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ABSTRACT. The Katz-Sarnak philosophy states that statistics of zeros of L-function families
near the central point as the conductors tend to infinity agree with those of eigenvalues of
random matrix ensembles as the matrix size tends to infinity. While numerous results support
this conjecture, S. J. Miller observed that for finite conductors, very different behavior can
occur for zeros near the central point in elliptic curve families. This led to the excised model
of Duenez, Huynh, Keating, Miller, and Snaith, whose predictions for quadratic twists of
a given elliptic curve are beautifully fit by the data. The key ingredients are relating the
discretization of central values of the L-functions to excising matrices based on the value
of the characteristic polynomials at 1 and using lower order terms (in statistics such as the
one-level density and pair-correlation) to adjust the matrix size. We discuss recent successes
by the authors in extending this model to a family of quadratic twists of finite conductor of
a given holomorphic cuspidal newform of level an odd prime level. In particular, we predict
very little repulsion for forms with weight greater than 2.

This paper is dedicated to Helmut Maier on the occasion of his
70th birthday, in gratitude for his service to the field through
his research and exposition.

1. INTRODUCTION

The Katz-Sarnak philosophy states that statistics of zeros of L-function families near the
central point as the conductors tend to infinity agree with those of eigenvalues of certain
random matrix ensembles as the matrix size tends to infinity [KaSa99a, [KaSa99b]. While the
general philosophy yields remarkable predictive insights for both local and global statistics,
classic matrix ensembles fail to reflect finer statistical properties of L-function zeros.

For instance, in 2006, Miller [Mil06] observed that the elliptic curve L-function zero statistics
for finite conductors deviated significantly from the scaling limit of the expected model of
orthogonal matrices (which was known to be correct in the limit for suitable test functions),
though the fit improved as the conductors increased. Subsequently, Duenez, Huynh, Keating,
Miller, and Snaith [DHKMS12] created the excised orthogonal model for finite conductors to
explain the phenomena Miller observed in the elliptic curve case. The excision of matrices with
small values of the characteristic polynomial evaluated at 1 corresponds to the discretization
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of the central values of normalized elliptic curve L-functions at the central point, which by the
Kohnen-Zagier formula generalizes and holds for holomorphic cusp forms [Wal80, [KoZa81l,
BMO07, Mao08]. For ease of reading, we recall the statement in its most general form—with
no restriction on the conductor of the twist—below [Mao08, Theorem 1.5].

Theorem 1.1. Let f be a normalized Hecke eigenform of weight 2k and odd level N, g a
Shimura correspondence of f, and L(s, f ® 1q) the L-function of f twisted by the quadratic
character 1y with fundamental discriminant d. The formula of Kohnen and Zagier is

d|)? k 7
L(k:7f®¢d) = |il(|L—_|1)/2fff7 where Ky = —(kjil)'i; £>>

K. (1.1)

This observation led Duenez, Huynh, Keating, Miller, and Snaith to create a matrix model
whose characteristic polynomials evaluated at 1 mimic the values of elliptic curve L-functions
at the central point. To model the behavior of low-lying zeros using matrices, they find an
analogous discretization of the values of the characteristic polynomials at 1 by introducing a
cutoff value. The other key ingredient is a modification of the matrix size of the ensemble.
They consider two matrix sizes: one related to the mean density of zeros and the other
determined from lower-order terms of the one-level density. The observed data of quadratic
twists of fixed elliptic curve L-functions showed terrific agreement with these predictions for
finite conductors.

1.1. Overview of the main paper. In this survey article, we summarize our results from
[BBJMNSY24]. We work in the general setting of a family of quadratic twists of the L-
function associated to a cuspidal modular newform f of level an odd prime, arbitrary integral
weight, and nebentype x;. We assume the Generalized Riemann Hypothesis for L-functions
arising from cuspidal newforms. We also assume the Ratios Conjectures, which we state in
Section [2], as it allows us to obtain strong estimates on the ratios of logarithmic derivatives.
In turn, this yields clearer information on the distribution of the zeros of the L-functions
in question [CEFZ08]. Using results in the literature, we constructed a family of twists of a
fixed newform which pivotally depends on the form’s nebentype and self-duality. By the
modularity theorem, our family for a given form with weight 2 and principal nebentype
restricts to the family of elliptic curve L-functions of finite conductor considered by Duenez,
Huynh, Keating, Miller, and Snaith [DHKMS12].

To create the model, we determined the associated ensemble for the family. Assuming the
Ratios Conjectures, we derived the lower-order expansion of the scaled one-level density for
our family of twists which we then compared to the densities of certain classical compact
groups. In this survey article when we consider self-dual forms with complex multiplication
(‘self-CM’), we only consider those forms whose L-function has +1 sign—we made this choice
as there are almost no self-CM forms with sign —1 on LMFDB. We matched the densities
from the random matrix side to the lowest-lying zeros of the family to find the predicted

ensemble for each case, listed as follows.
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Case Group
X s principal, even twists SO(2N)
Xs principal, odd twists | SO(2N + 1)
X non-principal and f = f | USp(2N)
X non-principal and f # f U(N)

Matching the leading lower-order term allows us to find an effective matrix size for the model
for the first three cases, which we state at the end of Section[3] Since there are no lower-order
terms of the one-level density for the unitary ensemble to which we could compare those
of our family, we needed to consider another statistic. We turned to pair-correlation to
gather arithmetic terms to use for the effective matrix size. Guided by the conjecture in
[DHKMS12], which followed the argument by Bogolomny, Bohigas, Leboeuf, and Monastra
in [BBLMOG|, we turned to pair-correlation to recover an arithmetic term for the effective
matrix size. We again opt to sketch the main ideas in favor of leaving the details to the main
paper [BBJMNSY24].

We follow the recipe to determine a cutoff value for the family of even twists of a form with
principal nebentype and even weight. The key ingredient to the creation of the cutoff is the
Kohnen-Zagier formula in [KoZa81, Theorem 1], which applies to those forms with level an
odd number. Theoretically, we use the heuristic developed in [DHKMSI2, Section 5] and
find that the Kohnen-Zagier formula implies a repulsion from the central point for those
forms of weight 2 with principal nebentype. For forms with weight 4, we predict very little
repulsion from the origin; for even integral weights greater than or equal to 6, we predict no
repulsion. In practice, we discard those characteristic polynomials, that when evaluated at 1,
are larger than our proposed cutoff value; a process we call ‘excision.” This excision resolves
in the general setting of forms with principal nebentype the repulsion from the central point
observed by Miller. We say an ensemble with the proposed effective matrix size and cutoff
value is the effective excised matrixz ensemble.

In Figure [I.1]| we present histograms of the lowest-lying zeros of our family which we compare
to the eigenvalues of characteristic polynomials evaluated at 1 of random matrices arising
from the random matrix ensembles.

We gather numerical data in Section [ and verify the distribution of lowest-lying zeros of our
family matches that of the predicted symmetry groups. We were not able to analytically find
the effective matrix size for our family, except for when the form is principal and has weight
2. The difficulty unfortunately boils down to being unable to explicitly determine the Euler
product of an arbitrary cuspidal newform L-function.

We verify the statistics of predicted ensembles of a given form aligns with that of the family;
we also find a few curious numerics which point us to further theoretical investigations. For
instance, we find that the distribution of zeros of the family associated to certain generic forms
(forms with non-principal nebentype and no complex multiplication) recover non-generic

behavior (either principal nebentype or self-CM).
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Level 5, weight 8 (principal, even) Level 3, weight 7 (self-CM)
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FIGURE 1.1. The left histogram shows 1,380 non-vanishing lowest-lying zeros
of even twists of 5.8.a.a with the red line showing the distribution of the
first eigenvalue of 1,000,000 randomly generated special orthogonal matrices
with characteristic polynomial evaluated at 1. The right histogram shows the
distribution of 5,450 lowest zeros for even twists of 3.7.b.a with the red line
showing the distribution of first eigenvalues of 1,000,000 randomly generated
symplectic matrices with characteristic polynomial evaluated at 1. The data
have been normalized to have mean 1.

