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subjet (see for example [BDEMMTTW, BILMT, Br, CFHMN1, Day, DDKMMV, FGNPT,Fr, GTNP, Ha, Ho, HW, Ke, MW1, MW2, Ste1, Ste2℄ and the referenes therein).Lekkerkerker [Lek℄ proved that the average number of summands in the Zekendorf de-ompositions of m ∈ [Fn, Fn+1) is n
ϕ2+1

+ O(1) ≈ .276n as n → ∞. Later authors ex-tended this to other sequenes and higher moments (see the previous referenes, in partiular[BM, DDKMMV, DFFHMPP, DG, LM, LT, MW2℄), proving that given any rules for deom-positions there is a unique sequene suh that every number has a unique deomposition, andthe average number of summands onverges to a Gaussian.To date, most of the sequenes studied have been one-dimensional; many that appear tobe higher dimensional (suh as [CFHMN2, CFHMNPX℄) an be onverted to one-dimensionalsequenes. Our goal is to investigate deompositions that are truly higher dimensional. Wedo so by reating a sequene arising from two-dimensional lattie paths on ordered pairs ofpositive integers. A legal deomposition in d dimensions will be a �nite olletion of lattiepoints for whih(1) eah point is used at most one, and(2) if the point (i1, i2, . . . , id) is inluded then all subsequent points (i′1, i
′
2, . . . , i

′
d) have

i′j < ij for all j ∈ {1, 2, . . . , d} (i.e., all oordinates must derease between any twopoints in the deomposition).We all these sequenes of points on the d-dimensional lattie simple jump paths. InSetion 4 we disuss generalizations in whih we allow only some of the oordinates to dereasebetween two onseutive points in the path; this adds ombinatorial di�ulties. Note that thenumber we assign to eah lattie point depends on how we order the points (unless we are inone dimension). For example, if d = 2 we an order the points by going along diagonal lines,or L-shaped paths. Expliitly, the �rst approah gives the ordering
(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . . , (1.1)while the seond yields

(1, 1), (2, 1), (2, 2), (1, 2), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), . . . . (1.2)For the purposes of this paper, however, it does not matter whih onvention we adopt asour results on the distribution in the number of summands of a legal deomposition dependonly on the ombinatoris of the problem, and not the values assigned to eah tuple. We allthe labeling attahed to any hoie a Simple Zekendorf Sequene in d dimensions, andomment shortly on how this is done. If d = 1 then we denote the sequene as {ya}∞a=0 andonstrut it as follows.(1) Set y1 := 1.(2) Iterate through the natural numbers. If we have onstruted the �rst k terms of oursequene, the (k + 1)th term is the smallest integer whih annot be written as a sumof terms in the sequene, with eah term used at most one.Note this sequene is just powers of 2,
1 2 4 8 16 32 64 128 256 512 . . . , (1.3)and a legal deomposition of n is just its binary representation.If d = 2, on the other hand, as remarked above we have hoies. We desribe the SimpleZekendorf Diagonal Sequene {ya,b}∞a,b=0; its onstrution is similar in nature to the d = 1ase and proeeds as follows.(1) Set y1,1 := 1.2



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICES(2) Iterate through the natural numbers. For eah suh number, hek if any path ofnumbers in our sequene with a strit leftward and downward movement between eahtwo points sums to the number. If no suh path exists, add the number to the sequeneso that it is added to the shortest un�lled diagonal moving from the bottom right tothe top left.(3) If a new diagonal must begin to aommodate a new number, set the value yk,1 to bethat number, where k is minimized so that yk,1 has not yet been assigned.In (1.4) we illustrate several diagonals' worth of entries when d = 2, where the elementsare always added in inreasing order. Note that unlike the Fibonai sequene, we immedi-ately see that we have lost the uniqueness of deompositions (for example, 25 has two legaldeompositions: 20 + 5 and 24 + 1).
280 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
157 263 · · · · · · · · · · · · · · · · · · · · · · · ·
84 155 259 · · · · · · · · · · · · · · · · · · · · ·
50 82 139 230 · · · · · · · · · · · · · · · · · ·
28 48 74 123 198 · · · · · · · · · · · · · · ·
14 24 40 66 107 184 · · · · · · · · · · · ·
7 12 20 33 59 100 171 · · · · · · · · ·
3 5 9 17 30 56 93 160 · · · · · ·
1 2 4 8 16 29 54 90 154 · · ·

