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ABSTRACT. One challenge (or opportunity!) that many instructors face is how varied
the backgrounds, abilities, and interests of students are. In order to simultaneously
instill confidence in those with weaker preparations and still challenge those able to
go faster, an instructor must be prepared to give problems of different difficulty levels.
Using Dirichlet’s Theorem as a case study, we create and discuss a family of problems
in number theory that highlight the relative strengths and weaknesses of different ways
to approach a question and show how to invite students to extend the problems and
explore research-level mathematics.
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1. INTRODUCTION

Even fairly good students, when they have obtained the solution of the problem and
written down neatly the argument, shut their books and look for something else. Doing
so, they miss an important and instructive phase of the work. . . . A good teacher should
understand and impress on his students the view that no problem whatever is completely
exhausted. One of the first and foremost duties of the teacher is not to give his students
the impression that mathematical problems have little connection with each other, and
no connection at all with anything else. We have a natural opportunity to investigate
the connections of a problem when looking back at its solution.

This is a quote from George Pólya’s famous book How to Solve it [Pó] that encap-
sulates the problem-solving spirit we hope teachers will instill in their students after
reading this article.

As we travel from school to school, it’s important to realize that what works well in
one institution may not in another. The genesis of this article is from the experiences of
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one of the authors1 who at one point in his career moved from schools where it was the
norm to have a 50% be an excellent score in an upper level exam to a place where such
an average led to students complaining and doubting their ability to do mathematics!
Being told that there was a curve did no good, nor comparisons such as getting a hit in
one out of every three at-bats would have you ranked as one of the greatest ballplayers
of all time. The students worried that the numerical value indicated they could not do
mathematics.

There are many solutions to such a situation. The chosen one was to add questions to
assignments / exams which were hopefully straightforward and would be easily solved
by the entire class and decrease the point count of the other problems, thus effectively
baking in the curve. For this to work, though, it’s necessary to find problems that every-
one will get! We focus on one such problem for several reasons. First, for colleagues
just starting out, it highlights the creative process in building an exam. Second, over the
years this problem has been discussed with several people, and recently these conver-
sations led to intriguing explorations on alternate ways to solve the problem, and future
non-trivial questions one can ask, highlighting how one can find research problems ev-
erywhere! We thus decided to write up our dialogue, demonstrating that there are often
multiple ways of solving a problem, each with its strengths and weaknesses2.

So what’s our problem of focus? There are many beautiful results in number theory;
a particularly striking one is Dirichlet’s Theorem.3 Recall every positive integer falls
into one of three mutually distinct categories: 1 is the unit, an integer p > 1 is prime
if it has precisely two factors (itself and 1), and all other numbers are composites. By
the Fundamental Theorem of Arithmetic (see the classic [HW], which is full of gems to
read), every integer can be factored uniquely as a product of primes in increasing order,
and this is why we do not want one to be considered a prime. If that were true then
we would no longer have unique factorization due to the ability to add any number of
factors of 1.

Theorem 1.1 (Dirichlet). If a and b are relatively prime4 then there are infinitely many
primes congruent to b mod a. In other words, the sequence an+ b is prime for infinitely
many n.

What’s fascinating is that the proof used is the same one that’s needed for a much
easier question: prove there is at least one prime congruent to b modulo a when a and
b are relatively prime! That’s right – the way we know how to prove there’s at least one
such prime is to prove there are infinitely many!5

1This is one reason we have multiple people writing this, to protect identities! The other is that we’ve
all known each other for years, working and talking with each other all the time.

