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t. Ze
kendorf's theorem states that every positive integer 
an be uniquely de
om-posed as a sum of non
onse
utive Fibona

i numbers. The distribution of the number ofsummands 
onverges to a Gaussian, and the individual measures on gaps between summandsfor m ∈ [Fn, Fn+1) 
onverge to geometri
 de
ay for almost all m as n → ∞. While similarresults are known for many other re
urren
es, previous work fo
used on proving Gaussianityfor the number of summands or the average gap measure. We derive general 
onditions,whi
h are easily 
he
ked, that yield geometri
 de
ay in the individual gap measures of gen-eralized Ze
kendorf de
ompositions atta
hed to many linear re
urren
e relations.1. Introdu
tionZe
kendorf [Ze℄ proved the remarkable property that every positive integer 
an be uniquelywritten as a sum of non-
onse
utive Fibona

i numbers {Fn}
∞

n=1, where F1 = 1, F2 = 2 and
Fn+1 = Fn + Fn−1, and that this property is equivalent to this de�nition of the Fibona

is(if we used the more 
ommon F0 = 0, F1 = 1 and F2 = 1 then 
learly su
h de
ompositionsare not always unique). Ze
kendorf's theorem has been generalized to other sequen
es,see among others [Al, Day, DDKMMV, DDKMV, DG, GT, GTNP, Ste1, Ste2℄. Manyauthors proved that sequen
es {an} de�ned by suitable linear re
urren
es lead to uniquede
ompositions, with the number of summands of m ∈ [an, an+1) 
onverging to a Gaussian(see for example [LT, MW℄) and the average gap measure 
onverging to geometri
 de
ay (see[BBGILMT, BILMT℄). It is signi�
antly easier to fo
us on the average gap measures ratherthan the individual gap measures asso
iated to ea
h m; in this note we isolate a generalset of 
onditions whi
h su�
e to prove these individual measures 
onverge almost surely togeometri
 de
ay.We work in great generality so the arguments below will apply to numerous sequen
es.We assume we have a stri
tly in
reasing integer sequen
e {bn} and a de
omposition rule thatleads to unique de
omposition. Fix 
onstants c1, d1, c2, d2 su
h that In := [bc1n+d1 , bc2n+d2) isa well-de�ned interval for all n > 0. Let δ(x−a) denote the Dira
 delta fun
tional (assigninga mass of 1 to x = a and 0 otherwise), k(z) be the number of summands in z's de
ompositionDate: De
ember 9, 2015.2010 Mathemati
s Subje
t Classi�
ation. 11B39, 11B05 (primary) 65Q30, 60B10 (se
ondary).Key words and phrases. Ze
kendorf de
ompositions, individual gap measures, Lévy's Criterion.The authors thank the AIM REUF program, the SMALL REU and Williams College, and West Pointfor generous support, and the referee for helpful 
omments on an earlier draft. The �rst and third namedauthors were supported by NSF Grant DMS1347804, and the �fth named author by NSF Grant DMS1265673.This resear
h was performed while the fourth named author held a National Resear
h Coun
il Resear
hAsso
iateship Award at USMA/ARL.. 1



(z = bℓ1 + · · ·+ bℓk(z)), and the total number of gaps for all z ∈ In is
Ngaps(n) :=

bc2n+d2
−1∑

z=bc1n+d1

(k(z)− 1). (1.1)We always assume the summands are ordered from least to greatest, so ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓk(z).
• Spa
ing gap measure: We de�ne the spa
ing gap measure of a z ∈ In by

νz,n(x) :=
1

k(z)− 1

k(z)∑

j=2

δ(x− (ℓj − ℓj−1)) (1.2)if k(z) > 0 and δ(0) if k(z) = 0; note that the number of z ∈ In with k(z) = 0 is
• Average spa
ing gap measure: The average spa
ing gap measure for all z ∈ In is

νn(x) :=
1

Ngaps(n)

bc2n+d2
−1∑

z=bc1n+d1

k(z)∑

j=2

δ (x− (ℓj − ℓj−1)) =
1

Ngaps(n)

bc2n+d2
−1∑

z=bc1n+d1

(k(z)− 1) νz,n(x).(1.3)Letting Pn(g) denote the probability of a gap of length g among all gaps from thede
ompositions of all m ∈ In, we have
νn(x) =

c2n+d2−1∑

g=0

Pn(g)δ(x− g). (1.4)
• Limiting average spa
ing gap measure, limiting gap probabilities: If the limits exist:

