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Abstract. A More Sums Than Differences (MSTD) set is a set A for which

|A+A| > |A−A|. Martin and O’Bryant proved that the proportion of MSTD
sets in {0, 1, . . . , n} is bounded below by a positive number as n goes to infinity.

Iyer, Lazarev, Miller and Zhang introduced the notion of a generalized MSTD

set, a set A for which |sA − dA| > |σA − δA| for a prescribed s + d = σ + δ.
We offer efficient constructions of k-generational MSTD sets, sets A where

A,A + A, . . . , kA are all MSTD. We also offer an alternative proof that the

proportion of sets A for which |sA−dA|−|σA−δA| = x is positive, for any x ∈
Z. We prove that for any ε > 0, Pr(1−ε < log |sA−dA|/ log |σA−δA| < 1+ε)

goes to 1 as the size of A goes to infinity and we give a set A which has the

current highest value of log |A+A|/ log |A−A|. We also study decompositions
of intervals {0, 1, . . . , n} into MSTD sets and prove that a positive proportion

of decompositions into two sets have the property that both sets are MSTD.
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1. Introduction

A More Sums Than Differences (MSTD) set is a set A where the sumset of
A, denoted A + A = {a1 + a2 : a1, a2 ∈ A}, has a greater cardinality than the
difference set, A−A = {a1−a2 : a1, a2 ∈ A}. Since addition is commutative while
subtraction is not, it is reasonable to expect the difference set to be larger than the
sumset in most cases; such sets are said to be difference-dominated, while sets where
|A+A| = |A−A| are called sum-difference balanced. Interestingly, while most sets
of {0, 1, . . . , n} are difference dominated as n → ∞, Martin and O’Bryant [MO]
proved that a positive percentage are sum-dominated. They predict an expected
limiting density of MSTD sets of about 4.5 × 10−4; the best lower bound at the
time of writing is due to Zhao [Zh1]: 4.28× 10−4.

Conway found the first example of an MSTD set

{0, 2, 3, 4, 7, 11, 12, 14}

in the 1960’s. Hegarty later proved that there were no MSTD sets of smaller
cardinality [He]. While some work has been generalized to MSTD sets in abelian
groups [MV,Na4,Zh3], we concern ourselves with MSTD sets A with A ⊂ Z. Some
progress has been made in constructing infinite families of such sets [Na1,Na2,Na3,
Na4,Zh1,He,MOS,MS,Ru1,Ru2], as well as MSTD sets with additional properties.
One example is due to Iyer, Lazarev, Miller and Zhang [ILMZ], who developed
constructions for generalized MSTD sets, sets A that satisfy |sA− dA| > |σA− δA|
for a given s + d = σ + δ. This provided them with the framework to construct
k-generational sets, a rarer class of MSTD sets A for which A,A + A, . . . , kA are
all sum-dominant.

A unifying strategy used throughout this paper is the manipulation of fringe
pairs, a concept introduced by Zhao [Zh2] (see Definition 2.1). Our first set of
results concern fringe constructions for generalized MSTD sets that are much more
efficient than the ones in [ILMZ]. Before stating these we first set some notation:

• |A| is the cardinality of A,
• [a, b] = {a, a+ 1, . . . , b},
• mA = {

∑m
i=1 ai : ai ∈ A} for m ≥ 1 (note this is not m times each

element of A),
• m ·A = {ma : a ∈ A},
• −A = {−a : a ∈ A}, −mA = −(mA),
• Ac = [minA,maxA] \A.

Our first result significantly improves upon the constructions of k-generational
sets given by Iyer et al. [ILMZ], which used base expansion and therefore yielded
sets A which grow astronomically with k.

Theorem 1.1. For any q > 2, there exists a set A with |A| = O(q2) such that for
all s+ d = σ + δ with s > σ,

|sA− dA| > |σA− δA|. (1.1)



FRINGE PAIRS IN GENERALIZED MSTD SETS 3

Further, given k > 0 there exists a k-generational set A with |A| = O(k).

We prove Theorem 1.1 in §3.2. Our constructions generate explicit k-generational
sets that are much smaller than those previously constructed, making them far
easier to manipulate and verify. We then apply the fringe pairs framework to give
a new proof of the following result in §4.2.

Theorem 1.2. For any x ∈ Z and 0 ≤ d < δ ≤ σ < s with s + d = σ + δ, the
proportion of A ⊆ [0, n] such that |sA− dA| − |σA− δA| = x is bounded below by a
positive number as n goes to infinity.

We also study the values of log |sA − dA|/ log |σA − δA|. These are natural
objects to study as they normalize the excess of one generalized sum or difference
set relative to the number of elements of that set. In other words, if we want
to construct a set with many more sums than differences we don’t want to do so
through base expansion and taking exponentially large sets; we want to construct
small sets with the desired excess. The quantity log |A+A|/ log |A−A| was studied
by Ruzsa in [Ru2], where he proved that there are a “multitude” of sets with
log |A + A|/ log |A − A| > 1 + c with c > 0. Precisely, he proved that there exists
c > 0 such that for every sufficiently large n there exists a set such that

|A| = n, |A−A| ≤ n2−c, |A+A| ≥ n2/2− n2−c,

or in other words, log |A+A|/ log |A−A| > 1+c1 where c1 > 0. We show that for any
ε > 0 there are not enough sets A ⊆ [0, n] with log |sA− dA|/ log |σA− δA| > 1 + ε
to constitute a positive proportion. In fact, we prove a stronger statement about
|sA− dA|/|σA− δA| in §5.2.

Theorem 1.3. Choosing subsets A ⊂ [0, n] uniformly, for every ε > 0 we have

lim
n→∞

Pr

(
1− ε < log |sA− dA|

log |σA− δA|
< 1 + ε

)
= 1. (1.2)

In fact,

lim
n→∞

Pr

(
s+ d− 1

s+ d
<
|sA− dA|
|σA− δA|

<
s+ d

s+ d− 1

)
= 1. (1.3)

We also construct a set A for which

log |A+A|
log |A−A|

=
log 892

log 765
= 1.02313, (1.4)

which is larger than the previous largest value of

log |A+A|
log |A−A|

=
log 91

log 83
= 1.0208 (1.5)

found in [He,MO].
Finally, we investigate decompositions of the interval [0, n] into two disjoint

MSTD sets in §6. It turns out that a positive proportion of decompositions of
[0, n] into two disjoint sets have the property that both components are MSTD. If
both A ⊆ [0, n] and [0, n] \A are MSTD, we say that A is bi-MSTD.

Theorem 1.4. Let A be a uniform random subset of [0, n] with n ≥ 19. Then the
probability that A is bi-MSTD is bounded below by a positive number (and there are
no bi-MSTD sets for n < 19).
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The proof of Theorem 1.4 is given in §6.2.

The paper is organized as follows. We define fringe pairs and prove some needed
properties in §2. We then prove our results on efficient k-generational constructions
in §3, on arbitrary differences in §4, on the ratio of the logarithms in §5 and bi-
MSTD sets in §6. We conclude in §7 with topics for future investigations.

