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ABSTRACT. Random Matrix Theory (RMT) has successfully modeled diverse systems, from energy levels
of heavy nuclei to zeros of L-functions; this correspondence has allowed RMT to successfully predict many
number theoretic behaviors. However there are some operations which to date have no RMT analogue. Our
motivation is to find an RMT analogue of Rankin-Selberg convolution, which constructs a new L-functions
from an input pair. We report one such attempt; while it does not appear to model convolution, it does create
new ensembles with properties hybridizing those of its constituents.

For definiteness we concentrate on the ensemble of palindromic real symmetric Toeplitz (PST) matrices
and the ensemble of real symmetric matrices, whose limiting spectral measures are the Gaussian and semi-
circular distributions, respectively; these were chosen as they are the two extreme cases in terms of moment
calculations. For a PST matrix A and a real symmetric matrix B, we construct an ensemble of random
real symmetric block matrices whose first row is {A,B} and whose second row is {B,A}. By Markov’s
Method of Moments and the use of free probability, we show this ensemble converges weakly and almost
surely to a new, universal distribution with a hybrid of Gaussian and semi-circular behaviors. We extend
this construction by considering an iterated concatenation of matrices from an arbitrary pair of random real
symmetric sub-ensembles with different limiting spectral measures. We prove that finite iterations converge
to new, universal distributions with hybrid behavior, and that infinite iterations converge to the limiting
spectral measure of the dominant component matrix.
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1. INTRODUCTION

1.1. History. Random Matrix Theory (RMT) is well-suited to the fundamental problem of studying
spacings between observed values arising from large, complex systems such as energy levels of heavy
nuclei and vertical spacings of zeros of the Riemann zeta function. Similar to the Central Limit Theorem,
the behavior of a typical element is often close to the system average, which frequently can be computed.
For example, the entries of Hamiltonians describing the energy levels of heavy nuclei are inextricably
complex, but the distribution of the energy levels of these operators are well approximated by the av-
erage eigenvalue behavior of the real symmetric ensemble. This observation is captured by Wigner’s
Semi-Circular Law [Wig1], which states that the distribution of normalized eigenvalues of a random real
symmetric or complex Hermitian matrix with entries i.i.d.r.v. from a fixed probability distribution with
mean 0 and variance 1 converges almost surely to the semi-circular density.
The ensemble of N × N real symmetric matrices has N(N + 1)/2 independent parameters; a natural
question is how placing additional structural constraints, and thereby reducing the degrees of freedom,
affects eigenvalue behavior. Recall an N × N palindromic symmetric Toeplitz (PST) matrix AN is of
the form

AN =



b0 b1 b2 · · · b2 b1 b0
b1 b0 b1 · · · b3 b2 b1
b2 b1 b0 · · · b4 b3 b2
...

...
...

. . .
...

...
...

b2 b3 b4 · · · b0 b1 b2
b1 b2 b3 · · · b1 b0 b1
b0 b1 b2 · · · b2 b1 b0


, (1.1)

which is a symmetric Toeplitz matrix whose first row is a palindrome. Bai [Bai] first posed the problem
of studying the limiting eigenvalue distribution associated with random symmetric (non-palindromic)
Toeplitz matrices. Bose-Chatterjee-Gangopadhyay [BCG], Bryc-Dembo-Jiang [BDJ], and Hammond-
Miller [HM] independently observed that the limiting even moments of random symmetric Toeplitz
matrices are dominated by those of the standard Gaussian. Subsequent work by Massey, Miller, and
Sinsheimer [MMS] shows that the moments of the PST ensemble are those of the standard Gaussian, and
that the limiting spectral measure converges weakly to the same.
An N × N real symmetric matrix B has N(N + 1)/2 degrees of freedom; in contrast, a PST matrix
of the same dimensions has only N/2 degrees of freedom. The PST ensemble is then a very thin sub-
ensemble of all real symmetric matrices, and the imposed structure leads to new behavior. Thus by
examining sub-ensembles of real symmetric matrices, one has the exciting possibility of seeing new,
universal distributions.
We now describe the motivation for the new construction in this paper. The entrance of random matrix
theory into number theory came in the ’70s in a fortuitous meeting between Hugh Montgomery and
Freeman Dyson, yielding the observation that the pair correlation function of Riemann zeta zeros matched
that of the eigenvalues of random Hermitian matrices in the Gaussian Unitary Ensemble (see [BFMT-B,
FM] for a fuller treatment and history). Work by Hejhal [Hej] and Rudnick and Sarnak [RS] extended
this random matrix connection to n-level correlations of zeros of L-functions, generalizations of the
Riemann zeta function which arise throughout number theory. The zero densities of L-functions can be
recast as the study of eigenvalue behavior of random complex Hermitian matrices [FM, Hej, RS], and
Rankin-Selberg convolution allows the creation of a new L-function from multiple input L-functions.
Given families of L-functions {L(s, fi)fi∈Fi} with i ∈ {1, 2, . . . , I}), the Rankin-Selberg convolution

