
GOD’S NUMBER OF BI-COLORED CUBES

STEVEN J. MILLER, M.TIP PHAOVIBUL, AND MUTIAN SHEN

Abstract. The Rubik’s Cube, a quintessential mathematical puzzle, has long been a subject of
recreational fascination and academic inquiry. God’s Number for the classical 6-Colored cube has
been extensively studied, and standard cases of Bi-Colored Rubik’s Cube have been explored. This
paper continues the exploration and extends the discussion to extreme cases in 2×2×2 and 3×3×3
cubes under the Quarter-Turn Metric. By employing group theory, Burnside’s counting theorem,
and computational algorithms such as breadth-first search (BFS) and symmetric reduction, we
calculate the total number of configurations and determine God’s Numbers for various Bi-Colored
scenarios. However, computational limitations, particularly memory requirements, constrained
our ability to analyze higher-order cubes and more complex configurations. Future developments,
including coset methods and machine learning approaches, promise to overcome these challenges,
enabling the exploration of larger cubes and Multi-Colored configurations with enhanced efficiency
and scalability.

Contents

1 Introduction 2

2 Notation and Classification 5
2.1 The Rubik’s Cube as a Group 5
2.2 General Methods for Solving based on Group Property 6
2.3 Configurations and Counting of Order 3 Cube 6
2.4 Configurations and Counting of Order 2 Cube 10

3 Bi-Colored Cases of Order 2 Cube 10
3.1 (5, 1)2 Case 10
3.2 (4, 2)2 Case 11
3.3 (3, 3)2 Case 11
3.4 Permutations and Symmetry 12

4 Bi-Colored Cases of Order 3 Cube 13
4.1 (5, 1)2 Case 13

5 God’s Number Results 14
5.1 G5,1(2), G4,2(2), and G3,3(2) 14
5.2 G5,1(3) 17

6 Conclusion and Future Development 17

A Code Appendix 18
A.1 Codes of Order 2 Cube 19

1

A.2 Codes of Order 3 Cube 28

1. Introduction
The Rubik’s Cube, invented in 1974 by Hungarian architect Ernő Rubik, is a three-dimensional
mechanical puzzle that has become one of the most iconic and enduring challenges in recreational
mathematics and popular culture. It even leads to applications in cryptography and physics([9], [17]).
Comprising 26 smaller cubes, or “cubies,” it forms a 3×3×3 structure with six faces, each consisting
of nine squares. The goal is to twist and rotate the layers of the cube to align each face with a
uniform color after being scrambled. The Rubik’s Cube is renowned not only for its entertainment
value but also for its mathematical complexity. The puzzle’s configuration space comprises over 43
quintillion (4.3 · 1019) possible arrangements, yet it is known that every configuration can be solved
in 20 moves or fewer—a number famously referred to as “God’s Number.” This name reflects the
idea of ultimate perfection and efficiency, which an all-knowing entity would achieve. The Rubik’s
Cube problem is formalized and extended by defining G(n) and two metrics.
Definition 1.1 (God’s Number of Cubes). Let G(n) = G1,1,1,1,1,1(n) denote the God’s number for
an n × n × n cube, where each of the six faces is a distinct color, defined as the maximum number
of moves required to solve the cube from any scrambled state under a given metric. We denote n as
the order of the cube.
Definition 1.2 (Quarter-Turn Metric). The quarter-turn metric counts each 90◦ rotation of one
face of the cube as a single move. For example, a clockwise or counterclockwise 90◦ turn of any face
is considered one move.
Definition 1.3 (Half-Turn Metric). The half-turn metric counts both 90◦ and 180◦ rotations of
one face of the cube as a single move. In this metric, both quarter- and half-turns are equivalent in
terms of their cost.

It is worth emphasizing that while quarter-turns and half-turns are similar operations, they differ
in how they contribute to the move count under distinct metrics. As a result, God’s numbers
obtained in different metrics are different, and the analysis differs slightly. When n ≤ 3, the result is
well-studied due to the relatively small size of possible configurations. When n = 2, God’s number
G(2) is known to be 14 by quarter turns and 11 by half turns, where a single half turn is defined as
rotating any face by 180◦ (https://www.jaapsch.net/puzzles/cube2.htm). The God’s number
of standard Rubik’s cube, which is G(3), is mostly studied. By 1980, a lower bound for G(3) in
half turns was known to be 18, while the upper bound was around 80. For almost 30 years after
that, through the unremitting exploration of mathematicians, the gap was eventually closed at 20
by the works of Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge ([13]).
The timetable available on https://www.cube20.org is visually represented in Figure 1.

https://www.jaapsch.net/puzzles/cube2.htm
https://www.cube20.org

Figure 1. Development of God’s Number in Half-Turn Metric (Most results were
only reported electronically: see [4] for links).

The breakthrough for the quarter turns came slightly later by Tomas Rokicki and Morley Davidson
([12]). They showed that G(3) in the Quarter-Turn Metric is 26 in 2014. A similar figure for the
progress is shown in Figure 2.

Figure 2. Development of God’s Number in Quarter-Turn Metric (Most results
were only reported electronically: see [11] for links).

For G(4) or even larger, no result has been proven due to the large size of all possible configurations.
Recently, Salkinder estimated that the God’s number’s growth rate is Ω(n2/ log (n)) ([15]).

This paper addresses the Bi-Colored case, which serves as a tractable but non-trivial extension of
classical Rubik’s Cube studies. The standard result G3,3(3) has been explored in Pieper’s thesis
([10]). We extend the results to all possible extreme cases of the pocket cube and G1,5(3). We
provide a systematic analysis of the Bi-Colored 2 × 2 × 2 and 3 × 3 × 3 cube, introducing the
necessary mathematical framework and computational methods under the Quarter-Turn Metric.
This work also assumes that all squares of the Rubik’s Cube are solid colors. The cases are different
when pictures replace solid colors.
The number of configurations reachable at each depth in the solving process forms integer sequences
that reflect the underlying combinatorial structure. For example, for the (5, 1)3 case defined in
Definition 1.7, the sequence of reachable states grows as follows: 1, 8, 76, 680, 5714, . . . , illustrating
the exponential increase in states. These sequences contribute to the broader study of combinatorial
integer sequences and underscore the complexity of solving asymmetric cube configurations.
Definition 1.4 (God’s Number of Bi-Colored Cubes). Let Gk,6−k(n) denote God’s number for an
n × n × n cube with solid colors on all squares, with k faces of one color and 6 − k faces of a different
color, defined as the maximum number of moves required to solve the cube from any scrambled
state under Quarter-Turn Metric.

As Rubik’s Cube can be described as a finite group where each configuration corresponds to an
element of the group, and each legal move is a group operation. As the group is finite, any state
can be expressed as a finite product of turns applied on the solved state. This guarantees that every
configuration is a finite number of moves away from the identity element, corresponding to the
solved state. Consequently, God’s number is well-defined. The proof of Rubik’s Cube as a group is
provided in Section 2.1. Considering G4,2(n) and G3,3(n), there exist two possible colorings. To
explicitly distinguish them, we make the following definitions.
Definition 1.5 (God’s Number of Bi-Colored Cubes with Opposite Coloring). Let G′

k,6−k(n) denote
God’s number Gk,6−k(n), where a pair of opposite faces with the same color exists.
Definition 1.6 (God’s Number of Bi-Colored Cubes with Adjacent Coloring). Let G′′

k,6−k(n) denote
God’s number Gk,6−k(n), where k faces of one color form a connected, adjacent region, and the
remaining 6 − k faces are of a different color.
Definition 1.7 (Bi-Colored Case). Let (x, y)n denote the configuration of an n × n × n cube where
x faces are colored with color C1, and the remaining y = 6 − x faces are colored with color C2.

Using results from group theory and Burnside’s counting theorem, we calculated the total number
of configurations for all Bi-Colored cases (5, 1)2, (4, 2)2, and (3, 3)2 and (5, 1)3. Using a breadth-first
search (BFS) approach algorithm, we calculate God’s number for various Bi-Colored configurations
and explore how symmetry considerations affect results. The most complex result obtained is for
G5,1(3) in Table 1. "Depth" refers to the number of quarter turns. "New States Found" refers to
unique states that can be achieved at the current depth and have never been found before.

Depth New States Found Total States Can Be Reached
0 1 1
1 8 9
2 76 85
3 680 765
4 5714 6479
5 47558 54037
6 376614 430651
7 2646584 3077235
8 13077539 16154774
9 23709256 39864030
10 5033865 44897895
11 8505 44906400

Table 1. Exploration results for (5, 1)3 and G5,1(3).

We start by recognizing the Rubik’s Cube as a group following proper definitions of operations
applied to it. Then, we use some related group properties for calculations of the total number of
configurations from 2 × 2 × 2 to 3 × 3 × 3. The formulation of algorithms and results of God’s
numbers are introduced in Section 4.

2. Notation and Classification
In this section, we explore how the Rubik’s Cube satisfies the properties of a group and how the
number of possible configurations of both the 3 × 3 × 3 and 2 × 2 × 2 cubes is derived. The study
of the Rubik’s Cube through group theory allows us to formalize its behavior and understand the
structure of these permutations. Moreover, it provides tools for solving the cube.

2.1. The Rubik’s Cube as a Group

The Rubik’s Cube can be modeled as a group, where each element of the group corresponds to a
specific rotation of one of its faces. We give the following definitions for all possible quarter turns.
Definition 2.1 (Face Rotations). The Rubik’s Cube is manipulated through face rotations, each of
which corresponds to a specific move. Let F, R, U, L, D, B represent 90-degree clockwise rotations
of the front, right, upper, left, down, and back faces, respectively.
Definition 2.2 (Inverse Moves). Each face rotation has its inverse, denoted by F ′, R′, U ′, L′, D′, B′,
which represent counterclockwise rotations of the front, right, upper, left, down, and back faces,
respectively.

A group operation is the sequential composition of these moves. The Rubik’s Cube satisfies the four
fundamental properties of a group.

• Closure: The composition of any two moves on the cube results in another valid cube
configuration. For example, applying F · R produces a new permutation of the cube pieces.

• Identity: The solved state of the cube is the identity element of the group. Any move
followed by its inverse returns the cube to this solved state. For example, F · F ′ = e, where
e is the identity element, representing the solved cube.

• Invertibility: Every move has a corresponding inverse that undoes the effect of the original
move. For example, if the move R rotates the right face of the cube clockwise, then R′

undoes this by rotating the same face counterclockwise.
• Associativity: The composition of the moves is associative; that is, for any moves A, B, C,

the result of (A · B) · C is the same as A · (B · C). This property holds for any sequence of
face rotations.

As a concrete example, consider the sequence F · U · R′, which changes the configuration of the cube.
Applying their inverses R · U ′ · F ′ returns the cube to its solved state, satisfying both the identity
and the invertibility property. Some key properties of a group, consequently, can be used to analyze
Rubik’s cube, develop solving algorithms, and understand its complexities.

• Commutativity: Some sequences of moves on the cube commute, meaning that the order
of applying them does not change the outcome. For example, rotating the front face followed
by rotating the back face often results in the same configuration regardless of the order.

