A GEOMETRIC PERSPECTIVE ON THE MSTD QUESTION

STEVEN J. MILLER AND CARSTEN PETERSON

ABSTRACT. A more sums than differences (MSTD) sétis a subset oZ for which |A + A| >
|A — A|. Martin and O’Bryant used probabilistic techniques to grtivat a non-vanishing propor-
tion of subsets of1,...,n} are MSTD as:» — oo. However, to date only a handful of explicit
constructions of MSTD sets are known. We study finite caibet of disjoint intervals on the real
line, I, and explore the MSTD question for such sets, as well as taéae between such sets and
MSTD subsets of. In particular we show that every finite subsetZtan be transformed into
an element of with the same additive behavior. Using tools from discretergetry, we show that
there are no MSTD sets inconsisting of three or fewer intervals, but there are MST( && four
or more intervals. Furthermore, we show how to obtain anitefiparametrized family of MSTD
subsets o% from a single such sed; these sets are parametrized by lattice points satisfyingle
congruence relations contained in a polyhedral cone aat®ealcioA.

1. INTRODUCTION

Let A be a finite subset of the integers. Thansetanddifference setare defined, respectively,
as:

A+ A = {ag +ay:ay,a0 € A}, (1.1)
A—A = {ay —ay:aj,ay € A} (1.2)

If |[A— A| > |A+ A|, we say that the set is difference dominant If |A+ A| > |A — A|, we say
that A is sum dominantor, following the terminology of [NatO7b], emore sums than differences
(MSTD) set If |[A — A| = |A + A|, we sayA is balanced

Due to the commutativity of addition, there is a lot of redandy inA+ A, and its size is at most
(2) +n = "=t wheren = | A| (with equality being achieved with a geometric progression
example). In the difference set, although 0 can be repredentnumerous ways (e.0.= a; — a;
for anyi), as subtraction is not commutative there are at méstn + 1 elements ird — A (again
with equality being achieved whefhis a geometric progression).

Since the difference set has the potential to be much lahger the sumset, we might naively
believe that in general the difference set is larger. The &xample of an MSTD set{0, 2,
3,4,7,11, 12, 14}, was given by Conway, and others were given in [Mar69] and/8PFRuzsa
([Ruz78/Ruz84, Ruz92]) used probabilistic techniquesto@the existence of many MSTD sets.
Though Roesler [RoeD0] was able to show that the averag®fihe difference set is larger than
the average value of the sumset for subseisjof= {1, ..., n}, surprisingly, Martin and O’Bryant
[MOOQ7] proved using probabilistic techniques that forralk 15, the probability of being MSTD
among subsets df)] is at least x 10~7. Zhao [Zhall] showed that the probability of being sum
dominant converges to a limit as — oo and that this limit probability is at leagdt28 x 10~
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Based on computer simulation, we expect the true limitingevdo be aroundt.5 x 107, If,
however, we independently choose elementsptfo be in A with probabilityp(n) which tends to
zero withn, then Hegarty and Millef [HMQ9] proved that with probabylit such a set is difference
dominated.

In the last decade there has been considerable interespliciegonstructions of MSTD sets
(which in light of [MOQ7] must exist in large numbers). A wdihown technique for producing
an infinite family of MSTD sets from a single one is base expandet A = {a4,...,a,} be an
MSTD set. For each € N and some fixedn > 2 x max{|a;| : i € [n]}, defineA,; as

k

A = {Z a;m™t i€ n) ke [t]} . (1.3)
=1

Then|A; + A;| = |A + A|', thus leading to a parametrized infinite family of MSTD sétsugh

of extremely low density. Nathanson in [NatO7a] asks if éhare other parametrized families of

MSTD sets. Hegarty [Heg07] and Nathanson provide a posatigaver; in both cases their ideas

involve taking some set which is symmetric (and thus baldpaad perturbing it slightly so as to

increase the number of sums while keeping the number ofrdiftees the same. Hergarty [Heg07]

then posits: “More interesting, though, would be to havelieiexamples of MSTD sets which

are, in some meaningful sense, ‘radically’ different froom® perturbed symmetric set.”

A new method of explicitly constructing MSTD sets was fourydMiiller, Orosz and Schneier-
man [MOS10]. Their idea is to find sets whose sumset contdlipsssible sums (i.e., all integers
between2a; and2a,). Then by appropriately adding elements to the fringes chsaset, one
obtains an MSTD set. This technique was furthered by Zhaal®h who found a larger class of
sets whose sumset is as large as possible. These methatidsfisities on the order af n” (the
ideas in[MOS10] yield- = 2, while those in[[Zhal0] give = 1).

We introduce another “radically” different way of constting MSTD sets. The heuristic behind
our techniques is that the property of being an MSTD set shbel“stable” under small pertur-
bations. In order to make this notion rigorous, we must pass the realm of the discrete to the
realm of the continuous (but we will ultimately return to ttiscrete setting). Ldt denote the set
of all collections of finitely many disjoint open intervala the real line, and l€t, denote the set of
all collections ofn disjoint open intervals on the real lileFor eachA € I, we defined + A and
A — A asinthe discrete case. However, we are no longer intergstled cardinality of these sets,
but rather in the (Lebesgue) measute, We say that4 is difference dominant, sum dominant,
or balanced ifu(A — A) > u(A+ A), u(A—A) < u(A+ A), or u(A—A) = u(A+ A),
respectively.

The foundational result of this paper is the following, whis proven in Sectiohnl 2.

Theorem 1.1.Let A C Z with|A| < co. Then, there exists aA € TsuchthatA+A| = u(A+.A)
and|A — Al = u(A—A).

We will show that the construction of from A is very natural and straightforward.
Theorem 1.1 justifies the study of the additive behavior efrents ifl as a means to study the
additive behavior of subsets @ The spacd,, (and related spaces) have a natural topology, and

1As if often the case when dealing with measure theoreticraegts, it does not make a meaningful difference if
we use open or closed intervals (or even half-open/haledadntervals). Certain arguments are cleaner if one uses
one or the other, and thus in this paper we shall sometimesnesthat the elements dfindl,, consist of collections
of open intervals, and at other times closed intervals.
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thus we have the utility of continuity arguments at our dsgdan this setting. In the latter half of
Sectiori 2, we discuss how to topologizeand related spaces.

In Section[B, we introduce a number of tools from discretenggtoy to analyze the MSTD
guestion for elements ih The main result of that section is the following.

