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ABSTRACT. A more sums than differences (MSTD) setA is a subset ofZ for which |A + A| >
|A − A|. Martin and O’Bryant used probabilistic techniques to prove that a non-vanishing propor-
tion of subsets of{1, . . . , n} are MSTD asn → ∞. However, to date only a handful of explicit
constructions of MSTD sets are known. We study finite collections of disjoint intervals on the real
line, I, and explore the MSTD question for such sets, as well as the relation between such sets and
MSTD subsets ofZ. In particular we show that every finite subset ofZ can be transformed into
an element ofI with the same additive behavior. Using tools from discrete geometry, we show that
there are no MSTD sets inI consisting of three or fewer intervals, but there are MSTD sets for four
or more intervals. Furthermore, we show how to obtain an infinite parametrized family of MSTD
subsets ofZ from a single such setA; these sets are parametrized by lattice points satisfying simple
congruence relations contained in a polyhedral cone associated toA.

1. INTRODUCTION

LetA be a finite subset of the integers. Thesumsetanddifference setare defined, respectively,
as:

A + A := {a1 + a2 : a1, a2 ∈ A}, (1.1)

A− A := {a1 − a2 : a1, a2 ∈ A}. (1.2)

If |A−A| > |A+A|, we say that the setA is difference dominant. If |A+A| > |A−A|, we say
thatA is sum dominantor, following the terminology of [Nat07b], amore sums than differences
(MSTD) set. If |A− A| = |A+ A|, we sayA is balanced.

Due to the commutativity of addition, there is a lot of redundancy inA+A, and its size is at most
(

n

2

)

+ n = n(n+1)
2

wheren = |A| (with equality being achieved with a geometric progression, for
example). In the difference set, although 0 can be represented in numerous ways (e.g.0 = ai − ai
for anyi), as subtraction is not commutative there are at mostn2−n+1 elements inA−A (again
with equality being achieved whenA is a geometric progression).

Since the difference set has the potential to be much larger than the sumset, we might naively
believe that in general the difference set is larger. The first example of an MSTD set,{0, 2,
3, 4, 7, 11, 12, 14}, was given by Conway, and others were given in [Mar69] and [PF73]. Ruzsa
([Ruz78, Ruz84, Ruz92]) used probabilistic techniques to prove the existence of many MSTD sets.
Though Roesler [Roe00] was able to show that the average sizeof the difference set is larger than
the average value of the sumset for subsets of[n] := {1, . . . , n}, surprisingly, Martin and O’Bryant
[MO07] proved using probabilistic techniques that for alln ≥ 15, the probability of being MSTD
among subsets of[n] is at least2 × 10−7. Zhao [Zha11] showed that the probability of being sum
dominant converges to a limit asn → ∞ and that this limit probability is at least4.28 × 10−4.
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Based on computer simulation, we expect the true limiting value to be around4.5 × 10−4. If,
however, we independently choose elements of[n] to be inA with probabilityp(n) which tends to
zero withn, then Hegarty and Miller [HM09] proved that with probability 1 such a set is difference
dominated.

In the last decade there has been considerable interest in explicit constructions of MSTD sets
(which in light of [MO07] must exist in large numbers). A wellknown technique for producing
an infinite family of MSTD sets from a single one is base expansion: letA = {a1, . . . , an} be an
MSTD set. For eacht ∈ N and some fixedm > 2 ∗max{|ai| : i ∈ [n]}, defineAt as

At :=

{

k
∑

i=1

ajm
i−1 : j ∈ [n], k ∈ [t]

}

. (1.3)

Then|At ± At| = |A ± A|t, thus leading to a parametrized infinite family of MSTD sets,though
of extremely low density. Nathanson in [Nat07a] asks if there are other parametrized families of
MSTD sets. Hegarty [Heg07] and Nathanson provide a positiveanswer; in both cases their ideas
involve taking some set which is symmetric (and thus balanced) and perturbing it slightly so as to
increase the number of sums while keeping the number of differences the same. Hergarty [Heg07]
then posits: “More interesting, though, would be to have explicit examples of MSTD sets which
are, in some meaningful sense, ‘radically’ different from some perturbed symmetric set.”

A new method of explicitly constructing MSTD sets was found by Miller, Orosz and Schneier-
man [MOS10]. Their idea is to find sets whose sumset contains all possible sums (i.e., all integers
between2a1 and2an). Then by appropriately adding elements to the fringes of such a set, one
obtains an MSTD set. This technique was furthered by Zhao [Zha10], who found a larger class of
sets whose sumset is as large as possible. These methods yield densities on the order of1/nr (the
ideas in [MOS10] yieldr = 2, while those in [Zha10] giver = 1).

We introduce another “radically” different way of constructing MSTD sets. The heuristic behind
our techniques is that the property of being an MSTD set should be “stable” under small pertur-
bations. In order to make this notion rigorous, we must pass from the realm of the discrete to the
realm of the continuous (but we will ultimately return to thediscrete setting). LetI denote the set
of all collections of finitely many disjoint open intervals on the real line, and letIn denote the set of
all collections ofn disjoint open intervals on the real line1. For eachA ∈ I, we defineA+A and
A−A as in the discrete case. However, we are no longer interestedin the cardinality of these sets,
but rather in the (Lebesgue) measure,µ. We say thatA is difference dominant, sum dominant,
or balanced ifµ(A − A) > µ(A + A), µ(A − A) < µ(A + A), or µ(A − A) = µ(A + A),
respectively.

The foundational result of this paper is the following, which is proven in Section 2.

Theorem 1.1.LetA ⊂ Z with |A| < ∞. Then, there exists anA ∈ I such that|A+A| = µ(A+A)
and|A− A| = µ(A−A).

We will show that the construction ofA from A is very natural and straightforward.
Theorem 1.1 justifies the study of the additive behavior of elements inI as a means to study the

additive behavior of subsets ofZ. The spaceIn (and related spaces) have a natural topology, and

1As if often the case when dealing with measure theoretic arguments, it does not make a meaningful difference if
we use open or closed intervals (or even half-open/half-closed intervals). Certain arguments are cleaner if one uses
one or the other, and thus in this paper we shall sometimes assume that the elements ofI andIn consist of collections
of open intervals, and at other times closed intervals.
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thus we have the utility of continuity arguments at our disposal in this setting. In the latter half of
Section 2, we discuss how to topologizeIn and related spaces.

In Section 3, we introduce a number of tools from discrete geometry to analyze the MSTD
question for elements inI. The main result of that section is the following.

Theorem 1.2. For n ≤ 3, there does not existA ∈ In such thatA is MSTD. For alln ≥ 4, there
do exist MSTDA ∈ In.

This theorem may be loosely interpreted as the continuous analogue of the theorem of Hegarty
[Heg07] that there are no MSTD subsets ofZ of cardinality less than 8.

