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Abstract. We study low-lying zeroes of L-functions and their n-level density, which relies on a

smooth test function φ whose Fourier transform φ̂ has compact support. Assuming the generalized
Riemann hypothesis, we compute the nth centered moments of the 1-level density of low-lying
zeroes of L-functions associated with weight k, prime level N cuspidal newforms as N →∞, where

supp(φ̂) ⊂ (−2/n, 2/n). The Katz-Sarnak density conjecture predicts that the n-level density of
certain families of L-functions is the same as the distribution of eigenvalues of corresponding families
of orthogonal random matrices. We prove that the Katz-Sarnak density conjecture holds for the

nth centered moment of the 1-level density for test functions with φ̂ supported in (−2/n, 2/n), for
families of cuspidal newforms split by the sign of their functional equations. Our work provides
better bounds on the percent of forms vanishing to a certain order at the central point. Previous
work handled the 1-level for support up to 2 and the n-level up to min(2/n, 1/(n− 1)); we are able
to remove the second restriction on the support and extend the result to what one would expect,
based on the 1-level, by finding a tractable vantage to evaluate the combinatorial zoo of terms which
emerge.
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1. Introduction

Since Montgomery and Dyson’s discovery that the two point correlation of the zeros of the
Riemann zeta function agree with the pair correlation function for eigenvalues of the Gaussian
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Unitary Ensemble (see [Mon73]), the connection between the zeros of L-functions and the zeros
of random matrices has been a major area of study. It is now widely believed that the statistical
behavior of families of L-functions can be modeled by ensembles of random matrices. Based on
the observation that the spacing statistics of high zeros associated with cuspidal L-functions agree
with the corresponding statistics for eigenvalues of random unitary matrices under Haar measure
(see [RS96], for example), it was originally believed that only the unitary ensemble was important
to number theory. However, Katz and Sarnak [KS99a, KS99b] showed that these statistics are the
same for all classical compact groups. These statistics, the n-level correlations, are unaffected by
finite numbers of zeros. In particular, they fail to identify differences in behavior near s = 1/2.

The n-level density statistic was introduced to distinguish the behavior of families of L-functions
close to this central point. Based partially on an analogy with the function field setting, Katz and
Sarnak conjectured that the low-lying zeros of families of L-functions behave like the eigenvalues
near 1 of classical compact groups (unitary, symplectic, and orthogonal). The behavior of the
eigenvalues near 1 is different for each matrix group. A growing body of evidence has shown that
this conjecture holds for test functions with suitably restricted support for a wide range of families
of L-functions. For a non-exhaustive list, see [AM13, AAI+15, DM05, DM06, ERGR12, FM11,
Gao13, Gul05, HM07, ILS99, Mil04, MP10, OS93, OS06, RR07, Roy01, Rub01, ST12, You04].
Much of the previous work is focused on the n = 1 case. We study the nth centered moment of
the 1-level density; see Remark 1.5 for comments on how our resulted may be generalized to the
n-level density.

Here, we consider the family of L-functions associated with holomorphic automorphic forms,
and split this family according to the sign of the functional equation of the L-function. We prove
that the Katz-Sarnak conjecture holds for the nth centered moment of the 1-level density for test

functions φ with Fourier transform φ̂ supported in
(
− 2
n ,

2
n

)
. Hughes and Miller [HM07] looked at

the same family, and proved that the conjecture holds for φ̂ supported in
(
− 1
n−1 ,

1
n−1

)
for n ≥ 2.

However, new terms emerge on both the number theory and random matrix theory side which
obstructed calculations beyond this support, though based on the 1-level result it was thought that
one should be able to go up to 2/n for the n-level. Our main result is to develop an approach to
handle all the combinatorial terms which emerge for support up to 2/n, thus extending the support
to what the 1-level suggests. Thus, though our calculations are long and technical, the final result
matches expectations.