• Cyclic Groups: Each face of the cube generates a cyclic group of order 4. That is, rotating
any face by 90 degrees four times returns the cube to its original configuration. The same
principle applies to face inverses, where applying F 4 = e, which means that four 90-degree
rotations on the front face restore the cube to its initial state.

• Conjugacy: In solving strategies, conjugates play an important role. A sequence of moves
A, followed by a different move B, and then the inverse of A, is known as a conjugate.
Conjugates allow solvers to manipulate specific parts of the cube while leaving other areas
unchanged. For example, the sequence F · R · F ′ applies a targeted transformation to the
cube while preserving the rest of its structure.

These properties are exploited in various solving methods, allowing for more efficient algorithms
that minimize the number of moves required to solve the cube. Furthermore, these properties help
explain the cube symmetry and provide insight into how the group structure governs its behavior.

2.2. General Methods for Solving based on Group Property

Based on the group properties of the Rubik’s Cube, a widely-used method for solving it, called
the layer-by-layer method, involves solving each layer sequentially while preserving the already
solved ones. The layer-by-layer method systematically utilizes the group structure of the cube by
progressively reducing the configuration space through a sequence of stabilizer subgroups. Each step
corresponds to solving a specific layer, mathematically represented by restricting the group G to
smaller subgroups H1 ⊃ H2 ⊃ · · · ⊃ Hk. Key group properties, such as closure, parity constraints,
and commutators, ensure that solved layers remain invariant during the manipulation of unsolved
parts. Conjugation and coset operations further localize transformations to targeted pieces while
preserving the cube’s overall parity. By Lagrange’s theorem, the size of each stabilizer subgroup is a
divisor of G, ensuring convergence to the solved state. Details of the specific steps can be found
in David Singmaster’s work. Some other general methods include the CFOP method by Jessica
Fridrich and others in the 1980s ([16]) and the Petrus Method ([7]). Despite these general methods
not necessarily being efficient, they are foundational in understanding the mathematical structure
of the Rubik’s Cube and provide a systematic framework for solving it.

2.3. Configurations and Counting of Order 3 Cube

The number of possible configurations of the n×n×n Rubik’s Cube is determined by the permutations
and orientations of its corner and edge pieces. For any cube, there are always 8 corner pieces with
three possible colors and 12(n − 2) edge pieces with 2 possible colors. When limiting the discussion

for n ≤ 3 in the paper, only the orientations and positions of the corner and edge pieces determine
each distinct configuration of Rubik’s cube. Hence, some definitions and counting techniques are
introduced as follows.

2.3.1. Cubies, Permutations, and Orientations

Definition 2.3 (Cubie). A cubie is a block that occupies one position on the Rubik’s Cube and
contains solid colored stickers.
Definition 2.4 (Corner Cubie). A corner cubie is a type of cubie with three stickers. It occupies
one of the 8 corner positions on the Rubik’s Cube and is denoted as xi where i ∈ [1, 8].
Definition 2.5 (Edge Cubie). An edge cubie is a type of cubie with two stickers. It occupies
one of the 12(n − 2) edge positions on an n × n × n Rubik’s Cube and is denoted as yi where
i ∈ [1, 12(n − 2)].
Definition 2.6 (Orientation of a Cubie). The orientation of a cubie refers to its rotational state
within its position on the Rubik’s Cube. For a corner cubie, there are three possible orientations,
represented by the set xi = Z/3Z. For an edge cubie, there are two possible orientations, represented
by the set yi = Z/2Z.
Definition 2.7 (Permutation of a Cubie). The permutation of a cubie refers to its position
relative to other cubies on the Rubik’s Cube. In a standard Rubik’s Cube, the permutation is
represented by an ordered list of x1, . . . , x8 and y1, . . . , y12.

The orientation specifies how the stickers on a cubie are aligned relative to the solved state. For
example, a corner cubie with three stickers can rotate within its position in three distinct ways.
Similarly, an edge cubie with two stickers has only two possible orientations: aligned or flipped.
The permutation of cubies determines the arrangement of all cubies on the cube. For corner cubies,
the current configuration can be represented by assigning an element in Z/3Z to each cubie. For
example, a configuration of the eight corner cubies can be expressed as x1, x2, . . . , x8 ∈ Z/3Z.
Together, orientation and permutation fully specify the current state of the cube.

2.3.2. Corner Permutations and Orientations

For the 8 corner cubies, the three colors of each can be labeled Z/3Z. An example of labeling on
one face of the 3 × 3 × 3 Rubik’s cube is shown in Figure 3 for illustration.

0 0

0 0

2 1

1 2

1

2

2

1

Figure 3. Front face of 3 × 3 × 3 Rubik’s Cube with labeled corner orientations.

When one move is applied to the cube, F as an example, the labeling would be the same as that in
Figure 3, but the change of relative positions leads to a different configuration for the cube. This
change is demonstrated in Figure 4.

0 0

0 0

2 1

1 2

1

2

2

1

0 0

0 0

2 1

1 2

1

2

2

1

Figure 4. Left: original state, Right: after F move.

Meanwhile, changing the label, representing the change in orientation, would lead to another
configuration. Taking the top right corner as an example, both the relative positions of the corners
and the orientation change as shown in Figure 5.

0

1

2 2

0

1

Figure 5. Left: original state, Right: after R move.

The total number of unique configurations of the corner cubies, as a result, is 8! · 38 considering the
relative positions of x1, . . . , x8 and the orientation of each of them. However, the cubie would be
unsolvable when one corner cubie is rotated. One important result states that

∑8
i=1 xi ≡ 0 (mod 3).

The proof is straightforward. Consider the cube of the solved status. The result holds naturally.
A right move, as shown in Figure 5, changes the value of the four corner cubies by 1, 2, 1, 2, again
satisfying the result. Using similar arguments, each move maintains the change a multiple of 3, and
the result holds. Hence, the total number of corner configurations is calculated in Equation 1.

8! · 38

3 = 8! · 37. (1)

2.3.3. Edge Permutations and Orientations

For the 12 edge cubies of the 3 × 3 × 3 Rubik’s Cube, each cubie is formally defined in Definition
2.5 2.6. Similarly to corner cubies, both the orientation and permutations of edge cubies determine

the total number of configurations of the Rubik’s cube. Consider the R move as an example shown
in Figure 6.

0

1 1

0

1

1

0 0

0

1 0

0

1

1

0 1

Figure 6. Left: original state, Right: after R move.

When R move is placed, both the relative positions of yi and their labeling change, leading to a new
configurations. Naitively like the discussion in corner part, the total number of unique configurations
of the edge cubies is initially 12! · 212. A similar result also holds such that

∑12
i=1 yi ≡ 0 (mod 2).

Starting from the solved state, the sum is zero. Each basic move (like F , R, etc.) flips an even
number of edge cubies. For example, the F move flips the orientations of the four front face edges,
but since flipping an edge orientation is equivalent to adding 1 modulo 2, and 1 + 1 + 1 + 1 = 0
mod 2, the total remains even. Therefore, after any sequence of valid moves, the sum remains
congruent to zero modulo 2. The total number of edge configurations is thus obtained in Equation 2.

12! · 212

2 = 12! · 211. (2)

2.3.4. Parity condition

In combinatorics, a permutation is an arrangement of elements in a set. The parity of a permutation
can either be even or odd.

(1) A permutation is even if it can be achieved using an even number of swaps between elements.
(2) A permutation is odd if it requires an odd number of swaps.

For instance, the permutation (1 2 3) → (2 1 3) is odd because it involves swapping 1 and 2, while
(1 2 3) → (3 1 2) is even because it can be achieved with two swaps. In the context of the Rubik’s
Cube, every face rotation is composed of cycles that involve moving pieces in a way that corresponds
to an even permutation. Specifically, a face rotation affects four corner pieces, rotating them in a
cycle. This cycle is an even permutation since it can be represented as a 4-cycle, which is an even
permutation. Similarly, a face rotation affects four edge pieces, also rotating them in a cycle, which
is an even permutation. Since both the corner permutation and the edge permutation resulting from
a face rotation are even, any sequence of face rotations (legal moves) always results in permutations
where the parities of the corners and edges match. It is impossible to achieve, through legal moves,
a state where the corners are in an even permutation while the edges are in an odd permutation, or
vice versa. Thus, only half of the configurations in earlier parts are valid, as the parity of the corners
and edges must match. Thus, the total number of valid configurations is calculated in Equation 3.

8! · 37 · 12! · 211

2 = 43, 252, 003, 274, 489, 856, 000. (3)

2.4. Configurations and Counting of Order 2 Cube

The 2 × 2 × 2 cube is a simplified version of the 3 × 3 × 3 cube, consisting only of 8 corner pieces.
The number of possible configurations is determined by the permutations and orientations of the
corner cubies, without edge pieces.

2.4.1. Corner Permutations and Orientations

The 8 corner cubies can be permuted among the 8 corner positions in 8! = 40, 320 ways. Each corner
cubie can be oriented in 3 ways, but the orientation of the eighth corner depends on the first seven,
resulting in 37 = 2, 187 valid orientations. However, without the center cubie to fix the orientation
of each face of the cube, which happens to all even cubes, the rotation of the entire cube such as
U · D in the 2 × 2 × 2 cube preserves the original configuration. Since each face can be placed as
the front with 4 possibilities. The total number of configurations is reduced by a factor of 24, and
the result for the pocket cube is shown in Equation 4.

8! · 37 · 1
6 · 4 = 3, 674, 160. (4)

3. Bi-Colored Cases of Order 2 Cube
While the god’s number of the 6-Colored 2 × 2 × 2 cube has been fully examined, some cases with
fewer colors remain unclear. The total number of configurations, with and without the consideration
of the symmetry property brought by the lack of a center cubie at each face, is discussed. For better
visualization, denote C1 = White, C2 = Y ellow.

3.1. (5, 1)2 Case

The case represents 5 faces in color C1, while the last face is in a different color, C2. The labeling
and color arrangement of the sample in the solved state is shown in Figure 7.

0 0

0 0

1

2
2

12 1
1 2

0 0

0 0

1

2
2

12 1
1 2

Figure 7. (5, 1)2 cube faces F, R, U and cube faces B, L, D.

The figure on the left demonstrates the front, right, and top faces of the cube, where all faces are
colored white. The figure on the right represents the back, left, and down faces of the cube, where
only the back face is colored yellow. The total number of configurations, without considering the
symmetry property mentioned in the general case of the 2 × 2 × 2 cube, is calculated in Equation 5.

8!
4! · 4! · 34 = 5670. (5)

Note that the orientation constraints, which cause the division by 3 in the previous part, disappear
when different types of corner cubies violate the pure Z/3Z labeling.

3.2. (4, 2)2 Case

The case also represents a 2−color case, where 4 faces in color C1 while the rest 2 faces are in a
different color C2. The first scenario is when two faces of C2 are opposite, which is visually presented
in Figure 8. The result corresponds to G4,2(2)′.

0 0

0 0

1

2
2

12 1
1 2

0 0

0 0

1

2
2

12 1
1 2

Figure 8. Scenario 1: (4, 2)2 cube faces F, R, U and cube faces B, L, D.