2See Terry Tao’s blogpost [Ta] that discusses this in more detail.
3See https://www.youtube.com/watch?v=zG185Ef1gPM for a video lecture on the moti-

vation behind Dirichlet’s Theorem.
4Sometimes one assumes that our numbers are positive; we leave it to the reader to show that such an

assumption is harmless.
5It’s worse than that. If π(x) is the number of primes up to x, and πa,b(x) the number of primes

p ≤ x congruent to b modulo a, then Dirichlet’s Theorem is proved by showing to first order πa,b(x) =
π(x)/φ(b), with φ being the Euler totient function counting the number of integers at most n relatively
prime to n. In other words, to show there is one prime congruent to b modulo a we show there are

https://www.youtube.com/watch?v=zG185Ef1gPM
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A moment’s reflection shows the conditions are necessary; if a and b aren’t relatively
prime, then there’s at most one prime congruent to b modulo a, namely gcd(a, b), if
gcd(a, b) is prime. The difficulty is proving this sufficient condition is necessary.

One of us thus proposed the following problem, attributed to the aptly named fictional
mathematician Telhcirid (see [Tel] for a different theorem under the same name).

Proposition 1.2 (Telhcirid). If a and b are integers (with a nonzero), then there are
infinitely many composites congruent to b modulo a.

In the remaining sections, we discuss various proofs, the benefits and disadvantages
of the different approaches, and describe how to build research questions from these
conversations.

2. SOLUTION

Unlike in Dirichlet’s Theorem, we don’t need a and b to be relatively prime in Propo-
sition 1.2. There are many ways we could prove this. One option is to use the following
result, for if we can show that in the limit, zero percent of integers are prime, then any
arithmetic progression must in the limit have almost all of its numbers composite.6

Proposition 2.1 (Zero density of primes). The set of prime numbers has zero density.
That is, if π(x) is the number of prime numbers at most x, then

lim
x→∞

π(x)

x
= 0. (2.1)

We give the proof in Section A; if you know what quantities to study it’s not hard, but
there is a bit of an art to figuring out what should be studied. Rather than going down
that technical detour now, we see why it’s a worthwhile route to explore.

Our goal, Proposition 1.2 (there are infinitely many composites congruent to b mod-
ulo a) follows readily from Proposition 2.1.

(First) proof of Proposition 1.2. Assume Proposition 1.2 is false for some integers a
and b. Then there exists an integer K such that, for all k > K, ak + b is prime,
which implies the primes have positive density (of at least 1/|a|; of course a cannot be
zero!). □

This approach is far stronger than we need; it yields in the limit that 100% of the
inputs yield composite numbers. Further, it doesn’t give much insight into why Propo-
sition 1.2 is true. So we continue our search for a simpler proof of the weaker result,
namely that there are infinitely many composites in the sequence (and not that almost
all inputs give composites). The next, more direct proof, better illuminates the present
difficulties.

infinitely many, and the way we do that is we show all possible residue classes b mod a (i.e., those b
relatively prime to a) to first order have the same number of primes up to x as x → ∞!

6Note there’s a difference between 100% and all. In the limit 100% of integers are not squares: the
percent of integers at most x that are not squares is approximately (x− x1/2)/x = 1− x−1/2; however,
there are infinitely many squares.
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(Second) proof of Proposition 1.2. Suppose first that |b| > 1 (so it’s not ±1). Then the
subsequence {a(bm) + b}∞m=1 is entirely comprised of composite numbers.7

Now we consider the case where b = ±1. It’s natural to try to find a special sequence
again, but this time it’s not as clear what to try, and many students over the years missed
this part.

We want to construct a sequence of composites that are each 1 away from some
multiple of a. We use the method of divine inspiration [MiP]: that is, we give a choice
of n where an+b can be written as a product of two integers greater than 1, and once we
can verify that works we are done! (We’ll explain later how we came to be so inspired.)

Choosing n = a(am+ b) +m gives

an+ b = a(a(am+ b) +m) + b = (a2 + 1)(am+ b),

Since a ̸= 0, we know that a2 + 1 ≥ 2. For sufficiently large m, |am+ b| > 1, making
an+ b a composite. □

Let’s briefly discuss how we knew to try n = a(am+ b) +m in the above proof. We
write n as ξ + γ, where ξ and γ are free. We want to be able to factor

a(ξ + γ) + b = aξ + (aγ + b),

which is possible if ξ is a multiple of (aγ + b); while there are many multiples we can
choose, a good one is a(aγ + b) as the a reinforces the a we have, ensuring positive
quantities. In that case,

an+ b = a2(aγ + b) + (aγ + b) = (a2 + 1)(aγ + b).