(1.4)
Of ourse, analogous proedures to the one whih reates (1.4) exist for higher dimensions,but the intended illustration is most intuitive in two dimensions. For the same reason as in the

d = 2 ase, there are learly multiple proedures to generate the higher-dimensional sequenes,even if one �xes restritions on how to hoose the summands in as many as d− 2 dimensions.Numerial explorations (see Figure 1) suggest that, similarly to other sequenes mentionedearlier, the distribution of the number of summands onverges to a Gaussian.
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Figure 1. Distribution of the number simple jump paths of varying lengthsversus the best �t Gaussian. Left: Starting at (10, 10). Right: Starting at
(40, 40). In both ases the horizontal axis is the number of summands andthe vertial axis is the probability of obtaining a simple jump path with somenumber of summands when seleting one from all simple jump paths uniformlyat random.Our main result is that as n → ∞, we onverge to Gaussian behavior in any number ofdimensions.Theorem 1.1. (d-dimensional Gaussianity) Let n be a positive integer, and onsider the dis-tribution of the number of summands among all simple jump paths of dimension d with starting3



point (i, i, ....., i) where 1 ≤ i ≤ n, and eah distribution represents a (not neessarily unique)deomposition of some positive number. This distribution onverges to a Gaussian as n → ∞.In Setion 2 we motivate our problem further, explore the notion of a simple jump path inmore depth, and prove some needed lemmas. Then, we prove Theorem 1.1 in Setion 3. Theresult is just the Central Limit Theorem for a binomial random variable if d = 1. If d = 2it an be proved diretly through ombinatorial identities, but for larger d the ombinatoriallemmas do not generalize and we are fored to resort to analyti tehniques. We show that thefuntional dependene is that of a Gaussian, and thus as the probabilities must sum to 1 thenormalization onstant, whih depends on the number of paths, must have a ertain asymptotiformula. Thus, as an immediate onsequene, we obtain new proofs for the asymptoti numberof paths (the approah mentioned on the OEIS uses generating funtions and expansions). Weend with a disussion of future work and generalizations of the simple jump paths.2. Properties of Simple Jump PathsWe �rst set some notation for our simple jump paths. We have walks in d dimensions startingat some initial point (a1, a2, . . . , ad) with eah aj > 0, and ending at the origin (0, 0, . . . , 0).Note that our simple jump paths must always have movement in all dimensions at eah step.We are just adding one extra point, at the origin, and saying every path must end there. Notethat as we always hange all of the indies during a step, we never inlude a point where onlysome of the oordinates are zero, and thus there is no issue in adding one extra point andrequiring all paths to end at the origin.Our walks are sequenes of points on the lattie grid with positive indies or the origin, andwe refer to movements between two suh onseutive points as steps. Thus a simple jump pathis a walk where eah step has a strit movement in all d dimensions. More formally, a simplejump path of length k starting at (a1, a2, . . . , ad) is a sequene of points {(xi,1, . . . , xi,d)}ki=0where the following hold:
• (x0,1, . . . , x0,d) = (a1, . . . , ad),
• (xk,1, . . . , xk,d) = (0, . . . , 0), and
• for eah i ∈ {1, . . . , k − 1} and j ∈ {1, . . . , d}, xi,j > xi+1,j .For a �xed d and any hoie of starting point (n, n, . . . , n) ∈ R

d, we let sd(n) denote thenumber of simple jump paths from (n, n, . . . , n) to the origin, and td(k, n) the subset of thesepaths with exatly k steps. As we must reah the origin, every path has at least 1 step, themaximum number of steps is n, and
sd(n) =

n
∑

k=1

td(k, n). (2.1)We now determine td(k, n). In one dimension we have td(k, n) =
(n−1
k−1

), as we must hooseexatly k − 1 of the �rst n − 1 terms (we must hoose the nth term as well as the origin, andthus hoosing k − 1 additional plaes ensures their are exatly k steps). The generalization tohigher dimensions is immediate as we are looking at simple paths, and thus there is movementin eah dimension in eah step; this is why we restrit ourselves to simple paths, as in thegeneral ase we do not have tratable formulas like the one below.Lemma 2.1. For a1, . . . , ad positive integers let td(k; a1, . . . , ad) denote the number of sim-ple paths of length k starting at (a1, . . . , ad) and ending at (0, . . . , 0). Then for 1 ≤ k ≤4