We first introduce some standard notation and definitions. Let H?
k(N) be the set of holomorphic

cusp forms of weight k which are newforms of level N . Every f ∈ H?
k(N) has a Fourier expansion

f(z) =

∞∑
n=1

af (n)qn. (1.1)

where q = e2πiz. Set λf (n) = af (n)n−(k−1)/2. The L-function associated to f is

L(s, f) =

∞∑
n=1

λf (n)n−s. (1.2)

The completed L-function is

Λ(s, f) :=

(√
N

2π

)s
Γ

(
s+

k − 1

2

)
L(s, f), (1.3)

and it satisfies the functional equation Λ(s, f) = εfΛ(1 − s, f) with εf = ±1. Therefore, H?
k(N)

splits into two disjoint subsets, H+
k (N) := {f ∈ H?

k(N) : εf = +1} and H−k (N) := {f ∈ H?
k(N) :

εf = −1}. Each L-function has a set of non-trivial zeros ρf = 1
2 + iγf . The Generalized Riemann

Hypothesis is the statement that all γf ∈ R for all f .
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Let φ be an even Schwartz function such that its Fourier transform has compact support. We are
interested in moments of the smooth counting function (also called the one-level density or linear
statistic)

D(f ;φ) :=
∑
γf

φ

(
logR

2π
γf

)
(1.4)

when averaged over H+
k (N) or H−k (N) (the split cases) as N → ∞ through the primes, with k

held fixed. Here γf runs through the non-trivial zeros of L(s, f), and R is its analytic conductor
(R = k2N for these families). We rescale the zeros by logR as this is the order of the number of
zeros with imaginary part less than a large absolute constant.1 Because of the rapid decay of φ,
most of the contribution in (1.4) is from zeros near the central point. We use the uniform average
over f ∈ Hσ

k (N) (for σ one of + or −), in the sense that if Q is a function defined on f ∈ Hσ
k (N),

then the average of Q over Hσ
k (N) is

〈Q(f)〉σ :=
1

|Hσ
k (N)|

∑
f∈Hσ

k (N)

Q(f). (1.5)

The corresponding statistic to D(f ;φ) in random matrix theory, denoted Zφ(U), is defined as
follows. First, for a Schwartz function φ on the real line, define

FM (θ) :=
∞∑

j=−∞
φ

(
M

2π
(θ + 2πj)

)
, (1.6)

which is 2π-periodic and localized on a scale of 1/M . For U an M × M unitary matrix with
eigenvalues eiθn , set

Zφ(U) :=
M∑
n=1

FM (θn). (1.7)

Note that going from eiθn to θn is well defined, since FM (θ) is 2π-periodic. We often consider U
to be a special orthogonal matrix when the eigenvalues occur in complex-conjugate pairs, and thus
are doubly counted.

We show that the random matrix moments of Zφ correctly model the moments of D(f ;φ), in

the sense that the nth centered moment of D(f ;φ) averaged over H+
k (N) equals the nth centered

moment of Zφ averaged over SO(even), and H−k (N) similarly corresponds to SO(odd). Our main
result is the following.

Theorem 1.1. Assume GRH for L(s, f) and Dirichlet L-functions. Let n ≥ 2, k ≥ 2 and supp(φ̂) ⊂(
− 2
n ,

2
n

)
. Then the nth centered moment of D(f ;φ) averaged over H±k (N) converges as N → ∞

through the primes to the nth centered moment of Zφ(U) averaged over SO(even/odd).

Theorem 1.1 follows immediately from Theorems 1.2 and 1.3 below. It is conjectured that the
nth centered moments from number theory agree with random matrix theory for any Schwartz test
function; our results above may be interpreted as providing additional evidence for this conjecture.

We find closed form expressions for the nth centered moments of both D(f, φ) and Zφ(U) for

test functions supported in supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
for some fixed positive integer a, with the

additional condition that supp(φ̂) ⊂
(
− 2
n ,

2
n

)
. To this end, we define σ2

φ, R(m, i;φ) and S(n, a;φ)

1Our analysis is greatly simplified by all forms in the family having the same analytic conductor. Varying con-
ductors are easily handled in 1-level calculations, but cause technical difficulties through cross terms once n ≥ 2, see
[Mil04].
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for an even Schwartz function φ and integers m and i ≤ m:

σ2
φ := 2

∫ ∞
−∞
|y|φ̂(y)2 dy (1.8)

and

R(m, i;φ) := 2m−1(−1)m+1
i−1∑
`=0

(−1)`
(
m

`

)(
−1

2
φm(0)

+

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(x`+1)

∫ ∞
−∞

φm−`(x1)
sin(2πx1(1 + |x2|+ · · ·+ |x`+1|))

2πx1
dx1 · · · dx`+1

)
(1.9)

and

S(n, a;φ) :=

ba−1
2
c∑

`=0

n!

(n− 2`)!`!
R(n− 2`, a− 2`;φ)

(
σ2
φ

2

)`
. (1.10)

Our main result is the following.