The structure is the same as the (5, 1)2 case, but the front and back faces are now both colored
yellow. Without the symmetry discussion, when all 8 corner cubies are colored exactly the same,
the total number of configurations is shown in Equation 6.

8!
8! · 38

3 = 2187. (6)

The second scenario occurs when the faces of C2 are adjacent. A sample figure showing its solved
states is provided in Figure 9. The result corresponds to G4,2(2)′′.

0 0

0 0

1

2
2

12 1
1 2

0 0

0 0

1

2
2

12 1
1 2

Figure 9. Scenario 2: (4, 2)2 cube faces F, R, U and cube faces B, L, D.

Now, the left and back faces are both colored yellow. There are three types of corner cubies.

• 2 corner cubies with (C1, C1, C1).
• 4 corner cubies with (C1, C1, C2).
• 2 corner cubies with (C1, C2, C2).

It leads to the calculation of the total number of configurations in Equations 7.
8!

2! · 2! · 4! · 36 = 306180. (7)

3.3. (3, 3)2 Case

The case is also for Bi-Colored case, where 3 faces in color C1 and 3 faces in color C2. There are
also 2 different scenarios. The first scenario is when one pair of faces in C1 is opposite(Figure 10).
The corresponding God’s number is G′

3,3(2).

0 0

0 0

1

2
2

12 1
1 2

0 0

0 0

1

2
2

12 1
1 2

Figure 10. Scenario 1: (3, 3)2 cube faces F, R, U and cube faces B, L, D.

The front, left, and back faces are colored in C2. The left and right faces are in the opposite positions
but colored differently. There are two types of corner cubies.

• 4 corner cubies with (C1, C1, C2).
• 4 corner cubies with (C1, C2, C2).

The number of configurations, as a result, is obatined in Equation 8.
8!

4! · 4! · 38

3 = 153090. (8)

The second scenario is when all faces that are colored the same are adjacent to each other. Another
sample figure is drawn in Figure 11. The corresponding God’s number is G′′

3,3(2).

0 0

0 0

1

2
2

12 1
1 2

0 0

0 0

1

2
2

12 1
1 2

Figure 11. Scenario 2: (3, 3)2 cube faces F, R, U and cube faces B, L, D.

The back, left, and down faces are colored in C2 while the rest faces are colored in C1. It changes
the corner cubies into the following four types.

• 1 corner cubies with (C1, C1, C1).
• 3 corner cubies with (C1, C1, C2).
• 3 corner cubies with (C1, C2, C2).
• 1 corner cubies with (C2, C2, C2).

The total number of configurations is derived in Equation 9.
8!

3! · 3! · 1! · 1! · 36 = 816480. (9)

3.4. Permutations and Symmetry

While exploring the less colored pocket cube, it is worth noting that the formula for calculating
the total number of configurations varies depending on the labeling of each cubie. Similarly,
when considering the symmetry brought by the lack of center cubies on each face to fix position,
the flexibility for the entire cube to rotate as a whole makes the counting complicated. Simple

strategies such as division by 24 no longer work. Burnside’s counting theorem, also known as the
Cauchy–Frobenius lemma, should be applied for more careful analysis. Let G be a finite group
acting on a set X. The number of distinct orbits of the action of G on X is given in Equation 10.

|X/G| = 1
|G|

∑
g∈G

|Xg|. (10)

where |G| is the order of the group G,Xg = {x ∈ X : g · x = x} is the set of elements in X that are
fixed by the group element g, |Xg| denotes the cardinality of the set Xg.The number of distinct
orbits is the average number of elements fixed by the group elements. Using such an approach, it
becomes possible to eliminate symmetric cases. The results for all three 2−color cases are listed in
Table 2.

Case Scenario Number of Configurations
(5, 1)2 – 258

(4, 2)2
Scenario 1 102
Scenario 2 12,879

(3, 3)2
Scenario 1 6,441
Scenario 2 34,032

Table 2. Configurations for Bi-Colored Cubes.

4. Bi-Colored Cases of Order 3 Cube

4.1. (5, 1)2 Case

Followed by the definitions in 2.4, 2.5, and 1.7, we define a 3 × 3 × 3 cube with 5 faces in one color
C1 while the remaining face in another color C2. Using a similar treatment as in Section 3 3, we can
let C1 = White, C2 = Y ellow for better visualization. The only scenario is represented in solved
states in Figure 12.

0 0 0

1 1

0 0 0

1

0

2

1

1

2

0

1
2 1 1

0 0
1 1 2

0 1 0

0 0

0 1 0

1

1

2

0

0

2

1

1
2 0 1

1 1
1 0 2

Figure 12. (5, 1)3 cube faces F, R, U and cube faces B, L, D.

The total number of configurations, with the edge cubies added, is displayed in Equation 11.

8!
4! · 4! · 34 · 12!

4! · 8! · 24 = 44906400. (11)

5. God’s Number Results

5.1. G5,1(2), G4,2(2), and G3,3(2)

All of our explorations are built on the Quarter-Turn Metric. The exploration of God’s number
is examined through a brute force approach due to the relatively limited size of possibilities. The
breadth first search approach (BFS) is used to explore possible new configurations until no new
states can be found. The search result when symmetry is not considered is stated in Table 3, Table 4,
and Table 5. In the table, "Depth" refers to the number of quarter turns applied on the solved state.
"New States Found" refers to unique states that can be achieved at the current depth and have
never been found before. "Total States Can Be Reached" refers to the total number of unique states
that can be reached within the current depth.

Depth New States Found Total States Can Be Reached
0 1 1
1 8 9
2 60 69
3 332 401
4 1343 1744
5 2988 4732
6 932 5664
7 6 5670

Table 3. Results of G5,1(2) without symmetric reduction.

Scenario Depth New States Found Total States Can Be Reached

Scenario 1

0 1 1
1 4 5
2 26 31
3 110 141
4 372 513
5 684 1197
6 816 2013
7 150 2163
8 24 2187

Scenario 2

0 1 1
1 12 13
2 106 119
3 776 895
4 4461 5356
5 19832 25188
6 64030 89218
7 124374 213592
8 87032 300624
9 5556 306180

Table 4. Combined Table for Results of G4,2(2) without symmetric reduction.

Scenario Depth New States Found Total States Can Be Reached

Scenario 1

0 1 1
1 10 11
2 93 104
3 694 798
4 4055 4853
5 17140 21993
6 50797 72790
7 63472 136262
8 16636 152898
9 192 153090

Scenario 2

0 1 1
1 12 13
2 99 112
3 648 760
4 3663 4423
5 17580 22003
6 67851 89854
7 199812 289666
8 340086 629752
9 178168 807920
10 8560 816480

Table 5. Combined Table for Results of G3,3(2) without symmetric reduction.

The maximum depth is God’s number as it represents the most complicated configuration. When
symmetry is considered and matches the real pocket cube, it makes the total number of configurations
significantly fewer. The symmetric reduction is achieved through a conversion from configurations
to numbers. Since each configuration in a pocket cube can repeat at most 24 times, the lowest
conversion result is taken for hashing and subsequent comparisons. With the symmetric reduction,
all results are shown below in Table 6, Table 7, and Table 8.

Depth New States Found Total States Can Be Reached
0 1 1
1 2 3
2 5 8
3 21 29
4 66 95
5 121 216
6 41 257
7 1 258

Table 6. Results of G5,1(2).

Scenario Depth New States Found Total States Can Be Reached

Scenario 1 for G′
4,2(2)

0 1 1
1 1 2
2 2 4
3 5 9
4 17 26
5 31 57
6 37 94
7 7 101
8 1 102

Scenario 2 for G′′
4,2(2)

0 1 1
1 4 5
2 16 21
3 58 79
4 227 306
5 855 1161
6 2634 3795
7 5192 8987
8 3656 12643
9 236 12879

Table 7. Combined Table for Results of G4,2(2).

Scenario Depth New States Found Total States Can Be Reached

Scenario 1 for G′
3,3(2)

0 1 1
1 5 6
2 14 20
3 52 72
4 210 282
5 741 1023
6 2086 3109
7 2630 5739
8 694 6433
9 8 6441

Scenario 2 for G′′
3,3(2)

0 1 1
1 2 3
2 9 12
3 40 52
4 178 230
5 746 976
6 2801 3777
7 8300 12077
8 14168 26245
9 7429 33674
10 358 34032

Table 8. Combined Table for Results of G3,3(2).

5.2. G5,1(3)

By our calculation in Section 4, we can still manage to explore G5,1(3) in Bi-Colored 3 × 3 × 3 cube
given the total number of configurations are not too large. The center cubie on each face fixes the
relative position and removes the need for symmetric reduction. Hence, the algorithm, with the
addition of edge cubies, manages to produce results for G5,1(3) as shown in Table 1. When the case
becomes slightly more complex, such as (4, 2)3 and (3, 3)3, the drastic increase in the total number
of configurations forbids direct numerical results. The simpler case of (4, 2)3 requires at least 40G
memory to run.

6. Conclusion and Future Development
This study identifies the complexities of solving Bi-Colored Rubik’s Cube configurations, enhancing
our understanding of their unique properties. These findings contribute to the larger effort to cate-
gorize God’s numbers for nonstandard cases, paving the way for further exploration of multicolored
and higher order cubes. The results are summarized in Table 9.

God’s Number Symbol Value
G5,1(2) 7
G′

4,2(2) 8
G′′

4,2(2) 9
G′

3,3(2) 9
G′′

3,3(2) 10
G5,1(3) 11

Table 9. Combined Results of God’s Number in Bi-Colored Cubes in Quarter-Turn
Metric.

The computational effort required for this project increased significantly as the size of the cube
grew and as the complexity of the Bi-Colored cases intensified. It is expected to have at least 40G
memory for the simpler case in (4, 2)3. It might be possible to apply the algorithms directly for
G4,2(3) and G3,3(3) with more computing resources. Such an approach should be modified when
cases become more complex, such as a higher order of Rubik’s Cube or more than 2 colors. In
Pieper’s thesis, one case of (3, 3)3 was explored and the total configurations found are shown to be
10,344,206,272, but the other case remains unknown due to the limit of computational power([10]).
One direction of future improvements is the use of coset methods. By focusing on coset representatives
and stabilizer subgroups, such a method significantly reduces the need to store each different
configuration and allows for much faster computation([9]). This method was also used in the
discovery of G(3) ([12], [13]). Another direction of future works is the analysis of different shapes
of puzzles in the style of Rubik’s Cube. Some potential extensions include Pyraminx, Megaminx,
Skewb, and Fenghuolun. Some interesting results have been shown such as the God’s number of
Pyraminx Duo ([5]).
Limited by the computing power, the deterministic method to compute God’s number is fairly
difficult and even impossible when the cube size n becomes large. The machine learning method,
on the other hand, provides an alternative to efficiently solving Rubik’s cube. Some results have
proven the effectiveness of such an approach. Forest Agostinelli, Stephen McAleer, Alexander
Shmakov, and Pierre Baldi built a model based on deep learning and reinforcement, which optimally
solves 60.3% of 3 × 3 × 3 cubes ([1]). More subsequent works on machine learning, such as entropy

modeling ([2]), Autodidactic Iteration as one reinforcement learning approach ([8]), and various
deep learning approaches ([6], [14], [3]) have demonstrated significant potential in solving Rubik’s
cubes, particularly for standard 3 × 3 × 3 cases. Their application in Bi-Colored cases and larger
size n is an exciting unexplored territory.