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICES
min(a1, . . . , ad),

td(k; a1, . . . , ad) =

(

a1 − 1

k − 1

)(

a2 − 1

k − 1

)

· · ·
(

ad − 1

k − 1

)

; (2.2)if a1 = · · · = ad = n we write td(k, n) for td(k; a1, . . . , ad). We have
sd(n) =

n
∑

k=1

td(k, n), (2.3)and s1(n) = 2n−1, s2(n) = (2n−2
n−1

) (for higher d there are no longer simple losed form expres-sions1).The proof is an immediate, repeated appliation of the one-dimensional result, with the twoformulas (for s1(n) and s2(n)) being well-known binomial identities (see for example [Mil℄).3. Gaussianity in d-Dimensional Latties3.1. Mean and Variane. To prove Theorem 1.1, we start by determining the density,
pd(k, n), for the number of simple jump paths of length k starting at (n, . . . , n):

pd(k, n) :=
td(k, n)

sd(n)
. (3.1)Muh, though not all, of the proof when d = 1 arries over to general d. We therefore onen-trate on d = 1 initially and then remark on what issues arise when we generalize, and disussthe resolution of these problems.We begin by determining the mean and standard deviation. The analysis for the mean holdsfor all d, but the ombinatorial argument for the variane requires d ≤ 2. Due to the preseneof n− 1 in the formula for td(k, n), we work with n+ 1 below to simplify some of the algebra.Lemma 3.1. Consider all simple jump paths from (n + 1, . . . , n + 1) to the origin in d-dimensions. If K is the random variable denoting the number of steps in eah path, thenits mean µd(n+ 1) and standard deviation σd(n+ 1) are

µd(n+ 1) =
1

2
n+ 1 (3.2)and

σ1(n+ 1) =

√
n

2
, σ2(n+ 1) =

n

2
√
2n − 1

≈
√
n

2
√
2
. (3.3)Further, we have

σd(n+ 1) ≤ σ1(n+ 1) ≤
√
n/2. (3.4)Proof. The results for d = 1 are well known, as we have a binomial random variable. For d = 2one an ompute the mean and the variane by ombinatorial arguments (see Appendix A);unfortunately while these an be generalized to give the mean for any d they do not generalizefor the variane.Beause we must end at the origin, note eah path must have length at least 1. Thus insteadof studying the number of paths of length k ∈ {1, . . . , n + 1} we instead study the number ofpaths of length κ ∈ {0, . . . , n} and then add 1 to obtain the mean (there is no need to add 1for the variane, as the variane of K and K − 1 are the same).1We will �nd exellent approximations for large n and �xed d later. 5



As
td(k;n+ 1) =

(n
k

)d

sd(n+ 1)
, (3.5)the symmetry of the binomial oe�ients about n/2 implies the mean of K − 1 is n/2. Allthat remains is to prove the variane bound for d ≥ 2. Note that the variane of K − 1 is

σd(n+ 1) =
n
∑

κ=0

(κ− n/2)2
(n
κ

)d

sd(n+ 1)
. (3.6)By symmetry it su�es to investigate κ ≥ n/2. Sine the binomial oe�ients are stritlydereasing as we move further from the mean, for suh κ we �nd that

pd(κ)

pd(κ+ 1)
=

(n
κ

)d

( n
κ+1

)d
≥ 1, (3.7)and thus for every g > 0 we see that the probability of K − 1 being within g of the meaninreases as d inreases. Thus the variane is smallest at d = 1, ompleting the proof. �Next, we show with high probability that K is lose to the mean.Lemma 3.2. Consider all simple jump paths from (n + 1, . . . , n + 1) to the origin in d-dimensions. If K is the random variable denoting the number of steps in eah path, thenthe probability that K is at least nǫn1/2/2 from the mean is at most n−2ǫ.Proof. By Chebyshev's Inequality,

Prob (|K − (n/2 + 1)| ≥ nǫσd(n+ 1)) ≤ 1

n2ǫ
. (3.8)As σd(n+1) ≤ n1/2/2 by Lemma 3.1, we only derease the probability on the left if we replae