2. BACKGROUND AND NOTATION

We collect basic facts about random matrices and L-functions to be used in [BBJMNSY24].

2.1. Matrix ensembles and one-level densities. Denote by G(N) one of SO(2N),
SO(2N + 1), USp(2N), and U(N). Let ¢ be an even Schwartz function. Since the mean
spacing of the eigenangles of matrices in G(IV) depends on N, we may scale the eigenangles
to have mean spacing one. We obtain the asymptotic scaled one-level density for large N by
scaling the unscaled one-level density found in [KaSa99al, Corollary AD.12.5.2] and expanding
in powers of either 1/N or 1/(2N + 1). In particular, the scaled one-level density formula is
given by

R(,SO(2N)) = /O (0) <1 S 81“2(5\27{; n_(;r)/H]?\%N >> a8 2.1)
_ /0 o(6) <1 N sinz(j;rG) 1 +c;)]s\£27r0) 70 sfijr;\(ffw&) N O(N_3)) 50
! 1 sin(4rON/(2N + 1))
R(p, SORN +1)) = /0 20 <1 TON 41 (2N + 1)sin(270/(2N + 1))) @ (22

! sin(276) 1 —cos(270) 276 sin(270) .
- /O #(0) <1 T2 " an+1 Tapnaae TOW )> a6
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R(p, USp(2N)) = /0 o (0) (1 + % _sin Q(ﬁgn%?f;;]\[ >> do (2.3)
_ /O 5(0) (1 B sinz(ige) N 1-— c;)]s\g%r@) N 70 sérzl\(fzﬂﬁ) N O(N_g)) "
R(p, U(N)) = /0 £(6)d0. (2.4)

2.2. L-functions. We turn to cuspidal newforms and their associated L-functions.

2.2.1. Cuspidal newforms. We consider the linear space Si(N, x¢) of cusp forms of level N,
integral weight k, and nebentype x for the Hecke congruence subgroup I'y(N). We focus on
those cuspidal modular forms which are newforms. In particular, if f € SV (M, xy), then
f is an eigenform and has Fourier expansion f(z) = > 7, ay(n)e*™* at the cusp oo where
the a;(n)’s are the Fourier coefficients. Define A\¢(n) == af(n)n~#~1/2 g0 that the functional
equation of the associated L-function relates s — 1 —s. For Re(s) > 1, the L-function
L(s, f) associated to f is given by the Dirichlet series L(s, f) == > -, As(n)n~* and Euler
product

Lis, f) = [T =Xmp +xs @)

p
1

= [T =asp) " (1 =8:p) ", (2.5)

where the Satake parameters oy, 5 satisfy ar(p) + 5¢(p) = Af(p) and af(p)Bs(p) = x¢(p)-
Such an L-series admits an analytic continuation to the entire complex plane and has

functional equation [Bump97, Proposition 1.3.6]. By comparing the coefficient of the p~™*
term of the Euler product with the Dirichlet series, we obtain the relation

Ar(™) = Y () Brp)™ (2.6)

>0
The form f dual to f has Fourier coefficients which satisfy the duality relation X f(n) =
Xr(n)Az(n) = x7(n)As(n) for ged(n, M) = 1 by the adjointness formula for a cuspidal Hecke

form f [IK04, Proposition 14.11]. We may relate L(s, f) to L(1 — s, f) by the functional
equation

\/M) ) S@L(l —s,7), (2.7)

L) = o (5 +)

where € is the sign and has absolute value 1.

2.2.2. Rankin-Selberg convolution. For f € SV (My, xy) and g € SE™(My, x,4), the L-series
of their Rankin-Selberg convolution is defined to be

L(s,f®g) = L(2s,xrXy) Zaf(n)ag(n)n"q, (2.8)

provided the least common multiple of M; and M, is square-free. It is well-known that

L(s, f ® g) has analytic continuation and admits an Euler product [Bump97, Theorem 1.6.2].
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The local factor at an unramified prime (i.e., those primes not dividing the level of f or g) is
given by

Ly(s,f®9) = 1=X0A®p* + (s (0)26(0)* + xo (DA (0)* = 2x7 (P)xs(2)) P> (2.9)
— X ()X (P)A (D) A ()P + x5 ()P xy (p)°D .

2.2.3. Quadratic twists. An integer d is a fundamental discriminant provided that d is either
square-free and congruent to 1 modulo 4 or is four times a square-free integer congruent to 2
or 3 modulo 4. Let L(s, fq) = L(s, f ®1)4) denote the L-function obtained by twisting L(s, f)
by a quadratic character ¢, with fundamental discriminant d, that is, conductor |d|. For
Re(s) > 1, the twisted L-function L(s, f4) = > <, As(n)a(n)n~* has Euler product

—s —2s\—1
L(s, fa) = [T (@ = Xr@a®)p™ + xs(p)alp)’p~>) (2.10)
p
Provided ged(d, M) = 1, the completed L-function satisfies the functional equationﬂ
VM TET (A = s) _
Mot = eron(5") ey g M- s T .11

with root number €;gy, = €;wi(d) = €;x 7 (d)Va(M)T(Ya)?/d = €;xs(d)ba(—|D|) where 7(¢))
denotes the Gauss sum and the second equality follows from [Coh07, Corollary 2.1.47] since
Py = (4) is a real character. The approximate functional equation for a twist shifted by « is
given in [CFZ08, Section 5.1] by

Ap(m)ha(m)

L(1/2 -+ a, fd) = Z W (212)
VMd)\ T (£ -« A (n)i _
+ e ( 27r| |> FE%M; nzq, fq(ﬁaz_dofn) + remainder,

where zy = d*/27. We ignore the remainder term as in [CFKRS05].

2.2.4. Complex multiplication and self-duality. A newform f is said to have complex multipli-
cation (CM) by 7 if there is a non-principal Dirichlet character n such that n(p)As(p) = As(p)
for all primes p in a set of primes of density 1. We call self-dual newforms with non-principal
nebentype constructed by Shimura (see [Rib77, Section 3 |) ‘self-CM’ forms. Such forms have
complex multiplication by their own nebentype |[Rib77, Remark 2]. We document a property
of any self-CM form f constructed by Shimura (c.f. details in [BBJMNSY24]): For each
positive fundamental discriminant d prime to M, the sign €fg, of the twisted L-function
is equal to €;. To prove the equality, it suffices to note that a Dirichlet character whose
modulus equals its fundamental discriminant is Kronecker and that twisting in the self-CM
case preserves the nebentype [Rib77, Remark 1].

We introduce some notation. Let Spe¥(M, principal) denote the family of forms with x;
principal; let SV (M, self-CM) denote the family of self-dual forms with y ; non-principal; and
let Sp°%(M, generic) denote the family of generic forms with y ; non-principal and f # f.

LIK04, Section 14.8].



