least
(

1
2n

)3
= 1

8n3 , and any sequence of three moves can
decrease the height of bin 1 by at most 6 (via three consecutive C1 moves); observe that the
occurrence of C2 in a sequence (C1, C1, C2) within a game G necessarily corresponds to an
instance of the delimiter E2 in the base sequence of G (e.g. see the proof of Lemma 4.1).
Thus, study the sequences of moves in game G (which necessarily exist by the preceding
discussion) given by the triples

(M1,M2,M3), (M4,M5,M6), . . . , (M3⌊N/6⌋−2,M3⌊N/6⌋−1,M3⌊N/6⌋)

each of which independently takes on the value (C1, C1, C2) with probability at least 1
8n3 .

Thus, letting YN
d
= Bin

(
⌊N/6⌋, p = 1

8n3

)
, we have that

P (YN ≥ cn) ≤ PN

(
N (G) ≥ cn

)
7It is perhaps more appropriate to think of n as a function n(N).
8Certainly, the analysis is much looser than necessary when PN is replaced with µN .
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from which E[YN ] = ⌊N/6⌋
8n3 together with a Chernoff bound with δ = 1

2
yields for N large,

P (YN ≤ cn) ≤ P
(
YN ≤ ⌊N/6⌋

16n3

)
≤ exp

(
−⌊N/6⌋

32n3

)
N→∞−−−→ 0

since it is straightforward to verify that cn ≤ ⌊N/6⌋
16n3 for large N (e.g. use Binet). □

Corollary 4.5. Lemma 4.4 immediately yields that for any d ∈ N,

lim
N→∞

µN

(
mN(G) ≥ nd

)
= 1, lim

N→∞
PN

(
mN(G) ≥ nd

)
= 1

i.e. with probability approaching 1 as N → ∞, the number of decisions made to achieve G
from the set AN(R) containing it is superpolynomial in n. This is more convenient for later.

The proof of Lemma 4.4 yields the following observations on the likeliest collection AN(R)
and the number of representative games, which will be referenced again in Section 5.

Corollary 4.6. The probability of the likeliest collection AN(R) vanishes as N → ∞, i.e.

lim
N→∞

max
G∈ΩN

µN(AN(G)) = lim
N→∞

max
G∈ΩN

PN(AN(G)) = 0

and the number of representatives satisfies |RN |
N→∞−−−→ ∞.

Proof. Again, proceed on the probability measure PN , as the analysis carries over exactly for
µN . The proof of Lemma 4.5 (taking d = 1) determines there are at least m ≥ n instances
of (C1, C1, C2) in the first ⌊N/6⌋ moves of a random game G ∈ ΩN , with probability tending
to 1 in the limit N → ∞: we proceed studying such a game G. Writing G ∈ AN(R), every
latter instance of C1 in one of these m sequences is in9 any game in AN(R), and the move C2

could have been played instead of this instance of C1. For i = 1, . . . ,m, denote BN
i (R) ⊆ ΩN

to be those games consistent with a game in AN(R) up to the ith such instance of C1, but
for which the move C2 is played instead. It is immediately observed that the sets BN

i (R) are
disjoint and that PN(AN(R)) ≤ PN(BN

i (R)) for each i = 1, . . . ,m, so we have

n · PN(AN(R)) ≤ m · PN(AN(R)) ≤
m∑
i=1

PN(BN
i (R)) ≤ 1 =⇒ PN(AN(R)) ≤ 1

n

N→∞−−−→ 0

so we have limN→∞ maxG∈ΩN
PN(AN(G)) = 0, and |RN |

N→∞−−−→ ∞ follows immediately. □

Finally, we need the following simple result concerning the behavior of a binomial random
variable with sufficiently large variance. Certainly, the case Z = 2 in Lemma 4.7 corresponds
to studying the expressions P (B is odd) and P (B is even).

Lemma 4.7. Consider a binomial random variable B = Bin(m, p). For any values of ϵ > 0
and Z ∈ N, there exists a constant N(ϵ, Z) such that if var(B) = mp(1 − p) ≥ N(ϵ, Z) (i.e.
if the variance of B is sufficiently large), then for any z ∈ {0, 1, . . . , Z − 1},∣∣∣∣P (B ≡ z mod Z) − 1

Z

∣∣∣∣ ≤ ϵ.

