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ABSTRACT. The Erdős distinct distance problem is a ubiquitous problem in discrete geometry. Somewhat less
well known is Erdős’ distinct angle problem, the problem of finding the minimum number of distinct angles
between n non-collinear points in the plane. Recent work has introduced bounds on a wide array of variants of
this problem, inspired by similar variants in the distance setting.

In this short note, we improve the best known upper bound for the minimum number of distinct angles
formed by n points in general position from O(nlog2(7)) to O(n2). Before this work, similar bounds relied
on projections onto a generic plane from higher dimensional space. In this paper, we employ the geometric
properties of a logarithmic spiral, sidestepping the need for a projection.

We also apply this configuration to reduce the upper bound on the largest integer such that any set of n points
in general position has a subset of that size with all distinct angles. This bound is decreased from O(nlog2(7)/3)

to O(n1/2).

CONTENTS

1. Introduction 1
2. Discussion of Methods 2
3. An improved bound on Agen(n) 3
4. An Improved Bound on Rgen(n) 4
5. Future Work 4
References 4

1. INTRODUCTION

In 1946, Erdős introduced the distinct distance problem in his paper “On sets of distances of n points,"
conjecturing that the minimum number of distinct distances formed by n points in the plane was Θ(n/

√
log n),

the number of distances formed by points in
√
n ×
√
n integer lattice [Er]. This problem, while simple

to state, proved challenging. In 2015, Guth and Katz finally proved a nearly matching lower bound of
Ω(n/ log n) on the minimal number of distinct distances [GuKa]. Since 1946, numerous variants of the
problem have been considered, including the minimum number of distinct distances on restricted point sets.

There is an analogous, far less studied problem for angles introduced by Erdős and Purdy [ErPu]. What
is A(n), the minimum number of distinct angles formed by n not all collinear points on the plane? In the
angle setting, regular n-gon’s are conjectured optimal.
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Recent work introduces new bounds on a variety of variants of the distinct angle problem [FlHu]. In
particular, Agen(n), the minimum number of distinct angles formed by n points in general position (with no
three points on a line and no four on a circle) is shown to be Ω(n) and O(nlog2(7)). In this paper, we show
first show that the methods in [FlHu] can be extended to provide a bound of O(n22O(

√
logn)). We discuss

this proof in Section 2. Then by an altogether new method which avoids projections altogether and chooses
a configuration of points on a logarithmic spiral, we have the following.

Theorem 1.1. We have Agen(n) = O(n2).

Theorem 1.1 is proved in Section 3.
In Section 4 we consider a related variant of this distinct angle problem also considered in [FlHu]. This is

the minimum maximum size of a subset of n points in general position yielding all distinct angles, Rgen(n).
In other words, Rgen(n) is the largest integer such that any planar point-set of n points contains a subset of
the given size without repeated angles. In [FlHu] Rgen(n) is shown to be O(nlog2(7)/3 and Ω(n1/5). As an
application of the logarithmic spiral configuration we show the following.

Theorem 1.2. We have Rgen(n) = O(
√
n).

2. DISCUSSION OF METHODS

In [FlHu], the bound Agen(n) = O(nlog2(7)) is proved by projecting the points of a d-dimensional hyper-
cube onto a generic plane. The argument relies closely on an observation from a paper of Erdős, Hickerson,
and Pach [EHP]. Given an orthogonal projection T and points p1, p2, p3, and p4,

p1 − p2 = p3 − p4 =⇒ d(T (p1), T (p2)) = d(T (p3), T (p4)). (2.1)

This follows from orthogonal projections being idempotent and self-adjoint. In [FlHu], this observation
is extended. Two (congruent) triangles with edges composed of the same difference vectors are mapped
to congruent triangles under orthogonal projections. Hence, it suffices to count the number of classes of
translation equivalent triangles to asymptotically bound the number of distinct angles in the configuration.

It turns out that a similar argument can be used to show that Agen(n) = O(n22O(
√
logn)). Orthogonal

projections can easily be chosen such that no four points in the projection lie on a circle. However, since
the projection must be injective, points on a line are projected onto a line. Hence, the original configuration
must have no three points on a line.