σd(n+ 1) with n1/2/2, and thus the laim follows. �One important onsequene of the above lemma is that if we write k as µd(n+1)+ ℓn1/2/2,then with probability tending to 1 we may assume |ℓ|≤ nǫ.3.2. Gaussianity. The proof of Theorem 1.1 in general proeeds similarly to the d = 1 ase.For d ≤ 2 we have expliit formulas for both the variane and sd(n + 1), whih simplify theproof. For general d we show that the resulting distribution has the same funtional form as aGaussian, and from this we obtain asymptotis for both the variane and the number of paths.Proof of Theorem 1.1. From Lemma 3.2, if we write
k = µd(n+ 1) + ℓn1/2/2 (3.9)then the probability of |ℓ| being at least n1/9 is at most n2/9, so in the arguments below weassume |ℓ|≤ n1/9. In partiular, this means that both k and n − k are lose to n/2 withprobability tending to 1 as n → ∞. We are using n1/2/2 and not σd(n + 1) as this way aquantity below will perfetly math the d = 1 ase.For m large, Stirling's Formula states that

m! = mme−m
√
2πm

(

1 +O

(

1

m

))

. (3.10)6



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICESThus
pd(k, n + 1) =

(

n
k

)d

sd(n + 1)
=

1

sd(n+ 1)

(

n!

k! (n− k)!

)d

=
1

sd(n + 1)





√
2πnnn

√

4π2k(n− k)kk(n − k)n−k
·

(

1 +O
(

1
n

))

(

1 +O
(

1
n−k

))

(

1 +O
(

1
k

))





d

,(3.11)and the ratio of the big-Oh terms is 1+O(1/n) sine k and n− k are approximately n/2 (notethe big-Oh onstant here is allowed to depend on d, whih is �xed).We now turn to the other part of the above expression. If we divide the rest of the quantityin parentheses by 2n then we have the probability in 1-dimension, whose analysis is well-known;thus
pd(k, n + 1) =

2ndnd/2

sd(n+ 1)

(

nn

2nkk(n− k)n−k
√

2πk(n − k)

)d

· (1 +O(1/n)) . (3.12)The quantity to the d-th power onverges (up to the normalization fator) to a Gaussian bythe Central Limit Theorem for a binomial random variable; for ompleteness we sketh theproof.Using n, n− k are lose to n/2, we �nd
pmain,1(k) :=

nn

2nkk(n− k)n−k
√

2πk(n − k)

=
1

√

1
2πn

2
· 1
(

1−
ℓ
√

n
2

n/2

)n/2− ℓ
√

n
2

+ 1
2
(

1 +
ℓ
√

n
2

n/2

)n/2+ ℓ
√

n
2

+ 1
2

. (3.13)Let qn be the denominator of the seond fration above. We approximate log(qn) and thenexponentiate to estimate qn. As |ℓ|≤ n1/9, when we take the logarithms of the terms in qn onlythe �rst two terms in the Taylor expansion of log(1 + u) ontribute as n → ∞. Thus
log qn =

(

n

2
− ℓ

√
n

2
+

1

2

)(

− ℓ√
n
− ℓ2

2n
+O

(

ℓ3

n3/2

))

+

(

n

2
+

ℓ
√
n

2
+

1

2

)(

ℓ√
n
− ℓ2

2n
+O

(

ℓ3

n3/2

))

=
ℓ2

2
+O

(

n · n
1/3

n3/2
− ℓ2

2n

)

=
ℓ2

2
+O

(

n−1/6
)

, (3.14)whih implies (sine k = µd(n+ 1) + ℓ
√
n/2)

qm = e
(k−µd(n+1))2

n/2 eO(n−1/6). (3.15)Thus olleting our expansions yields, for |ℓ|≤ n1/9,
pd(k, n+ 1) =

2ndnd/2

sd(n+ 1)(πn2/2)d/2
e
−

d(k−µd(n+1))2

n/2 · eO(n−1/6). (3.16)Note the seond exponential is negligible as n → ∞, and the �rst exponential is that of aGaussian with mean µd(n + 1) and variane σd(n + 1)2 = n/4d. As this is a probability7



distribution it must sum to 1 (the terms with |ℓ| large ontribute negligibly in the limit), andthus 2nd/(sd(n + 1)(πn/2)d/2) must onverge to the normalization onstant of this Gaussian,whih is 1/√2πsd(n + 1)2. In partiular, we obtain2
sd(n+ 1) ∼ 2ndnd/2

(πn2/2)d/2
·
√

2πn/4d = 2nd
(πn

2

)− d
2
+ 1

2
d−1/2. (3.17)