Theorem 1.2.For n < 3, there does not exisd € I,, such that4 is MSTD. For alln > 4, there
do exist MSTDA < 1,.

This theorem may be loosely interpreted as the continuoatogue of the theorem of Hegarty
[HegO7] that there are no MSTD subsetsZo6f cardinality less than 8.

In addition to allowing us to prove Theorém 1.2, the toolsedeped in Sectiohl3 will give us a
way of producing an infinite parametrized family of MSTD setssofZ from a single MSTD set
(either in the discrete or continuous sense). This infimiteify will in fact have a simple algebraic
structure. As is to be seen, our techniques in some sense @tle to uncover the structure of
the set which resulted in it being MSTD and then to systeraliyienumerate all MSTD sets with
this same structure. This is progress towards answeringgée-ended question of Nathanson in
[NatO7a]: “What is the structure of finite sets satisfyipg+ A| > |A — A|?” These ideas are
presented in Sectidn 4.

In Sectior b we present a sort of converse result to Thebr@mamely that up to affine trans-
formation, given anyd € I, we can find a4 C Z such that the additive behavior gf and A
are as similar as we like. Finally, in Sectioh 6, we presemesexperimental data and pose some
open questions and lines of further research.

2. DISCRETE TOCONTINUOUS

In the sequelA always denotes a finite subsetZfFor convenience, in this section we assume
that elements df consist of closed intervals.

Definition 2.1. Leta,b € Z with a < b. We call the sefa, b]; := {a < 2 < bjz € Z} aclosed
integer interval.

Definition 2.2. Let A = {a4,...,a,} witha; < as < --- < a,. Theinterval decomposition of A

is the unique decomposition dfinto closed integer intervald = [by, ¢1]zU[ba, ca]zU- - -Ulby, cklz
such that for alli # j, we havelb, — ¢;| > 2 (that is, adjacent integers are always grouped into
the same closed integer interval; see Exariplé 2.3).

Example 2.3.Let A = {0, 1, 3,4,5,7,9,10}. Then the interval decomposition dfis
A = [0,1]z7U3,5]zU 7,7z U[9,10]z. (2.1)

Definition 2.4. Supposed has interval decompositioA = [by, ¢1]z U - - - U [bg, cx]z. Thecontin-
uous representation of A, denotedA*, is

1 1 1 1
A = {b1—1701+1}U"'U{bk_zack‘i‘z}- (2.2)

We are now ready to state our main theorem of this section.

Theorem 2.5.Let A and B be finite subsets &, and A* and B* their continuous representations.
Let i be the Lebesgue measure on the real line. Then it is true that

|A+ B| = pu(A*+ BY) (2.3)
and
|A— B| = u(A* — BY). (2.4)
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Before proving this theorem we shall prove a sequence oflancpropositions. The following
proposition is a straightforward exercise.

Proposition 2.6. Let A = [a1, as]z and B = [by, bs]z With a; < b;. Then, the following are true:

A+ B = [a; + by, a9 + bolz, (2.5)
A"+ B* = |:a1+b1—%,a2+b2+%:|, (2.6)
A—B = [a; — by, a2 — byz, (2.7)
and
A" — B = lal—bg—%,ag—ble%}. (2.8)

Corollary 2.7. If A = [a1,as]z and B = [by, bs]z, then|A + B| = u(A* + B*) and|A — B| =
u(A* = B”).

Proposition 2.8. Let A and B be finite subsets &. Letn be inZ. Themnn is in A + B if and only
if nisin A* + B*. Similarly,n isin A — B if and only ifn is in A* — B*.

Proof. This follows almost immediately from Propositibn R.6. Lét= [aq,bi]z U - - - U [ax, bz
andB = [c1, di]z U - -Uley, dgz be the interval decompositions dfand B respectively. Suppose
n € A+ B. This clearly can only happeniif € [a;, b;]z+ c;, d;]z for somei andj. By Proposition
2.8, lettingA’ = [a;, b;]z and B’ = [c;, d;]z, we know that, € A™ + B and therefore: is also in
A"+ B*.

Now suppose that € A* + B* withn € Z. This implies that. € [a;, b;]}, + [¢;, d;]3, for somei
andj. By Propositio 2.6, this implies thate [a;, b;|z + [c;, d;]z since([a;, b;]5,+ [¢;, d;]5) NZ =
lai, bz + [¢j, dj]z. Thus we getthat € A+ B.

By switching the plus signs above to minus signs, we obtairoafgdor the second half of the
proposition statement. O

Proposition 2.9. Let A and B be finite subsets &. LetC' 4., g- andCy-_p+ be defined as

Caeppe = U E%(n) (2.9)
n€(A*+B*)NZ
and
CH pe = U B (2.10)

whereE%(n) is the closed ball of radiu§ centered ab. ThenCy« - = A* + B* andCy«_p: =
A* — B*,

Proof. Notice that this statement is clearly true in the case that [a,,as|z and B = [by, bz

from Proposition 2J6. Suppose now tht=J;_, I; andB = |J;_, J; where thel; are the integer

intervals in the interval decomposition ¢f, and theJ; are the integer intervals in the interval
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decomposition of3. Thus

Cagp = | Crrtu;
1<i<k,1<5<¢
= U r+7 (2.11)
1<i<k,1<j<¢
= A"+ B*.
As before, by changing plus signs to minus signs we get a joodtfie latter part of the proposition
statement. O

We are now ready to prove Theoréml2.5.

Proof of Theorerh 215By Propositio 2.9, we know thdt 4, - = A* + B*. The setC -, p- IS
composed to sets of measure 1 such that the intersectiory gdfaanof them is either empty or a
single point. This implies that the measure of the inteisaadf any pair of these sets is 0. We
can therefore conclude thatA* + B*) = #{(A* + B*) N Z}. However, by Proposition 2.8, we
know that#{(A* + B*) N Z} = |A + B|. Therefore,u(A* + B*) = |A + B|. Showing that
u(A* — B*) = |A — B| follows analogously. O

The above results show that by studying sumsets and differsats for collections of inter-
vals, we can retrieve results about collections of interea a special case. However, the power
of instead studying collections of intervals is that, as watmuously vary the endpoints of our
intervals, the size of the sumset and of the difference set\&ry continuously. Therefore, for
example, given a single MSTD collection of intervals, we @any this the endpoints of these
intervals slightly and still have an MSTD set.