9This is in the sense that this instance of C1 is not compressed in achieving R from G (see the proof of
Lemma 4.1), and is not replaced with a term of form Ek in achieving the base sequence M(R).
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Proof. The value P(B = k) increases on k ≤ ⌊(m+1)p⌋ and decreases on k ≥ ⌊(m+1)p⌋, and

max0≤k≤m P(B = k) = P
(
B = ⌊(m + 1)p⌋

) mp(1−p)→∞−−−−−−−→ 0 (use Stirling); denoting pk = P(B =
k), write p0 ≤ p1 ≤ · · · ≤ p⌊(m+1)p⌋ and p⌊(m+1)p⌋ ≥ p⌊(m+1)p⌋+1 ≥ · · · ≥ pm. Fix ϵ > 0, and

choose N(ϵ, Z) such that mp(1 − p) ≥ N(ϵ, Z) implies P
(
B = ⌊(m + 1)p⌋

)
< ϵ

2
. Certainly,

for any distinct values z1 < z2 in {0, 1, . . . , Z − 1}, the number of terms p0, p1, . . . , p⌊(m+1)p⌋
with indices equal to z1 modulo Z and equal to z2 modulo Z is either the same or there
exists one more such term corresponding to z1: we can switch the “dominant modulus”
by removing the term of largest index equal to either z1 or z2 modulo Z, for which the
corresponding term pk ≤ ϵ

2
by choice of the constant N(ϵ, Z). The analogous statement

extends to p⌊(m+1)p⌋, p⌊(m+1)p⌋+1, . . . , pm, so it follows that we can write∣∣P (B ≡ z1 mod Z) − P (B ≡ z2 mod Z)
∣∣ ≤ ϵ

which immediately yields the desired statement. □

We are now ready to proceed with the proof of Theorem 1.10.

Proof of Theorem 1.10. Fix an integer Z ≥ 2 corresponding to the number of players in a
Z-player Zeckendorf game, and some value z ∈ {0, 1, . . . , Z − 1}. As in the proof of Lemma
4.4, we strictly concern ourselves with the probability measure PN , as the analysis carries
over exactly for the uniform measure µN (again, it is much looser than necessary for µN). For
the probability measure PN , since mN(G) is fixed at |IN(R)| = mN(R) on any set AN(R)
for R ∈ RN , for N ≥ N1(ϵ), ∑

R∈RN

mN (R)<2n3

PN

(
AN(R)

)
≤ ϵ.(2)

Consider a fixed representative R ∈ RN for which mN(R) ≥ 2n3: by Corollary 4.3, there are
at most 2n distinct values of the parameters pi = 1

1+ni
of the corresponding random variables

XR
1 , XR

2 , . . . , XR
mN (R), and thus by the pigeonhole principle, the number of instances of the

value of pi with largest multiplicity is at least 2n3

2n
= n2 N→∞−−−→ ∞; henceforth call this p. Let

us say there are m ≥ n2 instances of this value of pi: we can study the sum BR =
∑m

i=1 Yi,
where the Yi correspond to those random variables XR

i with this corresponding success
probability p. Furthermore, by Lemma 4.2, the random variables Yi are independent when

conditioned on the event AN(R), so BR
d
= Bin(m, p) under this conditional distribution.

From the bounds on p from Corollary 4.3, it follows that the variance of this binomial
random variable, when conditioned on the event AN(R), has the exploding lower bound

var(BR) = mp(1 − p) ≥ n2

2(2n− 2)

N→∞−−−→ ∞

i.e. the binomial random variable BR has variance exploding in the limit N → ∞ (for
any R ∈ RN). By Lemma 4.7, the random variable BR will take a value equal to z mod-
ulo Z with probability approaching 1

Z
as N → ∞. Thus, studying the quantities given

by PN

(
Game length equals z mod Z | AN(R)

)
, we can further condition (upon the condi-

tioning AN(R)) on all random variables XR
i not corresponding to those Yi constituting a
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summand in the binomial random variable BR and appeal to the law of total probability:

PN

(
Game length equals z mod Z | AN(R)

)
=

∑
assignments A

to XR
i ̸=Yj∀j

PN

(
Game length equals z mod Z | AN(R), A

)
· PN

(
A | AN(R)

)

where each term PN

(
Game length equals z mod Z | AN(R), A

)
is understood as the prob-

ability that the length of the game is equal to z mod Z when replacing those Ek which
correspond to the random variables Yi, while leaving all other moves of the game fixed: this
is precisely given by the binomial random variable BR added to some fixed length determined
by the setting of the XR

i which are not of the form Yj for some j. Letting ℓ(A) denote this
length for the assignment A, we can thus write

PN

(
Game length equals z mod Z | AN(R), A

)
= PN

(
BR + ℓ(A) is odd | AN(R), A

)
.