Now let γ = m. By no means do we claim that we give the only valid construction for
this proof technique; to a large extent, we simply follow our noses. This goes to show
the importance of one’s intuition when solving problems.

The third time, perhaps, is the charm. Here is yet another proof. The idea is to use
extensions of

x2 − y2 = (x− y)(x+ y) and x3 + y3 = (x+ y)(x2 − xy + y2).

Third proof of Proposition 1.2. If |b| > 1, then an + b is composite whenever n is a
multiple of b. Suppose that b = ±1. Without loss of generality, assume a ≥ 1 (other-
wise, we consider −an− b). Our arithmetic progression is then an± 1. We handle the
two cases separately.

For n = 32k+1a2k (k ∈ N), we have

an− 1 = (3a)2k+1 − 1 = (3a− 1)((3a)2k + (3a)2k−1 + · · ·+ 1).

Since 3a− 1 and (3a)2k + (3a)2k−1 + · · · + 1 are greater than 1, we know that an− 1
is composite. The same reasoning applies to

an+ 1 = (3a)2k+1 + 1 = (3a+ 1)((3a)2k − (3a)2k−1 + · · ·+ 1).

□

7Most students have no trouble finding this explicit example. Note that it gives infinitely many com-
posites, but it doesn’t give that almost all inputs are composite!
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3. ASKING MORE REFINED QUESTIONS

We shift gears and discuss creating new questions which can hopefully be answered
by students (either as another exam question or as a research project), using the proof
ideas of Proposition 1.2 as inspiration. A general maxim for generating such problems
is the following: If one successfully produces a qualitative result (e.g., “there exists,”
“for some n,” “happens infinitely often,” etc.), one then tries to produce quantitative
results carrying more information (e.g., “when n is equal to,” “with the density of,” “is
bounded by,” etc.). In our attempt to solve a more refined problem, we may pleasantly
encounter alternative solutions to the original one. We’ve seen both qualitative and
quantitative proofs of Proposition 1.2, and now we illustrate this practice further.

We may ask, for a given positive integer N , are there always N consecutive compos-
ites in our arithmetic progressions an+b (a > 0)? The answer is yes, thanks to the zero
density of primes (Proposition 2.1) because otherwise the density of primes would be
at least 1/aN > 0, a contradiction. Of course, this argument is not entirely elementary;
is there an easier way to see this?

Yes! We can avoid using Proposition 2.1 by observing that for each positive integer
m > 2, all integers in Sm = {m! + 2,m! + 3, . . . ,m! + m} are composite. Since
|Sm| = m, if we choose m sufficiently large8 relative to a, we can ensure we have N
consecutive terms in our arithmetic progression are in Sm.

For another question: What proportion of natural numbers n generate composite
numbers in our progression an + b? In other words, as x → ∞ what fraction of
n ≤ x lead to an + b is composite? The density of such n is 1, and again we can see
this by appealing to our result that the density of the primes is zero, but let’s take this
opportunity to discuss how to elementarily prove Proposition 2.1.

There are two possibilities: there are only finitely many primes, or there are infinitely
many primes. If there are only finitely many primes in the sequence, then trivially the
proportion of n making an+ b converges to 100%.

Thus we’re left with the case when there are infinitely many primes; we want to use
as few properties of the primes as we can get away with. The idea is to use Inclusion -
Exclusion. We’ll leave it as an exercise to prove, but be warned: it is very easy to make
a small assumption and have an invalid argument; one has to be very careful in doing
such arguments.9

Last but not least, we can, of course, ask for the longest run of primes in our arith-
metic progression an+ b as n → ∞. Since

a(a(am+ b) +m) + b = (a2 + 1)(am+ b),

and a2 +1, am+ b > 1 for sufficiently large m ∈ N, we know that an+ b is composite
when n = a(am+ b)+m. Therefore, as n → ∞, a run of primes cannot be longer than
a2. This bound is sharp when a = 1, but not when a = 2 and b = 1, for example. To
see why, note that 2k + 1, 2k + 3, and 2k + 5 form a complete residue system modulo
3, so exactly one of them is divisible by 3. If they’re all primes, then one of them is 3.