In addition to allowing us to prove Theorem 1.2, the tools developed in Section 3 will give us a
way of producing an infinite parametrized family of MSTD subsets ofZ from a single MSTD set
(either in the discrete or continuous sense). This infinite family will in fact have a simple algebraic
structure. As is to be seen, our techniques in some sense allow one to uncover the structure of
the set which resulted in it being MSTD and then to systematically enumerate all MSTD sets with
this same structure. This is progress towards answering theopen-ended question of Nathanson in
[Nat07a]: “What is the structure of finite sets satisfying|A + A| > |A − A|?” These ideas are
presented in Section 4.

In Section 5 we present a sort of converse result to Theorem 1.1, namely that up to affine trans-
formation, given anyA ∈ I, we can find anA ⊂ Z such that the additive behavior ofA andA
are as similar as we like. Finally, in Section 6, we present some experimental data and pose some
open questions and lines of further research.

2. DISCRETE TOCONTINUOUS

In the sequel,A always denotes a finite subset ofZ. For convenience, in this section we assume
that elements ofI consist of closed intervals.

Definition 2.1. Let a, b ∈ Z with a ≤ b. We call the set[a, b]Z := {a ≤ x ≤ b|x ∈ Z} a closed
integer interval.

Definition 2.2. LetA = {a1, . . . , an} with a1 < a2 < · · · < an. Theinterval decomposition of A
is the unique decomposition ofA into closed integer intervalsA = [b1, c1]Z∪[b2, c2]Z∪· · ·∪[bk, ck]Z
such that for alli 6= j, we have|bi − cj | ≥ 2 (that is, adjacent integers are always grouped into
the same closed integer interval; see Example 2.3).

Example 2.3.Let A = {0, 1, 3, 4, 5, 7, 9, 10}. Then the interval decomposition ofA is

A = [0, 1]Z ∪ [3, 5]Z ∪ [7, 7]Z ∪ [9, 10]Z. (2.1)

Definition 2.4. SupposeA has interval decompositionA = [b1, c1]Z ∪ · · · ∪ [bk, ck]Z. Thecontin-
uous representation of A, denotedA∗, is

A∗ :=

[

b1 −
1

4
, c1 +

1

4

]

∪ · · · ∪

[

bk −
1

4
, ck +

1

4

]

. (2.2)

We are now ready to state our main theorem of this section.

Theorem 2.5.LetA andB be finite subsets ofZ, andA∗ andB∗ their continuous representations.
Letµ be the Lebesgue measure on the real line. Then it is true that

|A+B| = µ(A∗ +B∗) (2.3)

and

|A− B| = µ(A∗ − B∗). (2.4)
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Before proving this theorem we shall prove a sequence of ancillary propositions. The following
proposition is a straightforward exercise.

Proposition 2.6. LetA = [a1, a2]Z andB = [b1, b2]Z with a1 < b1. Then, the following are true:

A+B = [a1 + b1, a2 + b2]Z, (2.5)

A∗ +B∗ =

[

a1 + b1 −
1

2
, a2 + b2 +

1

2

]

, (2.6)

A−B = [a1 − b2, a2 − b1]Z, (2.7)

and

A∗ − B∗ =

[

a1 − b2 −
1

2
, a2 − b1 +

1

2

]

. (2.8)

Corollary 2.7. If A = [a1, a2]Z andB = [b1, b2]Z, then|A + B| = µ(A∗ + B∗) and |A − B| =
µ(A∗ − B∗).

Proposition 2.8. LetA andB be finite subsets ofZ. Letn be inZ. Thenn is inA+B if and only
if n is inA∗ +B∗. Similarly,n is in A− B if and only ifn is inA∗ −B∗.

Proof. This follows almost immediately from Proposition 2.6. LetA = [a1, b1]Z ∪ · · · ∪ [ak, bk]Z
andB = [c1, d1]Z∪ · · ·∪ [cℓ, dℓ]Z be the interval decompositions ofA andB respectively. Suppose
n ∈ A+B. This clearly can only happen ifn ∈ [ai, bi]Z+[cj, dj]Z for somei andj. By Proposition
2.6, lettingA′ = [ai, bi]Z andB′ = [cj , dj]Z, we know thatn ∈ A′∗ +B′∗ and thereforen is also in
A∗ +B∗.

Now suppose thatn ∈ A∗ +B∗ with n ∈ Z. This implies thatn ∈ [ai, bi]
∗
Z + [cj , dj]

∗
Z for somei

andj. By Proposition 2.6, this implies thatn ∈ [ai, bi]Z+[cj , dj]Z since([ai, bi]∗Z+[cj, dj]
∗
Z)∩Z =

[ai, bi]Z + [cj, dj]Z. Thus we get thatn ∈ A+B.
By switching the plus signs above to minus signs, we obtain a proof for the second half of the

proposition statement. �

Proposition 2.9. LetA andB be finite subsets ofZ. LetCA∗+B∗ andCA∗−B∗ be defined as

CA∗+B∗ :=
⋃

n∈(A∗+B∗)∩Z

B 1

2

(n) (2.9)

and

C∗
A∗−B∗ :=

⋃

n∈(A∗−B∗)∩Z

B 1

2

(n). (2.10)

whereB 1

2

(n) is the closed ball of radius1
2

centered atn. ThenCA∗+B∗ = A∗ +B∗ andCA∗−B∗ =

A∗ −B∗.

Proof. Notice that this statement is clearly true in the case thatA = [a1, a2]Z andB = [b1, b2]Z
from Proposition 2.6. Suppose now thatA =

⋃k

i=1 Ii andB =
⋃ℓ

j=1 Jj where theIi are the integer
intervals in the interval decomposition ofA, and theJj are the integer intervals in the interval
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decomposition ofB. Thus

CA∗+B∗ =
⋃

1≤i≤k,1≤j≤ℓ

CI∗i +J∗

j

=
⋃

1≤i≤k,1≤j≤ℓ

I∗i + J∗
j

= A∗ +B∗.

(2.11)

As before, by changing plus signs to minus signs we get a prooffor the latter part of the proposition
statement. �

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5.By Proposition 2.9, we know thatCA∗+B∗ = A∗ + B∗. The setCA∗+B∗ is
composed to sets of measure 1 such that the intersection of any pair of them is either empty or a
single point. This implies that the measure of the intersection of any pair of these sets is 0. We
can therefore conclude thatµ(A∗ + B∗) = #{(A∗ + B∗) ∩ Z}. However, by Proposition 2.8, we
know that#{(A∗ + B∗) ∩ Z} = |A + B|. Therefore,µ(A∗ + B∗) = |A + B|. Showing that
µ(A∗ − B∗) = |A−B| follows analogously. �

The above results show that by studying sumsets and difference sets for collections of inter-
vals, we can retrieve results about collections of intervals as a special case. However, the power
of instead studying collections of intervals is that, as we continuously vary the endpoints of our
intervals, the size of the sumset and of the difference set also vary continuously. Therefore, for
example, given a single MSTD collection of intervals, we canvary this the endpoints of these
intervals slightly and still have an MSTD set.