2. Background

2.1. Definitions. Martin and O’Bryant used the idea that the fringes of A essen-
tially determine whether or not A is MSTD, as the middle does not contribute as
much to |A+A|−|A−A| since almost all middle elements of the sum and difference
set are attained [MO]. This is because the number of elements of a set A chosen
uniformly among subsets of [0, n] is tightly concentrated around (n+1)/2, and there
are so many ways of writing middle numbers as a sum or difference that with high
probability all are realized. Zhao built on these ideas to prove that the proportion
of MSTD sets in [0, n] converges as n goes to infinity. We extend many of Zhao’s
definitions and results in [Zh2] to the setting of generalized MSTD sets. Of par-
ticular interest are Definition 2.1 and Definition 2.3, which define fringe pairs and
rich sets for generalized MSTD sets. The results in this section will prove valuable
in the proofs of our main results in Sections 3.2, 4.2, and 6.2. In the following, we
fix s+ d = σ + δ.

Definition 2.1. Let s, d, σ, δ be non-negative integers such that 0 ≤ d < δ ≤ σ < s
and s+ d = σ + δ. A generalized MSTD fringe pair of order k for (s, d), (σ, δ) is a
pair (L,R; k) such that L,R ⊆ [0, k] with 0 ∈ L,R and

|(sL+ dR) ∩ [0, k]|+ |(sR+ dL) ∩ [0, k]|
> |(σL+ δR) ∩ [0, k]|+ |(σR+ δL) ∩ [0, k]|. (2.1)

We impose an order on the set of generalized MSTD fringe pairs by having
(L,R; k) ≤ (L′, R′; k′) if k ≤ k′ and

L = L′ ∩ [0, k], R = R′ ∩ [0, k], [k + 1, k′] ⊆ sL′ + dR′, sR′ + dL′. (2.2)

(L,R; k) < (L′, R′; k′) is defined as expected with k < k′ as well as the stipula-
tions listed in (2.1).

Definition 2.2. A minimal generalized MSTD fringe pair is a pair (L,R; k) such
that (L,R; k) ≤ (L′, R′; k′) for all generalized MSTD fringe pairs (L′, R′; k′) with
k′ ≥ k.

We later use the partial order of generalized MSTD fringe pairs to reduce the
study of all generalized MSTD fringe pairs to simply the minimal ones.

Definition 2.3. A set A ⊆ [0, n] is a k-rich set with MSTD fringe pair (L,R; k) if

2k < n, A ∩ [0, k] = L, A ∩ [n− k, n] = n−R,
[k + 1, 2n− k − 1] ⊆ A+A. (2.3)

When we do not specify a fringe pair and say A is k-rich, we often simply mean
[k + 1, 2n − k − 1] ⊆ A + A. Sometimes we simply say that A is rich if k is clear
from the context.
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2.2. Important Characteristics of Rich Sets. It turns out that a rich set with
generalized MSTD fringe pair (L,R; k) is a generalized MSTD with respect to (s, d),
(σ, δ) (Lemma 2.5). We first prove a simple lemma.

Lemma 2.4. A k-rich set A ⊆ [0, n] has the property

[−dn+ k + 1, sn− k − 1] ⊆ sA− dA (2.4)

for any s+ d > 2.

Proof. Suppose without loss of generality that s ≥ d. For d ≥ s, simply switch the
roles of s and d. Since s + d > 2 and s ≥ d, we have s ≥ 2. Thus sA − dA =
2A+ (s− 2)A− dA. Then

2A+ (s− 2)A− dA ⊇ [k + 1, 2n− k − 1] + (s− 2)A− dA
⊇ [k + 1, 2n− k − 1] + (s− 2){0, n} − d{0, n}
= [−dn+ k + 1, sn− k − 1] (2.5)

since [k+ 1, 2n− k− 1]∪ [n+ k+ 1, 3n− k− 1]∪ {2n} = [k+ 1, 3n− k− 1] and so
on. �

Lemma 2.5. Let 0 ≤ d < δ ≤ σ < s and s+ d = σ + δ. A rich set A ⊆ [0, n] with
generalized MSTD fringe pair (L,R; k) satisfies |sA− dA| > |σA− δA|.

Proof. We split sA − dA into two portions, the fringe and the middle. We assert
the following two statements, which are sufficient to prove the lemma:

|(sA− dA) ∩ ([−dn,−dn+ k] ∪ [sn− k, sn])|
> |(σA− δA) ∩ ([−δn,−δn+ k] ∪ [σn− k, σn])| (2.6)

and

|(sA− dA) ∩ [−dn+ k + 1, sn− k − 1]|
≥ |(σA− δA) ∩ [−δn+ k + 1, σn− k − 1]|. (2.7)

Since A is a rich set, (sA− dA) ⊇ [−dn+ k+ 1, sn− k− 1]. Thus (2.7) follows. To
show (2.6), we notice that

|(sA− dA) ∩ ([−dn,−dn+ k] ∪ [sn− k, sn])|
= |(sA− dA) ∩ [−dn,−dn+ k]|+ |(sA− dA) ∩ [sn− k, sn]|. (2.8)

Since A ⊆ [0, n] has generalized MSTD fringe pair (L,R; k), we have L = A∩ [0, k]
and R = n− (A∩ [n− k, n]). Using ∼= to denote equivalence under translation and
dilation, we find

(sL+ dR) ∩ [0, k] = (s(A ∩ [0, k]) + dn− d(A ∩ [n− k, n])) ∩ [0, k]

∼= (s(A ∩ [0, k])− d(A ∩ [n− k, n])) ∩ [−dn,−dn+ k]

= (sA− dA) ∩ [−dn,−dn+ k]. (2.9)

Similarly, we have

(sR+ dL) ∩ [0, k] = (sn− s(A ∩ [n− k, n]) + d(A ∩ [0, k])) ∩ [0, k]

∼= (s(A ∩ [n− k, n])− d(A ∩ [0, k])) ∩ [sn− k, sn]

= (sA− dA) ∩ [sn− k, sn]. (2.10)

Now (2.6) follows from the definition of a generalized MSTD fringe pair. �
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2.3. Minimal Fringe Pairs. Now we show that the order we imposed on fringe
pairs earlier is completely determined by k, k′ for fringe pairs (L,R; k) and (L′, R′; k′)
corresponding to a rich set A ⊆ [0, n].

Lemma 2.6. Let A ⊆ [0, n] be a rich set. Let (L,R; k) and (L′, R′; k′) be two
generalized MSTD fringe pairs corresponding to A. If k = k′, then (L,R; k) =
(L′, R′; k′). If k < k′, then (L,R; k) < (L′, R′; k′).

Proof. The first statement follows trivially. If k < k′, then we need to show

L = L′ ∩ [0, k], R = R′ ∩ [0, k], [k + 1, k′] ⊆ sL′ + dR′, sR′ + dL′.