{L(s, f1 ⊗ · · · ⊗ fI)}(f1,...,fI)∈F1×···×FI
(1.2)

gives a new family of L functions1. Dueñez and Miller [DM1, DM2] were able to describe the behavior
of the zeros of the convolution in terms of the behavior of the constituent families in many situations.
As RMT has successfully modeled so many properties of L-functions, it is thus natural to ask if there is
an RMT analogue of convolutions. Motivated by the confluence of number theory and random matrix

1For details see [IK].



DISTRIBUTION OF EIGENVALUES OF MATRIX ENSEMBLES ARISING FROM WIGNER AND PALINDROMIC TOEPLITZ BLOCKS3

theory, we consider the eigenvalue behavior of the ensemble constructed as the “disco” concatenation2 of
PST matrices A and real symmetric matrices B1:

D1 (A,B1) =

[
A B1

B1 A

]
. (1.3)

The resulting ensemble of 2N × 2N symmetric block matrices have only (N/2) + N(N + 1)/2 de-
grees of freedom and constitute another thin subset of all real symmetric matrices that may give rise to
new eigenvalue behavior of interest. We chose the PST and real symmetric ensembles as their limit-
ing distributions (Gaussian and semi-circular, respectively) demonstrate extreme contrasting behavior:
the Gaussian features a sharp decay rate but unbounded support, while the semi-circular distribution is
strictly bounded within [−2, 2]. The novel construction from known ensembles furthermore poses the
question of how the disco ensemble’s limiting eigenvalue distribution may be described in terms of its
constituent distributions.
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FIGURE 1. Eigenvalue distribution of 10, 000 × 10, 000 matrices: left is symmet-
ric palindromic Toeplitz (plotted against a Gaussian), right is real symmetric (plotted
against a semi-circular denisty).

The construction is of interest as a way to create ensembles and see how the properties of the constituent
components are reflected in the new family; though inspired by a question from number theory, the re-
sulting distributions do not correspond to those observed from convolving families of L-functions. Our
analysis shows that the new construction of (1.3) exhibits hybrid behaviors that bear resemblance to the
limiting distributions of its component matrices, converging to a new universal distribution distinct from
both the Gaussian and semicircular, while retaining notable similarities to both. We then extend this con-
struction by considering random block matrices constructed by successively concatenating D1 (A,B1)
with additional matrices {Bk}. Our work shows that their scaled eigenvalues converge as N → ∞. An
entire spectrum of fascinating hybrid behavior exists for the limiting eigenvalue distributions, uncovering
a galaxy of new, universal distributions.

1.2. New Results. Entries of all matrices are defined on a common probability space (Ω,F ,P). Suppose
A and {Bk}k≥1 are independent real symmetric random matrices, with possibly additional structure
imposed. The matrix A is of order N ×N and Bk is of order 2kN × 2kN . We shall assume that all the
random entries have mean 0 and variance 1.

2The whimsical naming of the “disco” construction arises from the entries of the block matrix “ABBA”, a quintessential icon
of disco music’s heyday.
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Definition 1.1. For d ∈ Z+, the d-Disco of A and B = {Bk}, denoted Dd(A,B), is the 2dN × 2dN
real symmetric random matrix given by

Dd(A,B) =



A B1

B1 A
B2

B2
A B1

B1 A

· · · Bd
...

. . .
...

Bd · · ·

A B1

B1 A
B2

B2
A B1

B1 A


. (1.4)

Dd depends onA and {Bk} but we suppress this dependence for simplicity. We can writeDd inductively
as

Dd =

(
Dd−1 Bd
Bd Dd−1

)
.

Observe that (1.3) is a specific instance of the preceding construction.

Definition 1.2 (Empirical spectral distribution and measure). Suppose Mn is a real symmetric n × n
random matrix with eigenvalues λ1, . . . , λn. The empirical spectral distribution (ESD) is defined by

FMn(x) =
#{i ≤ n : λi ≤ x}

n
. (1.5)

The corresponding measure µMn is called the empirical spectral measure. The expected empirical spec-
tral distribution function (EESD) of Mn is defined as

E(FMn
(x)) =

1

n

n∑
i=1

P[λi ≤ x], x ∈ R.