References
[1] Forest Agostinelli et al. “Solving the Rubik’s cube with deep reinforcement learning and

search”. In: Nature Machine Intelligence 1.8 (2019), pp. 356–363.
[2] BV Amrutha and Ramamoorthy Srinath. “Deep Learning Models for Rubik’s Cube with

Entropy Modelling”. In: ICDSMLA 2020: Proceedings of the 2nd International Conference on
Data Science, Machine Learning and Applications. Springer. 2022, pp. 35–43.

[3] Sebastiano Corli et al. “Solving rubik’s cube via quantum mechanics and deep reinforcement
learning”. In: Journal of Physics A: Mathematical and Theoretical 54.42 (2021), p. 425302.

[4] Cube20.org. Accessed: 2024-12-02. url: https://www.cube20.org/.
[5] Jaap’s Puzzle Page: Pyraminx Duo. Accessed: 2024-12-02. url: https://www.jaapsch.net/

puzzles/pyraduo.htm.
[6] Colin G Johnson. “Solving the Rubik’s cube with stepwise deep learning”. In: Expert Systems

38.3 (2021), e12665.
[7] Lars Petrus’ Method. Accessed: 2024-12-02. url: https://lar5.com/cube/.
[8] Stephen McAleer et al. “Solving the Rubik’s cube without human knowledge”. In: arXiv

preprint arXiv:1805.07470 (2018).
[9] Christophe Petit and Jean-Jacques Quisquater. Rubik’s for cryptographers. Cryptology ePrint

Archive, Paper 2011/638. 2011. url: https://eprint.iacr.org/2011/638.
[10] Taylor Pieper. “Complexities of Bi-Colored Rubik’s Cubes”. Undergraduate Thesis. Under-

graduate Honors Thesis Collection, 2017.
[11] Quarter Turn Metric (QTM). Accessed: 2024-12-02. url: https://www.cube20.org/qtm/.
[12] Tomas Rokicki. “Towards God’s Number for Rubik’s Cube in the Quarter-Turn Metric”.

In: The College Mathematics Journal 45.4 (2014), p. 242. issn: 07468342, 19311346. url:
https://www.jstor.org/stable/10.4169/college.math.j.45.4.242 (visited on
11/30/2024).

[13] Tomas Rokicki et al. “The Diameter of the Rubik’s Cube Group Is Twenty”. In: SIAM Review
56.4 (2014), pp. 645–670. doi: 10.1137/140973499. eprint: https://doi.org/10.1137/
140973499. url: https://doi.org/10.1137/140973499.

[14] M Mahindra Roshan et al. “Towards efficiently solving the rubik’s cube with deep reinforcement
learning and recursion”. In: E3S Web of Conferences. Vol. 491. EDP Sciences. 2024, p. 01009.

[15] Daniel Salkinder. “n×n×n Rubik’s Cubes and God’s Number”. In: arXiv preprint arXiv:2112.08602
(2021).

[16] David Singmaster. Notes on Rubik’s Magic Cube. Enslow Publishers, 1981.
[17] Da-Xing Zeng et al. “Overview of Rubik’s cube and reflections on its application in mechanism”.

In: Chinese Journal of Mechanical Engineering 31 (2018), pp. 1–12.

A. Code Appendix
The exploration of God’s number and possible states that can be reached at each step is done by the
following C++ algorithm with BFS approach. Despite only Bi-Colored cases are discussed earlier,
the code is written in 6-bases that can accommodate any initial state with fewer or equal to 6 colors
in total. The algorithm, once changing the initial cube labeling, will produce all results like the
table earlier until all possible configurations have been explored. The min_symmetry function is

https://www.cube20.org/
https://www.jaapsch.net/puzzles/pyraduo.htm
https://www.jaapsch.net/puzzles/pyraduo.htm
https://lar5.com/cube/
https://eprint.iacr.org/2011/638
https://www.cube20.org/qtm/
https://www.jstor.org/stable/10.4169/college.math.j.45.4.242
https://doi.org/10.1137/140973499
https://doi.org/10.1137/140973499
https://doi.org/10.1137/140973499
https://doi.org/10.1137/140973499

used to transform each configuration to the lowest possible number representation in 24 possible
directions to view the pocket cube, which eliminates all the symmetric configurations as a result.
When the function min_symmetry is removed, the result will recover the cases where no symmetry
is involved like the first few God’s number results. All codes used are provided below:

A.1. Codes of Order 2 Cube

1 #include <algorithm>
2 #include <array>
3 #include <fstream>
4 #include <iostream>
5 #include <queue>
6 #include <unordered_set>
7 #include <vector>
8

9 // define 6 colors in total
10 enum colors { WHITE = 0, YELLOW = 1, RED = 2,
11 ORANGE = 3, GREEN = 4, BLUE = 5 };
12

13 // define the structure of corners and 2 by 2 by 2 cube
14

15 // The corners are labled as 0 at UFR, 1 at UBR, 2 at UBL,
16 //3 at UFL, 4 at DFR, 5 at DBR, 6 at DBL, 7 at DFL
17 using Corner = std::array<colors, 3>;
18

19 using Cube = std::array<Corner, 8>;
20

21 // define Front Rotation
22 Cube rotate_Front(Cube cube) {
23 Cube new_state = cube;
24 Corner temp0 = cube[0];
25 Corner temp3 = cube[3];
26 Corner temp4 = cube[4];
27 Corner temp7 = cube[7];
28 new_state[0] = { temp3[2], temp3[0], temp3[1] };
29 new_state[3] = { temp7[1], temp7[2], temp7[0] };
30 new_state[4] = { temp0[1], temp0[2], temp0[0] };
31 new_state[7] = { temp4[2], temp4[0], temp4[1] };
32 return new_state;
33 }
34 Cube rotate_Front_Inverse(Cube cube) {
35 Cube new_state = cube;
36 Corner temp0 = cube[0];
37 Corner temp3 = cube[3];
38 Corner temp4 = cube[4];
39 Corner temp7 = cube[7];
40 new_state[0] = { temp4[2], temp4[0], temp4[1] };
41 new_state[3] = { temp0[1], temp0[2], temp0[0] };
42 new_state[4] = { temp7[1], temp7[2], temp7[0] };
43 new_state[7] = { temp3[2], temp3[0], temp3[1] };

44 return new_state;
45 }
46

47 // define Right Rotation
48

49 Cube rotate_Right(Cube cube) {
50 Cube new_state = cube;
51 Corner temp0 = cube[0];
52 Corner temp1 = cube[1];
53 Corner temp4 = cube[4];
54 Corner temp5 = cube[5];
55 new_state[0] = { temp4[1], temp4[2], temp4[0] };
56 new_state[1] = { temp0[2], temp0[0], temp0[1] };
57 new_state[4] = { temp5[2], temp5[0], temp5[1] };
58 new_state[5] = { temp1[1], temp1[2], temp1[0] };
59 return new_state;
60 }
61

62 Cube rotate_Right_Inverse(Cube cube) {
63 Cube new_state = cube;
64 Corner temp0 = cube[0];
65 Corner temp1 = cube[1];
66 Corner temp4 = cube[4];
67 Corner temp5 = cube[5];
68 new_state[0] = { temp1[1], temp1[2], temp1[0] };
69 new_state[1] = { temp5[2], temp5[0], temp5[1] };
70 new_state[4] = { temp0[2], temp0[0], temp0[1] };
71 new_state[5] = { temp4[1], temp4[2], temp4[0] };
72 return new_state;
73 }
74

75 Cube rotate_Back(Cube cube) {
76 Cube new_state = cube;
77 Corner temp1 = cube[1];
78 Corner temp2 = cube[2];
79 Corner temp5 = cube[5];
80 Corner temp6 = cube[6];
81 new_state[1] = { temp5[1], temp5[2], temp5[0] };
82 new_state[2] = { temp1[2], temp1[0], temp1[1] };
83 new_state[5] = { temp6[2], temp6[0], temp6[1] };
84 new_state[6] = { temp2[1], temp2[2], temp2[0] };
85 return new_state;
86 }
87

88 Cube rotate_Back_Inverse(Cube cube) {
89 Cube new_state = cube;
90 Corner temp1 = cube[1];
91 Corner temp2 = cube[2];
92 Corner temp5 = cube[5];
93 Corner temp6 = cube[6];

94 new_state[1] = { temp2[1], temp2[2], temp2[0] };
95 new_state[2] = { temp6[2], temp6[0], temp6[1] };
96 new_state[5] = { temp1[2], temp1[0], temp1[1] };
97 new_state[6] = { temp5[1], temp5[2], temp5[0] };
98 return new_state;
99 }

100

101 Cube rotate_Left(Cube cube) {
102 Cube new_state = cube;
103 Corner temp2 = cube[2];
104 Corner temp3 = cube[3];
105 Corner temp6 = cube[6];
106 Corner temp7 = cube[7];
107 new_state[2] = { temp6[1], temp6[2], temp6[0] };
108 new_state[3] = { temp2[2], temp2[0], temp2[1] };
109 new_state[6] = { temp7[2], temp7[0], temp7[1] };
110 new_state[7] = { temp3[1], temp3[2], temp3[0] };
111 return new_state;
112 }
113

114 Cube rotate_Left_Inverse(Cube cube) {
115 Cube new_state = cube;
116 Corner temp2 = cube[2];
117 Corner temp3 = cube[3];
118 Corner temp6 = cube[6];
119 Corner temp7 = cube[7];
120 new_state[2] = { temp3[1], temp3[2], temp3[0] };
121 new_state[3] = { temp7[2], temp7[0], temp7[1] };
122 new_state[6] = { temp2[2], temp2[0], temp2[1] };
123 new_state[7] = { temp6[1], temp6[2], temp6[0] };
124 return new_state;
125 }
126

127 Cube rotate_Top(Cube cube) {
128 Cube new_state = cube;
129 Corner temp0 = cube[0];
130 Corner temp1 = cube[1];
131 Corner temp2 = cube[2];
132 Corner temp3 = cube[3];
133 new_state[0] = { temp3[0], temp3[1], temp3[2] };
134 new_state[1] = { temp0[0], temp0[1], temp0[2] };
135 new_state[2] = { temp1[0], temp1[1], temp1[2] };
136 new_state[3] = { temp2[0], temp2[1], temp2[2] };
137 return new_state;
138 }
139

140 Cube rotate_Top_Inverse(Cube cube) {
141 Cube new_state = cube;
142 Corner temp0 = cube[0];
143 Corner temp1 = cube[1];

144 Corner temp2 = cube[2];
145 Corner temp3 = cube[3];
146 new_state[0] = { temp1[0], temp1[1], temp1[2] };
147 new_state[1] = { temp2[0], temp2[1], temp2[2] };
148 new_state[2] = { temp3[0], temp3[1], temp3[2] };
149 new_state[3] = { temp0[0], temp0[1], temp0[2] };
150 return new_state;
151 }
152