We have A ∩ [0, k] = L,A ∩ [0, k′] = L′, and the analogous statements for R and
R′. Since k < k′, L = A ∩ [0, k] = (A ∩ [0, k′]) ∩ [0, k] = L′ ∩ [0, k]. The same holds
for R and R′. Finally, we have

[−dn+ k′ + 1, sn− k′ − 1] ⊆ [−dn+ k + 1, sn− k − 1] ⊆ sA− dA.
Thus

[−dn+ k + 1,−dn+ k′] ⊆ sA− dA, [sn− k − 1, sn− k′] ⊆ sA− dA.
An argument from the proof of Lemma 2.5 shows that [−dn + k + 1,−dn + k′] ⊆
sA − dA ⇐⇒ [k + 1, k′] ⊆ sL + dR and [sn − k − 1, sn − k′] ⊆ sA − dA ⇐⇒
[k + 1, k′] ⊆ sR+ dL. Therefore (L,R; k) < (L′, R′; k′). �

Lemma 2.7. Let (L,R; k) be the minimal generalized MSTD fringe pair of a rich
set A ⊆ [0, n]. Then (L,R; k) is minimal in the partial ordering of all generalized
MSTD fringe pairs. Also, for every k < k′ < n/2, (L′, R′; k′) is also a generalized
MSTD fringe pair of A, where L′ = A ∩ [0, k′], R′ = (n − A) ∩ [0, k′], and every
generalized MSTD fringe pair of A has this form.

Proof. Suppose (L,R; k) is not minimal. Then there is a generalized MSTD fringe
pair (L′, R′; k′) < (L,R; k). So k′ < k and

L′ = L ∩ [0, k′], R′ = R ∩ [0, k′], [k + 1, k′] ⊆ sL′ + dR′, sR′ + dL′.

This implies that [k+1, 2n−k−1] ⊆ A+A and therefore A is rich with generalized
MSTD fringe pair (L′, R′; k′) as well, which contradicts the minimality of (L,R; k)
when attached to A.

So (L,R; k) is the minimal generalized MSTD fringe pair of A. Take k < k′.
Then the only possible generalized MSTD fringe pair is (L′, R′; k′) where

L′ = A ∩ [0, k′], R′ = A ∩ [0, k′].

By the previous lemma, (L′, R′; k′) > (L,R; k). A simple computation confirms
that (L′, R′; k′) is also a generalized MSTD fringe pair. �

The above results show that we may count all generalized MSTD sets by counting
all minimal generalized MSTD fringe pairs.

Remark 2.8. Iyer et al. [ILMZ] proved that the proportion of generalized MSTD
sets is bounded below by a positive number as n goes to infinity. Zhao’s methods
should easily generalize to show that this proportion converges. Our definition of a
rich set is identical to Zhao’s. The only difference is the nature of the fringe pairs,
but the fringe pairs are not involved in the proof of convergence.

Zhao introduced k-affluent sets, sets A for which [k + 1, 2n − k − 1] ⊆ A + A
and [−n+ k + 1, n− k − 1] ⊆ A−A (see Definition 4.1), in order to show that for
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any m ∈ Z the proportion of A which satisfy |A + A| − |A − A| = m converges as
n → ∞. The analogous result for generalized MSTD sets does not require affluent
sets (we use affluent sets in this paper, albeit for a different purpose). Since we
may assume that s + d = σ + δ ≥ 3, both sA − dA and σA − δA contain a copy
of A + A, up to a minus sign. Thus all the convergence results in [Zh2] should be
applicable to the generalized MSTD case. We do not pursue this path as it is too
repetitive to merit detailing.

3. Efficient constructions of k-generational sets and their
generalizations

3.1. Previous Constructions. In [ILMZ], Iyer et al. gave a construction of k-
generational sets, which are sets A such that A,A+A, . . . , kA are all MSTD. The
primary tool was a technique called base expansion, summarized in the following
proposition.

Proposition 3.1 (Iyer et al. [ILMZ]). Fix a positive integer k. Say A1, . . . , Ak ⊆
Z+. Choose some m > k ·max(∪ki=1Ak). Let C = A1 + m · A2 + · · · + mk−1 · Ak,
where · denotes scalar multiplication. Then

|sC − dC| =

k∏
j=1

|sAj − dAj |

for all s+ d ≤ k.

Using base expansion, we may choose Aj such that |jAj + jAj | > |jAj − jAj |
(and |sAj − dAj | = |σAj − δAj | for s+ d = σ+ δ 6= 2j) and create the appropriate
C prescribed above, which is k-generational. However, a major drawback of base
expansion is that the set C grows large very quickly (we explore this issue in greater
detail in §5, where we investigate the ratio of the logarithms of the cardinalities).
According to the construction in [ILMZ], the middle of Aj has at least 2(2jr−4j+1)
elements where r = 4j + 2. Thus |Aj | = Ω(j2), which means there is a constant
c such that cj2 ≤ |Aj |. By the proof of Lemma 4.3 in [ILMZ], we have |C| =∏k
j=1 |Aj |. Therefore |C| = Ω(k!2).
This is a huge growth rate that leads to sets which are computationally impracti-

cal to work with even when k = 2. For example, an optimization of the construction
with base expansion yields a 5-generational set of 2, 685, 375 elements. Our con-
struction reduces this size to 35 (see Proposition 3.4). We are able to create much
more reasonably sized sets by choosing appropriate fringe pairs and filling out the
middle rather than using base expansion, which has no regard for the size of the
set.

3.2. Proof of Theorem 1.1. We first prove the existence of a k-generational
fringe pair in Proposition 3.3. In Proposition 3.4, we construct a rich set with the
k-generational fringe pair from Proposition 3.3, giving us a k-generational set. We
note that our rich set varies linearly with k to complete the proof.

Lemma 3.2. Let R = [0,m] ∪ {q}. Then

kR = [0, km] ∪ [q, q + (k − 1)m] ∪ · · · ∪ [(k − 1)q, (k − 1)q +m] ∪ {kq}.
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Further, if q > km, then

|kR| =
(mk + 2)(k + 1)

2
.

Proof. Observe that

k(A ∪B) = kA ∪ ((k − 1)A+B) ∪ · · · ∪ (A+ (k − 1)B) ∪ kB.

Set A = [0,m], B = {q} to obtain the result. Note then if km < q, |kR| =
(k)(k+1)m

2 + k + 1 = (mk+2)(k+1)
2 . �

Proposition 3.3. Let L = {0}, R = {0, 1, 3}. Then the fringe pair (L,R, 6k) is
k-generational in the sense that for all 1 ≤ j ≤ k,

|(2j)L ∩ [0, 6k]|+ |(2j)R ∩ [0, 6k]| > 2|(jL+ jR) ∩ [0, 6k]|.

Proof. Fix 1 ≤ j ≤ k. In Lemma 3.2 set m = 1, q = 3, k = 2j to get (2j)R =
[0, 6j] \ {6j − 1}. Also, jL+ jR = [0, 3j] \ {3j − 1}. Therefore

|(2j)L ∩ [0, 6k]|+ |(2j)R ∩ [0, 6k]| = 1 + 6j, 2|(jL+ jR) ∩ [0, 6k]| = 2 · 3j. �

By Lemma 2.5, we may pick any rich set A with fringe pair ({0}, {0, 1, 3}; 6k)
and A is k-generational. In Proposition 3.4, we explicitly construct such a set.