In general, rather than deal withI, we shall fix somen and deal withIn. Since additive behav-
ior (in particular the property of being MSTD) is invariant under affine transformation, modding
out by affine equivalence does not changeIn in a meaningful way. With this in mind, there are
several natural ways to topologizeIn and its quotient by some or all of the affine group. These
fall into two broad categories of parametrizations:endpoint parametrizations andinterval-gap
parametrizations.

Endpoint parametrizations refer to subsets of some Euclidean space where each component of
a vector in the space is either a left or right endpoint for some interval on the real line. The
free simplex modelis the subset ofR2n composed of vectors of the form(a1, b1, . . . , an, bn) with
the condition thata1 ≤ b1 ≤ · · · ≤ an ≤ bn. We think of this vector as representing the set
[a1, b1] ∪ [a2, b2] ∪ · · · ∪ [an, bn]. This model is a parametrization of all ofIn; we have not modded
out by any affine equivalences. This model will be particularly useful in the next section.

One disadvantage of the above model is that the space is not compact. A similar model, which
we call thesimplex model is the subset ofR2n composed of vectors(a1, b1, . . . , an, bn) with the
condition that0 ≤ a1 ≤ b1 ≤ · · · ≤ b1 ≤ b2 ≤ 1. This model is named as such because the points
in this space all live in a2n-dimensional simplex.

Yet another disadvantage of both of the above models is that there is some redundancy: up to
affine transformation we still have several representatives for the same set. We can mod out by
all affine transformations (with positive determinant) by requiring that our leftmost interval start
at 0 and our rightmost interval end at 1. We thus define therestricted simplex modelto be those
vectors(b1, a2, b2, . . . , an−1, bn−1, an) in R2n−2 such that0 ≤ b1 ≤ a2 · · · ≤ bn−1 ≤ an ≤ 1 with
the understanding that this vector corresponds to the collection of intervals[0, b1]∪ [a2, b2] ∪ · · · ∪
[an, 1].
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Another class of natural parametrizations we call interval-gap parametrizations; in these, instead
of designating where intervals begin and end, we designate how long each interval is and how long
the gaps between consecutive intervals are (thus we have already modded out by translations). The
free cube modelconsists of vectors(ℓ1, g1, . . . , gn−1, ℓn) in R2n−1 such thatℓi, gi ≥ 0 for all i.
Given such a vector, we construct a collection ofn intervals as follows: the leftmost interval is
[0, ℓ1]. The gap between the leftmost interval and its neighboring interval to the right isg1 and the
length of this next interval isℓ2, and so on.

The above model has a natural compactification which we call the unit cube model in which
we require that0 ≤ ℓi, gi ≤ 1 for all i (so that we may think of our points as living in the
unit cube inR2n−1). Though we do not use this model in this paper, this model wasutilized in
[MPSV17] to give a geometric interpretation to the enumeration and growth rate of bidirectional
ballot sequences/(1, 1)-culminating paths (these sequences were used by Zhao in hisconstructions
of MSTD sets).

Lastly, analogously to the restricted simplex model, we canmod out by all affine transformations
to get therestricted unit cube model. That is, we can additionally require thatℓ1+g1+· · ·+ℓn = 1.
This model is essentially the same as the restricted simplexmodel.

3. A GEOMETRIC PERSPECTIVE

The main goal of this section is to prove Theorem 1.2. However, as we shall see, in doing so we
shall develop a powerful set of tools for analyzing continuous sumsets and difference sets. These
tools will end up being useful for studying subsets ofZ as well.

In the sequel we shall generally letn be fixed, and letJ represent some element inIn consisting
of closed intervals. Thus,J = {J1, . . . , Jn} whereJi = [xi, yi], and fori < j, Ji is to the left of
Jj on the number line. Vectors will be denoted by parentheses (i.e.,[x, y] is an interval and(x, y)
is a vector).

To handle then = 1 case of Theorem 1.2 is more or less trivial. Already with then = 2 case
some work is required; the analysis of then = 2 case reveals most of the important ideas that go
into then ≥ 3 case, and we choose to analyze then = 2 case in such a way that the core ideas are
clearest, rather than using the more powerful but harder to visualize framework used in then ≥ 3
case.

Lemma 3.1. There are no MSTD sets inI1.

Proof. SupposeJ = [x1, y1]. The sumset consists of a single interval,[x1 + x1, y1 + y1], which
has length2y1− 2x1. The difference set also consists of a single interval,[x1 − y1, y1− x1], which
has length2y1− 2x1. Thus, the length of the sumset is exactly equal to the lengthof the difference
set, so in all casesJ is balanced. Notice that this analysis reveals that there isonly one type of
behavior in then = 1 case, which is to be expected since all intervals are equivalent mod affine
transformations. �

Then = 2 case requires some more work. As has been previously discussed,J + J can be
expressed as the union over alli and j of intervals of the formJi + Jj (and similarly for the
difference set). If we know the locations of all intervals ofthe formJi + Jj (or Ji − Jj) relative to
each other, then we know exactly what the sumset (or difference set) is. More precisely, if we know
the total ordering on the left and right endpoints of all intervals of the formJi + Jj (or Ji − Jj),
then we know exactly which points are inJ+J (or J−J), and additionally, we know the measure
of J + J . This motivates the following definition.
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Definition 3.2. GivenJ , the total ordering on the left and right endpoints of intervals of the form
Ji + Jj (Ji − Jj) is called thestructure of the sumset (difference set). The structure ofJ refers to
the structure of both the sumset and the difference set.

Thus, stated succinctly, the above observations say that ifwe know the structure of the sum-
set/difference set, then we know exactly what the sumset/difference set is.

Another notational definition which will make analysis easier is the following:

Definition 3.3. Let (Ji ± Jj)L and (Ji ± Jj)R denote the left and right endpoints respectively of
the intervalJi ± Jj .