In general, rather than deal withwe shall fix some: and deal withl,,. Since additive behav-
ior (in particular the property of being MSTD) is invariamder affine transformation, modding
out by affine equivalence does not charigen a meaningful way. With this in mind, there are
several natural ways to topologiZg and its quotient by some or all of the affine group. These
fall into two broad categories of parametrizatioesidpoint parametrizations andinterval-gap
parametrizations.

Endpoint parametrizations refer to subsets of some Ewtidpace where each component of
a vector in the space is either a left or right endpoint for eanterval on the real line. The
free simplex modelis the subset oR?" composed of vectors of the forta,, by, . . ., a,,b,) with
the condition that;; < b, < --- < a,, < b,. We think of this vector as representing the set
la1,b1] U [ag, bo] U---Ulay, b,]. This model is a parametrization of all bf; we have not modded
out by any affine equivalences. This model will be partidylaseful in the next section.

One disadvantage of the above model is that the space is mpamd. A similar model, which
we call thesimplex modelis the subset oR?** composed of vector§i,, by, . . ., a,, b,) with the
condition thatd) < a; < b; < --- < b; < by < 1. This model is named as such because the points
in this space all live in &n-dimensional simplex.

Yet another disadvantage of both of the above models is liea¢ is some redundancy: up to
affine transformation we still have several representatioe the same set. We can mod out by
all affine transformations (with positive determinant) leguiring that our leftmost interval start
at 0 and our rightmost interval end at 1. We thus definedkg&icted simplex modelto be those
vectors(by, ag, by, ..., an_1,bp_1,a,) iNR* 2 suchthad) < b, < ay--- < b,_; < a, < 1with
the understanding that this vector corresponds to theatimteof intervalg0, b;| U [ag, bo] U - - - U
lan, 1].
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Another class of natural parametrizations we call integagh parametrizations; in these, instead
of designating where intervals begin and end, we desigmatddng each interval is and how long
the gaps between consecutive intervals are (thus we haadgimodded out by translations). The
free cube modelconsists of vector§ly, gy, ..., g1, ¢,) in R**~! such that/;, g; > 0 for all .
Given such a vector, we construct a collectionnohtervals as follows: the leftmost interval is
0, ¢1]. The gap between the leftmost interval and its neighbonitgyval to the right ig;, and the
length of this next interval i$,, and so on.

The above model has a natural compactification which we lkallihit cube modelin which
we require tha < /;,¢; < 1 for all i (so that we may think of our points as living in the
unit cube inR?"~1). Though we do not use this model in this paper, this modelwtitiged in
[MPSV17] to give a geometric interpretation to the enumerand growth rate of bidirectional
ballot sequencefl, 1)-culminating paths (these sequences were used by Zhaoéoimssructions
of MSTD sets).

Lastly, analogously to the restricted simplex model, weroad out by all affine transformations
to get therestricted unit cube model Thatis, we can additionally require that-g,+- - -+¢,, = 1.
This model is essentially the same as the restricted simmptaiel.

3. A GEOMETRIC PERSPECTIVE

The main goal of this section is to prove Theofem 1.2. Howesewe shall see, in doing so we
shall develop a powerful set of tools for analyzing contimsisumsets and difference sets. These
tools will end up being useful for studying subset¥cds well.

In the sequel we shall generally lkebe fixed, and let/ represent some elementlinconsisting
of closed intervals. Thus] = {.Ji,..., J,} whereJ; = [z;,y;], and fori < j, J; is to the left of
J; on the number line. Vectors will be denoted by parentheses|(, y| is an interval andz, y)
is a vector).

To handle the: = 1 case of Theorern 1.2 is more or less trivial. Already withthe 2 case
some work is required; the analysis of the= 2 case reveals most of the important ideas that go
into then > 3 case, and we choose to analyzeithe 2 case in such a way that the core ideas are
clearest, rather than using the more powerful but hardeistealize framework used in the> 3
case.

Lemma 3.1. There are no MSTD sets I.

Proof. Suppose/ = [z1,4:1]. The sumset consists of a single interval, + x1, y1 + v1], which
has lengti2y,; — 2z,. The difference set also consists of a single intefval;- y1, y1 — x|, which
has lengthRy; — 2z;. Thus, the length of the sumset is exactly equal to the leoige difference
set, so in all caseg is balanced. Notice that this analysis reveals that theomlis one type of
behavior in then = 1 case, which is to be expected since all intervals are egnvahod affine
transformations. ]

Then = 2 case requires some more work. As has been previously detugs- J can be
expressed as the union over aland j of intervals of the formJ; + J; (and similarly for the
difference set). If we know the locations of all intervalsloé form.J; + J; (or J; — J;) relative to
each other, then we know exactly what the sumset (or diftereet) is. More precisely, if we know
the total ordering on the left and right endpoints of all mgds of the formJ; + J; (or J; — J;),
then we know exactly which points are.int- J (or J — J), and additionally, we know the measure

of J + J. This motivates the following definition.
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Definition 3.2. Given/J, the total ordering on the left and right endpoints of int&s/of the form
J; + J; (J; — J;) is called thestructure of the sumset (difference set). The structurd oéfers to
the structure of both the sumset and the difference set.

Thus, stated succinctly, the above observations say thvee iknow the structure of the sum-
set/difference set, then we know exactly what the sumsiet/eince set is.
Another notational definition which will make analysis eass the following:

Definition 3.3. Let (J; £ J;), and(J; =+ J;)r denote the left and right endpoints respectively of
the intervalJ; £+ J;.

Lemma 3.4. There are no MSTD sets In

Proof. Let J = J; U J,. If we use the free simplex model, thenhas four degrees of freedom.
However, if we instead use the restricted simplex modeh thenly has two degrees of freedom,
so all possible cases for the structureJotan be readily visualized. Using this model, we can
represent a gived as a point inR?: if J = {[0,v1], [z2, 1]}, We represent this as the point=
(y1,72) € R% The restricted simplex model restricts to the region indlae simultaneously
satisfying the following inequalities:

Y1 < Ta. (3.3)

We call this regionA.