In [FlHu] this is avoided by drawing the points from a hypercube. However, in the paper of Erdős, Füredi,
Pach, and Ruzsa showing the best known bound for the distance problem in general position, the points are
instead drawn from a lattice [EFPA]. The potential obstruction of three points on a line is avoided by taking
a subset of the lattice points intersecting with a hypersphere. We outline a similar argument below to get
an improved bound to illustrate how this projection technique may be extended. We take inspiration from a
paper of Behrend [Be].

Proposition 2.1. We have Agen(n) = O(n2222
√

log2 n).

Proof. Consider a grid Gr,d = {0, . . . , r}d.

The triples (a, b, c) and (a′, b′, c′) are equivalent if the second triple can be obtained from the first triple
by translation. If we have any triple (a, b, c), then for i = 1, . . . , d we can replace the triple of integers
(ai, bi, ci) by (ai − mi, bi − mi, ci − mi) where mi = min(ai, bi, ci). If we do this for all i, we get
an equivalent triple (a′, b′, c′) satisfying min(a′i, b

′
i, c
′
i) = 0 for all i. The number of triples (a′i, b

′
i, c
′
i) with

a′i, b
′
i, c
′
i ∈ {0, . . . , r} and min(a′i, b

′
i, c
′
i) = 0 is (r+1)3−r3. Thus, the number of reduced triples (a′, b′, c′)

is Nr,d = ((r + 1)3 − r3)d. Hence, the number of angles formed by points from Gr,d is at most Nr,d/2,
since our triples are ordered.
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For r > 1 the points in Gr,d are not in general position: there are many lines containing three or more
points. For a ∈ Gr,d we define f(a) =

∑d
i=1 a

2
i . We have 0 ≤ f(a) ≤ dr2. For l = 0, . . . , dr2 we define

Gr,d,l = {a ∈ Gr,d : f(a) = l}. We can take l so that |Gr,d,l| ≥ (r + 1)d(dr2 + 1)−1, this quantity being
the mean of the number of points at each radius 0, . . . , dr2. No three points from Gr,d,l are on a line, as they
lie on a common sphere. Taking a subset of the points of Gr,d,l, there is a set of M := (r + 1)d(dr2 + 1)−1

points with no three on a line.
Now, let r = 2d and assume for simplicity that M =

⌊
2d(d−2)/d

⌋
. For large enough n, there exists d

such that 2(d−1)(d−3)/(d − 1) < n ≤ M . Then, from the above, there exists some l such that a subset of
Gr,d,l has n points. This subset has no points on a line, so the configuration can be projected onto a planar
configuration in general position. So, it suffices to bound the number of translation equivalence triples by
Nr,d to yield a bound on Agen(n).

Now, note that, for d ≥ 17, d2 ≥ 16d+ 4 log2 d. Then,

dn ≥ 2(d−1)(d−3) =⇒
log2 n ≥ (d− 1)(d− 3)− log2 d =⇒

4 log2 n ≥ 3d2 + d2 − 16d+ 12− 4 log2 d ≥ d2 =⇒

2
√

log2 n ≥ d.

Now, we have

Nr,d = (3r2 + 3r + 1)d ≤ (4r2)d

= (22d+2)d

= 22(d+1)d

< n2211d

≤ n2222
√

log2 n,

yielding the desired result.
�

3. AN IMPROVED BOUND ON AGEN(n)

In the previous section, the extra factor of 2O(
√
logn) arises from taking a subset of the lattice without

three points on a line. We can remove such a factor by avoiding projections altogether. In this section, we
describe a configuration of points on a logarithmic spiral yielding Agen(n) = O(n2).

Let the logarithmic spiral S be given by the polar equation r = eθ for θ ∈ (−∞,∞). Note that there is a
group of mappings S → S given by

Fα(r, θ) = (eαr, θ + α).