�4. Future Work and Conluding RemarksWe ould also onsider the Compound Zekendorf Diagonal Sequene in d dimen-sions, whih is onstruted in a similar way to (1.3) and (1.4), but allows more paths to belegal (expliitly, eah step is no longer required to move in all of the dimensions). While the
d = 1 Compound Zekendorf Diagonal Sequene is the same as the simple one, the twonotions of paths give rise to di�erent sequenes when d = 2. In that ase, the CompoundZekendorf Diagonal Sequene is denoted {za,b}∞a = 0,b = 0, and is onstruted as follows.(1) Set z1,1 := 1.(2) Iterate through the natural numbers. For eah suh number, hek if any path ofdistint numbers without upward or rightward movements sums to the number. If nosuh path exists, add the number to the sequene so that it is added to the shortestun�lled diagonal moving from the bottom right to the top left.(3) If a new diagonal must begin to aommodate a new number, set the value zk,1 to bethat number, where k is minimized so that zk,1 has not yet been assigned.The di�erene between this and the Simple Zekendorf Diagonal Sequene is that we nowallow movement in just one diretion. This greatly ompliates the ombinatorial analysisbeause now the simultaneous movements in di�erent dimensions depend on eah other. Inpartiular, if a step ontains a movement in one diretion, it no longer needs to ontain amovement in other diretions to be regarded as a legal step. In (4.1) we illustrate severaldiagonals' worth of entries, where the elements are always added in inreasing order.

6992 · · · · · · · · · · · · · · · · · · · · · · · ·
2200 6054 · · · · · · · · · · · · · · · · · · · · · · · ·
954 2182 5328 · · · · · · · · · · · · · · · · · · · · ·
364 908 2008 5100 · · · · · · · · · · · · · · · · · ·
138 342 862 1522 4966 · · · · · · · · · · · · · · ·
44 112 296 520 1146 2952 · · · · · · · · · · · ·
16 38 94 184 476 1102 2630 · · · · · · · · ·
4 10 22 56 168 370 1052 2592 · · · · · ·
1 2 6 18 46 140 366 1042 2270 · · ·

(4.1)
Just as in (1.4), uniqueness of deompositions does not hold in the ompound ase. Forinstane, 112+38+10 and 140+18+2 are both legal deompositions of 160 in (4.1). Moreover,just like the Simple Zekendorf Diagonal Sequenes (1.3) and (1.4), Compound ZekendorfDiagonal Sequenes an be built in higher dimensions with multiple ways of formulating howto add terms to the sequene.Many of the artiles in the literature use ombinatorial methods and manipulations of bino-mial oe�ients to obtain similar results (see, for instane, [Eg, Len, MW2℄). Thus a question2One an hek this asymptoti by omputing sd(n+1) for various d and looking up the resulting sequeneson the OEIS, whih agree; for example, see the entry A182421 for the sequene when d = 7.8



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICESworth future study is to extend the ombinatorial variane alulation to d dimensions (seeLemma A.2).Finally, similar to [BILMT, KKMY℄ and related work, we an investigate the distribution ofgaps between summands in legal paths. One an readily obtain expliit ombinatorial formulasfor the probability of a given gap; the question is whether or not nie limits exist in this aseas they do for the one-dimensional reurrenes previously studied.Appendix A. Derivation of Mean and Standard Deviation for Simple JumpPathsLemma A.1 (Mean for Simple Jump Path Distribution). If µd(i) denotes the mean numberof steps in a d-dimensional simple jump path from (i, i, . . . , i) to the origin, then
µd(n+ 1) =

1

2
n+ 1. (A.1)Proof. By the de�nition of the �rst moment,

µd(n+ 1) =

∑n+1
k=1 k · td(k, n + 1)

sd(n+ 1)

=

∑n
k=0(k + 1)td(k + 1, n + 1)

sd(n+ 1)
=

∑n
k=0 k

(n
k

)d
+ sd(n+ 1)

sd(n+ 1)
. (A.2)We omplete the proof based on the parity of n. We �rst assume n is odd. Then

n
∑

k=0

k

(

n

k

)d

=

⌊n
2
⌋

∑

k=0

[

k

(

n

k

)d

+ (n− k)

(

n

n− k

)d
]