ν(x) := lim
n→∞

νn(x), P (k) := lim
n→∞

Pn(k). (1.5)
• Indi
ator fun
tion for two gaps: For g1, g2 ≥ 0

Xj1,j1+g1,j2,j2+g2(n) := #
{
z ∈ In :

bj1 ,bj1+g1
,bj2 ,bj2+g2

in z's de
omposition,but not bj1+q,bj2+p for 0<q<g1,0<p<g2

}
. (1.6)We generalize the work in [BILMT℄. The authors there 
on
entrated on a spe
i�
 
lass ofre
urren
es; our arguments are general and apply to any sequen
e where 
ertain 
onditions
an be veri�ed. In addition to holding for the oft studied positive linear re
urren
es, theyhold for new systems su
h as the m-gonal numbers of [DFFHMPP℄. Our result below alsoholds for some sequen
es without unique de
omposition (see [CFHMN℄); in the 
ases wehave studied to date there is a natural de
omposition, frequently 
onstru
ted from a greedyalgorithm, whi
h always exists and to whi
h these results hold.In the theorem and proofs below, we use big-Oh and ≪ notation inter
hangeably; thus

f(x) = O(g(x)) and f(x) ≪ g(x) both mean there exists a 
onstant C and an x0 su
h thatfor all x ≥ x0 we have |f(x)| ≤ Cg(x). By f(x) = o(1) we mean limx→∞ f(x) = 0. We givethe proof when the number of summands 
onverge to being normally distributed as that iswhat happens in all 
ases of interest, and remark on the proof in general. We also assumethat very few numbers have exa
tly one summand in their de
omposition (su
h a 
ase 
ausesa small book-keeping issue, as we 
annot have a k(z)− 1 in the denominator in this 
ase asthat would vanish); in pra
ti
e this is not a problem as in our 
ases of interest our sequen
e(and thus |In|) grows exponentially and the number of z ∈ In with just one summand growslinearly. 2



Theorem 1.1. For z ∈ In, the individual gap measures νz,n(x) 
onverge almost surely indistribution to the average gap measure ν(x) if the following hold.(1) The sequen
e {bn} is a stri
tly in
reasing sequen
e of integers, there is a de
ompo-sition rule su
h that every positive integer has a unique de
omposition in terms ofthe bn's (with the summands indexed from smallest to largest), and k(z) ≪ n for all
z ∈ In. Further, if Sn is the set of z ∈ In whi
h have exa
tly one summand in theirde
omposition, then |Sn|/|In| = o(1).(2) The number of summands for de
ompositions of z ∈ In 
onverge pointwise to a Gauss-ian with mean µn = cmeann + O(1) and varian
e σ2

n = cvarn + O(1), for 
onstants
cmean, cvar > 0 independent of n (or, if we do not have pointwise 
onvergen
e but stillhave 
onvergen
e to normal distributions, there exists a δ ∈ (0, 1/2) su
h that theprobability of being at least nδ standard deviations from the mean de
ays faster than
1/n1+ǫ for some ǫ > 0).(3) We have the following, with limn→∞

∑
g1,g2

error(n, g1, g2) = 0:
2

|In|µ2
n

∑

j1<j2

Xj1,j1+g1,j2,j2+g2(n) = P (g1)P (g2) + error(n, g1, g2). (1.7)(4) The limits in Equation (1.5) exist.2. Proof of Theorem 1.1We need the following de�nitions. We use the standard normalization that the 
hara
ter-isti
 fun
tion of a random variable X with density fX is
f̂X(t) := E[eitX ] =

∫
∞

−∞

eitxfX(x)dx. (2.1)
• ν̂z,n(t): The 
hara
teristi
 fun
tion of νz,n(x).
• ν̂(t): The 
hara
teristi
 fun
tion of the limiting average gap distribution ν(x).
• Ez[. . . ]: The expe
ted value over z ∈ In with the uniform measure:

Ez [X ] :=
1

|In|

bc2n+d2
−1∑

z=bc1n+d1

X(z). (2.2)
• Indi
ator fun
tion for one gap: For g ≥ 0 let

Xi,i+g(n) = #{z ∈ In : bi, bi+g in z's de
omposition, but not Gi+q for 0 < q < g}. (2.3)Proposition 2.1. We have
lim
n→∞

Ez[ν̂z;n(t)] = ν̂(t). (2.4)First noti
e that when k(z) > 1

ν̂z,n(t) :=

∫
∞

0

eixtνz,n(t)dx =
1

k(z)− 1

k(z)∑

j=2

eit(ℓj−ℓj−1), (2.5)3



where z = bℓ1 + · · ·+ bℓk(z). Therefore
Ez[ν̂z,n(t)] =

1

|In|

bc2n+d2
−1∑

z=bc1n+d1

1

k(z)− 1

k(z)∑

j=2

eit(ℓj−ℓj−1). (2.6)Lemma 2.2. We have
lim
n→∞

1

|In|

bc2n+d2
−1∑

z=bc1n+d1

(
(k(z)− 1)− µn

(k(z)− 1)µn

) k(z)∑

j=2

eit(ℓj−ℓj−1) = 0, (2.7)where we adopt the 
onvention that for any z ∈ In with k(z) = 1 the summand is just 1 (asthe 
orresponding spa
ing measure is just a delta spike at 0).Proof. We break into 
ases based on how far away k(z) is from the mean. For 0 < δ < 1/2

In(δ) := {z ∈ In : k(z) ∈ [µn − (cvarn)
1/2nδ, µn + (cvarn)

1/2nδ]}. (2.8)Case 1: Let z ∈ In(δ). Thus k(z) is 
lose to µn. As k(z) ≪ n

1

|In|

bc2n+d2
−1∑

z=bc1n+d1
z∈In(δ)

(
(k(z)− 1)− µn

(k(z)− 1)µn

) k(z)∑

j=2

eit(ℓj−ℓj−1) ≪
1

|In|

bc2n+d2
−1∑

z=bc1n+d1

n1/2+δ

n2

k(z)∑

j=2

eit(ℓj−ℓj−1)

≪
|In|n

n3/2−δ|In|
= n−1/2+δ, (2.9)where the last line follows be
ause k(z) ≪ n.Case 2: Let z ∈ In \ In(δ). By assumption the number of z ∈ In \ In(δ) where k(z) = 1divided by In is o(1), and thus trivial estimation shows the 
ontribution of su
h z in (2.7) is

o(1). Hen
eforth we assume k(z) > 1.We �rst deal with the 
ase when the number of summands 
onverges pointwise to aGaussian with mean µn = cmeann + O(1) and varian
e σ2
n = cvarn + O(1). For su�
ientlylarge n we have cvar

2π
n ≤ σ2

n ≤ 2cvarn, and thus the probability that z ∈ In is in In \ In(δ) isbounded by
2016 · 2

∫
∞

c
1/2
var n1/2+δ

(2πcvarn/2π)
−1/2 exp

(
−t2/2 · 2cvarn

)
dt ≪ n−1/2e−n2δ/4 (2.10)(we do not need to be too 
areful here as this is a signi�
antly lower order term; thus we havebounded the probability by 2016 times the integral of a Gaussian, where we in
reased thevarian
e in the exponential and de
reased it in the normalization 
onstant in order to in
reasethe integral). Therefore the number of integers z ∈ In \ In(δ) is bounded by 2016|In|e

−n2δ/4.Thus, remembering that we 
an assume k(z) > 1 so there is no division by zero below,
1

|In|

bc2n+d2
−1∑

z=bc1n+d1
z /∈In(δ)

(
(k(z)− 1)− µn

(k(z)− 1)µn

) k(z)∑

j=2

eit(ℓj−ℓj−1) ≪
1

|In|
· |In|e

−n2δ/4 · n = ne−n2δ/4, (2.11)4



whi
h tends to zero as n → ∞ and proves the 
laim.If the 
onvergen
e were not pointwise but instead we had the probability of being morethan nδ standard deviations away de
aying faster than 1/n1+ǫ for some ǫ > 0, the only 
hangeis that now the left hand side of (2.11) is O(1/nǫ), whi
h still tends to zero as n → ∞ andthus the rest of the argument is un
hanged. �Through a similar argument we haveLemma 2.3.
lim
n→∞