Lemma 3.4. There are no MSTD sets inI2

Proof. Let J = J1 ∪ J2. If we use the free simplex model, thenJ has four degrees of freedom.
However, if we instead use the restricted simplex model, then J only has two degrees of freedom,
so all possible cases for the structure ofJ can be readily visualized. Using this model, we can
represent a givenJ as a point inR2: if J = {[0, y1], [x2, 1]}, we represent this as the pointJ =
(y1, x2) ∈ R2. The restricted simplex model restricts to the region in theplane simultaneously
satisfying the following inequalities:

y1 ≥ 0, (3.1)

x2 ≤ 1, (3.2)

y1 ≤ x2. (3.3)

We call this regionA.
First we see what information we need to figure out the structure of J + J . There are three

intervals we are concerned with:J1 + J1, J1 + J2 andJ2 + J2. Note that sinceJ1 is to the left of
J2, we immediately know that:

(J1 + J1)L ≤ (J1 + J2)L ≤ (J2 + J2)L,

(J1 + J1)R ≤ (J1 + J2)R ≤ (J2 + J2)R,

(J1 + J1)L ≤ (J1 + J1)R,

(J1 + J2)L ≤ (J1 + J2)R,

(J2 + J2)L ≤ (J2 + J2)R. (3.4)

Thus to figure out the structure ofJ + J , we only need the following information:

(J1 + J1)R
?
≤ (J1 + J2)L

(J1 + J2)R
?
≤ (J2 + J2)L. (3.5)

These two inequalities in question are equivalent to knowing on which side of the following
lines in the plane our pointJ lies:

y1 + y1 = 0 + x2

y1 + 1 = x2 + x2. (3.6)
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We now turn to determining the structure ofJ − J . From equations (3.1) to (3.3), we already
know:

(J1 − J2)L ≤ (J1 − J1)L ≤ (J1 − J1)R ≤ (J2 − J1)R

(J1 − J2)L ≤ (J2 − J2)L ≤ (J2 − J2)R ≤ (J2 − J1)R

(J1 − J2)L ≤ (J1 − J2)R ≤ (J2 − J1)L ≤ (J2 − J1)R. (3.7)

By the symmetry of the difference set, we only need to know thefollowing information to
determine the structure of the difference set:

(J1 − J1)R
?
≤ (J2 − J2)R

(J1 − J1)R
?
≤ (J2 − J1)L

(J2 − J2)L
?
≤ (J2 − J1)L. (3.8)

These three inequalities in question are equivalent to knowing on which side of the following
lines in the plane our pointJ lies:

y1 − 0 = 1− x2 (3.9)

y1 − 0 = x2 − y1 (3.10)

1− x2 = x2 − y1. (3.11)

However notice that equation 3.10 is the same as equation 3, and also 3.11 is the same as 3.6.
Thus for points withinA, by knowing on which side of the three lines given by equations 3, 3.6,
and 3.9 our pointJ lies, we completely know the structure ofJ . All of the above information is
captured geometrically in Figure 1. We see thatA is divided into 6 regions such that all points
in the same region have the same structure. Table 3 at the end of this paper enumerates which
structure each of these regions corresponds to.

In Table 3 we claim that regions 1-4 are difference dominant,and regions 5 and 6 are balanced.
That regions 3 and 4 are difference dominant and that regions5 and 6 are balanced are immediate
to see. To see that regions 1 and 2 are difference dominant is also straightforward. We shall show
this is the case for region 1. The proof for region 2 is similar.

In (the interior of) region 1, the following inequalities hold:

2y1 < x2

1 + y1 < 2x2

1− x2 < y1. (3.12)

From Table 3 we see thatµ(J + J) = 3y1 − 3x2 + 3 andµ(J − J) = 4y1 − 2x2 + 2. Therefore,
µ(J − J)− µ(J + J) = y1 + x2 − 1. We thus are interested in the following inequality:

0
?
< y1 + x2 − 1. (3.13)

However from equation (3.12) we know that this inequality holds true everywhere in region 1.
Therefore, region 1 is difference dominant. �

In handling then = 3 case of Theorem 1.2, rather than use the restricted simplex model, we
shall use the free simplex model. The main utility of this model is that the sum of two vec-
tors in In, as represented in this model, is again inIn in this model (that is,In has a semigroup
structure). Similarly to before, ifJ = {[x1, y1], . . . , [xn, yn]}, we associate to this the point
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x2 = 1

y1 axis

x2 axis

y1 = 0
x2 = y1

2y1 = x2

1 + y1 = 2x2

1− x2 = y1

1

2

3

4

5

6

FIGURE 1. The spaceA is partitioned into six regions such that within each region
the structure is constant. Note that all regions are defined by a system of linear
inequalities

J = (x1, y1, . . . , xn, yn). The goal is again to determine the structure ofJ . Like in then = 2
case, in order to figure out the total ordering on the left and right endpoints of the intervals in the
sumset/difference set, it suffices to know the outcomes of every comparison between endpoints.
Each such comparison can be expressed as evaluation of a linear polynomial in thexis andyis.
After a bit of thought, one realizes that up to multiplication by unit, there are four types of such
polynomials that we are interested in, as described in Table1. We call such polynomialscompar-
ison polynomials.

Type of polynomial Purpose

0
?
< xi + xj − xk − xℓ Compares(Ji + Jj)L and(Jk + Jℓ)L

0
?
< xi + xj − yk − yℓ Compares(Ji + Jj)L and(Jk + Jℓ)R

If i < k andℓ < j, compares(Ji − Jk)L and(Jℓ − Jj)L

0
?
< yi + yj − yk − yℓ Compares(Ji + Jj)R and(Jk + Jℓ)R

0
?
< xi + yℓ − xj − yk If i < k andℓ < j, compares(Ji − Jk)L and(Jℓ − Jj)L

TABLE 1. The four types of comparison polynomials, along with exactly what type
of comparison each type of polynomial is good for.
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For each linear polynomial as in Table 1, we have an associated coefficient vector, v, namely
the vector which when dotted with(x1, y1, . . . , xn, yn) gives the linear polynomial in question.
Additionally, to each such linear polynomial we have anassociated hyperplaneH, namely the
hyperplane obtained by setting the polynomial equal to zero. This hyperplane partitionsR2n into
two pieces corresponding to the two difference outcomes of the comparison which the linear poly-
nomial represents. Note thatv is a basis for the orthogonal complement toH.

We now recall some definitions from discrete geometry.

Definition 3.5. A central hyperplane arrangement is a finite collection of hyperplanes which all
pass through the origin.

Note that the set of associated hyperplanes to the linear polynomials of interest form a central
hyperplane arrangment which we call thestructure arrangement.

Definition 3.6. A conical combination of vectorsv1, . . . , vm is any combination of the form

α1v1 + · · ·+ αmvm (3.14)

such thatαi ≥ 0 for all 1 ≤ i ≤ m. The set of all conical combinations of a set of vectors is called
theconical span.

Definition 3.7. A polyhedral cone is the conical span of a fixed finite set of vectors. Equivalently,
it is all points in the intersection of finitely many halfspaces for which the corresponding set of
hyperplanes forms a central hyperplane arrangement.

In this paper we shall be dealing exclusively with rational polyhedral cones, so we can always
assume that each generator of the cone is a vector inZn with relatively prime entries (a primitive
integer vector).

Definition 3.8. An orientation on a hyperplane is a choice to label one of the corresponding
halfspaces as positive and the other as negative. Equivalently, it is a choice of a non-zero vectorb
in the (1D) orthogonal complement to the hyperplane: the positive halfspace is the set of pointsv
such thatv · b ≥ 0. We callb a positive normal.