It is a non-random distribution function and we shall write E(FMn
) in short. The corresponding proba-

bility law is known as the expected spectral measure of Mn.

Definition 1.3. For any probability distribution function F on R, let

CF = {t : t is a continuity point of F}.
A sequence of probability distribution functions {Fn} is said to converge weakly to a probability distri-
bution function F if

Fn(t)→ F (t) for all t ∈ CF .
Our interest is in the convergence of the ESD and EESD of random real symmetric matrices as their
dimension tends to∞.

Definition 1.4. Let F denote a non-random distribution function, defined on R.
(a) the ESD of Mn converges to F almost surely if for almost every ω ∈ Ω and for all t ∈ CF ,

FMn(t)→ F (t) as n→∞.
(b) The EESD of {Mn} converges to F if E(FMn

) converges weakly to F .

It is easy to see that (a)⇒ (b). We refer to the limit as the limiting spectral distribution (LSD) of {Mn}
and the corresponding probability law as the limiting spectral measure.
The following result is well-known3.

Lemma 1.5. Suppose that {Yn : n ∈ N} is a sequence of real-valued random variables with distribution
functions {Gn} such that for all k ∈ N,

lim
n→∞

E(Y kn ) = mk (finite),

and that there is a unique distribution function G whose k-th moment is mk for every k. Then Gn → G.

3For a quick proof, see Lemma 1.2.1 of [B].
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Suppose Mn is real symmetric. Then the h-th moment of its ESD and EESD are given by

mh(FMn) =
1

n

n∑
i=1

λhi =
1

n
Tr(Mh

n ) = Tr(Mh
n ) = mh(Mn) (1.6)

mh(E(FMn
)) = E

[
1

n
Tr(Mh

n )

]
= E [mh(Mn)] . (1.7)

where Tr denotes the trace. (1.6) is known as the Trace-Moment formula. Now consider the following
conditions.

(C1) For every h ≥ 1, E[mh(Mn)]→ mh.
(C2) The moment sequence {mh} corresponds to a unique probability distribution F .
(C3) For every h ≥ 1,

∞∑
n=1

[mh(Mn)− E[mh(Mn)]4 <∞.

The next lemma follows easily from Lemma 1.5. We omit its proof.

Lemma 1.6. Suppose Mn is an n × n real symmetric matrix satisfying (C1), (C2). Then as n → ∞
the EESD of Mn converges weakly to F determined by {mh}. If Mn also satisfies (C3), then the ESD
converges weakly almost surely to F .

To prove the convergence of the EESD and ESD of Dd, it suffices to verify conditions (C1), (C2), and
(C3). We record the assumption on the entries of our random matrices that will be called frequently in
this article.

Assumption 1. Suppose the collection C of random variables from which the matrices are formed, are
independent, have mean 0, and variance 1. Further, supX∈C E|X|k <∞ for all k ≥ 1.

The following two results are known.
i. The ESD of A/

√
N converges to the standard Gaussian law, almost surely.

ii. The ESD of Bk/
√

2kN converges to the semi-circular law, almost surely.
For proofs of the above two results under several alternate assumptions, including under Assumption A,
see Theorems 2.1.3 and 2.4.2 of [B] respectively.
Now consider D1. It can be shown that

Tr(Dk1 ) =
1

2

[
Tr(A+B1)k + Tr(A−B1)k

]
. (1.8)

We now state our main result; after looking at moments to see some general properties of the new con-
struction and reviewing needed results from free probability in §2, we prove a special case first in §3.1
and then the general case in §3.2.

Theorem 1.7. SupposeA is a palindromic Toeplitz matrix and {Bk} are Wigner matrices. Suppose these
matrices are independent and the entries of each matrix are independent with mean zero and variance 1
and satisfy Assumption 1. Then the EESD of Dd converges as N → ∞. The LSD is the law µd of the
self-adjoint variable

ad :=

(
1√
2

)d
g +

d∑
i=1

(
1√
2

)i
si,

where g is a standard Gaussian variable, s1, . . . sd are standard free-Gaussians (standard semi-circular
variables) and they are jointly free. Moreover, as d → ∞, the probability law µd converges to the
standard semi-circular law.