1

|In|

bc2n+d2
−1∑

z=bc1n+d1

(
(k(z)− 1)2 − µ2

n

(k(z)− 1)2µ2
n

)


k(z)∑

j=2

eit(ℓj−ℓj−1)




2

= 0. (2.12)We 
an now 
on
lude the proof of Proposition 2.1 as follows.Proof of Proposition 2.1. By Lemma 2.2, we repla
e 1
k(z)−1

with 1
µn

with negligible error:
Ez[ν̂z,n(t)] =

1

|In|

bc2n+d2
−1∑

z=bc1n+d1

1

k(z)− 1

k(z)∑

j=2

eit(ℓj−ℓj−1) =
1

|In|µn

bc2n+d2
−1∑

z=bc1n+d1

k(z)∑

j=2

eit(ℓj−ℓj−1) + o(1)

=
1

|In|µn

c2n+d2−1∑

g=0

c2n+d2−g∑

j=1

Xj,j+g(n)e
itg + o(1) =

c2n+d2−1∑

g=0

Pn(g)e
itg + o(1),(2.13)with the last equality follows by de�nition. Then

lim
n→∞

Ez [ν̂z,n(t)] = lim
n→∞

(
c2n+d2−1∑

g=0

Pn(g)e
itg + o(1)

)
=

∞∑

g=0

P (g)eitg = ν̂(t), (2.14)whi
h 
ompletes the proof. �Proposition 2.4. We have
lim
n→∞

Varn(t) := lim
n→∞

Ez[(ν̂z,n(t)− ν̂n(t))
2] = 0. (2.15)Proof. Note that

Varn(t) := lim
n→∞

Ez [(ν̂z,n(t)− ν̂n(t))
2] = Ez[ν̂z,n(t)

2]− ν̂n(t)
2. (2.16)We show that limn→∞ Ez[ν̂z,n(t)

2] di�ers from
ν̂(t)2 =

∞∑

g1=0

P (g1)e
itg1

∞∑

g2=0

P (g2)e
itg2 =

∑

g1,g2

P (g1)P (g2)e
it(g1+g2) (2.17)5



by o(1). Let g1 and g2 be two arbitrary gaps starting at the indi
es j1 ≤ j2. We have
Ez[ν̂z,n(t)

2] =
1

|In|

bc2n+d2
−1∑

z=bc1n+d1

1

(k(z)− 1))2

k(z)∑

r=2

eit(ℓr(z)−ℓr−1(z))

k(z)∑

w=2

eit(ℓw(z)−ℓw−1(z))

=
1

|In|

1

µn


2

∑

j1<j2
g1,g2

Xj1,j1+g1,j2,j2+g2(n)e
itg1eitg2 +

∑

j1,g1

Xj1,j1+g1(n)e
2itg1


+ o(1).(2.18)The last line follows by Lemma 2.3 (the 2 is from j1 < j2). The diagonal term doesn't
ontribute to the limit as the denominator is of order n2|In| and ∑j1,g1

Xj1,j1+g1(n)e
2itg1 isof order n|In|. Using the se
ond 
ondition from Theorem 1.1 gives limn→∞Varn(t) = 0. �Proof of Theorem 1.1. Lévy's Criterion (see [FG℄, page 361) states that if a sequen
e ofrandom variables {Rn} whose 
hara
teristi
 fun
tions {φn} 
onverge pointwise to φ, where

φ is the 
hara
teristi
 fun
tion of some random variable R, then the random variables Rn
onverge to R in distribution. In our 
ase, Propositions 2.1 and 2.4 along with Chebyshev'sTheorem (bounding the probability of being s standard deviations from the mean by 1/s2)ensure that for any ε > 0, almost all of the 
hara
teristi
 fun
tions ν̂z,n(t) are within ε of
ν̂(t). Thus we 
an take a subset of z ∈ In where the individual gap measure of ea
h z
onverge to the average measure as n tends to in�nity and almost all z ∈ In are 
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