If we have a central hyperplane arrangement, then for each way of simultaneously orienting all
the hyperplanes in the arrangement, we get an associated polyhedral cone (this cone may just be
zero). Our space is thus partitioned into disjoint polyhedral cones such that disjoint cones have
disjoint interiors. Dually, if we choose a specific polyhedral cone arising from a central hyperplane
arrangement, then we get an induced orientation on the hyperplane arrangement as follows: for
each hyperplane, we say that the halfspace containing the polyhedral cone is the positive halfspace.

Given the structure arrangement, we get a partition ofR2n into finitely many polyhedral cones,
each of which we call astructure cone. For a given structure cone, when choosing positive
normals for the induced orientation on the arrangement, we may choose for each hyperplane either
the corresponding coefficient vector or its negative.

Definition 3.9. LetV be a polyhedral cone inRn. LetV ∗ = {w ∈ Rn : ∀ v ∈ V, w · v ≥ 0}. Then
V ∗ is called thedual cone of V .

We may interpret the dual cone toV as the set of all possible positive normals to oriented
hyperplanes such that all ofV lies on the positive side of the hyperplane (together with the zero
vector).

The following basic result from the theory of polyhedral cones makes it easy to find dual cones,
especially when the polyhedral cones are given in terms of intersections of half-spaces (as is the
case here).
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Proposition 3.10. Given a polyhedral cone,V , the conical span of the set of positive normals in
the induced orientation onV is the dual cone ofV .

SupposeV is a structure cone. For allJ such thatJ ∈ V , the structure ofJ is the same. For
all J ∈ V , there exists a single homogeneous linear polynomial in thexi’s andyi’s, call it P+ with
coefficient vectorv+, such thatµ(J + J) = v+ · J . Analogously there existsP− with coefficient
vectorv− such thatµ(J − J) = v− · J . The vectorsv+ andv− are called thesum vector and
difference vector, respectively, for the coneV . The vectord = v+ − v− is called theMSTD
vector for V ; a collection of intervalsJ ∈ In with J ∈ V is an MSTD set if and only ifd · J > 0.
Note that ifd · J = 0, thenJ is balanced, and ifd · J < 0, thenJ is difference dominant.

The MSTD vector gives rise to an oriented hyperplane, namelythe orthogonal complement to
the span ofd, with positive normal equal tod. We thus have the following crucial observation.

Observation 3.11.Let V be a structure cone with MSTD vectord. If and only ifd = 0, then all
of V is balanced. Now supposed is non-zero. Then, if and only ifd is in the dual cone toV , then
V is sum-dominant (except possibly on the boundary which may be balanced). If and only if−d is
in the dual cone toV , thenV is difference domaint (except possibly on the boundary which may
be balanced). In all other cases,V splits into a sum dominant region and a difference dominant
region.

Lemma 3.12.For all J ∈ I3, J is not an MSTD set.

Proof. We now have all the tools necessary to handle then = 3 case of Theorem 1.2. In light of
Observation 3.11, rather than needing to (somehow) check the uncountably many possible collec-
tions of three intervals, we instead now need only check thatfor each structure coneV for theI3
structure arrangement, eitherd = 0 or −d ∈ V ∗. To prove then = 3 case, we proceed as in the
n = 2 case, namely we enumerate all structure cones and show that in all cases eitherd = 0 or
−d ∈ V ∗. We present an algorithm to carry our this procedure. A variant on this algorithm was
implemented in SAGE [Dev16] on a computer to enumerate and check all cases. Whereas there
were only six cases forn = 2, there are over 500 cases forn = 3.

The difficult part of the algorithm is enumerating all of the structure cones. We shall describe
a simple algorithm for doing just that; after stating the algorithm we shall discuss exactly what it
does (and why it works).

In essence, Algorithm 1 adds one hyperplane at a time to our arrangement, keeping track at each
step what the non-trivial cones are (the cones that aren’t just the zero vector). It represents each
cone by the generators of its dual cone, that is by the choice of orientation (positive normals) on
the partial hyperplane arrangement which gives rise to thatspecific cone.

Since for allJ ∈ In, x1 ≤ y1 ≤ · · · ≤ xn ≤ yn, for every structure cone of interest to us, the
vectorsŷ1 − x̂1, . . . , ŷn − x̂n must be positive normals (wherêxi is the coefficient vector to the
polynomialxi). This explains line 3. The variablepartial_dual_coneskeeps track of all partial
choices of positive normals for structure cones in our arrangement.

In line 4 of Algorithm 1, the functionGENERATE_LIST_OF_NORMALSreturns the coefficient
vectors for all the relevant comparison polynomials (irredundantly up to multiplication by unit).

The remainder of the algorithm consists of two loops. The outer loop iterates through the set
of normals in this list, and the inner loop iterates through the cones in our partial hyperplane ar-
rangement. A single iteration of the outer loop introduces anew hyperplane to the arrangement (as
represented by its normalnew_normal) and a single iteration of the inner loop keeps track if a given
cone in the partial arrangement (as represented bypartial_dual_cone) splits into two cones. The
functionIS_CONSISTENT(partial_dual_cone, new_normal) tests whether or not−new_normalis
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1 Input : the number of intervals,n
2 Output : the dual cones to the structure cones
3 partial_dual_cones= {{ŷ1 − x̂1, x̂2 − ŷ1, . . . , ŷn − x̂n}}
4 list_of_normals= GENERATE_LIST_OF_NORMALS(n)
5 for new_normal in list_of_normalsdo
6 new_partial_dual_cones= ∅
7 for partial_dual_cone in partial_dual_conesdo
8 if IS_CONSISTENT (partial_dual_cone, new_normal)then
9 new_partial_dual_cones∪ = (partial_dual_cone∪ new_normal)

10 end
11 if IS_CONSISTENT (partial_dual_cone,−new_normalthen
12 new_partial_dual_cones∪ = (partial_dual_cone∪ (−new_normal))
13 end
14 end
15 partial_dual_cones= new_partial_dual_cones
16 end
17 return partial_dual_cones

Algorithm 1: Algorithm to find the structure cones with non-empty interior.

in the conical span of the elements ofpartial_dual_cone. In other words, it tests if the cone cor-
responding topartial_dual_conelies entirely on the negative side of the oriented hyperplane with
positive normalnew_normal. If so, then addingnew_normalto partial_dual_coneas a positive
normal would result in a cone with empty interior. Any such cone would be on the boundary of
some other cone with non-empty interior, and thus is safe to ignore since it would be handled by
other cases. An example of an inconsistent choice of positive normal is the following: suppose
we already know thatx1 ≤ x2 ≤ x3. Then we necessarily know thatx1 + x2 ≤ x2 + x3, and
thus adding the vector̂x1 + x̂2 − x̂2 − x̂3 to our list of positive normals is inconsistent. Testing
consistency in this sense can be phrased a a feasibility problem in linear programming, and thus
there exist efficient algorithms to solve this problem. The variablenew_partial_dual_coneskeeps
track of the new cones in our new hyperplane arrangement withnon-empty interior. Once the
interior loop has finished, we setpartial_dual_conesequal tonew_partial_dual_conesand repeat
the outer loop, until we finally finish and return the set of cones with non-empty interior in our
structure hyperplane arrangement.