Proposition 3.4. Let A = {0} ∪ [6k + 1, 12k + 1] ∪ (18k + 2− {0, 1, 3}). Then A
is a rich set with k-generational fringe pair (L,R, 6k) and thus k-generational.

Proof. It suffices to show that [6k+1, 30k+3] ⊆ A+A. Note that |[6k+1, 12k+1]| =
6k + 1. Compute

A+A ⊇ [6k + 1, 12k + 1] ∪ 2[6k + 1, 12k + 1] ∪ ([6k + 1, 12k + 1] + {18k + 2})
= [6k + 1, 30k + 3]. �

Since A has 6k+5 elements, the growth of the size of these k-generational sets A
is |A| = O(k). This is a significant improvement over the previous best construction
of k-generational sets, which have size |A| = Ω(k!2).

Remark 3.5. This construction provides us with a nice 2-generational MSTD set
with 17 elements,

{0, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 35, 37, 38},

as well as a 3-generational set of size 23,

{0, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 53, 55, 56}.

Remark 3.6. One advantage of the base expansion method is that for any given
sequence {(si, di, σi, δi)}qi=2 with si + di = σi + δi = i and si 6= σi, si 6= δi, the base
expansion method can construct a set A which satisfies |siA− diA| > |σiA− δiA|.
Our construction is specific to k-generational sets. Though we do not reach the full
level of generality achieved by Iyer et al., for any given sequence {(si, di, σi, δi)}qi=2

with si + di = σi + δi = i and 0 ≤ di < δi ≤ σi < si, we describe an efficient
construction of a set A which satisfies |siA− diA| > |σiA− δiA| in §3.3.
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3.3. Super k-generational MSTD Sets. We prove the existence of a stronger
form of k-generational sets, super k-generational sets, in Proposition 3.9.

Definition 3.7. A super k-generational MSTD sets is a set A in which for all
s+ d = σ + δ ≤ k with 0 ≤ d < δ ≤ σ < s, |sA− dA| > |σA− δA|.

Lemma 3.8. Consider the set {0, 1, q} with q > 2. We have k{0, 1, q} = [0, k] ∪
[q, q + k − 1] ∪ [2q, 2q + k − 2] ∪ · · · ∪ {kq}.

Proof. This is a consequence of Lemma 3.2. �

Note that if k < q, then |k{0, 1, q}| = (k+1)(k+2)
2 . Similarly if k = q then

|k{0, 1, q}| = (k+1)(k+2)
2 − 1.

Proposition 3.9. Let L = {0}, R = {0, 1, q}, k = q2 where q > 2. Then for any
s+ d = σ + δ ≤ q with 0 ≤ d < δ ≤ σ < s, (L,R; k) is a generalized MSTD fringe
pair.

Proof.
Case 1: Let d = 0. Observe that sL = {0}, sR = [0, s]∪[q, q+s−1]∪· · ·∪{sq}. Also
σL+δR = [0, δ]∪[q, q+δ−1]∪· · ·∪{δq} and δL+σR = [0, σ]∪[q, q+σ−1]∪· · ·∪{σq}.
Therefore

|(sL+ dR) ∩ [0, k]|+ |(sR+ dL) ∩ [0, k]| ≥ 1 +
(s+ 1)(s+ 2)

2
− 1

and

|(σL+ δR) ∩ [0, k]|+ |(σR+ δL) ∩ [0, k]| ≤ (σ + 1)(σ + 2)

2
+

(δ + 1)(δ + 2)

2
.

Since s > σ and σ, δ are nonzero, it is clear that s2 > σ2 + δ2 (remember d = 0 in
this case, so s = σ + δ). Thus

|(sL+ dR) ∩ [0, k]|+ |(sR+ dL) ∩ [0, k]|
> |(σL+ δR) ∩ [0, k]|+ |(σR+ δL) ∩ [0, k]|,

and (L,R; k) is a generalized MSTD fringe pair.

Case 2: Let d 6= 0. Observe that

siL+ diR = [0, di] ∪ [q, q + di − 1] ∪ · · · ∪ {diq}

and

diL+ siR = [0, si] ∪ [q, q + si − 1] ∪ · · · ∪ {siq}.
Then

|(siL+ diR) ∩ [0, k]|+ |(siR+ diL) ∩ [0, k]| =
(si + 1)(si + 2)

2
+

(di + 1)(di + 2)

2
.

We have s2 + d2 > σ2 + δ2; this follows from 0 ≤ d < δ ≤ σ < s (thus 2σδ > 2sd,
and the claim follows from combining that inequality with (s + d)2 = (σ + δ)2).
Thus

|(sL+ dR) ∩ [0, k]|+ |(sR+ dL) ∩ [0, k]|
> |(σL+ δR) ∩ [0, k]|+ |(σR+ δL) ∩ [0, k]|.

and (L,R; k) is a generalized MSTD fringe pair. �
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The existence of such a fringe pair gives an infinite family of super k-generational
MSTD sets and proves their positive density as n approaches infinity. For the sake
of completeness, we give one possible construction of a super k-generational set
from a super k-generational fringe pair.

Proposition 3.10. Let A = {0} ∪ [k + 1, 2k + 2] ∪ (3k + 3 − {0, 1, q}) with q > 2
and k = q2. Then A is a rich set with fringe pair (L,R, k) for all s+ d = σ+ δ ≤ q
and |A| = q2 + 6.

Proof. It suffices to show [k + 1, 5k + 5] ⊆ A+A, which follows from

A+A ⊇ [k + 1, 2k + 2] ∪ 2[k + 1, 2k + 2] ∪ ([k + 1, 2k + 2] + {3k + 3})
= [k + 1, 5k + 5]. �

Remark 3.11. This construction gives a super 4-generational set with 22 elements:

{0, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 47, 50, 51}

4. Arbitrary differences

We now turn our attention to a simple construction for attaining specific differ-
ences between |A+ A| and |A− A|, and more generally |sA− dA| and |σA− δA|.
Though Martin and O’Bryant and Iyer et al. have already proved that for any in-
teger m, a positive percentage of sets have the property that |A+A|− |A−A| = m
and a positive percentage of sets have the property that |sA−dA|− |σA− δA| = m
respectively, we include the proof to advocate for the loose notion that fringe pairs
are a clean perspective with which to think about arbitrary differences. We first
give necessary definitions for our construction before proving Theorem 1.2 in §4.2.

4.1. Preliminaries.

Definition 4.1. Let k and n be positive integers with 2k < n. Let A ⊆ [0, n]. We
say A is k-affluent with generalized MSTD fringe pair (L,R; k) if [k+1, 2n−k−1] ⊆
A+A and [−n+ k + 1, n− k − 1] ⊆ A−A.

Note that an affluent set has all middle sums and differences present; therefore,
discrepancies in numbers of sums and differences are completely determined by the
fringes.

Proposition 4.2. Given m > 0, L = {0}, R = [0,m] ∪ {q}, and k = 2q with
q > 2m, if A is k-affluent with fringe pair (L,R; k), then |A+A| − |A−A| = m.