By Lemma 4.2, the random variables Yi constituting the Bernoulli trials in BR are indepen-
dent from the random variables XR

i that were fixed when conditioned on AN(R) and the
assignment A, and thus we can apply Lemma 4.7 to deduce that these conditional probabil-
ities are arbitrarily close to 1

Z
for N ≥ N2(ϵ, Z) by the preceding discussion (for sufficiently

large N2(ϵ, Z) ∈ N). Importantly, this is uniform over all such terms in the sum, in the
sense that we can choose N2(ϵ, Z) such that we achieve the same guarantee for any such
assignment A of binary values to the random variables XR

i not constituting BR. Thus, for
any R ∈ RN satisfying mN(R) ≥ 2n3 and N ≥ N2(ϵ, Z), we have the bound∣∣∣∣PN

(
Game length equals z mod Z | AN(R)

)
− 1

Z

∣∣∣∣ ≤ ϵ.

Therefore, for N ≥ max{N1(ϵ), N2(ϵ, Z)}, we can take Equations (1) and (2) to achieve the
bound on the probability PN(Game length equals z mod Z) given by

PN(Game length is z mod Z) =
∑

R∈RN

PN

(
Game length is z mod Z | AN(R)

)
· PN

(
AN(R)

)
≤ ϵ +

∑
R∈RN

mN (R)≥2n3

PN

(
Game length is z mod Z | AN(R)

)
· PN

(
AN(R)

)

≤ ϵ +
∑

R∈RN

mN (R)≥2n3

(
1

Z
+ ϵ

)
· PN

(
AN(R)

)
+ ϵ ≤ 1

Z
+ 2ϵ

and similarly, we have

PN(Game length is z mod Z) =
∑

R∈RN

PN

(
Game length is z mod Z | AN(R)

)
· PN

(
AN(R)

)
≥

∑
R∈RN

mN (R)≥2n3

PN

(
Game length is z mod Z | AN(R)

)
· PN

(
AN(R)

)

≥
∑

R∈RN

mN (R)≥2n3

(
1

Z
− ϵ

)
· PN

(
AN(R)

)
≥
(

1

Z
− ϵ

)
(1 − ϵ)
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so we conclude that for N ≥ max{N1(ϵ), N2(ϵ, Z)},

ϵ2 − Z + 1

Z
ϵ ≤ PN (Game length equals z mod Z) − 1

Z
≤ 2ϵ

which yields the desired limit by sending ϵ ↓ 0. □

As previously mentioned, the Z = 2 case of Theorem 1.10 immediately yields Theorem 1.11.

4.3. Extending the Partition on ΩN . Theorem 1.11 establishes that if both players ad-
vance randomly, the two-player Zeckendorf game is fair in the limit N → ∞: a key stage of
the proof involved partitioning ΩN into collections of games where the games in any given
collection only differ via certain interchanges of (1, k)-prefixes with the corresponding Ck.
We can naturally extend this partition of ΩN (i.e. strictly larger classes in the partition) to
encompass arbitrary (ℓ, k)-prefixes or arbitrary (ℓ, k)-suffixes. Section 5 will establish that
for these enlarged partitions of ΩN , we can achieve an analogue of 1.7 for the resulting sets
in the partition, in the sense that with high probability in the limit, the corresponding distri-
bution is “nearly Gaussian,” in the sense of vanishing Kolmogorov-Smirnov distance (when
mean and variance are normalized to be 0 and 1, respectively) with the standard normal.10

We first study the generalization for arbitrary (ℓ, k)-prefixes. Define RP
N ∈ FN to be the

collection of all Zeckendorf games on input N such that any combine move Ck, for k ≥ 2,
cannot be compressed by a (1, k)-prefix (and thus by any prefix of Ck). Explicitly,

RP
N =

{
(M1, . . . ,Mλ) ∈ ΩN : Mi = Ck =⇒ Mi−1 ̸= Sk+1 for all i ∈ [λ], k ≥ 2

}
.