Scaling by eα is a dilation, mapping triangles to similar triangles, as does rotation by α. Hence, mapping
via an Fα preserves angles.

We now prove Theorem 1.1 that Agen(n) = O(n2).

Proof. Let S be given by the polar equation r = eθ for θ ∈ (−∞,∞). Then, consider the collection of
points P = {(ejβ, jβ) : j ∈ [n]} on S. First, note that, for sufficiently small β, P lies within a small arc
S′ of S. As this arc S′ forms part of the boundary of its own convex hull C, any line ` intersecting C has
at most two intersections with S′. Consequently no three p ∈ P lie on a common line. Likewise, since the
curvature of S is strictly monotone, β can be chosen small enough such that no four points of P are on a
common circle.
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Now we show that the number of distinct angles formed by the points in P , A(P), is at most 3
(
n−1
2

)
.

Given a triple of distinct points t = ((ej1β, j1β), (ej2β, j2β), (ej3β, j3β)) ∈ P3, let m = min{j1, j2, j3}.
Then, the map ft := F(1−m)β maps this triple to another forming the same angles, now with one of the
points as (eβ, β).

Hence, each of the distinct angles formed by points in P is formed by a triple with one point (eβ, β).
Since there are

(
n−1
2

)
ways to choose the other two points in the triple, and each triple can yield at most

three distinct angles, we have

A(P) ≤ 3

(
n− 1

2

)
, (3.1)

yielding Agen(n) = O(n2), as desired. �

4. AN IMPROVED BOUND ON RGEN(n)

The fact that this configuration introduces no three points on a line and no four on a circle yields an im-
proved upper bound for the minimum maximum size of a subset of n points in general position yielding all
distinct angles, Rgen(n). The current best known upper bound on this quantity is O(nlog2(7)/3) from [FlHu].

Letting xi, yi ∈ [n] for 1 ≤ i ≤ 3, we say that two triples (x1, x2, x3), (y1, y2, y3) are equivalent if
x1 − y1 = x2 − y2 = x3 − y3. We then have the following lemma.

Lemma 4.1. Let R ⊆ [n] such that |R| = m. If
(
m
2

)
≥ 2n − 1, then R contains a pair of distinct but

equivalent triples.

Proof. The number of pairs (x, y) ∈ R2 such that x > y is
(
m
2

)
, and the maximum number of possible

differences is n− 1 (ranging from 1 to n− 1). Then the condition
(
m
2

)
≥ 2n− 1 ensures by the pigeonhole

principle that there are three pairs with the same difference and hence a pair of equivalent triples. �

We now prove Theorem 1.2.

Proof. Let P be the logarithmic spiral point configuration as in Theorem 1.1. Let P ′ ⊆ P with |P ′| = m,
again assuming

(
m
2

)
≥ 2n − 1. Define Q ⊆ [n] such that P ′ = {(ejβ, jβ) : j ∈ Q}, and, by Lemma 4.1,

Q contains a pair of equivalent triples s = (x1, x2, x3) and t = (y1, y2, y3). Therefore the triples of points
in P ′ corresponding to s and t define repeated angles. This is because the triple of points corresponding to
s are mapped to those corresponding to t by F((y1−x1)β).

Now, note that m ≥ 2n1/2 + 1/2 implies
(
m
2

)
≥ 2n− 1. Then Rgen(n) = O(

√
n), as desired. �

5. FUTURE WORK

While this paper dramatically improves the state of the art upper bound for Agen to O(n2), we still
only have Agen(n) = Ω(n). Lessening or even eliminating this gap would be a major potential target of
future research. Additionally, this paper significantly improves the upper bound of Rgen(n) to O(

√
n) from

O(nlog2(7)/3) in [FlHu]. Nonetheless, reducing the gap with the current lower bound of Ω(n1/5) (also from
[FlHu]) is an open problem.

The logarithmic spiral configuration may also have applications in other angle problems, such as repeated
angle problems and angle chain problems appearing in the literature. For example, see Palsson, Senger, and
Wolf’s work on angle chains in [PSW].
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