153 Cube rotate_Down(Cube cube) {
154 Cube new_state = cube;
155 Corner temp4 = cube[4];
156 Corner temp5 = cube[5];
157 Corner temp6 = cube[6];
158 Corner temp7 = cube[7];
159 new_state[4] = { temp7[0], temp7[1], temp7[2] };
160 new_state[5] = { temp4[0], temp4[1], temp4[2] };
161 new_state[6] = { temp5[0], temp5[1], temp5[2] };
162 new_state[7] = { temp6[0], temp6[1], temp6[2] };
163 return new_state;
164 }
165

166 Cube rotate_Down_Inverse(Cube cube) {
167 Cube new_state = cube;
168 Corner temp4 = cube[4];
169 Corner temp5 = cube[5];
170 Corner temp6 = cube[6];
171 Corner temp7 = cube[7];
172 new_state[4] = { temp5[0], temp5[1], temp5[2] };
173 new_state[5] = { temp6[0], temp6[1], temp6[2] };
174 new_state[6] = { temp7[0], temp7[1], temp7[2] };
175 new_state[7] = { temp4[0], temp4[1], temp4[2] };
176 return new_state;
177 }
178

179 // Convert the cube to a numerical representation for comparison
180 long long cubeToNumber(const Cube& cube) {
181 long long number = 0;
182 for (const auto& corner : cube) {
183 for (const auto& color : corner) {
184 number = number * 6 + color; // Base-6 number representation
185 }
186 }
187 return number;
188 }
189

190 Cube rotate_without_change(Cube cube) {
191 Cube temp = cube;
192 temp[0] = cube[1];
193 temp[1] = cube[2];

194 temp[2] = cube[3];
195 temp[3] = cube[0];
196 temp[4] = cube[5];
197 temp[5] = cube[6];
198 temp[6] = cube[7];
199 temp[7] = cube[4];
200 return temp;
201 }
202

203 // Function to rotate the cube so that a specific face becomes the top
204 Cube changeTopColor(Cube cube, colors newTop) {
205 Cube rotated = cube;
206

207 switch (newTop) {
208 case WHITE:
209 // No rotation needed
210 break;
211 case YELLOW:
212 // Rotate 180 degrees around the x-axis (top to bottom)
213 return rotate_Left(rotate_Right_Inverse(
214 rotate_Left(rotate_Right_Inverse(cube))));
215 case RED:
216 return rotate_Left_Inverse(rotate_Right(cube));
217 case ORANGE:
218 return rotate_Right_Inverse(rotate_Left(cube));
219 case GREEN:
220 return rotate_Back_Inverse(rotate_Front(cube));
221 case BLUE:
222 return rotate_Front_Inverse(rotate_Back(cube));
223 }
224

225 return rotated;
226 }
227

228

229 long long min_symmetry(Cube cube) {
230 long long minNumber = std::numeric_limits<long long>::max();
231

232 // Check all 24 symmetries (6 top colors * 4 rotations each)
233 for (colors topColor : { WHITE, YELLOW, RED, ORANGE, GREEN, BLUE }) {
234 Cube topChanged = changeTopColor(cube, topColor);
235 long long currentNumber = cubeToNumber(topChanged);
236 if (currentNumber < minNumber) {
237 minNumber = currentNumber;
238 }
239 for (int i = 0; i < 3; ++i) {
240 topChanged = rotate_without_change(topChanged);
241 long long currentNumber = cubeToNumber(topChanged);
242 if (currentNumber < minNumber) {
243 minNumber = currentNumber;

244 }
245 }
246 }
247 return minNumber;
248 }
249

250 // Function to convert enum color to string
251 std::string colorToString(colors color) {
252 switch (color) {
253 case WHITE:
254 return "WHITE";
255 case YELLOW:
256 return "YELLOW";
257 case RED:
258 return "RED";
259 case ORANGE:
260 return "ORANGE";
261 case GREEN:
262 return "GREEN";
263 case BLUE:
264 return "BLUE";
265 default:
266 return " ";
267 }
268 }
269

270 void displayCube(std::ostream& outputFile, const Cube& cube) {
271 const std::array<std::string, 8> cornerLabels
272 = { "UFR", "UBR", "UBL", "UFL", "DFR", "DBR", "DBL", "DFL" };
273

274 // Write the cube's state to the open file stream
275 for (size_t i = 0; i < cube.size(); ++i) {
276 outputFile << "Corner { ";
277 for (size_t j = 0; j < 3; ++j) {
278 outputFile << colorToString(cube[i][j]);
279 if (j < 2) outputFile << ", ";
280 }
281 outputFile << " }, // Corner " << i << ": "
282 << cornerLabels[i] << std::endl;
283 }
284 outputFile << std::endl;
285 }
286

287 // Function to explore all possible configurations using BFS
288 void findGodsNumber(Cube solvedCube, std::ostream& out
289 = std::cout, bool print_example = false, int sample = 1) {
290 std::unordered_set<long long> visited; // To store configurations
291 std::queue<std::pair<Cube, int>> queue; // Queue for BFS
292

293 long long solvedNumber = min_symmetry(solvedCube);

294 queue.push({ solvedCube, 0 });
295 visited.insert(solvedNumber);
296

297 int depth = 0;
298 std::vector<Cube> deepest_sample;
299 while (!queue.empty()) {
300 int currentDepth = depth;
301 size_t levelSize = queue.size();
302 out << "Exploring depth: " << depth << " with "
303 << levelSize << " nodes." << std::endl;
304 out << "Finding unique states: " << visited.size() << std::endl;
305 bool next_level_exist = false;
306 for (size_t i = 0; i < levelSize; ++i) {
307 // Use explicit access to elements of the pair
308 Cube currentCube = queue.front().first;
309 queue.pop();
310

311 // Generate possible moves (rotations)
312 std::vector<Cube> nextMoves = { rotate_Front(currentCube),
313 rotate_Front_Inverse(currentCube),
314 rotate_Right(currentCube),
315 rotate_Right_Inverse(currentCube),
316 rotate_Back(currentCube),
317 rotate_Back_Inverse(currentCube),
318 rotate_Left(currentCube),
319 rotate_Left_Inverse(currentCube),
320 rotate_Top(currentCube),
321 rotate_Top_Inverse(currentCube),
322 rotate_Down(currentCube),
323 rotate_Down_Inverse(currentCube) };
324 for (const auto& nextCube : nextMoves) {
325 long long nextNumber = min_symmetry(nextCube);
326 if (visited.find(nextNumber) == visited.end()) {
327 visited.insert(nextNumber);
328 queue.push({ nextCube, currentDepth + 1 });
329 if (print_example) {
330 if (!next_level_exist) {
331 deepest_sample.clear();
332 }
333 if (deepest_sample.size() < sample) {
334 deepest_sample.push_back(nextCube);
335 }
336 next_level_exist = true;
337 }
338 }
339 }
340 }
341 out << "All unique configurations reached at depth: "
342 << depth << std::endl << std::endl;
343 depth++;

344 }
345

346 out << "Explored all configurations." << std::endl;
347 if (print_example) {
348 out << "Cubes can be reached at depth "
349 << (depth - 1) << " are: " << std::endl;
350 for (int i = 0; i < deepest_sample.size(); i++) {
351 displayCube(out, deepest_sample[i]);
352 }
353 }
354 }
355

356

357 int main() {
358 // Initialize a solved cube state with standard corner labels
359 std::ofstream outputFile("output_S.txt");
360

361 // Check if the file is open
362 if (!outputFile.is_open()) {
363 std::cerr << "Failed to open the file." << std::endl;
364 }
365 Cube cube_6_color = {
366 Corner { WHITE, BLUE, RED }, // Corner 0: UFR
367 Corner { WHITE, ORANGE, BLUE }, // Corner 1: UBR
368 Corner { WHITE, GREEN, ORANGE }, // Corner 2: UBL
369 Corner { WHITE, RED, GREEN }, // Corner 3: UFL
370 Corner { YELLOW, RED, BLUE }, // Corner 4: DFR
371 Corner { YELLOW, BLUE, ORANGE }, // Corner 5: DBR
372 Corner { YELLOW, ORANGE, GREEN }, // Corner 6: DBL
373 Corner { YELLOW, GREEN, RED } // Corner 7: DFL
374 };
375 Cube cube_2_color_1v5 = {
376 Corner { WHITE, YELLOW, YELLOW }, // Corner 0: UFR
377 Corner { WHITE, YELLOW, YELLOW }, // Corner 1: UBR
378 Corner { WHITE, YELLOW, YELLOW }, // Corner 2: UBL
379 Corner { WHITE, YELLOW, YELLOW }, // Corner 3: UFL
380 Corner { YELLOW, YELLOW, YELLOW }, // Corner 4: DFR
381 Corner { YELLOW, YELLOW, YELLOW }, // Corner 5: DBR
382 Corner { YELLOW, YELLOW, YELLOW }, // Corner 6: DBL
383 Corner { YELLOW, YELLOW, YELLOW } // Corner 7: DFL
384 };
385

386 Cube cube_2_color_2v4_symmetric = {
387 Corner { WHITE, YELLOW, YELLOW }, // Corner 0: UFR
388 Corner { WHITE, YELLOW, YELLOW }, // Corner 1: UBR
389 Corner { WHITE, YELLOW, YELLOW }, // Corner 2: UBL
390 Corner { WHITE, YELLOW, YELLOW }, // Corner 3: UFL
391 Corner { WHITE, YELLOW, YELLOW }, // Corner 4: DFR
392 Corner { WHITE, YELLOW, YELLOW }, // Corner 5: DBR
393 Corner { WHITE, YELLOW, YELLOW }, // Corner 6: DBL

394 Corner { WHITE, YELLOW, YELLOW } // Corner 7: DFL
395 };
396 Cube cube_2_color_2v4_adjacent = {
397 Corner { WHITE, WHITE, YELLOW }, // Corner 0: UFR
398 Corner { WHITE, YELLOW, WHITE }, // Corner 1: UBR
399 Corner { WHITE, YELLOW, YELLOW }, // Corner 2: UBL
400 Corner { WHITE, YELLOW, YELLOW }, // Corner 3: UFL
401 Corner { YELLOW, YELLOW, WHITE }, // Corner 4: DFR
402 Corner { YELLOW, WHITE, YELLOW }, // Corner 5: DBR
403 Corner { YELLOW, YELLOW, YELLOW }, // Corner 6: DBL
404 Corner { YELLOW, YELLOW, YELLOW } // Corner 7: DFL
405 };
406

407 Cube cube_2_color_3v3_all_adjacent = {
408 Corner { WHITE, WHITE, WHITE }, // Corner 0: UFR
409 Corner { WHITE, YELLOW, WHITE }, // Corner 1: UBR
410 Corner { WHITE, YELLOW, YELLOW }, // Corner 2: UBL
411 Corner { WHITE, WHITE, YELLOW }, // Corner 3: UFL
412 Corner { YELLOW, WHITE, WHITE }, // Corner 4: DFR
413 Corner { YELLOW, WHITE, YELLOW }, // Corner 5: DBR
414 Corner { YELLOW, YELLOW, YELLOW }, // Corner 6: DBL
415 Corner { YELLOW, YELLOW, WHITE } // Corner 7: DFL
416 };
417