For a game R = (M1,M2, . . . ,Mλ) ∈ RP
N with number of moves λ, construct the subset of

indices IN(R) to denote all combine moves in R:

IN(R) =
{
i ∈ [λ] : Mi = Ck for some k ≥ 2

}
.

Now, construct the formal sequence of moves M(R) = (M̃1, M̃2, . . . , M̃λ) by replacing Mi

by a symbol E ℓ
k for all i ∈ IN(R): the subscript is the corresponding k ≥ 2, while ℓ ≥ 0

denotes the longest (ℓ, k)-prefix that Mi = Ck can be expanded into; note in particular that
M(R) contains no combine moves. Call M(R) the base sequence of R ∈ RN , and let
AN(R) ∈ FN denote the collection of all Zeckendorf games resulting from replacing each
instance of E ℓ

k in M by an (l, k)-prefix for some l ≤ ℓ. We establish the following analogue
of Lemma 4.1, which yields a strictly broader partition of ΩN (in the sense that each set in
the partition given by Lemma 4.8 is a union of sets in the partition given by Lemma 4.1).

Proposition 4.8. The sets {AN(R) : R ∈ RP
N} partition ΩN .

Proof. Observe that a base sequence M(R) = (M̃1, M̃2, . . . , M̃λ) uniquely determines R ∈
RP

N by its explicit split moves moves and the subscripts of each of its symbols E ℓ
k. This is

true up to any initial subsequence, in the sense that there exists at most one R ∈ RP
N which

agrees with the moves and symbols E ℓ
k up to subscript.

We show that the sets AN(R) are disjoint. Take distinct R1 = (M1
1 , . . . ,M

1
λ),R2 =

(M2
1 , . . . ,M

2
λ′) ∈ RP

N with base sequences M1(R1) = (M̃1
1 , M̃

1
2 , . . . , M̃

1
λ) and M2(R2) =

(M̃2
1 , M̃

2
2 , . . . , M̃

2
λ′), respectively. Since R1 ̸= R2, take smallest i for which M1

i ̸= M2
i , and

study the construction of any two games G1 ∈ AN(R1) and G2 ∈ AN(R2) as described above.
If G1 and G2 are consistent prior to M̃1

i and M̃2
i (i.e. for k ≥ 2, all E ℓ

k are replaced by the

10In this subsection and Section 5, we borrow much of the same notation that was used in establishing
Theorem 1.11. It will be clear from context exactly what objects we are referring to.
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same prefix of Ck), which is the only way the two games remain equal up to this point,
then we produce a difference in the two games on M̃1

i and M̃2
i if M1

i = M̃1
i and M2

i = M̃2
i

(M1
i ̸= M2

i ) or M1
i ̸= M̃1

i and M2
i ̸= M̃2

i (M̃1
i = E ℓ1

k1
, M̃2

i = E ℓ2
k2

, k1 ̸= k2). If M1
i = M̃1

i

and M2
i ̸= M̃2

i (say M̃2
i = E ℓ

k, so M2
i = Ck), then G2 is next filled with either Ck ̸= M1

i

(M1
i = M2

i if Ck = M1
i ) or an (l, k)-prefix for some l ≤ ℓ. In the latter case, if the two

games were equal until move i + l − 1, necessarily R1 contains a prefix of length at least 1,
contradicting R1 ∈ RP

N .
We therefore conclude that AN(R1) ∩ AN(R2) = ∅, i.e. the sets AN(R) for R ∈ RN are

disjoint; it remains to show that any game G ∈ ΩN is in some set AN(R). For G ∈ ΩN , let R
be the game resulting from replacing every combine move Ck with the longest playable (ℓ, k)-
prefix. It follows immediately from construction that R ∈ RP

N , and that G ∈ AN(R). □

Similarly, we define the generalization for arbitrary (ℓ, k)-suffixes. Define RS
N ∈ FN to be

the collection of all Zeckendorf games on input N such that any combine move Ck, for k ≥ 2,
cannot be compressed by a (1, k)-suffix (and thus by any suffix of Ck). Explicitly,

RS
N =

{
(M1, . . . ,Mλ) ∈ ΩN : Mi = Ck =⇒ Mi+1 ̸= Sk+1 for all i ∈ [λ], k ≥ 2

}
.