First we see what information we need to figure out the strectdi / + J. There are three
intervals we are concerned with; + J;, J; + J» andJ,; + J,. Note that since/; is to the left of
Jo, we immediately know that:

(Ji+ ) < (Ji+J2)t (J2 + J2)L,
(i+Dh)r < (L +D)r < (Jo+ J2)r,
(Ji+ D) < (Ji+ J)g,
(Ji+ o) < (Ji+ J2)r,
(Jo+ Jo)L (Jo+ Jo)g- (3.4)

<
<

<
<

Thus to figure out the structure df+ .J, we only need the following information:

2

(J1+J1)r (J1+ J2)L

<
?
<

(Ji+)r < (J2+ o)1 (3.5)

These two inequalities in question are equivalent to kngvan which side of the following
lines in the plane our point lies:

yi+y1 = 0+ 29
4+ 1 = 29+ 1 (3.6)
7



We now turn to determining the structure 6f J. From equationd_(3.1) td¢ (3.3), we already
know:

(H=L)r < (L =N < (L —=N)r £ (o= T1)r
(i—=J2)r < (Ja—Jdo)p < (Jo—J)r < (Jo—J1)g
(i—=J)r < (L—=J)r < (o= J1)r < (Jo—J1)r- (3.7)

By the symmetry of the difference set, we only need to knowftlewing information to
determine the structure of the difference set:

(Ji— I)r < (Jo— Jo)n
(= J)r < (o= )
(o ) < (Jo— i) (3.8)

These three inequalities in question are equivalent to kmpwn which side of the following
lines in the plane our point lies:

y1—0 =z —y1 (3.10)
1-— T2 = Tg — Yg. (311)

However notice that equatidn_3]10 is the same as equatiomd3alad3.111 is the same[as]3.6.
Thus for points withinA, by knowing on which side of the three lines given by equatidn3.6,
and[3.9 our point/ lies, we completely know the structure #f All of the above information is
captured geometrically in Figureé 1. We see tHais divided into 6 regions such that all points
in the same region have the same structure. Table 3 at thefahis paper enumerates which
structure each of these regions corresponds to.

In Table[3 we claim that regions 1-4 are difference dominamd, regions 5 and 6 are balanced.
That regions 3 and 4 are difference dominant and that redi@ml 6 are balanced are immediate
to see. To see that regions 1 and 2 are difference dominalsbis@aightforward. We shall show
this is the case for region 1. The proof for region 2 is similar

In (the interior of) region 1, the following inequalitiesldo

2y < 9
1+ n < 219

From Tabld B we see thatJ + J) = 3y; — 325 + 3 andu(J — J) = 4y, — 225 + 2. Therefore,
w(J —J)—u(J+J) =y +x2 — 1. We thus are interested in the following inequality:

0 < y1 +a9 — L. (3.13)
However from equatior (3.12) we know that this inequalitydsatrue everywhere in region 1.
Therefore, region 1 is difference dominant. O

In handling then = 3 case of Theorern 1.2, rather than use the restricted simpdeleinwe
shall use the free simplex model. The main utility of this mloi$ that the sum of two vec-
tors inl,, as represented in this model, is agairi,jnn this model (that is],, has a semigroup
structure). Similarly to before, i/ = {[x1,u1],...,[zn,yn]}, We associate to this the point
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FIGURE 1. The spacel is partitioned into six regions such that within each region
the structure is constant. Note that all regions are defiryed bystem of linear
inequalities

J = (z1,y1,...,Tn,yn). The goal is again to determine the structure/ofLike in then = 2
case, in order to figure out the total ordering on the left aglitrendpoints of the intervals in the
sumset/difference set, it suffices to know the outcomes efyegomparison between endpoints.
Each such comparison can be expressed as evaluation ofaa fiolynomial in ther;s andy;s.
After a bit of thought, one realizes that up to multiplicatioy unit, there are four types of such
polynomials that we are interested in, as described in TRbWe call such polynomialsompar-
ison polynomials

Type of polynomial Purpose
0 < T, +x; —x, —x, ComparesJ; + J;)r and(J, + Jo) 1
0 ; T +x;—yy—y, ComparesJ; + J;), and(J, + Jo)g
If i < kandl < j, compares.J; — Ji), and(J, — J;) 1,
0 ; vi+vy; —yr—ye ComparesJ; + J;)gr and(J, + Jo)r
0 ; ri+ye—z;—ye i <kandl < j, comparesJ; — Ji), and(J, — J;)1

TABLE 1. The four types of comparison polynomials, along with éyaghat type
of comparison each type of polynomial is good for.
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For each linear polynomial as in Taljle 1, we have an assdatatefficient vector v, namely
the vector which when dotted witbxy, y1, ..., x,, y,) gives the linear polynomial in question.
Additionally, to each such linear polynomial we haveassociated hyperplanef, namely the
hyperplane obtained by setting the polynomial equal to.z&his hyperplane partitionR*" into
two pieces corresponding to the two difference outcomeseo€bmparison which the linear poly-
nomial represents. Note thais a basis for the orthogonal complement{o

We now recall some definitions from discrete geometry.

Definition 3.5. A central hyperplane arrangement is a finite collection of hyperplanes which all
pass through the origin.

Note that the set of associated hyperplanes to the linegnpuolials of interest form a central
hyperplane arrangment which we call teucture arrangement.

Definition 3.6. A conical combination of vectorsuy, . . ., v,, is any combination of the form
a1 + -+ QU (3.14)

such thaty; > 0 forall 1 < i < m. The set of all conical combinations of a set of vectors itedal
the conical span.

Definition 3.7. A polyhedral coneis the conical span of a fixed finite set of vectors. Equivatent
it is all points in the intersection of finitely many halfspgacfor which the corresponding set of
hyperplanes forms a central hyperplane arrangement.

In this paper we shall be dealing exclusively with rationalypedral cones, so we can always
assume that each generator of the cone is a vectd? wnith relatively prime entries (a primitive
integer vector).

Definition 3.8. An orientation on a hyperplane is a choice to label one of the corresponding
halfspaces as positive and the other as negative. Equithglé@ris a choice of a non-zero vectér

in the (1D) orthogonal complement to the hyperplane: thatpashalfspace is the set of points
such that - b > 0. We callb a positive normal.

If we have a central hyperplane arrangement, then for eaglofwsimultaneously orienting all
the hyperplanes in the arrangement, we get an associatgaepoal cone (this cone may just be
zero). Our space is thus partitioned into disjoint polylaédones such that disjoint cones have
disjoint interiors. Dually, if we choose a specific polyhaldrone arising from a central hyperplane
arrangement, then we get an induced orientation on the plgrer arrangement as follows: for
each hyperplane, we say that the halfspace containing tieguiral cone is the positive halfspace.