2.2.5. Symmetric and adjoint square L-functions. We follow [IK04 Section 5.12] and define
symmetric and adjoint square L-functions of newforms as factors of Rankin-Selberg convolu-
tions. Let x; denote the primitive character that induces the nebentypus x; of f. Denote
L(s,sym® f) = L(s, f ® f)L(s,x};)~" and L(s,ad® f) == L(s, f ® f)¢(s)~*. The symmetric
square L-function L(s,sym? f) has an Euler product with local factors at unramified primes
given by

L(s,sym® f) = (1 = ay(p)’p~*) (1 — oy (p)Bs(p)p~") " (1 = By(p)°p ") (2.13)

We record analytic facts about these functions. First, note that L(s,ad® f) is always entire
since L(s, f ® f) always has a simple pole at s = 1 which cancels with the zero of ((s). For
H the upper half-plane, we have an arithmetically significant value at s = 1 for L(s,ad? f)
by the equality

(4m)*(f. f)

L(L.ad™f) = T'(k) vol(To (M)\H)

= Res(L(s, f @ f), 1). (2.14)

When f € SPV(M, principal), then f = f and L(s,ad® f) = L(s,sym? f) by Xy =1 mod M.
When f has non-principal nebentypus, L(s, x) is entire. The L-function L(s, f ® f) may
not be entire since f may still be self-dual. When f has non-principal nebentypus, then f is
self-CM if and only if f = f [Rib77, Section 3, Remark 2]. If f is self-CM, L(s,sym? f) has a
pole, and the symmetric and adjoint square L-functions do not coincide since L(s, x’;) # ((s).
In fact, the case of f self-CM is the only case when L(s,sym? f) inherits the pole from
L(s, f® f) at s = 1 as L(s, x}) is entire.

2.3. The set of “good” fundamental discriminants. We wish to determine the set
of “good” fundamental discriminants for which the ratios recipe (see Section and the
Kohnen-Zagier formula may be applied. We discuss in detail the construction of the family
in the main paper [BBJMNSY24]. In particular, we wish to replace €fgy, and g(—M) in
the functional equation to adapt the ratios recipe.

Let D denote the set of positive fundamental discriminants, and fix a cuspidal newform
f e Spev(M, xr). Fix an integer A € {41, —1}. The family of fundamental discriminants we
wish to study is given by

{deD|0<d< X, ¢Yg(—M)es = +1} X principal, even twists,

DHX) = {deD|0<d< X, Pg(—M)ey = —1} Xy principal, odd twists,
! {deD|0<d< X, Yg(—M) = A} f self-CM,
{deD|0<d< X} f generic.

Finally, we state estimates on the cardinality |Dy (X)| of the family; the detailed calculations
will appear in the full paper [BBIMNSY?24]:

=7,
# [

SMX(2r2(M + 1))~ 4+ O(X1/?)
SMX (m?2(M? — 1))+ O(X1/?)
7

DF(X)| = { f (215)



2.4. The family of quadratic twists. Denote the family of quadratic twists of a fixed
holomorphic cuspidal newform f with fundamental discriminant ranging over D;{(X ) by

F;(X). For d € Dj (X), the quadratic character ¢q(M) = (d/M) assumes the value

—€f X principal, even twists,
€ X ¢ principal, odd twists,
Er(M) = va(M) = ¢ 7 ! o e (2.16)
- X ¢ non-principal, f = f,
(d/M) X non-principal, f # f.

2.5. Ratios Conjectures. To derive a formula for the one-level density of the zeros near
the critical point 1/2 of L-functions for ]-"JT(X ), we consider the average over the family of
“good” fundamental discriminants of a ratio of shifted L-functions:

L(1/2+ «,
Ri(a,y) = > Lilki%;ﬁ. (2.17)

deD} (X)

Using (2.10) we have 1/L(s, fg) = >_,51 tr(n)a(n)n™* where ps(n) is a multiplicative
function defined by N

—Af(p) ifn=p,
pg(n) = xs(p) if n=yp? (2.18)
0 ifn=7p/,j5>2.

We denote the first sum arising from the approximate functional equation (2.12)) by

As( Wq(mh
R}”(aﬁ) = Z Z fm1/2+ah1/j£7wn ) (2.19)

deD} (X) h.m=0

Likewise for R} (a,7):

R(a) = wyld)e,n =) 3 (mrcu) 5 Al (Wvatmh) - o

Tk 1/2—ap1/2+
I'(f+a) st 21 oy m hl/2+

Our formulation of the Ratios Conjectures is stated as follows:ﬂ

Conjecture 2.1. For the conditions —1/4 < Re(a) < 1/4, 1/logz < Re(y) < 1/4 and
Im(a), Im(y) < X%, the average over the family of a ratio of shifted L-functions is

_ VM|d|\ ~**T L(k/2-a)5
Ri(a,y) = depzf;x) o ) (k24 a)

+ O(X1/2+E),

YiAs(—a,7) (2.21)

YiAp(a,y) + Uf(

2For other examples of the Ratios Conjectures, see [AMMTI].
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where
L(1+ QV,Xf)L( + 2a, sym? f)

. _ 2.22

~ L(1 + 27, 1 —2a,sym
V(an) = (1427, X)L y 2f) (2.23)
(0—a+)L(—a+7yad))

Ag(a,y) = Yy(a,7)  Vi(e, v)Vi(e, ), (2.24)

N (M (MMEP(M) Np(M) Ap(M™)EFH(M)
Vil,7) = ZO< Mm2ta) M2y ) [m(i/24a) , (2.25)

B P MET) e M) () o ()

W(Og”y) - MHM <]‘ +— p+ 1 (TnZ:l pm(1+2a) - p1+o¢+'y Tnzzo pm(1+2a) + p1+204 TnZ:Opm(l-i-Qa) !
(2.26)
A(=a,7) = Yi(=a,7) " Vi(—a, 1) Vi(—a, ), (2.27)

= AsPMER () Ar(p) Arm)EF T (p)

Vil=a,7) = m:O( pri/2=a) pi/zEy - pm(i/2-a) ) (2.28)
> (M) Ap) - @) xe () o Ar0Pm)
Vi(—a,7) = 1+ —— — + ,

f( ) pl;\[4 ( pr1 ('mzl pr(i=20) — pl-aty 7;) pm(1-2) pl—20 T;)pmuza)
(2.29)
and the expectation of wy(d)es over d is
+1 Xf principal, even twists,
-1 X ¢ principal, odd twists,
s wi(d)e) +1 X¢ non-principal, f = f, ( )
(wr(d)eg) X; non-principal, f # f.

The authors in [HKS09|] follow the recipe of [CFKRS05], [CEZ08] and the calculations in
ICS07] to derive a formula for ([2.21)). Our version of the Ratios Conjectures is the same as
Conjecture 2.1 in [HKS09] with appropriate substitutions for our family where we use the
corresponding approximate functional equation . In particular, the definition (|2.18])
implies we need only consider h = 0,1 for and h =0,1,2 for . For our family,
we factor out the divergent part of R}(a, 7) using the Dirichlet L-function L(s, x;) and also
the symmetric square L-function associated with L(s, f). The bounds at 1/4 allow us to
control the convergence of Euler products of the type . We similarly obtain Rfc(a, v).
We conclude with our desired formula. We leave the detailed computations to the main paper

[BBJMNSY24] in favor of sketching the main ideas.
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3. ONE-LEVEL DENSITY

3.1. Averaging the logarithmic derivative. To calculate the one-level density, we need
the average of the logarithmic derivative of L-functions defined by

> Paperg = 2

deD} (X)

Ry(a,7). (3.1)

a=y=r

The equality follows from differentiating Equation (2.17) and setting o = v = 7.