2. PRELIMINARIES

2.1. Method of Moments. Comparing the moments of the disco matrix to those of the Gaussian and
semi-circular distributions offers insight into how the disco structure creates a hybrid of disparate limiting
distributions. To proceed by the Method of Moments, we need to compute the expected traces of non-
commutative, bivariate matrix polynomials resulting from the expansion of Equation (1.8). Similarly,
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for general Dd, we need to handle expected traces of non-commutative, multivariate matrix polynomials.
The problem of computing expected traces may be reformulated as a combinatorics problem in which one
must pair 2k points on the circumference of a circle with chords possibly subject to additional constraints.
In the Gaussian case no constraints are placed, and all possible pairings of points on a circle contribute
equally to the moment in the limit N → ∞. In contrast, the semi-circular case of the real symmetric
matrices has equal contribution from all pairings that have no crossings, while pairings with a crossing
contribute zero in the limit N →∞.
Computing the moments of Dd represents a hybrid of these conditions: elements corresponding to real
symmetric submatrices are paired with non-crossing chords cRS , while the elements corresponding to
PST submatrices are paired with chords cPST allowed to cross each other but not those in cRS .

FIGURE 2. Visualization of contributing pairings of E
[
A2B2A2B2

]
.

FIGURE 3. Visualization of non-contributing pairings of E
[
A2B2A2B2

]
.

It readily follows that the odd moments of Dd are zero, while brute-force computation of low even
moments of D1 is consistent with hybrid distribution behavior.

Moment Semi-circular D1 Gaussian
2 1 1.00 1
4 2 2.25 3
6 5 7.00 15
8 14 27.50 105

Elementary generalizations of such combinatorial analysis shows that the even moments of Dd are
bounded between those of the semi-circular and Gaussian. For d finite, the scaled eigenvalues con-
verge as N →∞ to intermediate distributions with hybrid Gaussian and semi-circular behavior. Taking
d → ∞ causes the scaled eigenvalues to converge exponentially to the semi-circular distribution; see
Figure 4. For a detailed proof of these results via the Method of Moments, see [BBDLMMWX].
On the other hand, the question of convergence ofDd can be framed in terms of convergence of elements
in ∗-probability spaces. The concept of (asymptotic) free independence plays a crucial role. Arguments
based on this theory of non-commutative probability spaces, besides shortening the proof significantly,
also provides better insight into the nature of the limiting spectral distribution of Dd. We now provide a
brief description of the essential background and results from this theory that we shall need for the proofs
in §3.
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FIGURE 4. Eigenvalue distribution of 214 × 214 matrices Dd, d = 1, 2, 4, 8, alongside
the Gaussian (red) and semi-circular (green).

2.2. Elements of free probability.

Definition 2.1 (∗-algebra). A collection A is called a unital algebra if it is an additive vector space over
C, endowed with multiplication satisfying the following for all x, y, z ∈ A and α ∈ C:

(i) x(yz) = (xy)z,
(ii) (x+ y)z = xz + yz,

(iii) x(y + z) = xy + xz,
(iv) α(xy) = (αx)y = x(αy),
(v) there exists a multiplicative identity element 1A in A.

A is called a ∗-algebra if there exists a mappingA → A : x 7→ x∗ such that, for all x, y ∈ A and α ∈ C:
(vi) (x+ y)∗ = x∗ + y∗,

(vii) (αx)∗ = ᾱx∗,
(viii) (xy)∗ = y∗x∗, and

(ix) (x∗)∗ = x.

Definition 2.2 (∗-probability space). Suppose A is a unital ∗-algebra over C and ϕ is a linear functional
on A such that ϕ is positive (ϕ(aa∗) ≥ 0, ∀ a ∈ A) and ϕ(1A) = 1. Then the pair (A, ϕ) is called a
∗-probability space.

Example 2.3. Fix a positive integer n. LetMn(C) be the algebra of n×nmatrices with complex entries
under ordinary addition and multiplication. Consider the expected normalized trace:

Etr(a) =
1

n
E [Tr(a)] =

1

d

d∑
i=1

E(αii) ∀ a = ((αij))
d
i,j=1 ∈Mn(C).

Then (Mn(C),Etr) is a ∗-probability space.

Definition 2.4 (Probability laws of self-adjoint elements). Suppose (A, ϕ) is a ∗-probability space and
a ∈ A is a self-adjoint element. Then ϕ(ak), k ≥ 1, are called the moments of a. If there is a probability
law with moments ϕ(ak), k ≥ 1, and it is unique, then it is called the probability law of a and is denoted
by µa.