For a game R = (M1,M2, . . . ,Mλ) ∈ RS
N with number of moves λ, construct the subset of

indices IN(R) to denote all combine moves in R:

IN(R) =
{
i ∈ [λ] : Mi = Ck for some k ≥ 2

}
.

Now, construct the formal sequence of moves M(R) = (M̃1, M̃2, . . . , M̃λ) by replacing Mi

by a symbol E ℓ
k for all i ∈ IN(R): the subscript is the corresponding k ≥ 2, while ℓ denotes

the longest (ℓ, k)-suffix that Mi = Ck can be expanded into. Call M(R) the base sequence
of R ∈ RN , and let AN(R) ∈ FN denote the collection of all Zeckendorf games resulting
from replacing each instance of E ℓ

k in M by an (l, k)-suffix for some l ≤ ℓ. We establish the
following analogue of Lemma 4.1.

Proposition 4.9. The sets {AN(R) : R ∈ RS
N} partition ΩN .

We do not provide the proof of Proposition 4.9, as it is pursued analogously to the proof
of Proposition 4.8. The easy observation that each set AN(R), for R ∈ RP

N or R ∈ RS
N ,

is a union of equivalence classes of the corresponding sets studied in the proof of Theorem
1.11, yields the following trivial extension of Lemma 4.5, where we promote the notation
AN(G) = AN(R) for the unique R satisfying G ∈ AN(R).

Proposition 4.10. Say Fn ≤ N < Fn+1. For any c ∈ (0, φ) (with φ the golden ratio),

lim
N→∞

µN

(
log2

∣∣AN(G)
∣∣ ≥ cn

)
= 1, lim

N→∞
PN

(
log2

∣∣AN(G)
∣∣ ≥ cn

)
= 1,

which holds for either of the understandings R ∈ RP
N and R ∈ RS

N .

Finally, we have the following extension of Corollary 4.3. We also omit the proof of this
result, as it is a straightforward generalization of the proof of the aforementioned result.

Proposition 4.11. Say Fn ≤ N < Fn+1, fix some R ∈ RP
N , and define random variables

XR
1 , XR

2 , . . . , XR
N−1 corresponding to the length of the expansion corresponding to each com-

bine move for a game in AN(R). Under the measures µN and PN conditioned on AN(R),
the random variables XR

i are independent.
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5. Weak Convergence of Random Game Lengths as N → ∞

In pursuit of the resolution of Conjecture 1.7, it may be productive to ask whether there
exist natural subsets of ΩN on which the distribution of random game lengths converge
weakly to a Gaussian in the limit N → ∞ of infinite input. As discussed in Section 4.3, the
partitions defined in Propositions 4.8 and 4.9 enjoy this property in the sense described in
Theorem 1.12, restated below.

Theorem 1.12. For R ∈ RP
N , let FR

N (x) : R → [0, 1] denote the distribution function
corresponding to game lengths in AN(R) over the conditional distribution induced by PN ,
normalized to have expectation 0 and variance 1. Let Φ : R → [0, 1] denote the distribution
function of the standard normal. Then for any ϵ > 0,

lim
N→∞

PN

(
sup
x∈R

∣∣∣FR
N (x) − Φ(x)

∣∣∣ ≥ ϵ

)
= 0.

Similarly, for R ∈ RS
N , let FR

N (x) : R → [0, 1] denote the distribution function corresponding
to game lengths in AN(R) over the conditional distribution induced by PN , normalized to
have expectation 0 and variance 1. Then for any ϵ > 0,

lim
N→∞

PN

(
sup
x∈R

∣∣∣FR
N (x) − Φ(x)

∣∣∣ ≥ ϵ

)
= 0.

The analogous results hold for the uniform measure µN .

To explicitly define the distributions referenced in Theorem 1.12, define a probability
distribution PR

N : 2AN (R) → [0, 1] via, for any S ∈ 2AN (R),

PR
N(S) =

PN

(
S ∩ AN(R)

)
PN

(
AN(R)

) .