Once we have all of our structure cones, as represented by thethe list of positive normals for
the induced orientation on the hyperplane arrangement, we have all of the information we need
to figure out the sum vector and difference vector for each cone. We do not explicity describe an
algorithm to do so here, but leave it as an exercise to the interested reader to think about how to do
this.

Once we have the sum and difference vectors, we have the MSTD vector. Testing if the MSTD
vector is in the dual cone is a cone membership problem and thus can also be solved by linear
programming techniques.

We implemented in SAGE a slight variation on Algorithm 1. In particular, our algorithm does
not enumerate all regions where the structure is constant (i.e. all structure cones), but rather just
those regions such that within a region, the sum vector and difference vector is constant (e.g. in the
n = 2 case, regions 5 and 6 have the same sum formula and differenceformula, but have different
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structures; using an improvement on Algorithm 1, these two regions would not be distinguished).
We do not describe the improved algorithm here; the mere existence of an algorithm such as
Algorithm 1 is what is most important. When the improved algorithm ran, it found 502 cases, and
in all such cases eitherd = 0 or−d was in the dual cone implying there are no sum dominant sets
for n = 3. On a personal computer with 4GB of RAM, the computation tookaround 30 minutes
to complete. �

Proof of Theorem 1.2.To complete the proof of Theorem 1.2, we must for that forn ≥ 4, there do
exists collections ofn intervals which are sum dominant. Note that it suffices to just show that this
is the case whenn = 4 (if this is not clear, see Section 6 on cleaving). We can actually turn to the
existing literature on MSTD sets of integers to find an example. In Hegarty [Heg07], we have

{0, 1, 2, 4, 5, 9, 12, 13, 14}. (3.15)

The corresponding collection of intervals is:

J =

{[

−
1

4
, 2 +

1

4

]

,

[

4−
1

4
, 5 +

1

4

]

,

[

9−
1

4
, 9 +

1

4

]

,

[

12−
1

4
, 14 +

1

4

]}

. (3.16)

�

4. FROM ONE MSTD SET TO MANY

In this section we show a method of producing a large class of MSTD sets (both continuous
and discrete) from a single set. In particular this gives a new method of producing parametrized
families of MSTD sets of integers.

The idea of the method is straightforward given the ideas in Section 3: givenJ ∈ In, we find
the generators for its structure cone. We then also find the MSTD vector,d, for this cone. Since
J is MSTD, we know that eitherd ∈ V ∗, implying the entire cone is MSTD, or else the oriented
hyperplane with positive normald partitions the hyperplane into two cones, both the non-empty
interior. One of these cones is entirely MSTD. We then find thegenerators for this cone.

Before formally presenting the details of the algorithm (Algorithm 2), we show the procedure
on a concrete example. This example has a few peculiarities which make the example simpler than
most, but the core ideas are present.

Example 4.1. Let G = {0, 1, 2, 4, 5, 9, 12, 13, 14} and letJ be its continuous representation. A
computer program reveals thatJ is on the boundary of 108 different structure cones. We choose
one of these cones arbitrarily and call itV . The extremal rays ofV are the columns of the following
matrix:























0 0 0 0 0 0 0 1 −1
1 1 2 2 1 1 1 1 −1
2 2 4 3 2 2 2 1 −1
3 2 6 4 3 3 3 1 −1
4 4 10 7 5 5 6 1 −1
5 4 10 7 5 5 6 1 −1
6 5 13 9 7 7 8 1 −1
7 7 16 11 8 9 10 1 −1























. (4.1)

We then compute the MSTD vector,d, for V:

d =
(

−1 2 −2 0 1 2 −2 0
)T

. (4.2)
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We check ifd ∈ V ∗ and find that it is not. We therefore addd to V ∗ and then take its dual cone to
get a new coneW . The extremal rays forW are the columns of the following matrix:

A =























0 0 0 0 0 0 0 1 −1
1 1 2 3 2 1 3 1 −1
2 2 4 5 3 2 5 1 −1
3 2 6 7 4 3 7 1 −1
4 4 10 12 7 6 12 1 −1
5 4 10 12 7 6 12 1 −1
6 5 13 16 9 8 16 1 −1
7 6 16 19 11 10 20 1 −1























. (4.3)

Note then that any vector in the conical column span ofA is either balanced or sum dominant. A
closer examination reveals that all the columns give rise tobalanced sets except for the 5th row.
Therefore, any vector of the formAz with zi ≥ 0 andz5 > 0 gives rise to a continuous MSTD set.
Thus from finding a single MSTD set, we have found a huge class of continuous MSTD sets.

With just a bit more work we can find an infinite family of MSTD sets of integers as well.
In fact, we shall find all MSTD subsets ofZ whose continuous representation corresponds to a
point in W . Recall that given a point corresponding to an MSTD set of theform a = (x1 −
1/4, y1 +1/4, . . . , xn − 1/4, yn + 1/4) where eachxi andyi is inZ, then we can obtain an MSTD
set of integers, namely{[x1, y1]Z, . . . , [xn, yn]Z}. If a is in some coneX, thenαa ∈ X for all
α ≥ 0. In particular,4a ∈ W ; note that4a ∈ Z2n. Furthermore, mod 4, the entries of4a must
be(3, 1, 3, 1, . . . , 3, 1). Conversely, if some point inZ2n is of the form(3, 1, . . . , 3, 1) mod 4, then
we can find an MSTD set of integers from that point by dividing by 4 and undoing the discrete to
continuous process. We say that a pointx ∈ R2n is an(α, β)-lattice point mod k if x ∈ Z2n and
modk, x = (α, β, . . . , α, β). Thus our goal is to find the(3, 1)-lattice points mod4 in the conical
column span ofA.

Let B be the matrixA without the last column (the last two columns are linearly dependent,
so right now we can ignore the last column). From the above observations, we are interested in
finding solutions to the following system of equations:

Bα =























0 0 0 0 0 0 0 1
1 1 2 3 2 1 3 1
2 2 4 5 3 2 5 1
3 2 6 7 4 3 7 1
4 4 10 12 7 6 12 1
5 4 10 12 7 6 12 1
6 5 13 16 9 8 16 1
7 6 16 19 11 10 20 1













































α1

α2

α3

α4

α5

α6

α7

α8























=























1
3
1
3
1
3
1
3























(mod 4). (4.4)

Using Mathematica [Wol], we get that the unique suchα is

α =
(

2 0 0 0 0 0 0 3
)T

. (4.5)
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Therefore, by dividing any vector of the form below by 4 and then undoing the discrete to contin-
uous process, we obtain an MSTD set of integers (see Table 2 for some examples):























0 0 0 0 0 0 0 1
1 1 2 3 2 1 3 1
2 2 4 5 3 2 5 1
3 2 6 7 4 3 7 1
4 4 10 12 7 6 12 1
5 4 10 12 7 6 12 1
6 5 13 16 9 8 16 1
7 6 16 19 11 10 20 1













































2 + 4β1

4β2

4β3

4β4

4 + 4β5

4β6

4β7

3 + 4β8























β1 ∈ N0

β2 ∈ N0

β3 ∈ N0

β4 ∈ N0

β5 ∈ N0

β6 ∈ N0

β7 ∈ N0

β8 ∈ Z

. (4.6)

Furthermore, since theB has 8 rows, which is the dimension of the vector spaceW lives in, and
since the determinant ofB is -1, we know that in fact all MSTD sets of integers inW are obtained
in this way (in general it will not be the case that the number of generators is equal to the dimension
of the space, or even if the number of generators is equal to the dimension, that the determinant
of the matrix whose rows are those generators will be±1; we shall discuss how to deal with these
issues shortly).