Theorem 1.2. Let n ≥ 2, k ≥ 2, supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
, supp(φ̂) ⊂

(
− 2
n ,

2
n

)
, D(f ;φ) be as in

(1.4), σ2
φ be as in (1.8), S(n, a;φ) be as in (1.10), and 1{n even} be the indicator function supported

at the even integers. Assume GRH for L(s, f) and for all Dirichlet L-functions. As N → ∞
through the primes,

lim
N→∞
N prime

〈(D(f ;φ)− 〈D(f ;φ)〉±)n〉± = 1{n even} · (n− 1)!! σnφ ± S(n, a;φ). (1.11)

To prove Theorem 1.1, we show that the nth centered moment of Zφ(U) is the same as the above
for the corresponding families. Our main random matrix theory result is as follows.

Theorem 1.3. When supp(φ̂) ⊆ [−1, 1], the means of Zφ(U) when averaged with respect to Haar
measure over SO(even) or SO(odd) are

µ± := lim
M→∞

M even/odd

ESO(M) [Zφ(u)] = φ̂(0) +
1

2

∫ 1

−1
φ̂(y) dy. (1.12)

Let φ be a Schwartz class test function such that supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
and supp(φ̂) ⊆

[
− 2
n ,

2
n

]
.

Let σ2
φ be as in (1.8), S(n, a;φ) be as in (1.10), and 1{n even} be the indicator function supported at

the even integers. Then the nth centered moment of Zφ(U) averaged over SO(even/odd) is

lim
M→∞

M even/odd

ESO(M) [(Zφ(U)− µ±)n] = 1{n even} · (n− 1)!! σnφ ± S(n, a;φ). (1.13)

When not splitting by sign, Hughes and Miller [HM07] study the nth centered moment of D(f ;φ)
averaged over H∗k(N), and prove the following.

Theorem 1.4 (Theorem E.1 of [HM07]). Assume GRH for L(s, f) and Dirichlet L-functions. For

n ≥ 1 an integer and 2k ≥ n, if supp(φ̂) ⊂ (− 2
n ,

2
n) then the nth centered moment of D(f ;φ)

averaged over H∗k(N) converges as N → ∞ through the primes to the nth centered moment of

Zφ(U) averaged over the mean2 of SO(even) and SO(odd).

2By the mean of SO(even) and SO(odd) we mean the ensemble where half the matrices are SO(even) and the
other half SO(odd).
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The condition 2k ≥ n arises from controlling error terms, in Appendix C we show how to remove
this condition so that Theorem 1.4 holds for all k.

Remark 1.5. Since the families of L-functions we study here are of constant sign, we have a better
understanding of the number of zeros at the central point than for many other families. Hence, our
arguments can be easily translated to give the n-level density, defined as

1

|H±k (N)|
∑

f∈H±k (N)

∑
j1,...,jn
ji 6=±jk

φ1

(
logR

2π
γ

(j1)
f

)
· · ·φn

(
logR

2π
γ

(jn)
f

)
, (1.14)

where the φi are even Schwartz functions whose Fourier transforms have compact support. We
study the nth centered moments to make it easier to compare our number theory and random
matrix theory results.

As noted in [HM07] and [Mil09], another application of centered moments is in bounding the order
of vanishing of L-functions at the central point. In Appendix D, we show how to use Theorem 1.2
to bound the probability that a newform with negative sign will have order of vanishing exceeding
some r at the central point. Similar calculations may be done for the positive sign family. Our
results provide the best known bounds (conditional on GRH) for order of vanishing at the central
point when r ≥ 5, surpassing [ILS99, HM07, BCD+20, LM22]. The test function used in these
calculations is not optimal for bounding order of vanishing; see [DM22] for a more developed
analysis with optimized test functions which give sharper bounds.

The primary obstacle which prevents the extension of support past the 1
n−1 proven in [HM07]

is the emergence of more complicated terms as the support of φ̂ increases. The main insight
which allows us to extend support is the observation that many of these terms vanish in the limit
(see Proposition 3.8). This allows us to mostly ignore their difficult combinatorics. The terms
which do contribute in the limit exhibit nicer symmetries, which allows us to handle their delicate
combinatorics and find closed form integrals for them (see Proposition 3.9). Our work also involves
many combinatorial simplifications so that our results may be compared with those from random
matrix theory. As with number theory, the key result which allows us to obtain greater support in
random matrix theory is the vanishing of many of the complicated terms which emerge at larger
supports (see Lemma 5.19).