Proof. Observe that |2L ∩ [0, k]| = 1 and |2R ∩ [0, k]| = 3m + 3 by Lemma 3.2.
Furthermore, |(L+R)∩[0, k]| = m+2. It follows that |2L∩[0, k]|+|2R∩[0, k]|−2|(L+
R) ∩ [0, k]| = m. Since A is affluent, the difference between sums and differences is
completely determined by the fringes. Thus |A+A| − |A−A| = m. �

Proposition 4.3. Given m > 0, L = [0,m], R = [0,m] ∪ {q} and k = 2q with
q > 2m, if A is k-affluent with fringe pair (L,R; k), then |A+A| − |A−A| = −m.

Proof. Observe that |2L ∩ [0, k]| = 2m + 1 and |2R ∩ [0, k]| = 3m + 3 by Lemma
3.2. Furthermore, (L+R)∩ [0, k] = [0, 2m]∪ [q, q+m] and has cardinality 3m+ 2.
It follows that 2|(L + R) ∩ [0, k]| − (|2L ∩ [0, k]| + |2R ∩ [0, k]|) = m. Since A is
affluent, the difference between sums and differences is completely determined by
the fringes. Thus |A+A| − |A−A| = −m. �
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Another advantage of this simple proof is that it is easily generalizable to the
case of s + d = σ + δ. This construction can be extended to attain |sA − dA| −
|σA − δA| = (σδ − sd)m by again using Lemma 3.2. Then some further work
shows that any arbitrary difference can be attained with a positive proportion as
n goes to infinity. The idea of the proof is quite simple: for positive differences
|sA − dA| − |σA − δA| = x ≥ 0, we take the same fringe as in Proposition 4.2,
L = {0}, R = [0,m]∪{q} with m ≥ x. Then from k = (s+ d)q, we simply decrease
k until (L,R; k) has the property

|(sL+ dR) ∩ [0, k]| + |(sR+ dL) ∩ [0, k]|
− |(σL+ δR) ∩ [0, k]| − |(σR+ δL) ∩ [0, k]| = x.

This quantity is ultimately reflected in |sA − dA| − |σA − δA| if A is k-affluent.
The negative differences case is similar but for the left fringe, which we take from
Proposition 4.3 to be L = [0,m].

4.2. Proof of Theorem 1.2. We divide our proof into two theorems proving the
positive and negative cases.

Theorem 4.4. Let x ≥ 0 be a nonnegative integer and s+ d = σ+ δ with d < δ ≤
σ < s. Then the proportion of A ⊆ [0, n] satisfying |sA − dA| − |σA − δA| = x is
bounded below by a positive number as n goes to infinity.

Proof. Let L = {0} and R = [0,m] ∪ {q} with q > (s+ d)m. Then by Lemma 3.2,

cR = [0, cm] ∪ [q, q + (c− 1)m] ∪ · · · ∪ [(c− 1)q, (c− 1)q +m] ∪ {cq},
where we define 0R to be {0}. Notice that if c < γ, then cR ⊆ γR. Now since
d < δ ≤ σ < s, we have the relation

dR ⊆ δR ⊆ σR ⊆ sR. (4.1)

Now define the quantity

f(k) = |dR ∩ [0, k]|+ |sR ∩ [0, k]| − |δR ∩ [0, k]| − |σR ∩ [0, k]|.
Since L = {0}, the quantity f(k) is also equal to

|(sL+ dR) ∩ [0, k]|+ |(sR+ dL) ∩ [0, k]|
− |(σL+ δR) ∩ [0, k]| − |(σR+ δL) ∩ [0, k]|.

We have the following implications:

(1) k ∈ dR =⇒ f(k)− f(k − 1) = 0,
(2) k ∈ δR, 6∈ dR =⇒ f(k)− f(k − 1) = −1,
(3) k ∈ σR, 6∈ δR =⇒ f(k)− f(k − 1) = 0,
(4) k ∈ sR, 6∈ σR =⇒ f(k)− f(k − 1) = 1,
(5) k 6∈ sR =⇒ f(k)− f(k − 1) = 0.

Therefore, f(k) and f(k−1) differ at most by one. Since |cR| = (mc+2)(c+1)/2,

f(sq) =
(md+ 2)(d+ 1)

2
+

(ms+ 2)(s+ 1)

2
− (mδ + 2)(δ + 1)

2
− (mσ + 2)(σ + 1)

2

=
1

2
m(d(d+ 1) + s(s+ 1)− δ(δ + 1)− σ(σ + 1))

=
1

2
(d2 + s2 − δ2 − σ2)m

= (σδ − sd)m.
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Since 0 ≤ d < δ ≤ σ < s implies σδ − sd ≥ 1, f(sq) ≥ m.
Now we want an integer k for which f(k) = 0. For any c > 0, cR ∩ [0, q − 1] =

[0, cm]. Therefore, f(q − 1) = dm+ 1 + sm+ 1− δm− 1− σm− 1 = 0.
We have the facts that |f(k) − f(k − 1)| ≤ 1, f(q − 1) = 0, and f(sq) =

(σδ−sd)m ≥ m. Therefore, for any given difference x such that 0 ≤ x ≤ (σδ−sd)m,
there exists a k such that q − 1 ≤ k ≤ sq and f(k) = x.

Pick an arbitrary x ≥ 0 and let m ≥ x. Then let q − 1 be large enough so
that for a sufficiently large n, the proportion of q-affluent sets in [0, n] is positive
(see Lemma 5.4). Consider the fringe pair (L,R; k) where q − 1 ≤ k ≤ sq and
f(k) = x. Then the proportion of affluent sets with fringe pair (L,R; k) is positive
and bounded below as n goes to infinity. �

Similarly, we can prove that for any x < 0, a positive proportion of sets have
|sA− dA| − |σA− δA| = x. However, we must use a different fringe pair.

Lemma 4.5. Let 0 ≤ d < δ ≤ σ < s and s + d = σ + δ and L = [0,m],
R = [0,m] ∪ {q} where q > (s+ d)m. Then

sL+ dR = [0, (s+ d)m] ∪ [q, q + (s+ d− 1)m] ∪ · · · ∪
[(d− 1)q, (d− 1)q + (s+ 1)m] ∪ [dq, dq + sm]

with

|sL+ dR|+ |dL+ sR| − |σL+ δR| − |δL+ σR| = (sd− σδ)m ≤ −m.

Furthermore,

sL+ dR ⊆ σL+ δR ⊆ δL+ σR ⊆ dL+ sR.

Proof. The first claim is a routine calculation. The set sL+ dR can be written as

[0, sm] + ([0, dm] ∪ [q, q + (d− 1)m] ∪ · · · ∪ [(d− 1)q, (d− 1)q +m] ∪ {dq}),

which can be simplified to the desired expression. Next, we calculate |sL + dR| +
|dL+ sR| − |σL+ δR| − |δL+ σR|.

|sL+ dR| = ((s+ d)m+ 1) + ((s+ d− 1)m+ 1) + · · ·+ (sm+ 1)

=
1

2
((s+ d)m+ 2)(s+ d+ 1)− 1

2
((s− 1)m+ 2)s.