In the above procedure, we took a single MSTD set and not only found a huge class of continuous
MSTD sets, but also a non-trivial infinite family of discreteMSTD sets (in fact all of the discrete
MSTD sets in the structure cone). Furthermore, the MSTD set we started with led us to find 108
different MSTD cones, so from the same starting MSTD set, we can carry out the above process
107 more times to find even more MSTD sets (all of this arising from finding a single MSTD set)!

We now discuss a more general algorithm for carrying out the above procedure. There are three
main issues which up to this point we have glossed over.

(1) The setJ may be contained in multiple structure cones, so we need a wayof enumerating
all structure cones containingJ ; this can be resolved using ideas similar to those presented
in Algorithm 1.

(2) A given structure cone containingJ may have more generators than the dimension of the
space; the trick here is to partition the cone into a collection of simplicial cones.

(3) For a given rational simplicial cone with generators represented as primitive integer vec-
tors, if the determinant of the corresponding matrix is not±1, then integer conical com-
binations of the generators will not necessarily give all lattice points in the cone (and in
particular will not necessarily give all lattice points corresponding to MSTD subsets ofZ).

β1 β2 β3 β4 β5 β6 β7 β8 MSTD integer set
0 0 0 0 0 0 0 -1 {0, 1, 2, 4, 5, 9, 12, 13, 14}
1 0 0 0 0 0 0 -1 {0, 1, 2, 3, 6, 7, 8, 13, 14, 18, 19, 20, 21}
0 1 0 0 0 0 0 -1 {0, 1, 2, 3, 6, 7, 13, 17, 18, 19, 20}
0 0 1 0 0 0 0 -1 {0, 1, 2, 3, 4, 8, 9, 10, 11, 19, 25, 26, 27, 28, 29, 30}
0 0 0 1 0 0 0 -1 {0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 21, 28, 29, 30, 31, 32, 33}
0 0 0 0 1 0 0 -1 {0, 1, 2, 3, 4, 7, 8, 9, 16, 21, 22, 23, 24, 25}
0 0 0 0 0 1 0 -1 {0, 1, 2, 3, 6, 7, 8, 15, 20, 21, 22, 23, 24, 25}
0 0 0 0 0 0 1 -1 {0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 21, 28, 29, 30, 31, 32, 33, 34}

TABLE 2. A few of the MSTD sets of integers contained in this structure cone.
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First we discuss issue (1); Algorithm 2 gives a way of resolving this this issue. In words, this
algorithm first orients those hyperplanes for whichJ is on the strictly positive side. This results
in a polyhedral cone for whichJ is in the interior. The remaining hyperplanes (as represented by
non_strict_normals) are then one by one tested to see if they partition the partial cones found so
far into two cones with non-empty interiors. Lines 15-28 arevirtually identical to Algorithm 1 and
thus their function should be clear.

1 Input : a pointJ corresponding to an MSTD set consisting ofn intervals
2 Output : all structure cones containingJ
3 list_of_normals= GENERATE_LIST_OF_NORMALS(n)
4 partial_cone= ∅
5 non_strict_normals= ∅
6 for new_normal in list_of_normalsdo
7 dotted= new_normal· J
8 if dotted > 0then
9 partial_cone∪ = new_normal

10 else ifdotted < 0then
11 partial_cone∪ = −new_normal
12 else
13 non_strict_normals∪ = new_normal
14 end
15 partial_cones= {partial_cone}
16 for normal in non_strict_normaldo
17 new_partial_cones= ∅
18 for cone in partial_conesdo
19 if IS_CONSISTENT(cone, normal)then
20 new_partial_cones∪ = (cone∪ normal)
21 end
22 if IS_CONSISTENT(cone,−normal)then
23 new_partial_cones∪ = (cone∪ −normal)
24 end
25 end
26 partial_cones= new_partial_cones
27 end
28 return partial_cones

Algorithm 2: Algorithm describing how to find all the structure cones containing a given point.

Once we have the representation of a polyhedral cone as an intersection of halfspaces, there are
algorithms to find its representation as the concial span of acollection of generators. Issue (2)
is then quite straightforward to deal with. Partitioning a polyhedral cone into simplicial cones is
virtually the same as partitioning a compact polytope into simplices and there exist algorithms to
do so.

Issue (3) is also not too bad to deal with. LetV be a rational simplicial cone. LetA be a
matrix whose columns are primitive integer vectors generating the cone. Then,det(A) ∈ Z. Let
D = | det(A)|. Then, sinceA−1 = adj(A)/ det(A), all x such thatAx ∈ Z are inZn/D, that
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is the set of points whose product withD is in Zn. Supposex ∈ Zn/D such thatAx is a (3, 1)-
lattice point mod4. Then,A(Dx) must be a(3D,D)-lattice point mod4D. Conversely, ifAy is
a (3D,D)-lattice point mod4D, thenA(y/D) is a (3, 1)-lattice point mod4. Therefore, finding
all x ∈ Qn such thatAx is a (3, 1)-lattice point mod4 is equivalent to finding ally ∈ Zn such
thatAy is a(3D,D)-lattice point mod4D. To do this we need only find the set of solutions to the
following system of equations overZ/(4DZ).

Ay =













3D
D
...

3D
D













(mod 4D). (4.7)

Suppose thatv1, . . . , v2n are the generators for some simplicial cone,S, arising as the MSTD
refinement of an MSTD structure cone with MSTD vectord. Let vi1, . . . , vik be thosevi such that
vi · d > 0. Let p be any particular solution to 4.7. A pointm is an MSTD(3, 1)-lattice mod4 point
if and only if it can be expressed as

m = A(p/D + k/D + 4ℓ) (4.8)

wherek is in the kernel ofA as an endomorphism onZ/(4DZ), and ℓ ∈ Z2n and such that
f = p/D + k/D + 4ℓ satisfiesf · êi ≥ 0 for all i ∈ [2n] andf · êij > 0 for somej ∈ [k].