The ability to extend the support of φ̂ up to 2/n for the nth centered moment of H±K(N) is ex-
pected from the work of [ILS99], who showed that the density conjecture holds for the first moment

of H±K(N) with supp(φ̂) ⊂ (−2, 2) under GRH for Dirichlet L-functions, though the later work of
[HM07] showed that actually reaching this would require handling challenging combinatorics. Note
2/n is a natural barrier, appearing in (2.35) and Lemmas 3.6 and 5.1. Proving the density conjec-
ture past this support likely requires new ideas or stronger hypotheses such as the “Hypothesis S”
discussed in Section 10 of [ILS99] (or more likely its generalizations).

The structure of this paper is as follows. In Section 2, we review notation and state some needed
estimates. In Section 3, we state the main lemmas that assist in calculating the relevant number
theory quantities, concentrating on the new terms that did not arise in the computations of [ILS99]
and [HM07]. Using these, we prove Theorem 1.2 in Section 3.3. In Section 4, we evaluate the terms
which arise in the number theory calculations, proving the two key propositions in Section 3. In
Section 5 we go over random matrix theory preliminaries and prove Theorem 1.3. In Appendix
A, we prove the lemmas stated in Section 3 and Section 4. In Appendix B, we prove some of
the remnant lemmas from Section 5. In Appendix C, we show how to use the tools developed in
Section 3 to remove the condition 2k ≥ n from Theorem 1.4. In Appendix D we use Theorem 1.2
in order to bound the percent of newforms vanishing to a certain order at the central point.
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2. Preliminaries

As we are extending the results of [HM07], we have the same preliminaries as they do, which we
reproduce with permission.

2.1. Notation.

Definition 2.1 (Gauss Sums). For χ a character modulo q and e(x) = e2πix,

Gχ(n) :=
∑

a mod q

χ(a)e(an/q), (2.1)

and |Gχ(n)| ≤ √q.

Definition 2.2 (Ramanujan Sums). If χ = χ0 (the principal character modulo q) in (2.1), then
Gχ0(n) becomes the Ramanujan sum

R(n, q) :=
∑∗

a mod q

e(an/q) =
∑
d|(n,q)

µ(q/d)d, (2.2)

where ∗ restricts the summation to be over all a relatively prime to q.

The Ramanujan sum satisfies the following identity:

R(n, q) = µ

(
q

(q, n)

)
ϕ(q)

ϕ
(

q
(q,n)

) . (2.3)

Definition 2.3 (Kloosterman Sums). For integers m and n,

S(m,n; q) :=
∑∗

d mod q

e

(
md

q
+
nd

q

)
, (2.4)

where dd ≡ 1 mod q. We have

|S(m,n; q)| ≤ (m,n, q)

√
min

{
q

(m, q)
,

q

(n, q)

}
τ(q), (2.5)

where τ(q) is the number of divisors of q; see Equation 2.13 of [ILS99].

Definition 2.4 (Fourier Transform). We use the following normalization:

φ̂(y) :=

∫ ∞
−∞

φ(x)e−2πixy dx, φ(x) :=

∫ ∞
−∞

φ̂(y)e2πixy dy. (2.6)

Definition 2.5 (Characteristic Function). For A ⊂ R, let

1{x∈A} :=

{
1 if x ∈ A
0 otherwise.

(2.7)

Throughout, we suppress the argument of a characteristic function when it is clear from context.

Definition 2.6 (Delta Function). For x, y ∈ R, let

δ(x, y) :=

{
1 if x = y

0 otherwise.
(2.8)

Definition 2.7 ((Infinite) GCD). For x, y ∈ Z, let (x, y) denote the greatest common divisor of x
and y. Set (x, y∞) = maxn∈N(x, yn) and (x∞, y) = maxn∈N(xn, y).

The Bessel function of the first kind occurs frequently in this paper, and so we collect here some
standard bounds for it (see, for example, [GR65, Wat66]).
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Lemma 2.8. Let k ≥ 2 be an integer. The Bessel function satisfies

(1) Jk−1(x)� 1,
(2) Jk−1(x)� x,
(3) Jk−1(x)� xk−1,

(4) Jk−1(x)� x−
1
2 .