Proposition 3.1. Assume the Ratios Conjectures and that 1/log X < Re(r) < 1/4 and
Im(r) < X'7¢. Then the average of the logarithmic derivative over the family ]:;F(X) is

L L L
Z f(1/2+7“7fd) = Z (—f(1+2r,x})+f(1+2fr,sym2f)+A}(r,'r’) (3.2)
deDf (X) deDf (X)
- <\/M|d|)_2rF (5 —r) L(1 + 27, X)) L(1 — 2r,sym? )
"\ o r(E40) L(1,ad” f)

x Ag(-r, T)) +O(X/2+e)

where Zf, Af(r,7) are given by (2.27) and Ay(r,r) = 2

e A¢(a, ), respectively.

a=vy=r
Proof. The proof is the same as that of Theorem 2.2 in [HKS09], mutatis mutandis. |

3.2. Unscaled one-level density. With a formula for the average of logarithmic derivatives,
we turn to finding the lower-order terms of the scaled one-level density functions for our
family. For some Schwartz function ¢ and 7, ordinates of the zeros on the critical line, the
scaled one-level density function is defined by Di(p, f) = > deD? (X) >, (). We apply

the argument principle to rewrite Di(¢p, f) as
deD+

27r (/( /1 ) )p(i(1/2 = 5)) ds, (3.3)

where 1/2 4+ 1/log X < ¢ < 3/4 is fixed and (c¢) denotes the path from ¢ — ico to ¢ + iocc.
Turning to the integral on the c-line, we have
Lt Y Bevinga (3.4
— —i(c— —(c+1 .
2 Rgo L P

deD} (X)

and the sum over d can be replaced by Proposition 3.1, The bounds on the size t coming
from the Ratios Conjectures do not pose a problem; see [HKS09, [CS07].

Lemma 3.2. The integrand in (3.4) is reqular at t = 0.
10



Proof. Since we assumed the Generalized Riemann Hypothesis for Dirichlet L-functions,
L(s, xy) does not vanish on the line Re(s) = 1. In particular, the poles of L(s,x;) and
L(s,sym? f) at s = 1 may obstruct regularity of the integrand in at t = 0. The
L-function L(s, xs) has a pole at s = 1 if and only if x, is principal, and L(s,sym? f) has a
pole only when f is self-CM.

For the case f € Sp*(M, principal), As(—r,r) = Af(—r,r) which implies Ay is analytic. As
r—0,¢(1+2r)=2r)"'+0(1) and —(¢'/¢)(1 + 2r) = (2r)~* + O(1). After substituting
the expansions into the expression in Proposition , the integrand in is regular at
t =0 if and only if gf(()? 0) = 1, which happens since Ag(r,r) = 1.

For the case f € SpeV(M, self-CM), the symmetric square L-function of f inherits a pole at
s = 1from L(s, f®f), and Ay is analytic. Using the relation A(p*™™)A(p) = A\(p*™"2)+A(p*™)
for p + M and the multiplicativity of A(p) for p = M (see Section [2.2.1)), we get that

A¢(—r,r) = Af(—r,r) = 1. We use the assumption 7y = +1 to obtain

. [ ) VvV M]|d| T (5 —7) L(1+2r, x})L(1 — 2r,sym? f) ~
Tl}_ﬂ% f(l—l—QT’,S}/m f) - ( o ) (§+T) L(1,ad? f) Ag(=r,7)
L . L(1+2r, X)) L(1 = 2r, ;) 7' L(1 = 2r, f ® f)
= lim (—@2r) '+ 0(1)) - Res(Z(s.f ® F).1)
= lim (=@2r) '+ 0(1) = (=(2r)" ' +0(1)) = O(1), (3.5)
which completes the proof. [ ]

Proposition 3.3. Assume the Generalized Riemann Hypothesis and the Ratios Conjectures.
The unscaled one-level density for the zeros of the family ]:;F(X) 8

pien = & o0 5 (w(BF o) 5 ) o

deD} (X)

L'/[1 L'/1 - L
_ | = y - : /2+¢€
+ L<2+zt,fd)—|—L<2+zt,fd>)dt+O(X ).

Proof. By Lemma we may move the path of integration to ¢ = 1/2, and the rest of the
proof is the same as that of Theorem 2.3 in [HKS09], mutatis mutandis. |

3.3. Scaled one-level density. We scale the lowest-lying zeros to have mean spacing one,
and we calculate the one-level density for the scaled zeros. The goal is to recover the next-
to-leading order term from equation (3.6). Motivated by [IK04, Theorem 5.8], we rescale

the variable t by 7 = % where we equate the mean densities of eigenvalues with the mean
11



densities of zeros by settingf

(
vVMX 1
log ( o= > —3 X principal, odd twists,
vVMX
R = {log < 5 > X principal, even twists or f self-CM, (3.7)
T
vVMX _
2log ( - ) 1#T
L T

and define the even test function g(7) = ¢(t). We define the scaled one-level density function
to be Si(g, f) == Di(p, f)/|Df (X)|. Summation by parts and the cardinality estimate (2.13)
yield the following approximations:

> log (\/MM) = \D;{(X)|<log (\/ZX> - 1) +O(X?), (3.8)

27
deD} (X)
Mld —2inT/R 2 -1 ‘
> (BT < preoi(i- 1) ersopes, @
deD} (X) i

We now wish to obtain a series expansion of the scaled one-level density in terms of R.

Proposition 3.4. Assume the Ratios Conjecture. Then the scaled one-level density for the
zeros of the family ]:JT(X) is given by

So. ) = [ or) (14 Q) + OB ) dr, (3.10)
R
where the lower order terms not in the error term are
((sin(2 1 2 in(2
sm2(7r:7') —ay + CO;( m7) — as T 812(2 m7) X principal, even twists,
sin(277) 1 — cos(27T) 2707 sin(277) . _
B re as Y + ay R+ 1) X ¢ principal, odd twists,
Qlr) = . .
sin(27) e 1 — cos(27T) T sin(277) incipal, f=7
—_— non-principa =
orT 1 R 2 R2 Xf p pal, )
2 in(2 —
\ ¢+ ¢ ;05( T) v d T 812(2 T) \s non-principal, f £ 7

(3.11)

3[DHKMS12]
12



with coefficients

ay = 1—9(k/2) — AY0,0) + v — %(1,Sym2 1), (3.12)
ar = ~20(k/2) ~ 200/27 + 27— 231 + (20(k/2) ~ 2 - 2y - BO)Z (Layn® 1) (3.13)
L 0 (k/2)B0) + 1B"(0) + 20 (1, sym? f),
ag = 2—2(k/2) + 2y, — 2%(1,Sym2 f) —2A%0,0), (3.14)
ay = 4(k/2) — dirry + 4(k/2)y + Ay + (20(k/2) — 2 — 2¢)B'(0) (3.15)
(A ay 4280~ aulh/2) 5 (st ) - T B g ),
_ L(1)) v
by = 1—9(k/2) - §om — A3(0,0) + f(LXf)? (3.16)
by = —2¢(k/2) + B'(0) — ¢ (k/2)B'(0) + %(0) + 2%”(1, X}) (3.17)
PG (= 20+ BO) +2 - 26(5)) + 7 (26(5)6 — 26 + 26 - ©B/(0)).
er = (R/2) + S((A} + AD0,0) = (LX) — (1,x5) + - (Lsym? ) + (1, sym? ),
(3.18)
- L(1,sym? f ~ L 2
o = =5 AL SR o SR )
L L, 2f 1 5% / A / A /
i = I D (= SR OL.G) + v/ A0.0L0.5) = A0.010.))
L 2 ~ ~ -
i (=SB 0L + /2 A0.0)L(1.5) = A0.0)LL 7))
I/ 277 L 2£) ~
+ o DT 0,000+ A 0000 ), (3.20
where ¢ == T"/T is the digamma function Bs(s) = As(—s,s), —B'(0)/2 = A'(0,0), and
B (s) = & A=),

Proof. The details of the proof are left to the main paper [BBJMNSY24]. We note important
observations which allowed us to find scaled one-level density for our family. For f €
SpY (M, principal), we get the simplifications Ay = Ay and L(1 + r,x}) = ((1 + 7). The
proof is the same as that of the expansion (3.19) in [HKS09] with appropriate substitutions.