Therefore |sL+ dR|+ |dL+ sR| = ((s+ d)m+ 2)(s+ d+ 1)− 1
2 ((s− 1)m+ 2)s−

1
2 ((d− 1)m+ 2)d. Similarly, |σL+ δR|+ |δL+ σR| = ((σ + δ)m+ 2)(σ + δ + 1)−
1
2 ((σ − 1)m+ 2)σ − 1

2 ((δ − 1)m+ 2)δ. Since s+ d = σ + δ,

g((s+ d)q) =
1

2
(((σ − 1)m+ 2)σ + ((δ − 1)m+ 2)δ

−((s− 1)m+ 2)s− ((d− 1)m+ 2)d)

=
1

2
(σ2 + δ2 − s2 − d2)m

= (sd− σδ)m ≤ −m.

For the last claim, notice that σL+ δR = (sL+ dR) ∪ [(d+ 1)q, (d+ 1)q + (s−
1)m]∪ · · · ∪ [δq, δq+ σm]. So σ < s implies that σL+ δR ⊇ sL+ dR. The chain of
inclusions follows. �
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Theorem 4.6. Let x < 0 be a negative integer and s+ d = σ+ δ with 0 ≤ d < δ ≤
σ < s. Then the proportion of A ⊆ [0, n] satisfying |sA − dA| − |σA − δA| = x is
bounded below by a positive number as n goes to infinity.

Proof. Let L = [0,m] and R = [0,m] ∪ {q} with q > (s + d)m. Define a similar
quantity

g(k) = |(sL+dR)∩[0, k]|+|(dL+sR)∩[0, k]|−|(σL+δR)∩[0, k]|−|(δL+σR)∩[0, k]|.
It suffices to show three things: |g(k)−g(k−1)| ≤ 1, g(q−1) = 0, and g((s+d)q) =
(sd− σδ)m ≤ −m. We begin by claiming that |g(k)− g(k − 1)| ≤ 1.

By Lemma 4.5, the chain of inclusions is

sL+ dR ⊆ σL+ δR ⊆ δL+ σR ⊆ dL+ sR,

and we have the implications

(1) k ∈ sL+ dR =⇒ g(k)− g(k − 1) = 0,
(2) k ∈ σL+ δR, 6∈ sL+ dR =⇒ g(k)− g(k − 1) = −1,
(3) k ∈ δL+ σR, 6∈ σL+ δR =⇒ g(k)− g(k − 1) = 0,
(4) k ∈ dL+ sR, 6∈ δL+ σR =⇒ g(k)− g(k − 1) = 1,
(5) k 6∈ dL+ sR =⇒ g(k)− g(k − 1) = 0.

Now consider g((s+ d)q). By Lemma 4.5, g((s+ d)q) = (sd− σδ)m ≤ −m.

Finally, consider g(q − 1). The intersection of each set (sL+ dR), (σL+ δR),
(δL+ σR), (dL+ sR) with [0, q− 1] is [0, (s+ d)m]. Therefore g((s+ d)m) = 0.
The rest of the proof is identical to the positive arbitrary differences proof. �

Together, Theorems 4.4 and 4.6 imply Theorem 1.2.

5. Another MSTD construction and log |sA−dA|
log |σA−δA|

5.1. New Construction and Large Ratio. We have used the fringe L = {0}, R =
[0,m]∪ {q} for various m and q in the previous sections. The choice L = {0} has a
nice property: if we fix the left fringe to be the singleton {0}, almost any right fringe
gives an MSTD fringe pair. If we let R be a uniform random subset and k a suitably
large integer (say 2 ·maxR), then it is likely that |(R+R)∩ [0, k]|+1 > 2|R∩ [0, k]|,
in which case we have an MSTD fringe pair. We make this statement precise below.

Proposition 5.1. Let R be a uniform random subset of [0, r] with r ≥ 1. Then

Pr(|R+R|+ 1 > 2|R|) > 1− (r + 1)3 − (r + 1)2

2r+2
.

Proof. Recall that |R+R| = 2|R| − 1 if and only if R is an arithmetic progression,
and |R+R| > 2|R|−1 otherwise. The proof is straightforward. Write the elements
of R as x1 < x2 < · · · < xr (with r = |R|); as the claim is trivial for arithmetic
progressions, we may assume R is not an arithmetic progression. We are left with
proving that we cannot have |R + R| = 2|R| − 1 for such R. We proceed by
contradiction. Note x1 +x1 < · · · < x1 +xr < x2 +xr < x3 +xr < · · · < xr−1 +xr
< xr + xr. We have just listed 2|R| − 1 distinct elements, and thus all other sums
must be in this list. In particular, x2 + xr−1 is less than x2 + xr but more than
x1 + xr−1; it must therefore equal x1 + xr, which implies x2 − x1 = xr − xr−1. We
then note x2 + xr−1 < x3 + xr−1 < x3 + xr, and thus x3 + xr−1 = x2 + xr, which
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implies x3 − x2 = xr − xr−1. Arguing similarly shows all adjacent differences are
equal, proving the set is an arithmetic progression.

Thus it suffices to bound the number of arithmetic progressions in [0, r]. There
are

(
r+1
2

)
pairs (i, j) such that i < j. For each (i, j), there are at most τ(j − i)

arithmetic progressions starting with i and ending with j, where τ(x) is the number
of divisors of x. Since τ(j − i) ≤ r+ 1, we have that there are at most (r+ 1)

(
r+1
2

)
arithmetic progressions in [0, r]. Thus Pr(|R+R|+1 > 2|R|) ≥ 1− (r+1)3−(r+1)2

2r+2 . �

Sending r to infinity yields an almost sure method to construct MSTD sets.
One consequence of this construction is a set A for the current largest value of
log |A+A|/ log |A−A|. We obtained the following R by a random search through
subsets of [0, 90], fixing 0 and picking each element with probability 0.27. We then
sifted through the set to add or discard obvious elements, finding

R = {0, 1, 2, 4, 5, 9, 10, 12, 23, 26, 32, 38,

47, 53, 59, 61, 65, 76, 78, 79, 81, 85, 86, 88, 89}. (5.1)

Let A = {0} ∪ [k + 1, n − k − 1] ∪ (n − R) for k = 2 · 89, n = 3k + 2. Then
we get log |A + A|/ log |A − A| = 1.02313. The previous largest value of log |A +
A|/ log |A−A| was 1.0208, achieved by setting

A = {0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25, 29, 32, 33, 37, 40, 41, 42, 44, 45}
as found in [MO]. In fact, sets A for which log |A + A|/ log |A − A| > 1.0208 are
relatively common: a random search through sets R ⊆ [0, 90], picking each element
with probability 0.27 (this value was chosen as it yielded good results from our
simulations), yielded 174 such sets out of 100,000. Since R in (5.1) was found
basically through a random search, a more sophisticated method may yield a larger
value for log |A+A|/ log |A−A|.