8How large must m be in terms of a and N?
9Or see Tao’s post at https://mathoverflow.net/questions/381456/

what-is-the-simplest-proof-that-the-density-of-primes-goes-to-zero.

https://mathoverflow.net/questions/381456/what-is-the-simplest-proof-that-the-density-of-primes-goes-to-zero
https://mathoverflow.net/questions/381456/what-is-the-simplest-proof-that-the-density-of-primes-goes-to-zero
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This happens only when k = 1, in which case neither 2k − 1 nor 2k + 7 is a prime.
Hence, as n → ∞, the longest run of primes in 2n + 1 is 2. Meanwhile, our bound is
a2 = 4. We leave it to the reader to investigate the problem of the longest run of primes
in an arithmetic progression as a and b vary!

4. RELATING OUR PROBLEM TO ADVANCED RESULTS

Now that we’ve given the reader ample groundwork to play with extensions and
variants of Dirichlet’s (and Telhcirid’s) Theorem, we demonstrate the importance of
this mathematical play by connecting our discussion to more sophisticated results in
number theory. Indeed, as educators, we should show students the endless possibilities
of extending a problem and the benefits of doing so, including the following.

a) After several extensions of a problem, students will likely encounter research-
level mathematics. The urge to solve an extended version of a problem they
previously solved serves as a strong motivation to study advanced results and
make new contributions.

b) We may also give students a relatively challenging problem, possibly allow
them to assume an advanced result, and tell them to use what they just learned in
the course to solve the problem in a few lines. This fosters their understanding
of the class material and helps portray its significance in a broader mathematical
context, and hopefully motivates them to continue onward and understand the
deeper results.

Let’s illustrate item a) first. To extend a problem, a common method is to review
the ideas used in its solution and check if we’ve exploited their power to the fullest.
For example, combining Dirichlet’s Theorem on arithmetic progressions and explicit
constructions of composites, we can ask about k-composites; these are numbers which
are the product of exactly k distinct primes.

The problem statement above illustrates a common issue: it’s not always clear what’s
the right generalization or definition. Do we want k distinct primes to divide our num-
ber, or do we want exactly k primes? For example, 12 = 223; is this a 2-composite
number or should this be a 3-composite number as it’s divisible by 2 twice and 3 once?
Either definition is fine, we just have to be clear what we mean; frequently such intro-
spection leads to related problems to study! We’ll figure out what we mean to study as
we start exploring; this is not uncommon - until we dive in to the problem it’s not clear
what the right definition should be.

Thus, let’s try to solve the following question (and in the course of doing so figure
out what we mean by k-composite!): For a and b relatively prime, are there infinitely
many k-composites in an arithmetic progression an+ b?

We prove that the answer is yes. The case k = 1 follows immediately from Dirichlet’s
Theorem, which we’ll freely use. For a proof, see [Da, Se]. Let’s consider k = 2. From
the k = 1 case applied to the relatively prime pair a2 and 1 we can choose a positive
integer s such that sa2 + 1 is prime. Appealing once again to the Method of Divine
Inspiration (you’re encouraged to discover the path we took to such enlightenment) we
take n = sa(am + b) +m with m free in our arithmetic progression, and note an + b
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becomes
a(sa(am+ b) +m︸ ︷︷ ︸

ns(m)

) + b = (sa2 + 1)(am+ b). (4.1)

Since am + b is prime for infinitely many m by Dirichlet’s Theorem, ans(m) + b is
2-composite infinitely often. At this point we now have an argument for what we mean
by k-composite. It’s possible that sa2 + 1 and am + b are the same prime, so perhaps
we want to have exactly two prime factors, and they can be the same. Of course, since
we have infinitely many m such that am+ b is prime it’s easy to force the two factors to
be distinct primes; if they happen to be the same just take a larger m, which we know
we can do by Dirichlet’s Theorem.