For f € SpeV(M,self-CM) with +1 sign, n; = +1 and L(s,sym? f) has a simple pole at s = 1
with residue L(1,ad” f)/L(1, x) by its factorization. We find the Laurent expansion at s = 0

of L(1 + s,sym? f) and the logarithmic derivative (L'/L)(1 + s,sym? f) evaluated at 1 + s.
13



Since x; is non-principal, then L(s, x;) has no pole, and we may write it and its logarithmic
derivative as Taylor expansions. We substitute the expansions in the rescaled version of ((3.6])
and clear out odd terms to obtain our desired result.

For f generic, L(s,x’;) and L(s,sym? f) are entire (see Section , and the values of
L(s, le) and its derivatives at s = 1 are not well known except in particular cases. Removing
the odd terms in the integrand above as they integrate to zero, we obtain our desired result. m

From the computations above, the one-level density of the newforms converges to that of
the one-level scaled density of eigenvalues near 1 in certain compact groups. We choose the
effective matrix size as follows:

.
VMX
log ( 5 ) /2a, Xy principal, even twists,
T
vMX 1
Ny = <log ( 5 > — 5) Jas —1/2 X7 principal, odd twists, (3.21)
T
vVMX
2 log ( 5 )/261 f self-CM,
i
\

to match the leading lower-order term. Recall from Section [2.1] that there are no lower-order
terms for the scaled one-level density expansion of unitary matrices. Hence, we cannot match
the leading lower-order term in the generic case to choose an effective matrix size for that case.
The authors in [DHKMS12] follow the argument made by Bogomolny, Bohigas, Leboeuf, and
Monastra in [BBLMOG] to conjecture that the improvement made by using matrices of size
Neg also holds for all n-point correlation or density functions. The conjecture motivates the
use of the pair-correlation statistic to find the effective matrix size in the generic case.

4. PAIR-CORRELATION

The series expansion of the scaled one-level density for the unitary group has no lower-order
terms, and so we cannot refine the fit of the random matrix model for the generic case. In
particular, there is no way to incorporate into the model the arithmetic information coming
from the leading lower-order term of the scaled one-level density in the generic case.

When comparing the series expansion for the scaled one-level density in the generic case with
the series expansion for the unitary group coming from random matrix theory, we see that the
lower-order terms cannot be matched. Since we cannot extract any arithmetic in the one-level
density of the generic case, we turn to pair-correlation. Pair-correlation is insensitive to any
finite set of zeros and is computed for one L-function only. We obtain a series expansion for
the pair-correlation statistics of a single L-function in large T" to obtain the lower-order terms
of arithmetic origin necessary for the effective matrix size.

Let 7,7 denote the imaginary coordinates of non-trivial zeros of L(s, f;), and suppose ¢(s)
is a holomorphic function throughout the strip |[Im(s)| < 2, real-valued on the real line,
even, and satisfies the bound ¢(z) < 1/(1 + z?) as * — oo. Since we assume the Ratios
Conjectures, we do not require that the Fourier transform @ is compactly supported or decays

rapidly, as is the case in [RuSa96]. Throughout the argument, we assume the GRH. We
14



would like to evaluate the pair-correlation statistic P(fa; ¢) = >y, or 0(y — 7). We start
with the formula for the average of the logarithmic derivative of shifted L-functions:

T L L .
| ferad)pu-ss T (4.1)
0
where s = 1/2 + it. We apply Conjecture 5.1 in [CFZ08] to

T L(s+a, f2)L(1 — s + 8, F,)
L(s+7, fa)L(1 — s+, fy)

7}11(0[757775) = / dt, (42)
0

since F; for x; non-principal and f # f has unitary symmetry. Hence, we substitute

K = L =1 and the group Z;; = {(1), (12)} which consists of the identity permutation and

the transposition (12), and we identify oy = a, ay = —, 71 = 7, and d; = § into the Ratios

Conjectures. We now state the Ratios Conjecture for our family.

Conjecture 4.1. For —1/4 < Re(a),Re(8) < 1/4, 1/log(T) < Re(d) < 1/4, and
Im (), Im(B) <. T'7¢ for all e > 0, we have

T
7}01(05’677’5) = /0 (YU(a767775)AL(&757776)

\/Mdt —2(a+P)
+ (%) YU(_ﬁa —a, 7, 6)AL<_B> -, 7, 6)) dt + O(T1/2+8)7
(4.3)
where
YU(O&,B,'}/,(S) _ L(l +a+ﬂafd®jd)L<1 +7+67fd®£d)’ (44)
LA+a+6,fa® )L+ B+, fa® f4)
and
B (1 . p—(1+a+ﬂ))(1 _ p7(1+fy+6))
Ar(a, B,7,9) = H (1 — p~(+a+d))(1 — p=(1+5+7))
p
LA
XD, P72yt (/24 Byt (124t (/24 0k (4.5)

m+h=n+k
Here, 1 = pq is the coefficient on n™* of the reciprocal series L(s, fq)™' for Re(s) > 1;
explicitly,
A(n) n=p,
p(n) = ¢ x(n) n=p* (4.6)
0 n=1p forj>2.

We also remark that

Ar(a, B,7,0) = Yu(a, B,7,0)" Wi(a, 8,7, 8)Wi(a, 8,7, 0), (4.7)
15



where

A( — AP THAE™)AP)
W|<O"6’%5> - H [Z 1+a+,8 Z ptatB)mt(1+ato) (4.8)
m=0
_ Z AP A(p) +i A M)
1+a+ﬁ +(1+8+7) p(1+0¢+,3)m+(1+7+5)
m=0
and
A( — A@P™TTAE™MAP) = AE™MAE™THAP)
Wila, B,7,0) = H [Z (1+a+,3)m - Z pUtatB)mt(1+a+s) - Z ptatBm+(1+5+7)
ptN Lm= 0 m=0 m=0
+§: A@P™MAP™)x(p) n i A™MA@E™)x(p)
p(1+a+6)m+(2+2a+25) p(1+a+,3)m+(2+26+2'y)
m=0 m=0
MA@ = AE™HAP™)A D)X (p)
+ Z p 1+a+6 m+(14746) Z p(1+a+ﬁ)m+(2+a+7+25)
m=0
L= AEMAETHX +Z I Ix(p)l®
p(1+a+6)m+ 2+[3+2’y+5) 1+a+5 Yym—+(24+2v+29)

m=0

(4.9)

We used the definition of u to state that, if p | N = M|d|?, we are free to discard all terms
except h,k € {0,1}. Otherwise, we may discard all terms except h, k € {0,1,2}. See the
main paper for details [BBJMNSY24].

4.1. Averaging the logarithmic derivative. We obtain the formula for by differ-
entiating the result of Conjecture which allows us to compute P(fy; ) using contour
integration. By expanding in series the formula for P(f4; ¢) in large T', we obtain the desired
lower-order terms. Again, we relegate the details to the main paper [BBJMNSY24].