418 Cube cube_2_color_3v3_opposite = {
419 Corner { WHITE, YELLOW, WHITE }, // Corner 0: UFR
420 Corner { WHITE, WHITE, YELLOW }, // Corner 1: UBR
421 Corner { WHITE, YELLOW, WHITE }, // Corner 2: UBL
422 Corner { WHITE, WHITE, YELLOW }, // Corner 3: UFL
423 Corner { YELLOW, WHITE, YELLOW }, // Corner 4: DFR
424 Corner { YELLOW, YELLOW, WHITE }, // Corner 5: DBR
425 Corner { YELLOW, WHITE, YELLOW }, // Corner 6: DBL
426 Corner { YELLOW, YELLOW, WHITE } // Corner 7: DFL
427 };
428 outputFile << std::endl << "1v5 Cube:" << std::endl;
429 findGodsNumber(cube_2_color_1v5, outputFile);
430 outputFile << std::endl << "2v4 Adjacent Cube:" << std::endl;
431 findGodsNumber(cube_2_color_2v4_adjacent, outputFile);
432 outputFile << std::endl << "2v4 Symmetric Cube:" << std::endl;
433 findGodsNumber(cube_2_color_2v4_symmetric, outputFile);
434 outputFile << std::endl << "3v3 Opposite Cube:" << std::endl;
435 findGodsNumber(cube_2_color_3v3_opposite, outputFile);
436 outputFile << std::endl << "3v3 All Adjacent:" << std::endl;
437 findGodsNumber(cube_2_color_3v3_all_adjacent, outputFile, true);
438

439 return 0;
440 }

A.2. Codes of Order 3 Cube

For 3 × 3 × 3 Cube, the algorithm, using similar approach for 2 × 2 × 2 Cube, is also attached below:

1 #include <algorithm>
2 #include <array>
3 #include <fstream>
4 #include <iostream>
5 #include <queue>
6 #include <unordered_set>
7 #include <vector>
8

9 // define 6 colors in total
10 enum colors { WHITE = 0, YELLOW = 1, RED = 2,
11 ORANGE = 3, GREEN = 4, BLUE = 5 };
12

13 // define the structure of corners and 2 by 2 by 2 cube
14

15 // The corners are labled as 0 at UFR, 1 at UBR, 2 at UBL,
16 // 3 at UFL, 4 at DFR, 5 at DBR, 6 at DBL, 7 at DFL
17 using Corner = std::array<colors, 3>;
18 using Edge = std::array<colors, 2>;
19 struct Cube {
20 std::array<Corner, 8> corners; // Array of 8 corners
21 std::array<Edge, 12> edges; // Array of 12 edges
22 };
23

24 // define Front Rotation
25 Cube rotate_Front(Cube cube) {
26 Cube new_state = cube;
27 Corner temp0 = cube.corners[0];
28 Corner temp3 = cube.corners[3];
29 Corner temp4 = cube.corners[4];
30 Corner temp7 = cube.corners[7];
31 new_state.corners[0] = { temp3[2], temp3[0], temp3[1] };
32 new_state.corners[3] = { temp7[1], temp7[2], temp7[0] };
33 new_state.corners[4] = { temp0[1], temp0[2], temp0[0] };
34 new_state.corners[7] = { temp4[2], temp4[0], temp4[1] };
35 Edge e_temp0 = cube.edges[0];
36 Edge e_temp4 = cube.edges[4];
37 Edge e_temp8 = cube.edges[8];
38 Edge e_temp7 = cube.edges[7];
39 new_state.edges[0] = { e_temp7[1], e_temp7[0] };
40 new_state.edges[4] = { e_temp0[0], e_temp0[1] };
41 new_state.edges[8] = { e_temp4[1], e_temp4[0] };
42 new_state.edges[7] = { e_temp8[0], e_temp8[1] };
43 return new_state;
44 }
45 Cube rotate_Front_Inverse(Cube cube) {
46 Cube new_state = cube;

47 Corner temp0 = cube.corners[0];
48 Corner temp3 = cube.corners[3];
49 Corner temp4 = cube.corners[4];
50 Corner temp7 = cube.corners[7];
51 new_state.corners[0] = { temp4[2], temp4[0], temp4[1] };
52 new_state.corners[3] = { temp0[1], temp0[2], temp0[0] };
53 new_state.corners[4] = { temp7[1], temp7[2], temp7[0] };
54 new_state.corners[7] = { temp3[2], temp3[0], temp3[1] };
55 Edge e_temp0 = cube.edges[0];
56 Edge e_temp4 = cube.edges[4];
57 Edge e_temp8 = cube.edges[8];
58 Edge e_temp7 = cube.edges[7];
59 new_state.edges[0] = { e_temp4[0], e_temp4[1] };
60 new_state.edges[4] = { e_temp8[1], e_temp8[0] };
61 new_state.edges[8] = { e_temp7[0], e_temp7[1] };
62 new_state.edges[7] = { e_temp0[1], e_temp0[0] };
63 return new_state;
64 }
65

66 // define Right Rotation
67

68 Cube rotate_Right(Cube cube) {
69 Cube new_state = cube;
70 Corner temp0 = cube.corners[0];
71 Corner temp1 = cube.corners[1];
72 Corner temp4 = cube.corners[4];
73 Corner temp5 = cube.corners[5];
74 new_state.corners[0] = { temp4[1], temp4[2], temp4[0] };
75 new_state.corners[1] = { temp0[2], temp0[0], temp0[1] };
76 new_state.corners[4] = { temp5[2], temp5[0], temp5[1] };
77 new_state.corners[5] = { temp1[1], temp1[2], temp1[0] };
78 Edge e_temp1 = cube.edges[1];
79 Edge e_temp4 = cube.edges[4];
80 Edge e_temp5 = cube.edges[5];
81 Edge e_temp9 = cube.edges[9];
82 new_state.edges[1] = { e_temp4[1], e_temp4[0] };
83 new_state.edges[4] = { e_temp9[0], e_temp9[1] };
84 new_state.edges[5] = { e_temp1[0], e_temp1[1] };
85 new_state.edges[9] = { e_temp5[1], e_temp5[0] };
86 return new_state;
87 }
88

89 Cube rotate_Right_Inverse(Cube cube) {
90 Cube new_state = cube;
91 Corner temp0 = cube.corners[0];
92 Corner temp1 = cube.corners[1];
93 Corner temp4 = cube.corners[4];
94 Corner temp5 = cube.corners[5];
95 new_state.corners[0] = { temp1[1], temp1[2], temp1[0] };
96 new_state.corners[1] = { temp5[2], temp5[0], temp5[1] };

97 new_state.corners[4] = { temp0[2], temp0[0], temp0[1] };
98 new_state.corners[5] = { temp4[1], temp4[2], temp4[0] };
99 Edge e_temp1 = cube.edges[1];

100 Edge e_temp4 = cube.edges[4];
101 Edge e_temp5 = cube.edges[5];
102 Edge e_temp9 = cube.edges[9];
103 new_state.edges[1] = { e_temp5[0], e_temp5[1] };
104 new_state.edges[4] = { e_temp1[1], e_temp1[0] };
105 new_state.edges[5] = { e_temp9[1], e_temp9[0] };
106 new_state.edges[9] = { e_temp4[0], e_temp4[1] };
107 return new_state;
108 }
109

110 Cube rotate_Back(Cube cube) {
111 Cube new_state = cube;
112 Corner temp1 = cube.corners[1];
113 Corner temp2 = cube.corners[2];
114 Corner temp5 = cube.corners[5];
115 Corner temp6 = cube.corners[6];
116 new_state.corners[1] = { temp5[1], temp5[2], temp5[0] };
117 new_state.corners[2] = { temp1[2], temp1[0], temp1[1] };
118 new_state.corners[5] = { temp6[2], temp6[0], temp6[1] };
119 new_state.corners[6] = { temp2[1], temp2[2], temp2[0] };
120 Edge e_temp2 = cube.edges[2];
121 Edge e_temp5 = cube.edges[5];
122 Edge e_temp6 = cube.edges[6];
123 Edge e_temp10 = cube.edges[10];
124 new_state.edges[2] = { e_temp5[1], e_temp5[0] };
125 new_state.edges[5] = { e_temp10[0], e_temp10[1] };
126 new_state.edges[6] = { e_temp2[0], e_temp2[1] };
127 new_state.edges[10] = { e_temp6[1], e_temp6[0] };
128 return new_state;
129 }
130

131 Cube rotate_Back_Inverse(Cube cube) {
132 Cube new_state = cube;
133 Corner temp1 = cube.corners[1];
134 Corner temp2 = cube.corners[2];
135 Corner temp5 = cube.corners[5];
136 Corner temp6 = cube.corners[6];
137 new_state.corners[1] = { temp2[1], temp2[2], temp2[0] };
138 new_state.corners[2] = { temp6[2], temp6[0], temp6[1] };
139 new_state.corners[5] = { temp1[2], temp1[0], temp1[1] };
140 new_state.corners[6] = { temp5[1], temp5[2], temp5[0] };
141 Edge e_temp2 = cube.edges[2];
142 Edge e_temp5 = cube.edges[5];
143 Edge e_temp6 = cube.edges[6];
144 Edge e_temp10 = cube.edges[10];
145 new_state.edges[2] = { e_temp6[0], e_temp6[1] };
146 new_state.edges[5] = { e_temp2[1], e_temp2[0] };

147 new_state.edges[6] = { e_temp10[1], e_temp10[0] };
148 new_state.edges[10] = { e_temp5[0], e_temp5[1] };
149 return new_state;
150 }
151

152 Cube rotate_Left(Cube cube) {
153 Cube new_state = cube;
154 Corner temp2 = cube.corners[2];
155 Corner temp3 = cube.corners[3];
156 Corner temp6 = cube.corners[6];
157 Corner temp7 = cube.corners[7];
158 new_state.corners[2] = { temp6[1], temp6[2], temp6[0] };
159 new_state.corners[3] = { temp2[2], temp2[0], temp2[1] };
160 new_state.corners[6] = { temp7[2], temp7[0], temp7[1] };
161 new_state.corners[7] = { temp3[1], temp3[2], temp3[0] };
162 Edge e_temp3 = cube.edges[3];
163 Edge e_temp6 = cube.edges[6];
164 Edge e_temp7 = cube.edges[7];
165 Edge e_temp11 = cube.edges[11];
166 new_state.edges[3] = { e_temp6[1], e_temp6[0] };
167 new_state.edges[6] = { e_temp11[0], e_temp11[1] };
168 new_state.edges[7] = { e_temp3[0], e_temp3[1] };
169 new_state.edges[11] = { e_temp7[1], e_temp7[0] };
170 return new_state;
171 }
172