5. CONTINUOUS TODISCRETE

In this short section we prove a simple “converse” to Theorem1.1: up to scaling, every element
in I can be arbitrarily well approximated by (the continuous representation of) a finite collection
of integers.

Theorem 5.1. Let A ∈ I. For everyε > 0, there existsα > 0 andB ⊂ Z, with continuous
representationB, such that

µ ((αA+ αA) ∆ (B + B)) < ε,

and
µ ((αA− αA) ∆ (B − B)) < ε.

Proof. The idea of the proof of Theorem 5.1 is to dilate the setA and then approximate each dilated
interval by the set of integers contained in the interval. Without loss of generality, we may assume
thatA ⊂ [0, 1]. Suppose thatA consists ofk intervals, that isA = J1 ∪ · · · ∪ Jk with Ji = [xi, yi]
and withJi to the left ofJj for i < j. Suppose the length of the shortest of these intervals isδ. Let
N ∈ Z be any number such that

N ≥ max

(

3

δ
,
8k2

ε

)

. (5.1)

Let FN = {i/N : 0 ≤ i ≤ N, i ∈ Z}. By equation (5.1), we know

#(Ji ∩ FN ) ≥ 3 (5.2)

Let ℓi, ri ∈ Z be such thatℓi/N = min(Ji ∩ FN ) andri/N = max(Ji ∩ FN ). Notice that by
equation (5.1),

∣

∣

∣

∣

ℓi + 1

N
− xi

∣

∣

∣

∣

<
2

N
(5.3)
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and
∣

∣

∣

∣

yi −
ri − 1

N

∣

∣

∣

∣

<
2

N
. (5.4)

Let Bi = [ℓi + 1, ri − 1]Z (by equation 5.2 eachBi is non-empty). LetB =
⋃

i Bi. Let B be the
continuous representation ofB with Bi the continuous representation ofBi. Let C be the setB
scaled by1/N , andCi the setBi scaled by1/N . Notice thatC ⊆ A. Therefore

D := (A±A) ∆ (C ± C) = (A±A) \ (C ± C). (5.5)

Let x ∈ D. We have that

D ⊆
⋃

i,j

((Ji ± Jj) \ (Ci ± Cj)) (5.6)

Therefore

µ(D) ≤
∑

i,j

µ ((Ji ± Jj) \ (Ci ± Cj))

≤ k2max
i,j

µ ((Ji ± Jj) \ (Ci ± Cj)) .
(5.7)

By equations (5.3) and (5.4), we know that

max
i,j

µ ((Ji ± Jj) \ (Ci ± Cj)) <
8

N
. (5.8)

Therefore,

µ(D) <
8k2

N
≤ ε. (5.9)

�

6. OPEN QUESTIONS AND CONCLUDING REMARKS

The ideas presented in Sections 3 and 4 motivate several interesting follow-up questions. First,
there’s the question of whether or not a more elegant proof ofTheorem 1.2 exists.

Question 6.1.Is there a proof of Theorem 1.2 that does not reduce to casework?

There are also several interesting combinatorial questions that arise. One basic question is:

Question 6.2.How many cones are there in the structure hyperplane arrangement forIn?

A closely related question has been investigated before in [BBP12]. The number of such regions
is closely related to (and upper bounded by) the even indexedentries in OEIS A237749. There is a
rich theory of counting the number of regions in a hyperplanearrangement (see [Sta07], e.g.), and
perhaps these techniques could answer Question 6.2.

Another basic question is:

Question 6.3.How many MSTD structure cones are there forIn? What are their relative (intrinsic)
volumes? Is there a “dominating” MSTD cone?

In our opinion, one of the most interesting subsequent question is the following.

Question 6.4.Do the set of MSTD points inIn form a connection region? If so, what is the degree
of connectivity of this region (is it2n-connected?)? If not, how many connected components does
it contain? Does the number of connected components change asn increases?

18



If the answer to Question 6.4 is yes, then it would in some sense imply that there is only one
“type” of MSTD set, from a single MSTD set (with a fixed number of intervals), all other MSTD
sets can be found by perturbing that set (and keeping it MSTD along the way).

Given an MSTDJ ∈ In, there are several ways of naturally “embedding” this set into In+1. If J
is composed of open intervals, then removing any single point in J results inn + 1 intervals, call
it J ′, but the setsJ andJ ′ are basically the same. We say thatJ ′ is obtained fromJ by cleaving.
Assuming the answer to Question 6.4 is no, a refined question is

Question 6.5.Can every MSTD point inIn+1 be obtained by an MSTD path from the image of
some cleaved MSTD point inIn?

If we deal with a compact parameter space, as in the simplex model and unit cube model, we may
then talk about the probability that a point is MSTD, balanced, or difference dominant. Figures 2
and 3 show approximations of these probabilities based on Monte Carlo simulation with 10 million
trials.
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FIGURE 2. Probability of being balanced in the simplex and cube models based on
Monte Carlo simulation (10 million trials).

Interestingly, the probabilities for being MSTD and balanced appear to be different for the sim-
plex model and unit cube model. However, in both cases, the probability of being sum-dominant
appears to converge to a similar value to the limiting probability in the discrete case (∼ 4.5×10−4).

Question 6.6.Do the probabilities of being sum dominant and balanced converge for the simplex
model and the cube model? What is the relationship between these MSTD probabilities and the
limiting MSTD probability in the discrete case?

One of the main open questions in the study of MSTD sets is to construct a constant density
family of MSTD sets asn → ∞. Thus we may ask:

Question 6.7.Can the techniques in this paper be used to construct a constant density family of
MSTD subsets of[n] asn → ∞?
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FIGURE 3. Probability of being MSTD in the simplex and cube models based on
Monte Carlo simulation (10 million trials).

There are several interesting subsequent lines of inquiry stemming from the ideas in the paper.
More generally, we believe that there is a lot of utility in passing from the discrete to the continuous
as in this paper. Ideas closely related to those here were utilized in the related paper [MPSV17]
to reveal a geometric structure to a certain family of combinatorial objects which was not visible
previously. We believe there may be several further fruitful applications of the ideas of this paper.
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J1 + J1

J1 + J2

J2 + J2

J+ J

J1 − J1

J1 − J2

J2 − J1

J2 − J2

J− J

2y1
?
≤ x2

1 + y1
?

≤ 2x2

1− x2

?

≤ y1

µ(J + J)

µ(J − J)

Type

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

yes yes no yes no no
yes yes yes no no no
yes no yes no yes no

3y1 − 3x2 + 3

4y1 − 2x2 + 2

difference dominant

3y1 − 3x2 + 3

2y1 − 4x2 + 4

difference dominant

y1 − 2x2 + 3

2

difference dominant

2y1 − x2 + 2

2

difference dominant

2

2

balanced

2

2

balanced

TABLE 3. Table enumerating the structures of each of the six regions ofA, along with the size of the sumset, difference set, and type.
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