Given the structure arrangement, we get a partitioR%finto finitely many polyhedral cones,
each of which we call atructure cone For a given structure cone, when choosing positive
normals for the induced orientation on the arrangement, exechoose for each hyperplane either
the corresponding coefficient vector or its negative.

Definition 3.9. LetV be a polyhedral cone iR™. LetV* = {w € R" : Vv € V, w-v > 0}. Then
V*is called thedual coneof V.

We may interpret the dual cone 16 as the set of all possible positive normals to oriented
hyperplanes such that all &f lies on the positive side of the hyperplane (together withzéro
vector).

The following basic result from the theory of polyhedral esmimakes it easy to find dual cones,
especially when the polyhedral cones are given in termstefsections of half-spaces (as is the

case here).
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Proposition 3.10. Given a polyhedral coné/, the conical span of the set of positive normals in
the induced orientation ol is the dual cone o¥'.

Supposé/ is a structure cone. For all such that/ € V, the structure of/ is the same. For
all J € V, there exists a single homogeneous linear polynomial in-flseandy;’s, call it P, with
coefficient vectow, such thatu(.J + .J) = v, - J. Analogously there existB_ with coefficient
vectorv_ such thatu(J — J) = v_ - J. The vectors, andv_ are called thesum vectorand
difference vector, respectively, for the con&. The vectord = v, — v_ is called theMSTD
vector for V; a collection of intervals/ € I, with J € V is an MSTD set if and only ifl - J > 0.
Note that ifd - J = 0, then.J is balanced, and if - J < 0, then.J is difference dominant.

The MSTD vector gives rise to an oriented hyperplane, narttayorthogonal complement to
the span ofi, with positive normal equal td. We thus have the following crucial observation.

Observation 3.11.Let V' be a structure cone with MSTD vectar If and only ifd = 0, then all

of V' is balanced. Now supposkis non-zero. Then, if and onlydfis in the dual cone td/, then

V' is sum-dominant (except possibly on the boundary which redalanced). If and only i-d is

in the dual cone td/, thenV is difference domaint (except possibly on the boundary hvimiay

be balanced). In all other caseg, splits into a sum dominant region and a difference dominant
region.

Lemma 3.12.Forall J € I3, J is not an MSTD set.

Proof. We now have all the tools necessary to handlerthe 3 case of Theoreiin 1.2. In light of
Observation 3.11, rather than needing to (somehow) checkribountably many possible collec-
tions of three intervals, we instead now need only checkftirag@ach structure cong for thel;
structure arrangement, eithér= 0 or —d € V*. To prove then = 3 case, we proceed as in the
n = 2 case, namely we enumerate all structure cones and shownthfitdases eithed = 0 or
—d € V*. We present an algorithm to carry our this procedure. A v this algorithm was
implemented in SAGE [Dev16] on a computer to enumerate aedkchll cases. Whereas there
were only six cases for = 2, there are over 500 cases for 3.

The difficult part of the algorithm is enumerating all of thteusture cones. We shall describe
a simple algorithm for doing just that; after stating theagithm we shall discuss exactly what it
does (and why it works).

In essence, Algorithinl 1 adds one hyperplane at a time to camgement, keeping track at each
step what the non-trivial cones are (the cones that arestitiie zero vector). It represents each
cone by the generators of its dual cone, that is by the chdiogentation (positive normals) on
the partial hyperplane arrangement which gives rise togpetific cone.

SinceforallJ € I,,, z; <y; < --- < x, < y,, for every structure cone of interest to us, the
vectorsy, — 71, ...,9, — T, Must be positive normals (whefig is the coefficient vector to the
polynomialz;). This explains line 3. The variableartial_dual_conegkeeps track of all partial
choices of positive normals for structure cones in our @eament.

In line 4 of Algorithm 1, the functio'GENERATE_LIST_OF_NORMAL&urns the coefficient
vectors for all the relevant comparison polynomials (itnedantly up to multiplication by unit).

The remainder of the algorithm consists of two loops. Thepldop iterates through the set
of normals in this list, and the inner loop iterates throulgg tones in our partial hyperplane ar-
rangement. A single iteration of the outer loop introducesw hyperplane to the arrangement (as
represented by its normaéw_normagland a single iteration of the inner loop keeps track if agive
cone in the partial arrangement (as representepdofal _dual _cong splits into two cones. The

functionlS_CONSISTEN(partial_dual_conenew_norma)tests whether or netnew_normals
11



1 Input: the number of intervals

2 Output: the dual cones to the structure cones

3 partial_dual_cones {{y1 — Z1,Z2 — U1, -, Un — Tn}}
4 list_of _normalss GENERATE_LIST_OF NORMAI®)
5 for new_normal in list_of _normal$o

6 new_partial_dual_cones ()
7 for partial_dual_cone in partial_dual_cone®
8 if 1IS_CONSISTENT (partial_dual_cone, new_nornitan
9 \ new_partial_dual_cones = (partial_dual_coneJ new_normal
10 end
11 if IS_CONSISTENT (partial_dual_conenew_normathen
12 \ new_partial_dual_cones = (partial_dual_coneJ (—new_norma))
13 end
14 end
15 partial_dual_cones new_partial_dual_cones
16 end

17 return partial_dual_cones
Algorithm 1: Algorithm to find the structure cones with non-empty interio

in the conical span of the elementspdrtial_dual_cone In other words, it tests if the cone cor-
responding tgartial_dual_condies entirely on the negative side of the oriented hypemphaith
positive normalnew_normal If so, then addingiew_normalo partial_dual_coneas a positive
normal would result in a cone with empty interior. Any suclmeavould be on the boundary of
some other cone with non-empty interior, and thus is safgriore since it would be handled by
other cases. An example of an inconsistent choice of pesitormal is the following: suppose
we already know that; < z, < x3. Then we necessarily know that + z, < x, + 3, and
thus adding the vectar, + 7, — 2o — 23 to our list of positive normals is inconsistent. Testing
consistency in this sense can be phrased a a feasibilitygonoin linear programming, and thus
there exist efficient algorithms to solve this problem. Thdablenew_partial _dual _condseeps
track of the new cones in our new hyperplane arrangement mathempty interior. Once the
interior loop has finished, we spartial_dual_conegqual tonew_partial_dual _conesnd repeat
the outer loop, until we finally finish and return the set of eé®nvith non-empty interior in our
structure hyperplane arrangement.

Once we have all of our structure cones, as represented kihe¢Hest of positive normals for
the induced orientation on the hyperplane arrangement,ave &ll of the information we need
to figure out the sum vector and difference vector for eaclecde do not explicity describe an
algorithm to do so here, but leave it as an exercise to thesistied reader to think about how to do
this.