173 Cube rotate_Left_Inverse(Cube cube) {
174 Cube new_state = cube;
175 Corner temp2 = cube.corners[2];
176 Corner temp3 = cube.corners[3];
177 Corner temp6 = cube.corners[6];
178 Corner temp7 = cube.corners[7];
179 new_state.corners[2] = { temp3[1], temp3[2], temp3[0] };
180 new_state.corners[3] = { temp7[2], temp7[0], temp7[1] };
181 new_state.corners[6] = { temp2[2], temp2[0], temp2[1] };
182 new_state.corners[7] = { temp6[1], temp6[2], temp6[0] };
183 Edge e_temp3 = cube.edges[3];
184 Edge e_temp6 = cube.edges[6];
185 Edge e_temp7 = cube.edges[7];
186 Edge e_temp11 = cube.edges[11];
187 new_state.edges[3] = { e_temp7[0], e_temp7[1] };
188 new_state.edges[6] = { e_temp3[1], e_temp3[0] };
189 new_state.edges[7] = { e_temp11[1], e_temp11[0] };
190 new_state.edges[11] = { e_temp6[0], e_temp6[1] };
191 return new_state;
192 }
193

194 Cube rotate_Top(Cube cube) {
195 Cube new_state = cube;
196 Corner temp0 = cube.corners[0];

197 Corner temp1 = cube.corners[1];
198 Corner temp2 = cube.corners[2];
199 Corner temp3 = cube.corners[3];
200 new_state.corners[0] = { temp3[0], temp3[1], temp3[2] };
201 new_state.corners[1] = { temp0[0], temp0[1], temp0[2] };
202 new_state.corners[2] = { temp1[0], temp1[1], temp1[2] };
203 new_state.corners[3] = { temp2[0], temp2[1], temp2[2] };
204 Edge e_temp0 = cube.edges[0];
205 Edge e_temp1 = cube.edges[1];
206 Edge e_temp2 = cube.edges[2];
207 Edge e_temp3 = cube.edges[3];
208 new_state.edges[0] = { e_temp3[0], e_temp3[1] };
209 new_state.edges[1] = { e_temp0[0], e_temp0[1] };
210 new_state.edges[2] = { e_temp1[0], e_temp1[1] };
211 new_state.edges[3] = { e_temp2[0], e_temp2[1] };
212 return new_state;
213 }
214

215 Cube rotate_Top_Inverse(Cube cube) {
216 Cube new_state = cube;
217 Corner temp0 = cube.corners[0];
218 Corner temp1 = cube.corners[1];
219 Corner temp2 = cube.corners[2];
220 Corner temp3 = cube.corners[3];
221 new_state.corners[0] = { temp1[0], temp1[1], temp1[2] };
222 new_state.corners[1] = { temp2[0], temp2[1], temp2[2] };
223 new_state.corners[2] = { temp3[0], temp3[1], temp3[2] };
224 new_state.corners[3] = { temp0[0], temp0[1], temp0[2] };
225 Edge e_temp0 = cube.edges[0];
226 Edge e_temp1 = cube.edges[1];
227 Edge e_temp2 = cube.edges[2];
228 Edge e_temp3 = cube.edges[3];
229 new_state.edges[0] = { e_temp1[0], e_temp1[1] };
230 new_state.edges[1] = { e_temp2[0], e_temp2[1] };
231 new_state.edges[2] = { e_temp3[0], e_temp3[1] };
232 new_state.edges[3] = { e_temp0[0], e_temp0[1] };
233 return new_state;
234 }
235

236 Cube rotate_Down(Cube cube) {
237 Cube new_state = cube;
238 Corner temp4 = cube.corners[4];
239 Corner temp5 = cube.corners[5];
240 Corner temp6 = cube.corners[6];
241 Corner temp7 = cube.corners[7];
242 new_state.corners[4] = { temp7[0], temp7[1], temp7[2] };
243 new_state.corners[5] = { temp4[0], temp4[1], temp4[2] };
244 new_state.corners[6] = { temp5[0], temp5[1], temp5[2] };
245 new_state.corners[7] = { temp6[0], temp6[1], temp6[2] };
246 Edge e_temp8 = cube.edges[8];

247 Edge e_temp9 = cube.edges[9];
248 Edge e_temp10 = cube.edges[10];
249 Edge e_temp11 = cube.edges[11];
250 new_state.edges[8] = { e_temp11[0], e_temp11[1] };
251 new_state.edges[9] = { e_temp8[0], e_temp8[1] };
252 new_state.edges[10] = { e_temp9[0], e_temp9[1] };
253 new_state.edges[11] = { e_temp10[0], e_temp10[1] };
254 return new_state;
255 }
256

257 Cube rotate_Down_Inverse(Cube cube) {
258 Cube new_state = cube;
259 Corner temp4 = cube.corners[4];
260 Corner temp5 = cube.corners[5];
261 Corner temp6 = cube.corners[6];
262 Corner temp7 = cube.corners[7];
263 new_state.corners[4] = { temp5[0], temp5[1], temp5[2] };
264 new_state.corners[5] = { temp6[0], temp6[1], temp6[2] };
265 new_state.corners[6] = { temp7[0], temp7[1], temp7[2] };
266 new_state.corners[7] = { temp4[0], temp4[1], temp4[2] };
267 Edge e_temp8 = cube.edges[8];
268 Edge e_temp9 = cube.edges[9];
269 Edge e_temp10 = cube.edges[10];
270 Edge e_temp11 = cube.edges[11];
271 new_state.edges[8] = { e_temp9[0], e_temp9[1] };
272 new_state.edges[9] = { e_temp10[0], e_temp10[1] };
273 new_state.edges[10] = { e_temp11[0], e_temp11[1] };
274 new_state.edges[11] = { e_temp8[0], e_temp8[1] };
275 return new_state;
276 }
277

278 // Convert the cube to a numerical representation for comparison
279 long long cubeToNumber(const Cube& cube, long long color_num) {
280 long long number = 0;
281 for (const auto& corner : cube.corners) {
282 for (const auto& color : corner) {
283 number = number * color_num + color;
284 }
285 }
286 for (const auto& edge : cube.edges) {
287 for (const auto& color : edge) {
288 number = number * color_num + color;
289 }
290 }
291 return number;
292 }
293

294 // Convert the cube to a numerical representation for comparison
295 Cube numberToCube(long long cube_num, long long color_num) {
296 Cube cube;

297 // Decode edges
298 for (int i = cube.edges.size() - 1; i >= 0; --i) {
299 for (int j = 1; j >= 0; --j) {
300 cube.edges[i][j] = static_cast<colors>(cube_num % color_num);
301 cube_num /= color_num;
302 }
303 }
304

305 // Decode corners
306 for (int i = cube.corners.size() - 1; i >= 0; --i) {
307 for (int j = 2; j >= 0; --j) {
308 cube.corners[i][j] = static_cast<colors>(cube_num % color_num);
309 cube_num /= color_num;
310 }
311 }
312

313 return cube;
314 }
315

316

317 // Function to convert enum color to string
318 std::string colorToString(colors color) {
319 switch (color) {
320 case WHITE:
321 return "WHITE";
322 case YELLOW:
323 return "YELLOW";
324 case RED:
325 return "RED";
326 case ORANGE:
327 return "ORANGE";
328 case GREEN:
329 return "GREEN";
330 case BLUE:
331 return "BLUE";
332 default:
333 return " ";
334 }
335 }
336

337 void displayCube(std::ostream& outputFile, const Cube& cube) {
338 const std::array<std::string, 8> cornerLabels = { "UFR", "UBR", "UBL",
339 "UFL", "DFR", "DBR", "DBL", "DFL" };
340 const std::array<std::string, 12> edgeLabels
341 = { "UF", "UR", "UB", "UL", "FR", "RB",
342 "BL", "LF", "DF", "DR", "DB", "DL" };
343

344 // Write the cube's state to the open file stream
345 for (size_t i = 0; i < cube.corners.size(); ++i) {
346 outputFile << "Corner { ";

347 for (size_t j = 0; j < 3; ++j) {
348 outputFile << colorToString(cube.corners[i][j]);
349 if (j < 2) outputFile << ", ";
350 }
351 outputFile << " }, // Corner " << i << ": "
352 << cornerLabels[i] << std::endl;
353 }
354 for (size_t i = 0; i < cube.edges.size(); ++i) {
355 outputFile << "Edge { ";
356 for (size_t j = 0; j < 2; ++j) {
357 outputFile << colorToString(cube.edges[i][j]);
358 if (j < 1) outputFile << ", ";
359 }
360 outputFile << " }, // Edge " << i
361 << ": " << edgeLabels[i] << std::endl;
362 }
363 outputFile << std::endl;
364 }
365

366 // Function to explore all possible configurations using BFS
367 void findGodsNumber(Cube solvedCube, std::ostream& out = std::cout,
368 bool print_example = false, int sample = 1,
369 long long num_color = 2) {
370 std::unordered_set<long long> visited; // To store configurations
371 std::queue<std::pair<long long, int>> queue; // Queue for BFS
372

373 long long solvedNumber = cubeToNumber(solvedCube, num_color);
374 queue.push({ solvedNumber, 0 });
375 visited.insert(solvedNumber);
376

377 int depth = 0;
378 std::vector<Cube> deepest_sample;
379 while (!queue.empty()) {
380 int currentDepth = depth;
381 size_t levelSize = queue.size();
382 out << "Exploring depth: " << depth << " with "
383 << levelSize << " nodes." << std::endl;
384 out << "Finding unique states: " << visited.size() << std::endl;
385 bool next_level_exist = false;
386 for (size_t i = 0; i < levelSize; ++i) {
387 // Use explicit access to elements of the pair
388 long long cube_num = queue.front().first;
389 Cube currentCube = numberToCube(cube_num, num_color);
390 queue.pop();
391

392 // Generate possible moves (rotations)
393 std::vector<Cube> nextMoves = { rotate_Front(currentCube),
394 rotate_Front_Inverse(currentCube),
395 rotate_Right(currentCube),
396 rotate_Right_Inverse(currentCube),

397 rotate_Back(currentCube),
398 rotate_Back_Inverse(currentCube),
399 rotate_Left(currentCube),
400 rotate_Left_Inverse(currentCube),
401 rotate_Top(currentCube),
402 rotate_Top_Inverse(currentCube),
403 rotate_Down(currentCube),
404 rotate_Down_Inverse(currentCube) };
405 for (const auto& nextCube : nextMoves) {
406 long long nextNumber = cubeToNumber(nextCube, num_color);
407 if (visited.find(nextNumber) == visited.end()) {
408 visited.insert(nextNumber);
409 queue.push({ nextNumber, currentDepth + 1 });
410 if (print_example) {
411 if (!next_level_exist) {
412 deepest_sample.clear();
413 }
414 if (deepest_sample.size() < sample) {
415 deepest_sample.push_back(nextCube);
416 }
417 next_level_exist = true;
418 }
419 }
420 }
421 }
422 out << "All unique configurations reached at depth: "
423 << depth << std::endl << std::endl;
424 depth++;
425 }
426

427 out << "Explored all configurations." << std::endl;
428 if (print_example) {
429 out << "Cubes can be reached at depth "
430 << (depth - 1) << " are: " << std::endl;
431 for (int i = 0; i < deepest_sample.size(); i++) {
432 displayCube(out, deepest_sample[i]);
433 }
434 }
435 }
436