Define the random variable LR
N : AN(R) → R on the space

(
AN(R), 2AN (R),PR

N

)
by

LR
N

(
(M1, . . . ,Mλ)

)
= λ

for any game (M1, . . . ,Mλ) ∈ AN(R), i.e. LR
N studies game lengths in AN(R). Then

FR(x) = PR
N

LR
N − E

[
LR
N

]√
var
(
LR
N

) ≤ x

 .(3)

In other words, when we restrict PN to the sets AN(R) in the natural sense, Theorem 1.12
states that the distribution of random game lengths enjoys weak convergence to a Gaussian
with high probability. We write

LR
N =

LR
N − E

[
LR
N

]√
var
(
LR
N

)(4)

to be the random variable LR
N normalized to have mean 0 and variance 1. Throughout this

section, we proceed on the measure PN and the set RP
N , but the analysis carries over to the

uniform measure µN and the suffix partition RS
N .
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Proof of Theorem 1.12. By Proposition 4.10, limN→∞ PN

(
log2

∣∣AN(G)
∣∣ ≥ 1.6n

)
= 1, so fix

R ∈ RN such that |AN(R)| > 21.6n , and consider the random variable LR
N : AN(R) → R.

Define random variables11 XR
1 , . . . , XR

N−1 to correspond to each of the combine moves in
R, with XR

i denoting the length of the corresponding prefix for a game in AN(R): by
Proposition 4.11, the random variables XR

i are independent. Expanding Equation (4),

LR
N =

LR
N − E

[
LR
N

]√
var
(
LR
N

) =

∑N−1
i=1

(
XR

i − E
[
XR

i

])√
var
(
LR
N

)(5)

where the independence (conditioned on AN(R)) of the random variables XR
i yields that

var
(
LR
N

)
=

N−1∑
i=1

var

(
XR

i − E
[
XR

i

])
and furthermore, taking the maximum over those summands XR

i which are non-constant12,

max
1≤i≤D


E
[∣∣∣XR

i − E
[
XR

i

]∣∣∣3]
E
[(

XR
i − E

[
XR

i

])2]
· var

(
LR
N

)
 ≤ max

1≤i≤D

2n3

var
(
LR
N

) ≤ n3

var (21.6n)
(6)

and the final expression in Equation (6) certainly vanishes as N → ∞. Thus, the desired
result follows immediately from the case of the Berry-Esseen theorem for independent non-
identically distributed summands, which namely yields

sup
x∈R

∣∣FR(x) − Φ(x)
∣∣ ≤ C · n3

var (21.6n)

N→∞−−−→ 0

for some universal constant C > 0. □

Theorem 1.12 yields that, when restricted to particular natural subsets of games, we have
Gaussianity. The scope of this result is admittedly restricted, especially given the result of
Corollary 4.6.

6. Open Problems

We conclude the work with several potential directions for further inquiry.

6.1. Other Two-Player Games Based on Recurrences. Theorem 1.11 can be inter-
preted as saying that if two players proceed mindlessly, the Zeckendorf game is fair in the
limit of infinite input; Theorem 1.10 gives that the analogous statement would be true if
we were to extend to a Z-player Zeckendorf game. Many papers (such as [1, 2, 4]) have
extended the paradigm of the two-player Zeckendorf game to other recurrences: we might
ask which of these also enjoy this property. In particular, we pose the following conjecture,
concerning the two-player Bergman game ([1]).

11Define these to be strictly positive: if the ith delimiter is replaced with a combine move, say XR
i = 1.

12Indeed, we understand LR
N as the sum over the nonconstant random variables amongst those included

by the sum in Equation (5)
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Conjecture 6.1. In the limit N → ∞ of infinite input, the probabilities of Player 1 and
Player 2 winning, under both analogous definitions of random Bergman games, is 1

2
.

The core challenges of proving Conjecture 6.1 are as follows. The principal difference
between the two-player Bergman game and the two-player Zeckendorf game is that the move
C1 is now a split move which consumes no tokens. Thus, there are structural differences
between the two games which affects the range of achievable game lengths. Lemma 4.5 also
depends on the number of a specific move sequence which may not have an analogue in the
Bergman game.