It seems unlikely that log |A + A|/ log |A − A| can exceed 1.1, or even 1.05. Is
there a theoretical upper bound? A result due to Ruzsa [Ru1], also shown in [GH],
states that for any finite set A ⊆ Z,

3/4 ≤ log |A+A|
log |A−A|

≤ 4/3.

The upper bound of 4/3 is still quite far above what has been seen, and it is
probably the case that the upper bound is not tight.

Remark 5.2. Our method yields values

log(4k + 4 + |R+R|)
log(4k + 3 + 2|R|)

(5.2)

where k = 2 ·maxR. Since R+R ⊆ [0, k], we have

log(4k + 4 + |R+R|)
log(4k + 3 + 2|R|)

≤ log(5k + 4)

log(4k + 3)
(5.3)

which converges to 1 as k →∞. Therefore we do not expect to find large values of
log |A + A|/ log |A − A| when we pick R from [0, r] with r large. In fact, by (5.3)
we know that the maximum value of log |A+A|/ log |A−A| found with our method
has r < 2000.

The above analysis suggests that the value log |A+A|/ log |A−A| tends to 1 as
the size of A grows. We formalize that statement below.
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5.2. Proof of Theorem 1.3. Propositions 5.3 and 5.7 together prove the full
inequality (equation (1.2)) in Theorem 1.3. Proposition 5.8 proves the second half
of the theorem, equation (1.3).

Proposition 5.3. Let 0 ≤ d < δ ≤ σ < s with s+ d = σ + δ. For every ε > 0 and
a uniform random subset A ⊆ [0, n],

lim
n→∞

Pr

(
log |sA− dA|
log |σA− δA|

> 1 + ε

)
= 0. (5.4)

The idea is that for a set A with generalized MSTD fringe pair (L,R; k), A+A
and A − A are almost always full in the middle as n goes to infinity and then k
goes to infinity. We must first introduce a lemma from Zhao [Zh2, Lemma 2.13].

Lemma 5.4 (Zhao). Let n, k be positive integers with n > 2k. Let A be a uniform
random subset of [0, n]. Then

Pr([k + 1, 2n− k − 1] 6⊆ A+A) ≤ 3(3/4)k/2

2−
√

3

and

Pr([−n+ k + 1, n− k − 1] 6⊆ A−A]) ≤ 8

(
3

4

)k+2

+ (n+ 1)

(
3

4

)(n−1)/3

.

We now set up the proof of Proposition 5.3. Recall that a set A is k-affluent if
[k + 1, 2n− k − 1] ⊆ A+A and [−n+ k + 1, n− k − 1] ⊆ A−A. Fix ε > 0 and let

(1)

µn(L,R; k) = 2−n+1|{A ⊆ [0, n] : 0, n ∈ A,

A is affluent with fringe (L,R; k), log |sA−dA|
log |σA−δA| > 1 + ε}|,

(2)

λn = 2−n+1|{A ⊆ [0, n] : 0, n ∈ A, log |sA−dA|
log |σA−δA| > 1 + ε}|,

(3)

Λn = 2−n−1|{A ⊆ [0, n] : log |sA−dA|
log |σA−δA| > 1 + ε}|.

Our final goal is showing that limn→∞ Λn = 0. To show this, we prove that

0 =
∑

(L,R;k)

µn(L,R; k) = lim
n→∞

λn = lim
n→∞

Λn,

where
∑

(L,R;k) µn(L,R; k) is summing over all minimal MSTD fringe pairs (L,R; k).

Lemma 5.5. If µ = limn→∞
∑

(L,R;k) µn(L,R; k) exists, then limn→∞ λn = µ.

Proof. First notice that for any k < n,∑
k

µn(L,R; k) :=
∑

(L,R;k)

k≤k

µn(L,R; k) ≤ λn.

We may say this because of Lemma 2.7. We want to bound above the number
of sets which are counted in λn but not in

∑
k µn(L,R; k). Suppose A ⊆ [0, n],
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0, n ∈ A, and log |A+A|/ log |A−A| > 1 + ε but A is not k-affluent for any k ≤ k.
Let L = A ∩ [0, k], R = (n−A) ∩ [0, k]. There are two cases.

In the first case, (L,R; k) is not a generalized MSTD fringe pair. Since A is
generalized MSTD, A−A must be missing at least one element in [−n+ k+ 1, n−
k− 1]. In the second case, (L,R; k) is a generalized MSTD fringe pair. Then either
A+A 6⊇ [k + 1, 2n− k − 1] or A−A 6⊇ [−n+ k + 1, n− k − 1]. So the probability
that A is counted in λn but not in

∑
k µn(L,R; k) is bounded above by

Pr(A+A 6⊇ [k + 1, 2n− k − 1]) + Pr(A−A 6⊇ [−n+ k + 1, n− k − 1])

≤ 3(3/4)k/2

2−
√

3
+ 8

(
3

4

)k+2

+ (n+ 1)

(
3

4

)(n−1)/3

by Lemma 5.4. Let n go to infinity to get∑
k

µ(L,R; k) ≤ lim inf
n→∞

λn ≤

lim sup
n→∞

λn ≤
∑
k

µ(L,R; k) +
3(3/4)k/2

2−
√

3
+ 8

(
3

4

)k+2

.

Let k go to infinity to get µ =
∑

(L,R;k) µ(L,R; k) = limn→∞ λn. �

Proposition 5.6. For every ε > 0, µ = 0.

Proof. Fix n and suppose A ⊆ [0, n], 0, n ∈ A, A is affluent for some k < n/2 and
log |A+A|/ log |A−A| > 1+ε. Let L = A∩[0, k], R = (n−A)∩[0, k]. Then sA−dA
contains [−dn+ k+ 1, sn− k− 1] and σA− δA contains [−δn+ k+ 1, σn− k− 1].
This imposes strict bounds on log |sA−dA|/ log |σA−δA|. Note that the quantities
|(sR+ dL) ∩ [0, k]|, |(dL+ sR) ∩ [0, k]| are both bounded above by k + 1. Observe
the inequalities |sA− dA| ≤ (s+ d)n− 2k− 1 + 2k+ 2 and |σA− δA| ≥ (σ+ δ)n−
2k − 1 + (s+ d+ 1) (since −dn, . . . , sn ∈ σA+ δA). Thus

log |sA− dA|
log |σA− δA|

≤ log((s+ d)n− 2k − 1 + 2k + 2)

log((σ + δ)n− 2k − 1 + (s+ d+ 1))

≤ log((s+ d)n+ 1)

log((s+ d− 1)n+ s+ d)
, (5.5)

which goes to 1 as n goes to infinity. There is an N such that log((s + d)n +
1)/ log((s+ d− 1)n+ s+ d) < 1 + ε for all n > N . Therefore µn(L,R; k) is zero for
all n > N . This implies that µ =

∑
(L,R;k) µ(L,R; k) counts finitely many sets, so

µ = 0. �

To get rid of the stipulation that 0 and n are inA, we must show that limn→∞ Λn =
limn→∞ λn. This result may be found in [Zh2, Lemma 2.15]. This concludes the
proof of Proposition 5.3. The key point is showing that the proportion of afflu-
ent sets satisfying our property is the same as the proportion of all sets satisfying
our property, an idea first developed in [Zh2]. The pairs (s, d) and (σ, δ) may be
reversed to show that
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Proposition 5.7. Let 0 ≤ d < δ ≤ σ < s with s+ d = σ + δ. For every ε > 0 and
a uniform random subset A ⊆ [0, n],

lim
n→∞

Pr

(
log |sA− dA|
log |σA− δA|

< 1− ε
)

= 0. (5.6)

In fact, (5.5) shows that there are no affluent sets A for which |sA− dA|/|σA−
δA| ≥ (s + d)/(s + d − 1). Similarly, there are no affluent sets A for which |sA −
dA|/|σA− δA| ≤ (s+ d− 1)/(s+ d). Then we may say the following.