Definition 2.5 (Semi-circular, circular and Gaussian elements). Let s, g, and c be self-adjoint elements.
(a) s is said to be (standard) semi-circular or free-Gaussian if its moments are given by

ϕ(sh) =

{
Cn if h = 2n,

0 if h is odd,
(2.1)

where {Cn} are the Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
, n ≥ 1.

Then µs is called the (standard) semi-circular law.
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(b) g is said to be (standard) Gaussian if its moments agree with the Gaussian moments. Its proba-
bility law will be denoted by µg .
•

(i) c is said to be circular if its moments are given by:

ϕ(cε1cε2 · · · cεp) =


∑

π={{(ri,si)}

k∏
i=1

I{εri 6= εsi} if p = 2k,

0 if p = 2k + 1

(2.2)

for all choices of {εi} from the set {1, ∗}. The sum is over all non-crossing pair-partitions
π = {(ri, si), ri < si, 1 ≤ i ≤ k} of {1, . . . , 2k}.

The concept of free independence for ∗-probability spaces is the analogue of classical independence for
probability spaces; for more details, see [NS].

Definition 2.6 (Free independence). For a fixed index set I , let (Ai, i ∈ I) be unital ∗-subalgebras of
(A, ϕ). Then (Ai, i ∈ I) are called freely independent, if ϕ(a1 · · · ak) = 0 for every k ≥ 1 and for every
1 ≤ j ≤ k whenever, (a) aj ∈ Ai(j) (i(j) ∈ I), (b) ϕ(aj) = 0 for every 1 ≤ j ≤ k and, (c) neighboring
elements are from different sub-algebras, that is, i(1) 6= i(2) 6= · · · i(k − 1) 6= i(k). Elements are called
freely independent, or simply, free, if the ∗-sub-algebras generated by them are free.

It can be shown that if s1 and s2 are two free standard semi-circular elements, then (s1 +
√
−1s2)/

√
2

has the same moments as a circular variable.

Definition 2.7 (Free additive convolution). Suppose a and b are two self-adjoint elements from a ∗-
probability space with probability laws µa and µb respectively. Then if µa+b exists, it is called the free
additive convolution of µa and µb.

We now explain the notion of convergence for elements in ∗-probability spaces. We shall use the notation
Π(·) to denote polynomials formed from elements of a ∗-algebra. By default, adjoints are included in the
arguments of the polynomials.

Definition 2.8 (Convergence of elements in ∗-probability spaces). Let (An, ϕn), n ≥ 1 be a sequence
of ∗-probability spaces and let (A, ϕ) be another ∗-probability space.

(a) (Marginal convergence) We say that a(n) ∈ An converges in ∗-distribution to a ∈ A if

limϕn(Π(a(n))) = ϕ(Π(ai)) for all polynomials Π. (2.3)

We denote this convergence by a(n) ∗→ a.

(b) (Joint convergence) Suppose I is an index set. The elements {a(n)i : i ∈ I} from An are said to
converge (jointly) to {ai : i ∈ I} from A if,

Π({a(n)i : i ∈ I}) ∗→ Π({ai : i ∈ I}) for all polynomials Π. (2.4)

We write this as {a(n)i : i ∈ I} ∗→ {ai : i ∈ I}.

(c) (Asymptotic freeness) If the limit variables {ai, i ∈ I} are free, then we say that {a(n)i , i ∈ I}
are free in the limit, or, are asymptotically free.

Example 2.9. Consider the ∗-probability spaces (Mn(C),Etr), n ≥ 1. Suppose Mn ∈Mn(C), n ≥ 1
are real symmetric. Then Mn converges in ∗-distribution if and only if

ϕn(Mk
n) =

1

n
E
[
Tr(Mk

n)
]

converges for all k ∈ N.

The limit algebra is generated by an indeterminate m, say, and ϕ is defined on this algebra by

ϕ(mk) = lim
n→∞

1

n
E
[
Tr(Mk

n)
]

= mk (say).

Thus the convergence in ∗-distribution of {Mn} is the same as the convergence ofmk(EFMn
) for k ≥ 1.
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Note that there is always a probability law, say µ, with mk, k ≥ 1 as its moments. If µ is unique,
then EESD of Mn converges weakly to µ by Lemma 1.5. This connects the convergence of EESD to
convergence in ∗-distribution.
If we have more than one sequence of matrices, then, likewise, their joint convergence in ∗-distribution
(with respect to Etr) is the same as the convergence of traces of all monomials in these matrices and their
adjoints. If the matrices under consideration are real symmetric, then adjoints are redundant.