6.2. Towards Gaussianity: Other Approaches. Theorem 1.12 establishes that certain
natural partitions of ΩN are such that the components become arbitrarily close to being
Gaussian (in the sense of vanishing Kolmogorov-Smirnov distance) with arbitrarily high
probability: it is unclear how to extend this to the entirety of ΩN . Proposition 2.6 remarks
that all games in ΩN can be achieved by permutations of suffixes from a shortest game,
which suggests the following question.

Question 6.2. Can we extend the techniques in Section 5 to a partition founded on the
greedy embedding of Proposition 2.6? In particular, could studying the moments of the
corresponding components lead to a proof of Conjecture 1.7?

Another possible direction is to restrict our attention to certain subsets of moves across
all of ΩN , rather than certain subsets of ΩN . In particular, a sufficiently strong affirmative
answer to Question 6.3 would resolve Conjecture 1.7.

Question 6.3. Is the distribution of the number of occurrences of a particular combine or
split move asymptotically Gaussian, under either the measure µN or PN?

6.3. Towards Gaussianity: Mixing. We outline one more possible approach towards
proving Conjecture 1.7, which relies on the literature surrounding mixing central limit theo-
rems : these are analogues of the central limit theorem concerning sums of dependent random
variables, applicable if the dependencies amongst the summands are sufficiently well-behaved.
In particular, the main result of [6] states the following.

Theorem 6.4 ([6]). Let {XN,i : 1 ≤ i ≤ dN} be a triangular array of random variables

defined on the probability space (Ω,F ,P), X̄N,dN = 1
dN

∑dN
i=1XN,i, and αN : N → R by

αN(k) = sup
m

sup
A∈Fm

0 (N),B∈F∞
m+k(N)

∣∣P(A ∩B) − P(A)P(B)
∣∣(7)

where Fm2
m1

(N) = σ
(
XN,m1 , XN,m1+1, . . . , XN,m2

)
denotes the σ-algebra generated by random

variables XN,m1 , XN,m1+1, . . . , XN,m2 . If there exists constants C1, C2 > 0, δ > 0 such that

E
[∣∣XN,i − E[XN,i]

∣∣2+δ
]
< C1(8)

and
∞∑
k=0

(k + 1)2α
δ

4+δ

N (k) < C2,(9)

then √
dN
(
X̄N,dN − EX̄N,dN

) D−−−→
N→∞

N

(
0, var

(√
dNX̄N,dN

))
.(10)
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We can define a triangular array of Bernoulli random variables by letting XN,i = 1 if and
only if the ith move of a Zeckendorf game with input N is a splitting move (in particular,
XN,i maps to 0 on the event that the Zeckendorf game on input N terminates prior to move
i), with dN (the number of random variables in the Nth row) the length of the longest game

on input N ; Conjecture 1.7 is thus equivalent to establishing that the row sums
∑dN

i=1XN,i

weakly converge to a Gaussian, since the number of combine moves for a given input N
is constant. This is precisely the statement of Equation 10. Also, the events A and B in
Equation 7 can be understood as fixed {0, 1}-realizations of subsets of random variables in
{XN,1, . . . , XN,m} and {XN,m+k, . . . , XN,dN}, respectively.

Since Equation 8 certainly holds under this setup (the constituent random variables are
Bernoulli), resolving Conjecture 1.7 can be reduced to the following statement.

Question 6.5. For the triangular array {XN,i : 1 ≤ i ≤ dN} defined above, does there exist
a constant δ > 0 and a constant C > 0 such that

∞∑
k=0

(k + 1)2α
δ

4+δ

N (k) < C(11)

for all natural numbers N ∈ N?

By the preceding discussion, answering Question 6.5 in the affirmative by establishing 11
immediately yields Conjecture 1.7. In particular, it would suffice to establish the statement
of Question 6.6 in the affirmative, although it is not immediately clear if this should be true.

Question 6.6. Does there exist a constant ϵ > 0 and a constant C > 0 such that∣∣PN(A ∩B) − PN(A)PN(B)
∣∣ ≤ C

k2+ϵ
(12)

whenever events A and B correspond to fixed {0, 1}-realizations of subsets of the Bernoulli
random variables in {XN,1, . . . , XN,m} and {XN,m+k, . . . , XN,dN}, respectively?

Of course, the techniques introduced in the main body of this paper are quite elemen-
tary, and there may be other promising approaches not included in this section that would
contribute towards resolving Conjecture 1.7.
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