We also utilize the Mellin transform of Jk−1(x), which we denote by Gk−1(s). By (6.561.14) of
[GR65] it is

Gk−1(s) =

∫ ∞
0

Jk−1(x)xs−1dx

= 2s−1Γ

(
k − 1 + s

2

)/
Γ

(
k + 1− s

2

)
(2.9)

where 1 − k < Re(s) < 3
2 . We take k ≥ 2 so that we may take Re(s) ∈ (−1, 3/2). The inverse

transform is

Jk−1(x) =
1

2πi

∫
Re(s)=c

Gk−1(s)x−sds (2.10)

where 1− k < c < 3
2 .

2.2. Fourier coefficients. Let k and N be positive integers with k even and N prime. We denote
by Sk(N) the space of all cusp forms of weight k for the Hecke congruence subgroup Γ0(N) of level
N . That is, f belongs to Sk(N) if and only if f is holomorphic in the upper half-plane, satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z) (2.11)

for all
(
a b
c d

)
∈ Γ0(N) :=

{(
α β
γ δ

)
: γ ≡ 0 mod N

}
, and vanishes at each cusp of Γ0(N).

Let f ∈ Sk(N) be a cuspidal newform of weight k and level N ; in our case this means f is a cusp
form of level N but not of level 1. It has a Fourier expansion

f(z) =
∞∑
n=1

af (n)e(nz), (2.12)

with f normalized so that af (1) = 1. We normalize the coefficients by defining

λf (n) := af (n)n−(k−1)/2. (2.13)

H∗k(N) is the set of all f ∈ Sk(N) which are newforms of level N . We split this set into two subsets,

H+
k (N) and H−k (N), depending on whether the sign of the functional equation of the associated

L-function (see Section 1 for details) is 1 or -1. From Equation (2.73) of [ILS99] we have for N > 1
that

|H±k (N)| =
k − 1

24
N +O

(
(kN)5/6

)
. (2.14)

This combined with Equation (1.16) of [ILS99], we have that for N 6= 1

|H∗k(N)| =
k − 1

12
N +O

(
(kN)5/6

)
. (2.15)

For simplicity we shall deal only with the case when N is prime, a fact which we will occasionally
remind the reader of (though, as in [ILS99], similar arguments work for N square-free). For a
newform of level N , λf (N) is related to the sign of the form ([ILS99], Equation 3.5).

Lemma 2.9. If f ∈ H∗k(N) and N is prime, then

εf = −ikλf (N)
√
N. (2.16)
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As εf = ±1, (2.16) implies |λf (N)| = 1/
√
N . Essential in our investigations are the multiplicative

properties of the Fourier coefficients.

Lemma 2.10. Let f ∈ H∗k(N). Then

λf (m)λf (n) =
∑

d|(m,n)
(d,N)=1

λf

(mn
d2

)
. (2.17)

In particular, if (m,n) = 1 then
λf (m)λf (n) = λf (mn). (2.18)

From [Guy00] we have the following expansion for λf (p)n:

λf (p)n =

n/2∑
α=0

[(
n

α

)
−
(

n

α− 1

)]
λf (pn−2α). (2.19)

Note that for a prime p - N ,
λf (p)2 = λf (p2) + 1. (2.20)

Now, consider

∆σ
k,N (n) :=

∑
f∈Hσ

k (N)

λf (n), σ ∈ {+,−, ∗}. (2.21)

Note we are not dividing by the cardinality of the family, which is of order N . Splitting by sign
and using Lemma 2.9 we have that if N is prime and (N,n) = 1,

∆±k,N (n) =
∑

f∈H∗k(N)

1

2
(1± εf )λf (n)

=
1

2
∆∗k,N (n) ∓ ik

√
N

2
∆∗k,N (nN). (2.22)

Thus, to execute sums over f ∈ H±k (N), it suffices to understand sums over all f ∈ H∗k(N).
Propositions 2.1, 2.11 and 2.15 of [ILS99] yield a useful form of the Petersson formula.

Lemma 2.11 ([ILS99]). If N is prime and (n,N2)|N then

∆∗k,N (n) = ∆′k,N (n) + ∆∞k,N (n), (2.23)

where

∆′k,N (n) =
(k − 1)N

12
√
n

δn,�Y

+
(k − 1)N

12

∑
(m,N)=1
m≤Y

2πik

m

∑
c≡0 mod N

c≥N

S(m2, n; c)

c
Jk−1

(
4π

√
m2n

c

)
, (2.24)

where δn,�Y = 1 only if n = m2 with m ≤ Y and 0 otherwise. The remaining piece, ∆∞k,N (n),

is called the complementary sum. By Lemma A.1 of [HM07], the complementary sum does not
contribute in all cases appearing in this paper.