Once we have the sum and difference vectors, we have the M8t Testing if the MSTD
vector is in the dual cone is a cone membership problem argldan also be solved by linear
programming techniques.

We implemented in SAGE a slight variation on Algorithin 1. larficular, our algorithm does
not enumerate all regions where the structure is constantdll structure cones), but rather just
those regions such that within a region, the sum vector dfeteince vector is constant (e.g. in the

n = 2 case, regions 5 and 6 have the same sum formula and diffefi@mneela, but have different
12



structures; using an improvement on Algorithim 1, these ®gians would not be distinguished).
We do not describe the improved algorithm here; the mergeands of an algorithm such as
Algorithm([1 is what is most important. When the improved aitjon ran, it found 502 cases, and

in all such cases eithe@r= 0 or —d was in the dual cone implying there are no sum dominant sets
for n = 3. On a personal computer with 4GB of RAM, the computation taodund 30 minutes

to complete. O

Proof of Theorerh 112To complete the proof of Theordm 1.2, we must for thatfor 4, there do
exists collections of intervals which are sum dominant. Note that it suffices toghew that this
is the case when = 4 (if this is not clear, see Sectidh 6 on cleaving). We can digttizrn to the
existing literature on MSTD sets of integers to find an exampl Hegarty|[[HegQ07], we have

{0,1,2,4,5,9,12,13,14}. (3.15)
The corresponding collection of intervals is:
1 1 1 1 1 1 1 1
= ——24-|,|4—- - - = |, (12==, 14+~ ;. 3.16
e O IR s | M A | B
O

4. FROM ONEMSTD SET TO MANY

In this section we show a method of producing a large class $TDM! sets (both continuous
and discrete) from a single set. In particular this gives\a meethod of producing parametrized
families of MSTD sets of integers.

The idea of the method is straightforward given the ideaseictiSn[3: givenJ < I,,, we find
the generators for its structure cone. We then also find th&D&ctor,d, for this cone. Since
J is MSTD, we know that eithed € V*, implying the entire cone is MSTD, or else the oriented
hyperplane with positive normal partitions the hyperplane into two cones, both the non-gmpt
interior. One of these cones is entirely MSTD. We then findgéeerators for this cone.

Before formally presenting the details of the algorithmd@iithm[2), we show the procedure
on a concrete example. This example has a few peculiaritiestwnake the example simpler than
most, but the core ideas are present.

Example 4.1.Let G = {0,1,2,4,5,9,12,13,14} and let.J be its continuous representation. A
computer program reveals thatis on the boundary of 108 different structure cones. We ahoos
one of these cones arbitrarily and calWit The extremal rays df are the columns of the following
matrix:

00 0 0 00 0 1 —1
112 2 111 1 -1
22 4 3 22 2 1 -1
32 6 4 33 3 1 -1
441 7 55 6 1 -1 (4.1)
5410 7 55 6 1 —1
6513 9 77 8 1 —1
7 7 16 11 8 9 10 1 —1]

We then compute the MSTD vectai, for V:

d=(-12 -2012 -2 0). (4.2)
13



We check ifd € V* and find that it is not. We therefore addo V* and then take its dual cone to
get a new conél'. The extremal rays foll” are the columns of the following matrix:

0 0 0 0 0 0 0 1 -1
11 2 3 2 1 3 1 -1
22 4 5 3 2 5 1 -1
32 6 7 4 3 7 1 -1
4= 4 4 10 12 7 6 12 1 -1 (4.3)
5 4 10 12 7 6 12 1 -1
6 5 13 16 9 8 16 1 -1
|7 6 16 19 11 10 20 1 -1}

Note then that any vector in the conical column sparl @$ either balanced or sum dominant. A
closer examination reveals that all the columns give risgalanced sets except for the 5th row.
Therefore, any vector of the formz with z; > 0 andz; > 0 gives rise to a continuous MSTD set.
Thus from finding a single MSTD set, we have found a huge clbssrdinuous MSTD sets.

With just a bit more work we can find an infinite family of MSTDtseof integers as well.
In fact, we shall find all MSTD subsets @ whose continuous representation corresponds to a
point in /. Recall that given a point corresponding to an MSTD set offtin a = (x; —
/4,91 +1/4,... 2, —1/4,y, + 1/4) where each; andy; is in Z, then we can obtain an MSTD
set of integers, namel[z1,v1]z, - - -, [Tn, Yn]z}. If @ is in some coneX, thenaa € X for all
a > 0. In particular,4a € W; note thatda € Z*". Furthermore, mod 4, the entries ©f must
be(3,1,3,1,...,3,1). Conversely, if some point ifi" is of the form(3,1,...,3,1) mod 4, then
we can find an MSTD set of integers from that point by dividiygdband undoing the discrete to
continuous process. We say that a paint R?" is an(«, 3)-lattice point mod k if z € Z** and
modk, z = (o, B, ..., a, 3). Thus our goal is to find thes, 1)-lattice points mod! in the conical
column span ofA.

Let B be the matrixA without the last column (the last two columns are linearlpetaent,
so right now we can ignore the last column). From the abovervhtions, we are interested in
finding solutions to the following system of equations:

0 0 0 0 0 0 0 17 [eq] 17

11 2 3 2 1 3 1 Qg 3

22 4 5 3 2 5 1 Q3 1

1326 7 4 3 7 1| |aa|l _ |3
Ba=1y 41012 7 6 12 1| |as| — |1 (mod 4). (4.4)

5 4 10 12 7 6 12 1 Qg 3

6 5 13 16 9 8 16 1 Q7 1

|7 6 16 19 11 10 20 1] |as] |3 ]

Using Mathematice [Wol], we get that the unique sucis

a=(2000000 3", (4.5)
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Therefore, by dividing any vector of the form below by 4 andrtlundoing the discrete to contin-
uous process, we obtain an MSTD set of integers (see Tables?ifioe examples):

0
1

N O O W N

0

o R L N N

0
2
4
6
10
10
13
16

0
3
3
7
12
12
16
19

0
2
3
4
7
7

9
11

0

O OO W

10

0
3
3
7
12
12
16
20

UG G W VU W VR G T G S

1

40,
403
404
4+ 455
406
47

1 12+ 487

[ 3+ 48]

B € Ny
B2 € Ny
B3 € Ny
Bs € Ny
Bs € Ny’
Bs € Ny
Br € Ny
5862

(4.6)

Furthermore, since thB has 8 rows, which is the dimension of the vector sgatéves in, and
since the determinant @t is -1, we know that in fact all MSTD sets of integersliinare obtained
in this way (in general it will not be the case that the numbigramerators is equal to the dimension
of the space, or even if the number of generators is equaktdithension, that the determinant
of the matrix whose rows are those generators willHie we shall discuss how to deal with these

issues shortly).