437

438 int main() {
439 // Initialize a solved cube state with standard corner labels
440 std::ofstream outputFile("output3.txt");
441

442 // Check if the file is open
443 if (!outputFile.is_open()) {
444 std::cerr << "Failed to open the file." << std::endl;
445 }
446 Cube cube_6_color = {

447 Corner { WHITE, BLUE, RED }, // Corner 0: UFR
448 Corner { WHITE, ORANGE, BLUE }, // Corner 1: UBR
449 Corner { WHITE, GREEN, ORANGE }, // Corner 2: UBL
450 Corner { WHITE, RED, GREEN }, // Corner 3: UFL
451 Corner { YELLOW, RED, BLUE }, // Corner 4: DFR
452 Corner { YELLOW, BLUE, ORANGE }, // Corner 5: DBR
453 Corner { YELLOW, ORANGE, GREEN }, // Corner 6: DBL
454 Corner { YELLOW, GREEN, RED }, // Corner 7: DFL
455 Edge { RED, WHITE }, // Edge 0: UF
456 Edge { BLUE, WHITE }, // Edge 1: UR
457 Edge { ORANGE, WHITE }, // Edge 2: UB
458 Edge { GREEN, WHITE }, // Edge 3: UL
459 Edge { RED, BLUE }, // Edge 4: FR
460 Edge { BLUE, ORANGE }, // Edge 5: RB
461 Edge { ORANGE, GREEN }, // Edge 6: BL
462 Edge { GREEN, RED }, // Edge 7: LF
463 Edge { YELLOW, RED }, // Edge 8: DF
464 Edge { YELLOW, BLUE }, // Edge 9: DR
465 Edge { YELLOW, ORANGE }, // Edge 10: DB
466 Edge { YELLOW, GREEN } // Edge 11: DL
467 };
468 Cube cube_2_color_1v5 = {
469 Corner { WHITE, YELLOW, YELLOW }, // Corner 0: UFR
470 Corner { WHITE, YELLOW, YELLOW }, // Corner 1: UBR
471 Corner { WHITE, YELLOW, YELLOW }, // Corner 2: UBL
472 Corner { WHITE, YELLOW, YELLOW }, // Corner 3: UFL
473 Corner { YELLOW, YELLOW, YELLOW }, // Corner 4: DFR
474 Corner { YELLOW, YELLOW, YELLOW }, // Corner 5: DBR
475 Corner { YELLOW, YELLOW, YELLOW }, // Corner 6: DBL
476 Corner { YELLOW, YELLOW, YELLOW }, // Corner 7: DFL
477 Edge { YELLOW, WHITE },
478 Edge { YELLOW, WHITE },
479 Edge { YELLOW, WHITE },
480 Edge { YELLOW, WHITE },
481 Edge { YELLOW, YELLOW },
482 Edge { YELLOW, YELLOW },
483 Edge { YELLOW, YELLOW },
484 Edge { YELLOW, YELLOW },
485 Edge { YELLOW, YELLOW },
486 Edge { YELLOW, YELLOW },
487 Edge { YELLOW, YELLOW },
488 Edge { YELLOW, YELLOW },
489 };
490 Cube cube_2_color_2v4a = {
491 Corner { YELLOW, WHITE, WHITE }, // Corner 0: UFR
492 Corner { YELLOW, WHITE, WHITE }, // Corner 1: UBR
493 Corner { YELLOW, WHITE, WHITE }, // Corner 2: UBL
494 Corner { YELLOW, WHITE, WHITE }, // Corner 3: UFL
495 Corner { YELLOW, WHITE, WHITE }, // Corner 4: DFR
496 Corner { YELLOW, WHITE, WHITE }, // Corner 5: DBR

497 Corner { YELLOW, WHITE, WHITE }, // Corner 6: DBL
498 Corner { YELLOW, WHITE, WHITE }, // Corner 7: DFL
499 Edge { WHITE, YELLOW }, // Edge 0: UF
500 Edge { WHITE, YELLOW }, // Edge 1: UR
501 Edge { WHITE, YELLOW }, // Edge 2: UB
502 Edge { WHITE, YELLOW }, // Edge 3: UL
503 Edge { WHITE, WHITE }, // Edge 4: FR
504 Edge { WHITE, WHITE }, // Edge 5: RB
505 Edge { WHITE, WHITE }, // Edge 6: BL
506 Edge { WHITE, WHITE }, // Edge 7: LF
507 Edge { YELLOW, WHITE }, // Edge 8: DF
508 Edge { YELLOW, WHITE }, // Edge 9: DR
509 Edge { YELLOW, WHITE }, // Edge 10: DB
510 Edge { YELLOW, WHITE } // Edge 11: DL
511 };
512 Cube cube_2_color_2v4b = {
513 Corner { WHITE, YELLOW, WHITE }, // Corner 0: UFR
514 Corner { WHITE, WHITE, YELLOW }, // Corner 1: UBR
515 Corner { WHITE, WHITE, WHITE }, // Corner 2: UBL
516 Corner { WHITE, WHITE, WHITE }, // Corner 3: UFL
517 Corner { YELLOW, WHITE, YELLOW }, // Corner 4: DFR
518 Corner { YELLOW, YELLOW, WHITE }, // Corner 5: DBR
519 Corner { YELLOW, WHITE, WHITE }, // Corner 6: DBL
520 Corner { YELLOW, WHITE, WHITE }, // Corner 7: DFL
521 Edge { WHITE, WHITE }, // Edge 0: UF
522 Edge { YELLOW, WHITE }, // Edge 1: UR
523 Edge { WHITE, WHITE }, // Edge 2: UB
524 Edge { WHITE, WHITE }, // Edge 3: UL
525 Edge { WHITE, YELLOW }, // Edge 4: FR
526 Edge { YELLOW, WHITE }, // Edge 5: RB
527 Edge { WHITE, WHITE }, // Edge 6: BL
528 Edge { WHITE, WHITE }, // Edge 7: LF
529 Edge { YELLOW, WHITE }, // Edge 8: DF
530 Edge { YELLOW, YELLOW }, // Edge 9: DR
531 Edge { YELLOW, WHITE }, // Edge 10: DB
532 Edge { YELLOW, WHITE } // Edge 11: DL
533 };
534 Cube cube_2_color_3v3a = {
535 Corner { YELLOW, YELLOW, WHITE }, // Corner 0: UFR
536 Corner { YELLOW, WHITE, YELLOW }, // Corner 1: UBR
537 Corner { YELLOW, WHITE, WHITE }, // Corner 2: UBL
538 Corner { YELLOW, WHITE, WHITE }, // Corner 3: UFL
539 Corner { YELLOW, WHITE, YELLOW }, // Corner 4: DFR
540 Corner { YELLOW, YELLOW, WHITE }, // Corner 5: DBR
541 Corner { YELLOW, WHITE, WHITE }, // Corner 6: DBL
542 Corner { YELLOW, WHITE, WHITE }, // Corner 7: DFL
543 Edge { WHITE, YELLOW }, // Edge 0: UF
544 Edge { YELLOW, YELLOW }, // Edge 1: UR
545 Edge { WHITE, YELLOW }, // Edge 2: UB
546 Edge { WHITE, YELLOW }, // Edge 3: UL

547 Edge { WHITE, YELLOW }, // Edge 4: FR
548 Edge { YELLOW, WHITE }, // Edge 5: RB
549 Edge { WHITE, WHITE }, // Edge 6: BL
550 Edge { WHITE, WHITE }, // Edge 7: LF
551 Edge { YELLOW, WHITE }, // Edge 8: DF
552 Edge { YELLOW, YELLOW }, // Edge 9: DR
553 Edge { YELLOW, WHITE }, // Edge 10: DB
554 Edge { YELLOW, WHITE } // Edge 11: DL
555 };
556 Cube cube_2_color_3v3b = {
557 Corner { WHITE, WHITE, WHITE }, // Corner 0: UFR
558 Corner { WHITE, YELLOW, WHITE }, // Corner 1: UBR
559 Corner { WHITE, YELLOW, YELLOW }, // Corner 2: UBL
560 Corner { WHITE, WHITE, YELLOW }, // Corner 3: UFL
561 Corner { YELLOW, WHITE, WHITE }, // Corner 4: DFR
562 Corner { YELLOW, WHITE, YELLOW }, // Corner 5: DBR
563 Corner { YELLOW, YELLOW, YELLOW }, // Corner 6: DBL
564 Corner { YELLOW, YELLOW, WHITE }, // Corner 7: DFL
565 Edge { WHITE, WHITE }, // Edge 0: UF
566 Edge { WHITE, WHITE }, // Edge 1: UR
567 Edge { YELLOW, WHITE }, // Edge 2: UB
568 Edge { YELLOW, WHITE }, // Edge 3: UL
569 Edge { WHITE, WHITE }, // Edge 4: FR
570 Edge { WHITE, YELLOW }, // Edge 5: RB
571 Edge { YELLOW, YELLOW }, // Edge 6: BL
572 Edge { YELLOW, WHITE }, // Edge 7: LF
573 Edge { YELLOW, WHITE }, // Edge 8: DF
574 Edge { YELLOW, WHITE }, // Edge 9: DR
575 Edge { YELLOW, YELLOW }, // Edge 10: DB
576 Edge { YELLOW, YELLOW } // Edge 11: DL
577 };
578 outputFile << std::endl << "2 color 1v5 cube:" << std::endl;
579 findGodsNumber(cube_2_color_1v5, outputFile);
580 outputFile << std::endl << "2 color 2v4_opposite cube:" << std::endl;
581 findGodsNumber(cube_2_color_2v4a, outputFile);
582 outputFile << std::endl << "2 color 2v4_adjacent cube:" << std::endl;
583 findGodsNumber(cube_2_color_2v4b, outputFile);
584 outputFile << std::endl << "2 color 3v3_opposite cube:" << std::endl;
585 findGodsNumber(cube_2_color_3v3a, outputFile);
586 outputFile << std::endl << "2 color 3v3_adjacent cube:" << std::endl;
587 findGodsNumber(cube_2_color_3v3b, outputFile);
588 return 0;
589 }

Email address: sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu

Department of Mathematics, Williams College, MA 01267

Email address: mtphaovibul@gmail.com

AwesomeMath, White Salmon, WA 98672

Email address: mutian@umich.edu, mtshen1226@gmail.com

University of Michigan, Ann Arbor, MI 48104

	Introduction
	Notation and Classification
	The Rubik's Cube as a Group
	General Methods for Solving based on Group Property
	Configurations and Counting of Order 3 Cube
	Configurations and Counting of Order 2 Cube

	Bi-Colored Cases of Order 2 Cube
	(5,1)2 Case
	(4,2)2 Case
	(3,3)2 Case
	Permutations and Symmetry

	Bi-Colored Cases of Order 3 Cube
	(5,1)2 Case

	God's Number Results
	G5, 1(2), G4, 2(2), and G3, 3(2)
	G5, 1(3)

	Conclusion and Future Development
	Code Appendix
	Codes of Order 2 Cube
	Codes of Order 3 Cube

