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Proving the irrationality of
√
2 is a rite of passage for mathematicians. The purpose

of this note is to spread the word of a remarkable geometric proof, and to generalize it.
The proof was discovered by Stanley Tennenbaum [Te] in the 1950’s, and first appeared
in print in John H. Conway’s article in Power [Co]. In the interest of space, we often
leave out the algebra justifications for the lengths of the sides in our figures. The reader
is encouraged to prove these expressions for themselves, orsee the arxiv post [MM] for
complete details.

1. TENNENBAUM’ S PROOF

We now describe Tennenbaum’s wonderful geometric proof of the irrationality of√
2. Suppose that

√
2 = a/b for some positive integersa andb; thena2 = 2b2. We may

assume thata is the smallest positive integer for which this is possible.We interpret
this geometrically by constructing a square of sidea and, within it, two squares of side
b (see Figure 1). Since the combined areas of the squares of side b equals the area of
the square of sidea, the pink, doubly-counted square must have the same area as the
two white squares. We have therefore found a smaller pair of integersu andv with
u2 = 2v2, which is a contradiction. Thus

√
2 is irrational.

2. THE SQUARE-ROOT OF3 IS IRRATIONAL

We generalize Tennenbaum’s geometric proof to show
√
3 is irrational. Suppose not,

so
√
3 = a/b, and again we may assume thata andb are the smallest positive integers
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FIGURE 1. Geometric proof of the irrationality of
√
2.
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satisfyinga2 = 3b2. As the area of an equilateral triangle is proportional to the square
of its sides (the area iss2 ⋅

√
3/4), we may interpreta2 = 3b2 as the area of one

equilateral triangle of side lengtha equals the area of three equilateral triangles of side
lengthb. We represent this in Figure 2 , which consists of three equilateral triangles of

a

b
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FIGURE 2. Geometric proof of the irrationality of
√
3. The white equi-

lateral triangle in the middle has sides of length2a− 3b.

side lengthb placed at the corners of an equilateral triangle of side length a. Note that
the area of the three doubly covered, pink triangles (which have side length2b − a) is
therefore equal to that of the uncovered, equilateral triangle in the middle (which has
integral sides of length2a− 3b). This is clearly a smaller solution, contradiction!

3. THE SQUARE-ROOT OF5 IS IRRATIONAL

For the irrationality of
√
5, we have to slightly modify our approach as the overlap-

ping regions are not so nicely shaped. As the proof is similar, we omit many of the
details. Similar to the case of

√
3 and triangles, there are proportionality constants re-

lating the area to the square of the side lengths of regularn-gons; however, as these
constants appear on both sides of the equations, we may ignore them.

Supposea2 = 5b2 with, as always,a andb minimal. We place five regular pentagons
of side lengthb at the corners of a regular pentagon of side lengtha (see Figure 3).
Note that this gives five small triangles on the edge of the larger pentagon which are
uncovered, one uncovered regular pentagon in the middle of the larger pentagon, and
five kite-shaped doubly covered regions. As before, the doubly covered region must
have the same area as the uncovered region.

We now take the uncovered triangles from the edge and match them with the doubly
covered part at the “bottom” of the kite, and regard each as covered once instead of
one covered twice and one uncovered (see Figure 4). This leaves five doubly covered
pentagons, and one larger pentagon uncovered.

A straightforward analysis shows that the five doubly covered pentagons are all reg-
ular, with side lengtha − 2b, and the middle pentagon is also regular, with side length
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FIGURE 3. Geometric proof of the irrationality of
√
5.

FIGURE 4. Geometric proof of the irrationality of
√
5: the kites, trian-

gles and the small pentagons.

b − 2(a − 2b) = 5b − 2a (see [MM] for the full calculations). We now have a smaller
solution, with the five doubly counted regular pentagons having the same area as the
omitted pentagon in the middle. Specifically, we have5(a − 2b)2 = (5b − 2a)2; as
a = b

√
5 and2 <

√
5 < 3, note thata− 2b < b and thus we have our contradiction.

4. HOW FAR CAN WE GENERALIZE: TO
√
6 AND BEYOND

We conclude with a discussion of one generalization of our method that allows us to
consider certain triangular numbers, though other generalizations are possible and yield
similar results. We hope the reader will explore these constructions further.