In the above procedure, we took a single MSTD set and not onlyd a huge class of continuous
MSTD sets, but also a non-trivial infinite family of discrédSTD sets (in fact all of the discrete
MSTD sets in the structure cone). Furthermore, the MSTD sestarted with led us to find 108
different MSTD cones, so from the same starting MSTD set, areaarry out the above process
107 more times to find even more MSTD sets (all of this arisrogiffinding a single MSTD set)!

We now discuss a more general algorithm for carrying out e procedure. There are three

main issues which up to this point we have glossed over.
(1) The set/ may be contained in multiple structure cones, so we need ahayumerating

all structure cones containing this can be resolved using ideas similar to those presented

in Algorithm([1.

(2) A given structure cone containingmay have more generators than the dimension of the
space; the trick here is to partition the cone into a coltectf simplicial cones.

(3) For a given rational simplicial cone with generatorsresgnted as primitive integer vec-
tors, if the determinant of the corresponding matrix is #adt then integer conical com-
binations of the generators will not necessarily give dlida points in the cone (and in
particular will not necessarily give all lattice points cesponding to MSTD subsets 4j.

Bi B2 Bs B Bs Bs Br Bs MSTD integer set
000000 0 - 10,1,2,4,5,0,12,13, 14]

1 00 00 0 0 -1 {0,1,2,3,6,7,8,13, 14, 18, 19, 20, 21}
010000 0 -1 {0,1,2,3,6,7,13,17,18, 19,20}

0O 01 0 0O O 0 -1 {0,1,2,3,4,8,9,10,11, 19, 25, 26, 27, 28,29, 30}

O 0 01 0 0 O -1 {0,1,2,3,4,5,9,10,11,12,21,28,29,30,31, 32,33}
0O 0O 0O O1 0 O -1 {0,1,2,3, ,7,8,9,16,21,22,23,24,25}

0O 0O 0 0O 0O1 0 -1 {0,1,2,3,6,7,8,15, 20, 21 22 23,24,25}

0O 0 0 0O 0 0 1 -1{012,3,4,59,10,11,12,21,28,29,30,31,32,33,34}

TABLE 2. A few of the MSTD sets of integers contained in this streeone.
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First we discuss issue (1); Algorithinh 2 gives a way of reshis this issue. In words, this
algorithm first orients those hyperplanes for whils on the strictly positive side. This results
in a polyhedral cone for whicH is in the interior. The remaining hyperplanes (as represkehy
non_strict_normalsare then one by one tested to see if they partition the padizes found so
far into two cones with non-empty interiors. Lines 15-28artually identical to Algorithnil and
thus their function should be clear.

1 Input: a point.J corresponding to an MSTD set consistinguaihtervals
2 Output: all structure cones containing

3 list_of_normalss GENERATE_LIST_OF_NORMAS

4 partial_cone=()

5 non_strict_normals: ()

6 for new_normal in list_of normaldo

7 | dotted=new_normal J
8 if dotted > Othen
9 \ partial_conelU = new_normal
10 else ifdotted < Othen
11 \ partial_coneU = —new_normal
12 else
13 \ non_strict_normals) = new_normal
14 end

15 partial_cones= {partial_cong
16 for normal in non_strict_normado

17 | new_partial_cones ()

18 for cone in partial_conedo

19 if 1IS_CONSISTENT(cone, norm#ien

20 | new_partial_cones) = (coneU normal)
21 end

22 if 1IS_CONSISTENT(conenormal)then
23 | new_partial_cones) = (coneU —normal)
24 end

25 end

26 partial_cones= new_partial_cones

27 end

28 return partial_cones
Algorithm 2: Algorithm describing how to find all the structure cones eamihg a given point.

Once we have the representation of a polyhedral cone asexsetion of halfspaces, there are
algorithms to find its representation as the concial span adlliection of generators. Issue (2)
is then quite straightforward to deal with. Partitioninga@ybhedral cone into simplicial cones is
virtually the same as partitioning a compact polytope imtapdices and there exist algorithms to
do so.

Issue (3) is also not too bad to deal with. Létbe a rational simplicial cone. Let be a
matrix whose columns are primitive integer vectors gemegahe cone. Thenjet(A) € Z. Let
D = |det(A)|. Then, sinced™! = adj(A)/det(A), all = such thatdz € Z are inZ"/D, that
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is the set of points whose product withis in Z". Supposer € Z"/D such thatAz is a(3, 1)-
lattice point modi. Then, A(Dz) must be a3D, D)-lattice point modtD. Conversely, ifAy is

a (3D, D)-lattice point modiD, thenA(y/D) is a(3, 1)-lattice point mod4. Therefore, finding
all z € Q" such thatAx is a (3, 1)-lattice point mod4 is equivalent to finding all € Z™ such
that Ay is a(3D, D)-lattice point modiD. To do this we need only find the set of solutions to the
following system of equations ové&r/(4DZ).

3D
D
Ay = | (mod 4D). 4.7)
3D
D
Suppose thaty, ..., v, are the generators for some simplicial cose,arising as the MSTD
refinement of an MSTD structure cone with MSTD veclot et v, . .., v;, be those); such that

v;-d > 0. Letp be any particular solution {0 4.7. A point is an MSTD(3, 1)-lattice mod4 point
if and only if it can be expressed as

m = A(p/D +k/D + 40) (4.8)

wherek is in the kernel ofA as an endomorphism df/(4DZ), and/¢ € Z?" and such that
f=p/D+k/D + 4l satisfiesf - ¢; > 0 forall 7 € [2n] andf - ¢;, > 0 for somej € [k].

5. CONTINUOUS TODISCRETE

In this short section we prove a simple “converse” to Thedieln up to scaling, every element
in I can be arbitrarily well approximated by (the continuousespntation of) a finite collection
of integers.

Theorem 5.1.Let A € I. For everye > 0, there existsyx > 0 and B C Z, with continuous
representatiori3, such that

p((aA+ad)A (B+B)) < e,

and
p((0A—aA)A (B-B)) < e.