We summarize two well-known4 facts on ∗-distribution convergence.

Claim 2.10. Let Wi, 1 ≤ i ≤ d be independent n × n Wigner matrices, Ci, 1 ≤ i ≤ d be independent
n× n random matrices, and A be a random PST matrix, where all entries satisfy Assumption 1. Then,

(a) {A/
√
n,W1/

√
n, . . . ,Wd/

√
n} converge jointly in ∗-distribution as elements of (Mn(C),Etr)

to {g, s1, s2, . . . , sd} where g, s1, . . . , sd are free, g is Gaussian and si are semi-circular vari-
ables in some ∗-probability space (A, ϕ).

(b) {C1/
√
n, . . . , Cd/

√
n,W1/

√
n, . . . ,Wd/

√
n} converge jointly in ∗-distribution as elements of

(Mn(C),Etr) to (c1, . . . cd, s1, . . . , sd) which are all free, and {ci} are circular elements while
{si} are semi-circular variables.

3. PROOFS

3.1. Convergence of D1. Observe that we may diagonalize D1 in the following manner:[
I/
√

2 I/
√

2

I/
√

2 −I/
√

2

]
D1

[
I/
√

2 I/
√

2

I/
√

2 −I/
√

2

]
=

[
A+B1 0

0 A−B1

]
(3.1)

By Claim 2.10, (A/
√
N,B1/

√
N)

∗→ (g, s1); it follows that

limEtr

(
D1√
2N

)k
= lim

1

2N
E

[
Tr

(
D1√
2N

)k]

= lim
1

2

[
E

[
Tr

(
A+B1√

2N

)k]
+ E

[
Tr

(
A−B1√

2N

)k]]

=
1

2

[
ϕ

(
g + s1√

2

)k
+ ϕ

(
g − s1√

2

)k]

= ϕ

(
g + s1√

2

)k
.

The last equality follows since (g, s1) and (g,−s1) have the same moments. In particular, the moments
of D1 converge as N → ∞. Thus {ϕ( g+s1√

2
)k)} are the moments of a unique probability law, as g

and s1 are free, have the Gaussian and the semi-circular laws respectively, and their moments are upper
bounded5 by Gaussian moments. Indeed, this law is the free additive convolution of the probability laws
µs1/

√
2 and µg/√2, and is written as µg/√2 � µs1/

√
2. Thus we have arrived at the following theorem.

Theorem 3.1. Suppose A is a palindromic Toeplitz matrix and B1 is a Wigner matrix independent of A.
Suppose the entries of each matrix are independent with mean zero and variance 1 and satisfy Assumption
1. Then the EESD of D1 converges weakly. The LSD is the law, say µ1, of the self-adjoint variable
a1 = (g + s)/

√
2 and is the free additive convolution of µg/√2 and µs/√2.

Remark 3.2. By verifying (C3), it can be easily shown6 that the ESD converges almost surely to the
same law; we omit the details.

4For the proofs of parts (a) and (b), see [BHS], and [AB] respectively.
5For a direct proof of this upper boundedness without the use of free probability, see [BBDLMMWX].
6See [BHS] for similar arguments.
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3.2. Convergence of Dd. Extending the ideas of the previous section yields our main result, which we
restate for the convenience of the reader.

Theorem 1.7: SupposeA is a palindromic Toeplitz matrix and {Bk} are Wigner matrices. Suppose these
matrices are independent and the entries of each matrix are independent with mean zero and variance 1
and satisfy Assumption 1. Then the EESD of Dd converges as N → ∞. The LSD is the law µd of the
self-adjoint variable

ad :=

(
1√
2

)d
g +

d∑
i=1

(
1√
2

)i
si,

where g is a standard Gaussian variable, s1, . . . sd are standard free-Gaussians (standard semi-circular
variables) and they are jointly free. Moreover, as d → ∞, the probability law µd converges to the stan-
dard semi-circular law.

Remark 3.2 also holds forDd, mutatis mutandis. It may be noted that
∑d
i=1

(
1/
√

2
)i
si is a semi-circular

variable with mean 0 and variance
∑d
i=1

(
1
2

)i
= 1 + od→∞(1).

Proof. Let us first consider D2. Note that

D2√
4N

=
1√
2

(
1√
2N
D1

1√
2N
B2

1√
2N
B2

1√
2N
D1

)
.