Proposition 4.2. Assume Conjecture and let o, B, v, and 0 be as above. Then

L L — Trr\ —
[ Zieramba-sssdoa = [ ((£)ararsnsty
N (\/_\dhs
c

2

2(a+p)
) L+a+p5,fa® f)L —a— 8, fa® f,)
x Ap(—=8,—a,a,B8) + € (1 +a+ ﬁ)) dt + O(T1/?+9), (4.10)

Here, N :== M|d|?, ¢y, = Res(L(s, fa® f4), 1), € (1+a+pB) is given in (A17), and L. (s, fa® f4)
4.16)

is the unramified part of the Rankin-Selberg convolution as defined in (4.16

Proof. For notation, put A == Yy («, 8,7,9)AL(c, 5,7,d) and

Q. (\/_yd\t

2T

2(a+p)
) ( B, —a,7, )AL(_Ba_O‘fY?(g)-

16



We turn to the derivative of €2. By applying the usual product rule and setting v — « and
£ — ¢ by taking the limits appropriately, we are left with

9% d 2(a+B) I 2 _
0805 - (o) <\/;l |t> (ﬁ) (L fa® fa) (4.11)

X L(l -« _67 fd®?d)L(1 +O‘+ﬂafd®?d)AL(_B7a7a75)'

We now wish to evaluate (L'/L?)?(1, f4 @ f,). Since L(1, f; ® f,) has a simple pole at 1 and
L'(1, f4® f,) has a double pole at 1, the logarithmic derivative (L'/L)(s, f4® f,) has a simple
pole at 1. To compute its residue, take a small circular contour C oriented counterclockwise
with center at s = 1. By the residue theorem and the argument principle, we have

Res(L’( fa®f4), ) = %7{%(8,&@7[1) ds = #{zeros of L}—#{poles of L}. (4.12)

The contour may be chosen sufficiently small so that L(1, f; ® f,) has no zeros within the
contour which gives the residue Res((L'/L)(s, f4® f4),1) = —1. The residue of L(s, f; ® f,)
at s = 1is ¢y, (see Equation (2.14)), and so (L'/L?)(s, f2 ® f,) is entire with value —1/c;,
at s = 1. We get

02 _ VM |d|t\ T2 N
0By = ap) Cfd( o ) LA —a=5 faw f4) (4.13)

X L(l +oa+ 57 fd ®?d)AL(_67aaavﬁ)‘
We turn to the derivative of A evaluated at (v,d) = («, 5). Then

?A\ _L"(1+a+ﬂ,fd®?d)_(L’(1+a+5,fd®7d))2
08005 — sy L+a+pfa@fy) \Ll+a+8,fa®f,)

(4.14)

2

Ly - 0
(F) GrathhasTot gl (W0 + Wa,8,7.0)

=(a,B)

since Ap(a, B,a,8) = Yy(a,B,a,8) = 1. We focus our attention to the derivative of
Wi(e, B,7,0) and fix a prime p dividing M, which by assumption, must be M. Noting the
Fourier coefficients Ar,(p) are completely multiplicative at primes dividing M, we use the
formula for the sum of a geometric series to obtain

o2
oJsxole’ (

log(M)?
(Mg (M)|=2 - M1tets — 1

Wi(a, 8,7,0) =
7,8) = (o)
We turn to the derivative of W(c, 8,7,0). The computations are considerably more involved
as there is no guarantee the Fourier coefficients Ay, (p) are multiplicative. The strategy
involves carefully re-indexing the sums appearing in Wj(«, 8,7, 0) and repeatedly applying
the relation (2.6). We then expand Az, (p™ ") —x(p)As,(p™) in terms of the Satake parameters
attached to fy (see Section . Letting L, denote the unramified part of L, given by the

Euler product
= [[Zs(s) = L(s)[] Ly(5) (4.16)
PIN

17
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in the half-plane of convergence and its analytic continuation elsewhere, we obtain

] s = (B n -3 [ty
N (p ay,(p)By,(p) log(p) ))2 N (p ar,(p)By.,(p) log(p) ))2 N (p B1,(p) By, (p) log(p) ))2]'

et — ay, (p) By, (p tretd —ay, (p)Br.p trot? — By, (p)By, (p

Let A(1+ a+ ) denote the sum over p t N on the RHS. Note that the Ramanujan-Petersson
conjecture is known for holomorphic cusp forms of even integral weight. In particular, we get
that |ay,| = |By,| = 1 for primes p not dividing the level N; see [IK04] and [Sar05]. Therefore,
P(v) exists and is analytic in a neighborhood of v = 1. Finally, put

log(M)?
Ap,(M)[2 - M+e+B — 17

Cl+a+p) = —Bl+a+p)+ (4.17)

Putting everything together yields the result. [ ]

4.2. Contour integration for pair-correlation. The formula for the average of the
logarithmic derivative for shifted L-functions allows us to obtain a formula for P(f4; ¢), which
will later be used to perform a series expansion to obtain lower-order terms of arithmetic
origin with which to calibrate our effective matrix size. Set

I, = /_igo(r) (210g2 (@d“> + (é—i)l(1+z’r, fa® fq) (4.18)
N i(\/ﬂ|d|t

2
3, 27

—2ir
) L1 4ir, f4® f)L(1 —ir, f4 @ fy ) (ir) + € (1 + ir)) dr.

Proposition 4.3. Assuming the Ratios Conjectures and with ¢ as above, we have

VM |dJt

21

PUs) = 5 | [2metoyis

Here, I, should be regarded as a principal-value integral near r = 0.

) + Ir] dt + O(T/?+9), (4.19)

The proof is that of [CS07, Section 4], mutatis mutandis, and mainly relies on contour inte-
gration and some asymptotic analysis; the formula for (4.1)) will help with the integrals.

4.3. Series expansion and effective matrix size. With a formula for P(fy; ), we obtain
a series development for large T' and use it to obtain the effective matrix size. We scale the
VM|d|T

2me

. Define the rescaled test

pair-correlation by substituting y := rR/m and R = log <

function g by g(y) = g(rR/7) = ¢(r). By Proposition 4.3] and changing variables within the
integral via r — rR/m = y, we observe

> g<(7 —7')3) _ L |:27Tg(0) log <m|d|t) —i—[y} dt + O(TY*+),  (4.20)

™ 212 Jo 21
0<y,y'<T
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where

o TR/ I\ in
Ly =5 )g(y) <210g2 (@dlt) + <§—) ( utl fd®fd) (4.21)

—T(R/7

1 M|d|t\ /R iTy - iTy -
— L{1+ —/— L{1l——
v () + ™ e, Y heTs

iTy iTy
X M(R)—F(f(l—i— R))dy.

Recall that the bound for test function ¢(z) < 1/(1 + %) for real = implies a bound for the
rescaled test function g(y) < 1/(1 + y?) for real y. The bound allows us to approximate the
pair-correlation statistic for large T by

Fos () oo Lo (g (1) (14 o)

1 e 2mw(+1/R) z7ry iy iy
L 1——
* 2R2C2. 1—2m’y/R ( fd@fd) ( fd@fd) (R)

R

In the main paper [BBIMNSY24|, we performed a series expansion in 1/R for R large.
Most of the computations are routine, but critical to the argument is the fact that the
Ramanujan-Petersson conjecture is known for holomorphic cusp forms. This allows us to
expand £ in a series about 1.

After defining the function h(y) = 2¢(y) (and thus h also satisfies h(y) < 1/(1 + 9?)), we

get
T M|d|T siny \ ?
P(f;0) = —log | 22142 1— 4.2
() = 5 tow (L5000 ) o)+ [ n (1= (2 (4.29
e1 — egsin®my  esmysin 2wy _ -
T ST L o) )y + O,
where
1 log(M)? 16 + <7"(0)
= = = — 4.24
TSN, M-1 12 (4.24)
%// L/
er = =247 +2y — 2( ) (L) (1,ad” fq), (4.25)

and v is the Euler-Mascheroni constant and v, is the first Stieltjes constant. We remark that
this agrees with and explicitly extends Montgomery’s pair-correlation conjecture in [Mon73];
refer to the main paper [BBJMNSY?24] for details.

Now that we obtained a series expansion for the pair-correlation statistic, we can find the

effective matrix size in the generic case. In particular, we obtain the effective matrix size for

the entire family f;r(X ) simply by averaging over all choices d of quadratic twists. This fact
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simplifies the argument as we do not need to average over an infinite family of L-functions.
Following [Con03], the scaled pair-correlation Quy(x) for U(N) is

. 2 : 2
SlIlﬂ'fL’) sin® e

+O(N™). (4.26)

T 3N?2

Quaola) = 1= (

Due to the presence of the e; term in our pair-correlation expansion, we are unable to directly
match coefficients to obtain the effective matrix size. To deal with this, we minimize the
function (e; — egsin? y)/R? + sin® my/3N? with respect to the L? norm and obtain the
effective matrix N = R/+/3ey — 4e; for the L-function attached to a fixed twisted form f.
For our family, we take the average value of e; and e, as d varies over the family and obtain
the effective matrix size

Nog = R : (4.27)
3(eq) — 4(e1)

for the entire family F; (X) provided that 3{ez) —4{e1) > 0.