= n

⌊n
2
⌋

∑

k=0

(

n

k

)d

. (A.3)Notie that by the symmetry of binomial oe�ients,
⌊n
2
⌋

∑

k=0

(

n

k

)d

=

n
∑

k=⌈n
2
⌉

(

n

k

)d

, (A.4)so
n

⌊n
2
⌋

∑

k=0

(

n

k

)d

=
1

2
n

n
∑

k=0

(

n

k

)d

=
1

2
nsd(n+ 1), (A.5)and substituting into (A.2) ompletes the proof in this ase.Now we onsider n even. A similar analysis as in the previous ase works, exept we needto deal with the term where k = n/2, whih is mathed with itself:

n
∑

k=0

k

(

n

k

)d

=
n

2

(

n

n/2

)d

+

n
2
−1
∑

k=0

k

(

n

k

)d

+
n
∑

k=n
2
+1

k

(

n

k

)d

=
n

2

(

n

n/2

)d

+

n
2
−1
∑

k=0

[

k

(

n

k

)d

+ (n− k)

(

n

n− k

)d
]

=
n

2

(

n

n/2

)d

+ n

n
2
−1
∑

k=0

(

n

k

)d (A.6)9



Again utilizing the symmetry of binomial oe�ients,
n
2
−1
∑

k=0

(

n

k

)d

=

n
∑

k=n
2
+1

(

n

k

)d

, (A.7)so (A.6) is equivalent to
n

2

(

n

n/2

)d

+
n

2

∑

k∈{0,1,...,n}\{n/2}

(

n

k

)d

=
n

2

n
∑

k=0

(

n

k

)d

=
n

2
sd(n+ 1), (A.8)ompleting the proof. �Lemma A.2 (Standard Deviation for 2-Dimensional Simple Jump Paths). If σ2(i) representsthe standard deviation for the number of steps in a simple jump path in d-dimensions from

(i, i) to the origin, then
σ2(n + 1) =

n

2
√
2n− 1

. (A.9)As the variane in the one-dimensional ase is well known (it is the variane of a binomialrandom variable), we provide details only for d = 2. As remarked earlier, the ombinatorialapproah taken below does not generalize to higher d.Proof. We use the simple losed form expression for s2(n+ 1), namely that it equals (2nn ). Bythe de�nition of the seond standardized moment and use of (A.1) where d = 2, we have
σ2(n+ 1)2 =

∑n+1
k=1 k

2
( n
k−1

)2

(2n
n

) −
(

1

2
n+ 1

)2

. (A.10)Shifting the index of summation to start at k = 0 and expanding yields
σ2(n+ 1)2 =

∑n
k=0(k + 1)2

(

n
k

)2

(2n
n

) −
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(n
k

)2

(2n
n

) +

∑n
k=0 2k

(n
k

)2

(2n
n

) +

∑n
k=0

(n
k

)2

(2n
n

) −
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(n
k

)2

(

2n
n

) + 2µ2(n+ 1)−
∑n

k=0

(n
k

)2

(

2n
n

) −
(

1

2
n+ 1

)2

. (A.11)Using (3.2) for the mean and realling that ∑n
k=0

(n
k

)2
=
(2n
n

), we have
σ2(n+ 1)2 =

∑n
k=0 k

2
(n
k

)2

(

2n
n

) + 2

(

1

2
n+ 1

)

− 1−
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(n
k

)2

(2n
n

) − n2

4
. (A.12)We now use the identity

n
∑

k=0

k2
(

n

k

)2

= n2

(

2n− 2

n− 1

)

, (A.13)10



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICESwhih we quikly prove for ompleteness. To see this, expand the binomial oe�ient andanel k's:
n
∑

k=0

k2
(

n

k

)2

=
n
∑

k=0

k2
(

n!

k! (n − k)!

)2

=
n
∑

k=1

n2

(

(n− 1)!

(k − 1)! (n − k)!

)2

. (A.14)Shifting indies, we an rewrite the above as
n
∑

k=0

k2
(

n

k

)2

= n2
n−1
∑

ℓ=0

(

n− 1

ℓ

)2

= n2
n−1
∑

ℓ=0

(

n− 1

ℓ

)(

n− 1

n− 1− ℓ

)

, (A.15)and as we have seen numerous times the sum equals (2n−2
n−1

) (it is the number of ways to hoose
n − 1 objets from 2n − 2, where we onsider n − 1 of the items to be in one set and theremaining n− 1 in another). Substituting (A.13) into (A.12) gives

σ2(n+ 1)2 =
n2
(2n−2
n−1

)

(2n
n

) − n2

4

=
n3

4n − 2
− n2

4
=

n2

8n − 4
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