We have previously shown the following:

(i) D1 is an element ofM2N (C) and D1/
√

2N
∗→ a1; and

(ii) B2 is an element ofM2N (C) and B2/
√

2N
∗→ s2, where s2 is semi-circular.

We now claim that D1/
√

2N and B2/
√

2N are asymptotically free. To see this, first partition B2 as

B2 =

(
V U
U> W

)
,

where V , W are N ×N Wigner matrices and U is an N ×N random matrix; the matrices V , W and U
are independent. Note also that U, V,W are independent of A and B1. Observe:

(iii) From the results of [BBGH], A, B1 V , and W converge jointly and are asymptotically free.
(iv) From the results of [AB] U , V , W and B1 converge jointly and are asymptotically free.

We omit a straightforward extension of the arguments in [BBGH] and [AB] proving that, as elements of
MN (C), (A,U, V,W,B1)

∗→ (g, u, v, w, s1) where these five variables are free, g is standard Gaussian,
u is circular and, v, w, s1 are standard semi-circular. Hence, using a decomposition like (1.8) on D2, and
arguing as before, we may conclude that

D2√
4N

∗→ γ2 =
1√
2


1√
2

(
g s
s g

)
1√
2

(
v u
u∗ w

)
1√
2

(
v u
u∗ w

)
1√
2

(
g s
s g

)
 ∗

=
g

(
√

2)2
+

s1√
2

+
s2

(
√

2)2
,

where g is standard Gaussian, s1 and s2 are standard semi-circular, and g, s1, s2 are free. The EESD of
D2/
√

4N converges to the distribution of µg/(√2)2 � µs1/
√
2 � µs1/(

√
2)2 = µ2. The case of general d

may be tackled similarly by an induction argument.
Finally, it is known that sum of free semi-circular variables is again semi-circular (the variances are
summed). Thus, from the representation of ad, we have a negligible term g/(

√
2)d plus a free semi-

circular variable whose variance is 1 + od→∞(1). Therefore, as d→∞, the LSD of Dd/
√

2dN , i.e. the
law of ad, approaches the semi-circular/free-Gaussian law. �
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4. FUTURE WORK

So far we have investigated the density of the eigenvalues; we now consider another problem, that of the
spacings between adjacent eigenvalues of Dd (A,B). For concreteness we restrict our purview to A a
symmetric palindromic Toeplitz matrix and B a sequence of real symmetric matrices. In this caseDd has
only

N

2
+

d∑
i=1

2i−1N(2i−1N + 1)

2
(4.1)

degrees of freedom, which is much smaller than 2dN(2dN+1)/2, it is reasonable to believe the spacings
between adjacent normalized eigenvalues (λi+1(Dd) − λi(Dd))/

√
N may differ from those of full real

symmetric matrices.

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014
Gaps

0.02

0.04

0.06

0.08

Probability

FIGURE 5. Eigenvalue gaps of a 20, 000×20, 000 matrixD1(A,B), with A a random
symmetric palindromic Toeplitz matrix and B a random real symmetric matrix.

In [MMS] it is conjectured that the limiting eigenvalue gap distribution of symmetric palindromic Toeplitz
matrices is Poissonian, while the ensemble of all real symmetric matrices is conjectured to have normal-
ized spacings given by the GOE distribution whenever the independent matrix elements are independently
chosen from a nice distribution p. As D1(A,B) exhibits eigenvalue behavior representing a hybrid of its
component behaviors, we similarly conjecture that the limiting eigenvalue gap distribution of D1(A,B)
is bounded by that of its submatrices A and B.
Additionally, numerical experiments in constructing D1(A,B) with A, B drawn from several pairs of
random ensembles whose limiting eigenvalue distributions are known suggests the following conjecture;
we provide support for a special case in Appendix A.

Conjecture 4.1. Let A, B be N × N real symmetric random matrices whose independent entries are
drawn from a fixed probability distribution p with mean 0 and variance 1. Suppose that the limiting
eigenvalue distributions of A, B have all moments finite and appropriately bounded. Then

min {Mk(A),Mk(B)} ≤ Mk (D1(A,B)) ≤ max {Mk(A),Mk(B)} . (4.2)

Tables 1 and 2 show experimental results supporting Conjecture 4.1. We compute small moments of
D1(A,B) where A is either a random real symmetric matrix (i.e., a Wigner matrix) or a random sym-
metric palindromic Toeplitz matrix, whose independent entries follow the standard Gaussian distribution.
The matrix B is a random 3-period block circulant matrix, whose independent entries also follow the
standard Gaussian distribution (see [KMMSX] for a full treatment of the construction of block-circulant
matrices and their limiting eigenvalue distributions).