5. CUTOFF VALUE

We optimize the cutoff value of the excision threshold by following [CKRS05] and [CKRS06]
as modified by [DHKMSI12]. For our family of even twists of a given form with principal
nebentype and even integral weight, we may apply Kohnen-Zagier’s formula [Mao08] to
get

ragzp) < B — s - o (5.1)

where the coefficients ¢(d) are the Fourier coefficients of a half-integral weight modular form
that are obtained via the generalized Shimura correspondence. In particular, the arithmetic
of the coefficients ¢(d) is not well-understood. Though a notion of Shimura correspondence
exists for forms with non-principal nebentype, there is no analogous formula of Waldspurger
type which means we cannot predict the coefficient of the main term of the frequency of
vanishing. For this reason, it is not known whether the values L(1/2, f;) are discretized for
forms with non-principal nebentype. In the main paper [BBIMNSY?24|, we provide numerical
evidence that the lowest-lying zeros of family of the generic form 13.2.ea show (minimal)
repulsion at the origin.

As in [DHKMS12) [KeSn00], for Re(s) > —1/2, the moment generating function Mo(2N, s)
of the values [A4(1)| as A varies in the random matrix ensemble SO(even) can be evaluated
as

N

Mo(2N, s) = / Aa(1) dA =22 T]

SO(2N)

D(N +j— 1)T(s+ 75— 1/2)
T(—1/20(s+j+ N —1)

(5.2)

J=1

For a constant ¢ > 0, the probability density for values of the characteristic polynomials
Aa(1) with A € SO(2N) is given by

1 c+i00
Po(2N,z) = 27rz'x/ Mo (2N, s)x~*ds. (5.3)

—100
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We may predict the frequency of vanishing of ]-'Jf (X) for f with principal nebentypus, even
twists by calculating the probability that a random variable Y, with probability density

1 c+i00

Pi(d,z) = i / ar(s)Mo(s,logd)x™*ds ~ ap(—1/2)Po(s,logd) (5.4)
T Jc—ico

assumes a value less than |c¢(d)|?k|d|*~1/? and then sum asymptotically over the family. This

method was pioneered in [CKRS05] and [CKRS06]. However, to obtain an asymptotic for

the frequency of vanishing with the correct leading coefficient, we need to have an idea of the

statistical behavior of the coefficient ¢(d) evaluated over Dy (X).

For this reason the authors in [DHKMSI12] determine this value numerically; that is, they
introduce a notion of an ‘effective’ cutoff depending on a parameter that is determined
numerically, but which does not depend on d. We define &,k ¢|d|*~1/2 for our ‘effective’ cutoff
where d; is a numerical input. In particular, our model requires only the parameter ¢ be
numerically determined as in [DHKMS12l Section 5]—mno further inputs are necessary. We
write

0Ky Oyl 1/2
Prob (O <Y; < \d|k1/2) ~ /0 a;(—1/2) h(logd) x='/* dx (5.5)

VOrky
= 2a;(—1/2) h(logd) [d[F72=1/1"
where h(N) = 277/8G(1/2)7~1/4(2N)3/8 is the asymptotic for the moment generating function
of the symmetry group for ]—"J?L (X) at the pole and G is the Barnes G-function [Bar00)].
Following [CKRS05] and [DHKMS12], we predict that

. 0k
#{Lf(s’w‘” € Ff (X) + d prime, Ly(1/2, ) = 0} = D Prob (0 <Yy < !d|£_f/z)'
deD} (X)
d prime
(5.6)

There are asymptotically X/4log X prime fundamental discriminants d € DJT(X ). The
convergence of the sum (5.6 is determined by k. Namely, if £ < 3, then the sum diverges,
and we have the asymptotic

1 4
o) ~ 2a¢(—1/2)/3 rk th(log X ) ——| X |(5=2k)/4, .
(©-6) Tlog X ar(=1/2)y/dstsh(log X)=—r | X]| (5.7)

For k =1, we may find ﬁ by numerically determining the left hand side of . These
numerics have already been run in [DHKMS12]. When k = 2, there is a finite number of even
twists that vanish which indicates there is little to no repulsion of lowest-lying zeros at the
origin. When £ > 3, then the sum (|5.6)) converges, indicating that at most a finite number of
lowest-lying zeros vanish [CKRS05]; hence, no repulsion at the origin is expected. In Section
[0 we verify these phenomena numerically for the forms: 11.2.a.a,7.4.a.a,5.8.a.a.

6. NUMERICAL OBSERVATIONS

Our goal for this section is to numerically determine whether any significant repulsion occurs

at the origin. The code may be found in [Yao24]. We reiterate that we did not compute
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the effective matrix size for our family due to the given cuspidal newform L-function’s Euler
product not being accessible in PARI/GP or SageMath. Recall the nearest neighbor spacing
statistic is the probability density for distances between consecutive zeros, or equivalently, a
normalized histogram of gaps between consecutive zeros. We work with the following cuspidal
newforms in [BBJMNSY24]:

LMFDB Label ‘ Type ‘ Group
11.2.a.a,5.4.a.a,5.8.a.a,7.4.a.a | xy principal, even twists SO(2N)
11.2.a.a,5.4.a.a,5.8.a.a, 7.4.a.a | xs principal, odd twists | SO(2N + 1)

3.7.b.a self-CM USp(2N)
13.2.e.a,11.7.b.b generic U(N)

In the following, we consider the ‘first’ eigenvalues of random matrices SO(odd) and SO(even)
whose characteristic polynomials are evaluated at or near 1. By ‘first,” we mean those
eigenvalues closest to 1 on the unit circle. Note the eigenvalues of random matrices from
SO(odd) with characteristic polynomial at 1 are all going to be zero. The size of the bins for
each histogram is 100.

6.1. Families with orthogonal symmetry. We numerically computed the non-vanishing
lowest-lying zeros of F/(X) with f € S3°V(11, principal), which has sign e¢; = +1. As
expected, we obtain the repulsion from the origin for even twists and hence, the model requires
the cut-off value. Recall we chose those twists with positive fundamental discriminants. If we
choose twists with negative fundamental discriminants, we still recover repulsion from the
origin. Our results combined with the results in [DHKMSI2] means that regardless of if we
range over twists with negative or positive discriminants, we still recover repulsion from the
origin. In addition, observe in Figure the rather pronounced repulsion from the origin for
non-vanishing lowest-lying zeros of even twists of 11.2.a.a. Since the distribution of the
non-vanishing lowest-lying zeros agrees most with that of the excised matrices (dotted line)
in Figure this verifies the necessity of creating an excised model.

The second lowest-lying zeros of odd twists with characteristic polynomial evaluated near 1 do
not vanish; this agrees with eigenvalues of random matrices from SO(odd) with characteristic
polynomials evaluated near 1 which also do not vanish. Note that eigenvalues of random
matrices from SO(odd) with characteristic polynomials evaluated at 1 do, in fact, vanish. In
a sense, the odd twists ‘force’ a particular distribution which does not look as natural as
that of even twists. In fact, we see an attraction toward the origin in the right histogram of
Figure . In the main paper [BBJMNSY24], we present data for the form 5.8.a.a which
suggests this behaviour does not depend on the sign of the given form.