Figure 5 shows the construction for the irrationality of
√
6. Assume

√
6 = a/b so

a2 = 6b2; as always, we assumea andb are the smallest positive integers satisfying this
relation. The large equilateral triangle has side lengtha and the six medium equilateral
triangles have side lengthb. The 7 smallest equilateral triangles (6 double counted, one
in the center triple counted) have side lengtht = (3b − a)/2. It’s a little work, but not
too bad, to show the triple counted one is the same size. For the three omitted triangles,
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FIGURE 5. Geometric proof of the irrationality of
√
6.

they are all equilateral (angles equal) and of side lengths = b− 2(3b− a)/2 = a− 2b.
As the area of the smaller equilateral triangles is proportional tot2 and for the larger
it is proportional tos2, we find8t2 = 3s2 or 16t2 = 6s2 so (4t/s)2 = 6. Note that
althought itself may not be an integer,4t = 2(3b− a) is an integer, and we obtain our
contradiction as we have found a smaller solution.

Can we continue this argument? We may interpret the argumenthere as adding three
more triangles to the argument for the irrationality of

√
3; thus the next step would

be adding four more triangles to this to prove the irrationality of
√
10. Proceeding

along these lines leads us to study the square-roots of triangular numbers. Triangular
numbers are of the formn(n + 1)/2 for some positive integern, and thus the first few
are1, 3, 6, 10, 15, . . . . We continue more generally by producing images like Figure
5 with n equally spaced rows of side lengthb triangles. This causes us to start with
a2 = n(n+1)

2
b2, so we can attempt to show that

√

n(n + 1)/2 is irrational.
By similar reasoning to the above, we see that the smaller multiply covered equi-

lateral triangles all have the same side lengtht, and that the uncovered triangles also
all have the same side lengths. Furthert equals(nb − a)/(n − 1), and we have that
s = b−2t, sos = b−2(nb−a)/(n−1) = (2a−(n+1)b)/(n−1). To count the number
of side lengtht triangles, we note that there will be(n − 2)(n − 1)/2 triply covered
triangles (as there is a triangle-shaped configuration of them withn− 2 rows), and that
there will be3(n−1) doubly covered triangles around the edge of the figure, for a grand
total of2(n−2)(n−1)/2+3(n−1) = (n−1)(n+1) coverings of the smaller triangle.
Further, note that in general there will be(n−1)n/2 smaller, uncovered triangles, so we
have that(n− 1)(n+1)t2 = ((n− 1)n/2)s2. Writing out the formula fors, t (to verify
that our final smaller solution is integral), we have(n−1)(n+1)((nb−a)/(n−1))2 =
((n − 1)n/2)((2a− (n + 1)b)/(n− 1))2. We now multiply both sides of the equation
by n − 1 to ensure integrality, giving(n + 1)(nb − a)2 = (n/2)(2a− (n + 1)b)2. We
multiply both sides byn/2 to achieve a smaller solution toa2 = (n(n+1)/2)b2, giving
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us(n(n+ 1)/2)(nb− a)2 = (n(2a− (n+ 1)b)/2)2. Note that this solution is integral,
asn odd implies that2a− (n+1)b is even. Finally, to show that this solution is smaller,
we just need thatnb− a < b. This is equivalent ton−

√

n(n + 1)/2 < 1.
We see that this inequality holds forn ≤ 4, but not forn > 4. So, we have shown

that the method used above to prove that
√
6 is irrational can also be used to show that√

10 (the square root of the fourth triangular number) is irrational, but that this method
will not work for any further triangular numbers. It is good (perhaps it is better to say,
‘it is not unexpected’) to have such a problem, as some triangular numbers are perfect
squares. For example, whenn = 49 then we have49 ⋅ 50/2 = 72 ⋅ 52, and thus we
should not be able to prove that this has an irrational square-root!

5. FINAL REMARKS

There are many proofs of the irrationality of
√
2; see for example [Ap, Bo, HW]. One

particularly nice one can be interpreted as an origami construction (see proof 7 of [Bo]
and the references there, and pages 183–185 of [CG] for the origami interpretation).
Cwikel [Cw] has generalized these origami arguments to yield the irrationality of other
numbers as well.

The purpose of this note is to describe a geometric method which can be pushed
further than one might initially expect. The examples studied are in no sense meant to be
exhaustive, but rather should be viewed as a representativesample of what can be done.
Our hope is that the reader will find and communicate many more. For example, after
reading an earlier draft Walter Stromquist [St] found a similar proof of the irrationality
of

√
6. Instead of using triangles he uses the squares of Tennenbaum’s original proof of√

2. Takinga andb as in that proof, he considers a square of side lengtha+ b, and finds
two doubly counted squares of length2b − a must equal the area of three uncounted
squares of lengtha− b. Doubling, we find that four doubly counted squares must equal
the area of six uncounted squares; as four is a perfect square, this would imply that six
is a perfect square as well.
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