A moment of reflection reveals that (4.1) represents certain numbers in an arithmetic
progression as a product of a prime and numbers in the same arithmetic progression.
This allows us to use induction to prove the infinitude of k-composites. Indeed, for each
time am + b is 2-composite, we pick a sufficiently large s such that sa2 + 1 is a prime
larger than am+ b. Then (sa2 + 1)(am+ b) is 3-composite.

Going further, we can ask about the density of k-composites in our arithmetic pro-
gression, which turns out to be 0, though not surprisingly we’re leaving elementary
results and now appealing to beautiful theorems in the literature. To see this, we recall
the beautiful Erdős-Kac theorem [EK], which states that for any fixed a < b,

lim
x→∞

1

x
·
∣∣∣∣{n ≤ x : a ≤ ω(n)− log log n√

log log n
≤ b

}∣∣∣∣ =
1√
2π

∫ b

a

e−t2/2dt.

Consequently, almost all numbers n have log log n distinct prime factors.

Another direction is to investigate what happens when we replace an + b by a non-
constant polynomial f(n) with integer coefficients. We can still easily and elementarily
show that f(n) is composite for infinitely many n. Write f(x) = amx

m + am−1x
m−1 +

· · · a1x + a0 for some m ≥ 1 and am ̸= 0. Without loss of generality, assume that
am ≥ 1. Since limx→∞ f(x) = ∞, there exists k ∈ N such that f(k) > 1. Then for
j ∈ N,

f(k + jf(k)) = am(k + jf(k))m + am−1(k + jf(k))m−1 + · · ·+ a1(k + jf(k)) + a0

is a multiple of f(k) and is greater than f(k) for sufficiently large j. Hence, f(k +
jf(k)) is composite and thus f(n) is composite infinitely often.

While the above reasoning shows that we cannot have a polynomial which is always
prime, it would be a disservice if we didn’t mention Euler’s function n2+n+41, which
produces primes for 0 ≤ n ≤ 39! Fendel [Fe] connected polynomials of the form
n2 + n+C that produce “many” primes to principal ideal domains. On another related
note, a positive integer C is said to be an Euler’s lucky number if n2 − n+ C produces
primes for all 1 ≤ n ≤ C. It follows from the work of Heegner [He] and Stark [St] that
there are only six Euler’s lucky numbers, namely 2, 3, 5, 11, 17, and 41 [We]. They
form the sequence A014556 in the Online Encyclopedia of Integer Sequences (OEIS)
[Sl].

Regarding item b), we can show students an application of the difference-of-squares
formula through the following problem: Prove directly the infinitude of 3-composites

https://oeis.org/A014556
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in the arithmetic progression 4n + 3, assuming the Twin Prime Conjecture (there are
infinitely many primes p such that p + 2 is also prime). A quick solution is to observe
that for n = 5k2 − 2,

4n+ 3 = 4(5k2 − 2) + 3 = 20k2 − 5 = 5(4k2 − 1) = 5(2k − 1)(2k + 1).

Under the twin prime conjecture, the pair 2k− 1 and 2k+ 1 are simultaneously primes
infinitely often, and we are done. Can this argument be extended to prove there are
infinitely many 4-composites by assuming a conjecture about numbers, and if so what’s
the weakest conjecture you need to assume?

We end with one final problem, which gives a nice application of the Intermediate
Value Theorem (IVT). Fermat’s Last Theorem states that given an integer r > 2, there
are no positive integers x, y, z to the equation xr + yr = zr. Does the conclusion
still hold if r is a real number? To solve this problem (see [Mo]), consider the function
f(x) = 4x+5x−6x. Clearly, f(2) > 0 and f(3) < 0. The IVT guarantees the existence
of s ∈ (2, 3) such that 4s + 5s − 6s = 0; what kind of number is s? Thanks to Lenstra
[Le], we know s must be irrational, but it’s unknown if it’s transcendental.10 Perhaps
the answer depends on what triple we use - could different triples lead to different types
of s?