We numerically found the non-vanishing lowest-lying zeros of our famiy .7-']2"(X ) with f €
Sgev(5, principal), and the results are shown in Figure [6.2] As predicted, the distribution
of the non-vanishing lowest-lying zeros of even twists matches the eigenvalues of random
matrices in SO(even) with characteristic polynomials evaluated. We also get agreement
between the lowest-zeros of odd twists and the eigenvalues of random matrices in SO(odd)
with characteristic polynomials evaluated at 1 as both vanish. As predicted, the distribution

of the second lowest-lying zeros of odd twists matches the eigenvalues of random matrices
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Lowest zeros (even twists) Lowest zeros (odd twists)

3.0 3.5 4.0

FI1GURE 6.1. The left histogram shows the distribution of non-vanishing lowest
zeros for 4,497 even twists of 11.2.a.a with discriminant up to 32,829; the
red curve (left) shows the distribution of the first eigenvalues of 1,000,000
randomly generated SO(20) matrices with characteristic polynomial evaluated
at 1; the black dotted curve (left) is the same distribution but with excision.
We varied the excision threshold numerically to obtain the optimal fit. The
right histogram shows the distribution of second lowest zeros for 4,563 odd
twists of 11.2.a.a with discriminant up to 32,897; the red line (right) shows
the distribution of the first eigenvalues of 1,000,000 randomly generated SO(21)
matrices with characteristic polynomial evaluated near 1. The data have been
normalized to have mean 1.

in SO(odd) with characteristic polynomials evaluated near 1, respectively. As opposed to
the level 11, weight 2, principal form with even sign, the level 5, weight 8, principal form
has odd sign €; = —1 which indicates the odd twists do not ‘force’ any SO(odd) behavior.
Again, there is no observed repulsion from the origin and hence no need for a cut-off value.
However, this phenomena might be caused by small data and so the repulsion is perhaps too
small to be noticeable so quickly with the height increasing.

The sign of f € Sy°V(7, principal) is e = +1. As shown in the left histogram of Figure
there is little to no discernible repulsion at the origin for the even twists. There is no need for
excision for this form as shown by the disagreement between the excised distribution (dotted
line) in Figure that is, the non-excised random matrix model describes the distribution
well. This is expected given the heuristic proposed in [DHKMSI12]. However, on the right of
Figure [6.3], the red curve deviates from the data. In fact, we see the same attraction toward
the origin for odd twists of 7.4.a.a as that for odd twists of 11.2.a.a. We notice both
forms have even sign €; = +1. This might indicate that attraction toward the origin for odd
twists is dependent on the sign of the form being even. Rather than implement a cutoff value,
one might develop a new model that accounts for this attraction by introducing a value that
incorporates more first eigenvalues near the origin.
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Lowest zeros (even) Non-vanishing lowest zeros (odd)

08 1 144

FIGURE 6.2. The left histogram shows non-vanishing lowest-lying zeros of
1,387 even twists of 5.8.a.a with discriminant up to 10,913; the red curve (left)
shows the distribution of the first eigenvalues of 1,000,000 randomly generated
SO(16) matrices with characteristic polynomial evaluated at 1 without excision.
The right histogram shows the second lowest-lying zeros of 1,569 odd twists
of 5.8.a.a with discriminant up to 12,409; the red curve (right) shows the
distribution of the first eigenvalues of 1,000,000 randomly generated SO(17)
matrices with characteristic polynomial evaluated near 1. The data have been
normalized to have mean 1.

Lowest zeros (even twists) Lowest zeros (odd twists)

3.0 3.5 4.0

FIGURE 6.3. The left histogram shows non-vanishing lowest-lying zeros of 5,438
even twists of 7.4.a.a with discriminant up to 41,000, and the red curve (left)
shows the distribution of the first eigenvalues of 1,000,000 randomly generated
SO(20) matrices with characteristic polynomial evaluated at 1, and the black
dotted curve is the same distribution but with excision with cutoff threshold
the same as 11.2.a.a. The right histogram shows second lowest-lying zeros of
5,463 odd twists of 7.4.a.a with discriminant up to 41,000, and the red curve
(right) shows the distribution of the first eigenvalues of 1,000,000 randomly
generated SO(21) matrices with characteristic polynomial evaluated near 1.

The data have been normalized to have mean 1.
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6.2. Families with symplectic symmetry. As shown in Figure [6.4], the lowest-lying
zeros of F/(X) for f € SV (3, self-CM) with sign e; = +1 follow the predicted symplectic
symmetry. The theory and the numerical results align as predicted.

Lowest zeros (A = +1) Lowest zeros (A = —1)

T T
3.0 35 4.0

FIGURE 6.4. The left histogram shows the distribution of lowest-lying zeros
for 5,450 twists of 3.7.b.a with choice A = +1, and the red line (left) shows
the distribution of first eigenvalues of 1,000,000 randomly generated USp(20)
matrices with characteristic polynomial evaluated at 1. The right histogram
shows the distribution of lowest zeros for 5,720 twists of 3.7.b.a with choice
A = —1, and the red line (right) shows the distribution of first eigenvalues of
1,000,000 randomly generated USp(20) matrices with characteristic polynomial
evaluated at 1. The data have been normalized to have mean 1.

6.3. Families with unitary symmetry. As shown in Figure the lowest-lying zeros of
our family associated to the generic form 11.7.b.b does not follow the predicted unitary
distribution. The distribution of the low-lying zeros seems to match the distribution of the
first eigenvalues of 1,000,000 numerically generated symplectic matrices. This means we
recovered self-CM behavior from a generic form. Note the form 11.7.b.a is, in fact, self-CM.
Hence, a form with predicted unitary symmetry can have a different predicted symmetry
under certain conditions—which are yet to be determined. The deviating behavior showcased
in Figure may be explained by the fact that the one-level density for the unitary ensemble
showcases no oscillatory behavior as it equals 1. Hence, there is no possibility of extracting
any arithmetic nuance. In particular, the data suggests certain generic forms that have
unitary symmetry would restrict to have symmetry of another ensemble.

The next generic form we considered was 13.2.e.a, and the histograms are presented in
Figure [6.6f In [BBJMNSY24], we took even and odd twists by setting 1q(M) equal to
either +1 or —1 to see if we recovered SO(even) and SO(odd) symmetry, respectively. We
in fact did not recover SO(odd) symmetry, which is expected given that generic forms
should not be influenced by parity of the twist. In Figure we see how well the first
eigenvalues of 1,000,000 numerically generated of both unitary and special orthogonal (even)

matrices, normalized to have mean 1, model the lowest-lying zeros of our family. This
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indistinguishability between the distributions presents difficulty for numerically determining
the predicted ensemble for a generic form. We also see repulsion at the origin for 13.2.e.a.
This may indicate the excision present in the model should be extended to all weight 2 forms

regardless of principality of the nebentype.

Lowest zeros (twists)

3.0 3.5 4.0

FIGURE 6.5. The histogram (blue) shows the distribution of the 2,860 lowest-
lying zeros of the family of the generic form 11.7.b.b and discriminant up
to 10,277; the red line shows the distribution of the eigenvalues of 1,000,000
random matrices from the unitary ensemble whose characteristic polynomials
are evaluated at 1. The data have been normalized to have mean 1.
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Lowest zeros Lowest zeros

FIGURE 6.6. The left histogram shows the distribution of lowest-lying zeros
for 2,097 twists of 13.2.e.a with discriminant up to 7,500; the red curve (left)
shows the distribution of first eigenvalues of 1,000,000 randomly generated
matrices from U(18) with characteristic polynomial evaluated at 1; the black
dotted curve (left) is the same distribution but with excision of cutoff value
1/16. We varied the excision threshold numerically to obtain the optimal
fit. The right histogram shows the same twists as the left histogram but has
the red line (right) showing the distribution of first eigenvalues of 1,000,000
randomly generated matrices from SO(18); the black dotted curve (right) is
the same distribution but with excision of cutoff value 1/64. The data have
been normalized to have mean 1.
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