Proof. The idea of the proof of Theordm 5.1 is to dilate the4eind then approximate each dilated
interval by the set of integers contained in the intervalti®ut loss of generality, we may assume
that. A C [0, 1]. Suppose thatl consists of: intervals, thatisd = J; U --- U J; with J; = [x;, y]
and withJ; to the left of J; for ¢ < j. Suppose the length of the shortest of these intervalslist

N € Z be any number such that

2
N > max (é, %) . (5.1)
0" ¢
Let Fy = {i/N : 0 <i < N, i € Z}. By equation[(511), we know
#(SiNFy) > 3 (5.2)

Let ¢;,m; € Z be such that;/N = min(J; N Fy) andr;/N = max(J; N Fy). Notice that by
equation[(5.1),

(5.3)

=




and

_ = 4
Yi 7| < (5.4)

N

Let B; = [¢; + 1,r; — 1]z (by equation 52 eacB, is non-empty). Let5 = | J, B;. Let B be the
continuous representation &f with 3; the continuous representation Bf. Let C be the sef3
scaled byl /N, andC; the setB; scaled byl /N. Notice thatC C A. Therefore

D:=ALAACEC) = (AL A\ (CLD). (5.5)
Letz € D. We have that

D C |JWhi£ )\ (Ci£C)) (5.6)
Therefore ’
u(@) < Y p((Lt )\ (Ci£Cy))
& (5.7)
< R maxp((Ji£ 1)\ (G £Cy).
By equations[(5)3) and (5.4), we know that
mac s (i 1)\ (Ci%C) < 1 (5.8)
Therefore,
uo) < & < (5.9)
U

6. OPEN QUESTIONS AND CONCLUDING REMARKS

The ideas presented in Sectidnhs 3 Bhd 4 motivate severedstiteg follow-up questions. First,
there’s the question of whether or not a more elegant prodhebreni 1.2 exists.

Question 6.1.1s there a proof of Theorem 1.2 that does not reduce to cak@wor
There are also several interesting combinatorial questinat arise. One basic question is:
Question 6.2.How many cones are there in the structure hyperplane amagreforl,,?

A closely related question has been investigated befofl@B[L2]. The number of such regions
is closely related to (and upper bounded by) the even indenetes in OEIS A237749. Thereis a
rich theory of counting the number of regions in a hyperplamangement (see [Sta07], e.g.), and
perhaps these techniques could answer Qu€stion 6.2.

Another basic question is:

Question 6.3.How many MSTD structure cones are therelig? What are their relative (intrinsic)
volumes? Is there a “dominating” MSTD cone?

In our opinion, one of the most interesting subsequent gues the following.

Question 6.4.Do the set of MSTD points ifi, form a connection region? If so, what is the degree
of connectivity of this region (is i2n-connected?)? If not, how many connected components does

it contain? Does the number of connected components changmereases?
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If the answer to Questidn 6.4 is yes, then it would in someeéngply that there is only one
“type” of MSTD set, from a single MSTD set (with a fixed numbéitervals), all other MSTD
sets can be found by perturbing that set (and keeping it MS®Dygahe way).

Given an MSTDJ € 1,,, there are several ways of naturally “embedding” this setlifp, ;. If J
is composed of open intervals, then removing any singletpoid results inn + 1 intervals, call
it J', but the sety/ andJ’ are basically the same. We say thiis obtained fromJ by cleaving
Assuming the answer to Questionl6.4 is no, a refined question i

Question 6.5.Can every MSTD point ifl,, . ; be obtained by an MSTD path from the image of
some cleaved MSTD point i,?

If we deal with a compact parameter space, as in the simplebehamd unit cube model, we may
then talk about the probability that a point is MSTD, balahaa difference dominant. Figurgs 2
and_3 show approximations of these probabilities based amt@&/@arlo simulation with 10 million
trials.

1 —e— I I T T
§ e simplex model
S o8| e cube model
[4+]

]

=3

-5 0.67 1

R

RS

Z 04} A

= ®

3 -

=) 0.2 8§ g o0 00000000 e e 0 o ¢

E ..oo.....oo.o.:
O | | | |

0 2 4 6 8 10 12 14 16 18 20
Number of intervals

FIGURE 2. Probability of being balanced in the simplex and cube risdoiesed on
Monte Carlo simulation (10 million trials).

Interestingly, the probabilities for being MSTD and baled@ppear to be different for the sim-
plex model and unit cube model. However, in both cases, thlegtility of being sum-dominant
appears to converge to a similar value to the limiting prdfigin the discrete casex 4.5 x 107%).

Question 6.6.Do the probabilities of being sum dominant and balanced eg®/for the simplex
model and the cube model? What is the relationship betwessethSTD probabilities and the
limiting MSTD probability in the discrete case?

One of the main open questions in the study of MSTD sets is mstoact a constant density
family of MSTD sets as1 — oo. Thus we may ask:

Question 6.7.Can the techniques in this paper be used to construct a cbmgasity family of

MSTD subsets ofn] asn — co?
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FIGURE 3. Probability of being MSTD in the simplex and cube modelsdobon
Monte Carlo simulation (10 million trials).

There are several interesting subsequent lines of inqtemmsing from the ideas in the paper.
More generally, we believe that there is a lot of utility irsgang from the discrete to the continuous
as in this paper. Ideas closely related to those here wdreedtin the related paper [MPSV/17]
to reveal a geometric structure to a certain family of coratonial objects which was not visible
previously. We believe there may be several further frudfplications of the ideas of this paper.
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T

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

J1+ Ji|— H — H I L

Ji+ Jo — — — — — —

Jo + Jo = — H — L -
J+J |— —  H[H = ] | || || |
J1— N — = e = — —

J1 — Ja| — — — I I

Jy — Jy — — — — — —
Jo — Jo H — = e — —

J—-J|— —— | — | /|| /| /| |

21 < 9 yes yes no yes no no
Ly L 20, yes yes yes no no no
1—o i yes no yes no yes no
pJ+ )| 3y — 3z +3 | 3y — 322 +3 | y1 — 229+ 3 | 2y — a9+ 2 2 2
p(J =) dy; —2w9+2 | 2y — dag + 4 2 2 2 2
Type difference dominantdifference dominaanifference dominantdifference dominant balanced balanced

TABLE 3. Table enumerating the structures of each of the six regiA, along with the size of the sumset, difference set, and type.
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