Proposition 5.8. Let 0 ≤ d < δ ≤ σ < s with s + d = σ + δ. For a uniform
random subset A ⊆ [0, n],

lim
n→∞

Pr

(
s+ d− 1

s+ d
<
|sA− dA|
|σA− δA|

<
s+ d

s+ d− 1

)
= 1. (5.7)

Remark 5.9. If s + d = σ + δ ≥ 3, then all of the instances of k-affluent sets in
the proof above may be replaced with k-rich sets.

6. Bi-MSTD Sets

We use similar techniques as in the previous sections to resolve the following
question: Is there a decomposition of [0, n] into two disjoint MSTD sets? We show
that for sufficiently large n, such decompositions do exist and, in fact, are a positive
proportion of all decompositions of [0, n] as n goes to infinity. Rather than starting
with an interval [0, n] and decomposing it, we consider the cases in which both A
and Ac := [minA,maxA] \A are MSTD. We first begin with some terminology.

6.1. Definitions.

Definition 6.1. We say that a set A ⊆ Z is bi-MSTD if A and Ac are both MSTD.

An example of a bi-MSTD set in [0, 19] is

A = {0, 1, 3, 7, 8, 10, 11, 12, 15, 17, 18, 19}. (6.1)

Both A and its complement Ac = {2, 4, 5, 6, 9, 13, 14, 16} are MSTD. Notice that
Ac − 2 is the smallest MSTD set up to translation and dilation, as proved by
Hegarty in [He]. By an exhaustive computer search, we determined that there are
no bi-MSTD sets in [0, 18]. To show that a positive proportion of subsets of [0, n]
are bi-MSTD, we use the framework developed by Zhao in [Zh2]. We must first
develop an analogue of fringe pairs for bi-MSTD sets.

Definition 6.2. A fringe pair (L,R; k) is bi-MSTD if

|(L+ L) ∩ [0, k]|+ |(R+R) ∩ [0, k]| > 2|(L+R) ∩ [0, k]|,
|(Lc + Lc) ∩ [0, k]|+ |(Rc +Rc) ∩ [0, k]| > 2|(Lc +Rc) ∩ [0, k]|,

(6.2)

where Lc = [0, k] \ L and Rc = [0, k] \R.

Recall from Definition 2.3 that a set A which has MSTD fringe pair (L,R; k)
and satisfies the property

A+A ⊇ [k + 1, 2n− k − 1]

is called rich, and a rich set with an MSTD fringe pair is MSTD. Therefore, if A
has a bi-MSTD fringe pair and satisfies

A+A ⊇ [k + 1, 2n− k − 1],

Ac +Ac ⊇ [k + 1, 2n− k − 1],
(6.3)
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then A is bi-MSTD. We call such sets bi-rich. We now show that the set of A ⊆ [0, n]
which are bi-rich has density one as n goes to infinity.

6.2. Proof of Theorem 1.4.

Lemma 6.3. Let 0 < 2k < n and A ⊆ [0, n] be a uniform random subset (dropping
the condition that 0, n ∈ A). Then

Pr([k + 1, 2n− k − 1] 6⊆ A+A or [k + 1, 2n− k − 1] 6⊆ Ac +Ac) ≤ 6(3/4)k/2

2−
√

3
.

Proof. We apply the union bound. The expression above is simply two times the
expression given in Lemma 5.4. �

Note that for k = 30,

Pr([k + 1, 2n− k − 1] 6⊆ A+A or [k + 1, 2n− k − 1] 6⊆ Ac +Ac) ≤ 0.299.

Thus a positive proportion of A ⊆ [0, n] are k-bi-rich (in fact, most of them are).
Now we simply need to find a bi-MSTD pair (L,R; k) with k = 30. We give an
example below:

L = {0, 1, 2, 5, 8, 10, 11, 12, 14, 15, 16, 18, 23, 25, 26, 28, 29},
R = {0, 1, 3, 4, 8, 10, 11, 13, 14, 15, 17, 19, 20, 22, 23, 24, 28}.

(6.4)

With this fringe pair, we have shown that for some sufficiently large N > 60,
for any n > N , the proportion of subsets of [0, n] which are bi-MSTD is bounded
below by a positive number. Since the bi-MSTD set in (6.1) is contained in [0, 19],
the same holds for n ≥ 19.

7. Future work

We end with a list of some interesting additional questions to pursue.

(1) We were able to construct a fringe pair for which |sA − dA| > |σA − δA|
for s + d = σ + d + 2 ≤ q and s > σ. Can we construct a fringe pair to
satisfy |sA − dA| > |σA − δA| for s + d = σ + d + 2 ≤ q for any sequence
{(s, d, σ, δ)i : s+ d = σ + δ = i, 2 ≤ i ≤ q} without using base expansion?

(2) As n goes to infinity, |sA − dA|/|σA − δA| is between (s + d − 1)/(s + d)
and (s + d)/(s + d − 1) almost all the time. For any ε > 0, is there a
positive proportion of A such that t < |sA − dA|/|σA − δA| < t + ε for
(s+d−1)/(s+d) < t < (s+d)/(s+d−1)− ε? What if instead of uniform
random subsets A ⊆ [0, n], we have the probability of j ∈ A ⊆ [0, n]
decaying with n?

(3) We showed that a positive proportion of subsets of [0, n] are bi-MSTD,
which is equivalent to showing that a positive proportion of decompositions
of [0, n] into two sets have the property that both sets are MSTD. Can we
decompose [0, n] into three sets which are MSTD? For any finite number
k, is there a sufficiently large n for which there is a k-decomposition into
MSTD sets?

(4) We found bi-MSTD fringe pairs by random searches and were not able to
come up with any deterministic algorithm to produce bi-MSTD fringe pairs.
Are there clean families of bi-MSTD fringe pairs? What about generalized
bi-MSTD fringe pairs?
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(5) We have shown that any arithmetic progression can be decomposed into
two MSTD sets, and such decompositions have positive density among all
decompositions of that arithmetic progression as n goes to infinity. What
are the sets which can be decomposed into two MSTD sets? With positive
density?

(6) In our proof that a positive proportion of subsets in [0, n] are bi-MSTD, we
showed that the proportion of bi-rich sets goes to one as n goes to infinity.
How quickly does the density go to one? How quickly does the proportion
of MSTD sets that are bi-MSTD increase with n?
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