The computation of Mk (D1(A,B)) involves the expansion previously shown in (1.8). The primary
obstacle is bounding the contribution of arbitrary bi-variate matrix products in the limit as N → ∞. A
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Moment Mk(A) D1(A,B) Mk(B)
4 2.000 2.071 2.183
6 4.997 5.363 6.257
8 13.985 15.759 21.974

TABLE 1. Numerical data from a 11994 × 11994 Disco of a random real symmetric
A and a random 3-period block circulant matrix B supporting (4.1).

Moment Mk(A) D1(A,B) Mk(B)
4 2.948 2.544 2.330
6 14.863 9.783 7.929
8 102.518 50.681 36.884

TABLE 2. Numerical data from a 11994 × 11994 Disco of a random PST A and a
random 3-period block circulant matrix B supporting (4.1).

central challenge in crafting sharp bounds on the contribution of such terms is, for arbitrary A and B, the
lack of information on the pairing configurations of entries that do not vanish in the limit.
By the Eigenvalue Trace Lemma and (1.8), (4.2) can be rewritten as

min
{

lim
N→∞

E
[
Tr(Ak)

]
, lim
N→∞

E
[
Tr(Bk)

]}
≤ E

[
lim
N→∞

1

2
k
2+1

Tr
(
(A+B)k + (A−B)k

)]
≤ max

{
lim
N→∞

E
[
Tr(Ak)

]
, lim
N→∞

E
[
Tr(Bk)

]}
.

(4.3)

Note that (4.3) would follow immediately if, for all N × N real symmetric matrices A and B, it were
true that

min
{

Tr(Ak),Tr(Bk)
}
≤ 1

2
k
2+1

Tr
(
(A+B)k + (A−B)k

)
≤ max

{
Tr(Ak),Tr(Bk)

}
. (4.4)

Unfortunately this is not the case, as evidenced by the following construction7. Let

a =

[
−33 −31
−31 −82

]
and b =

[
26 78
78 −15

]
(4.5)

so that, for any m ∈ Z+,

A2m×2m =

 a
. . .

a

 and B2m×2m =

 b
. . .

b

 (4.6)

are matrices of equal dimension 2m × 2m with m instances of a and b along their main diagonals,
respectively. For m = 10 and k = 4, we compute

Tr
(
A4

20×20
)

= 889, 801, 750

Tr
(
A4

20×20
)

= 869, 734, 090

Tr
(
(A20×20 +B20×20)4 + (A20×20 −B20×20)4

)
23

= 1, 336, 343, 790, (4.7)

which is clearly at odds with (4.4).

7This construction was suggested by Zhijie Chen, Jiyoung Kim, and Samuel Murray of Carnegie Mellon University.
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APPENDIX A. EVIDENCE FOR THE MOMENT CONJECTURE

We end with a proof that in the limit as the matrix sizes tend to infinity that a special case of Conjecture 4.1
is true for the limiting moments. In case of D1(A,B), where A is PST and B is Wigner, we have shown
that its EESD converges in law to (s+ g)/

√
2, where s is standard free Gaussian, g is standard Gaussian,

and they are free. We now examine Conjecture 4.1 in this special case for the limiting distributions. As
the limiting odd moments are zero, we only need to consider the even moments. Now [BDJ] explicitly
computed the even moments of the free convolution s + g, which shows up as the limiting spectral
distribution of random Markov matrices. They showed that

m2k(s+ g) =
∑

w pair-matched

2h(w),

where the height function h(w) gives, for a pair-matched word w of length 2k, the number of connected
pairings in w (for more details on these see [BDJ]). For example, h(abab) = 0 but h(abba) = 2. Clearly
h(w) ≤ k for any pair-matched word, and h(w) = k for any pair-matched non-crossing word. It follows
that

m2k(s+ g) ≤ 2k#{pair-matched words of length 2k} = 2km2k(g),

and
m2k(s+ g) ≥ #{pair-matched non-crossing words of length 2k} = 2km2k(s).

In other words,

min{m2k(s),m2k(g)} = m2k(s) ≤ m2k

(
1√
2

(s+ g)

)
≤ m2k(g) = max{m2k(s),m2k(g)}.

This proves the inequalities of Conjecture 4.1 hold for the limits of the moments in this special case.
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