5. CONCLUSION

Presenting students with problems of increasing difficulty levels gives everyone a
taste of success, builds up their confidence and persistence, and effectively improves
their problem-solving skills. During the process, students may encounter new chal-
lenges that are great opportunities for us as educators to teach them how to respond to
setbacks and impasses. Furthermore, these challenges sometimes result in a research
problem that is both accessible to the undergraduates and interesting to the research
community. The authors hope that this article gives a sense of the creative process in
finding problems to engage students both inside the classroom and in research settings.
We would like to end this article with a quote by G. Cantor:

In mathematics, the art of proposing a question must be held of higher value than
solving it.

APPENDIX A. PROOF OF PROPOSITION 2.1

Proof of Proposition 2.1. We reproduce the proof given in [Me], though there are many
others. By the Binomial Theorem,

(x+ y)m =
m∑
k=0

(
m

k

)
xkym−k, with

(
m

k

)
=

m!

k!(m− k)!
;

remember that m!
k!(m−k)!

represents the number of ways to choose k from m distinct
objects, where order does not matter, and therefore is an integer.

10If α is a root of a finite polynomial with integer coefficients then it is algebraic, otherwise it is
transcendental (see [MT-B]). Numbers such as

√
2 and more interestingly

√√
2 +

√
3 are algebraic,

while e and π are transcendental.
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Let’s take m = 2n and x = y = 1, thus
m∑
k=0

(
2n

k

)
= 22m = 4n.

As all terms on the left are positive, looking at just the central term we see
(
2n
n

)
< 4n.

In addition, since
(
2n
n

)
= (2n)!

n!n!
is an integer, it must be a multiple of all the primes larger

than n as none of those primes divide the integers in the denominator. Thus each prime
in the range n+ 1, n+ 2, . . . , 2n divides this central binomial coefficient.11 Therefore,(
2n
n

)
> nπ(2n)−π(n), and since the central binomial coefficient is less than 4n, we have

nπ(2n)−π(n) < 4n. (A.1)

By applying the natural logarithm to both sides of the inequality, we obtain

π(2n)− π(n) <
n ln 4

lnn
.

We now use a standard trick: dyadic decomposition [MiP]. Basically, we apply this
observation many times with different choices of n, stitching them together to get the
desired result. Specifically, if we choose n = 2k−1 for some k ∈ N, we have that

π(2k)− π(2k−1) <
2k−1 ln 4

(k − 1) ln 2
=

2k

k − 1
. (A.2)

Summing over all k from 2 to 2m causes telescoping on the left-hand side of (A.2) and
then

π(22m)− π(2) <

(
22

1
+ · · ·+ 2m

m− 1

)
+

(
2m+1

m
+ · · ·+ 22m

2m− 1

)
< 2m+1 +

2m+1 + · · ·+ 22m

m
< 2m+1 +

22m+1

m
.

Hence,

π(4m) < 1 + 2m+1 +
22m+1

m
.

A positive integer x lives between two consecutive powers of 4; given any x there is an
m such that 4m−1 < x ≤ 4m; we can re-write this as

m− 1 < log4 x ≤ m.

Choosing m as appropriate for a given x, we have the inequality

π(x) ≤ π(4m) < 1 + 2(1+log4 x)+1 +
22(1+log4 x)+1

log4 x
.

After simplifying and rearranging, we get

π(x)

x
<

1

x
+

4√
x
+

8

log4 x
,

and the right-hand side goes to 0 as x → ∞, completing the proof. □

11As an interesting aside, there’s at least one prime number in this range; this result is known as
Bertrand’s postulate; see for example [MT-B].
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This is only one of many proofs; we encourage the reader to look for others and
discuss with friends and classmates. Notice also that some steps like (A.1) are crude
and could be made sharper; however, if all we care about is showing that the percentage
of numbers up to x that are prime tends to zero then there’s no need. This illustrates
a general principle in mathematical proof writing: frequently one is lazy, if it works
great; if the bound is too crude then we work harder!
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