In the applications we take Y = N ε and write c = bN for c ≡ 0 mod N . Using the estimate
on Kloosterman sums, (2.5), the bound on the Bessel function Jk−1(x)� x from Lemma 2.8, and
(2.14), we can trivially estimate ∆′k,N (n)/|H∗k(N)|. We obtain the following lemma.

Lemma 2.12. Assume (n,N) = 1. Then

1

|H∗k(N)|
∆′k,N (Nn) �

√
nN−

3
2

+ε. (2.25)
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2.3. Density and moment sums. Let f ∈ H∗k(N), and let Λ(s, f) be its associated completed
L-function, (1.3). The Generalized Riemann Hypothesis states that all the zeros of Λ(s, f) (i.e.,
the non-trivial zeros of L(s, f)) are of the form ρf = 1

2 + iγf with γf ∈ R. The analytic conductor

of Λ(s, f) is R = k2N , and its smooth counting function (also called the 1-level density) is

D(f ;φ) =
∑
γf

φ

(
logR

2π
γf

)
, (2.26)

where φ is an even Schwartz function whose Fourier transform has compact support and the sum is
over all zeros of Λ(s, f). Because φ decays rapidly, the main contribution to (2.26) is from zeros near
the central point. The explicit formula applied to D(f ;φ) gives (see Equation (4.25) of [ILS99])

D(f ;φ) = φ̂(0) +
1

2
φ(0)− P (f ;φ) +O

(
log logR

logR

)
, (2.27)

where

P (f ;φ) =
∑
p-N

λf (p)φ̂

(
log p

logR

)
2 log p
√
p logR

. (2.28)

While the derivation of (2.27) in [ILS99] uses GRH for L(s, sym2f), as they remark this formula
can be established on average over f by an analysis of the Petersson formula or from properties of
L(s, sym2f⊗sym2f) (see page 88 of [ILS99]). As in [HM07] we shall assume GRH for L(s, f) below

for ease of exposition. If supp(φ̂) ⊂ (−1, 1), [ILS99] show the P (f, φ) term does not contribute,

and hence limN→∞〈D(f ;φ)〉σ = φ̂(0) + 1
2φ(0) for any σ ∈ {+,−, ∗}. Thus it is enough to evaluate:

〈(D(f ;φ)− 〈D(f ;φ)〉σ)n〉σ =

〈(
−P (f ;φ) + O

(
log logR

logR

))n〉
σ

= (−1)n〈P (f ;φ)n〉σ + O

(
log logR

logR

)
. (2.29)

As in [HM07], we split by sign and use Lemma 2.9 to obtain∑
f∈H±k (N)

P (f ;φ)n =
∑

f∈H∗k(N)

1± εf
2

P (f ;φ)n

=
1

2

∑
f∈H∗k(N)

P (f ;φ)n ∓ 1

2

∑
f∈H∗k(N)

ik
√
Nλf (N)P (f ;φ)n. (2.30)

Since |H+
k (N)| ∼ |H−k (N)| ∼ 1

2 |H
∗
k(N)|, as N →∞ by (2.14) we have

〈P (f ;φ)n〉± ∼ 〈P (f ;φ)n〉∗ ∓ ik
√
N〈λf (N)P (f ;φ)n〉∗. (2.31)

In conclusion, if supp(φ̂) ⊂ (−1, 1), we have

lim
N→∞

〈(D(f ;φ)− 〈D(f ;φ)〉±)n〉± = (−1)n lim
N→∞

S
(n)
1 ± (−1)n+1 lim

N→∞
S

(n)
2 (2.32)

(assuming all limits exist), where

S
(n)
1 :=

∑
p1-N,...,pn-N

n∏
j=1

(
φ̂

(
log pj
logR

)(
2 log pj√
pj logR

))〈 n∏
j=1

λf (pi)

〉
∗

(2.33)

and

S
(n)
2 := ik

√
N

∑
p1-N,...,pn-N

n∏
j=1

(
φ̂

(
log pj
logR

)(
2 log pj√
pj logR

))〈
λf (N)

n∏
j=1

λf (pi)

〉
∗

. (2.34)
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Now, Lemma 3.1 and Theorem E.1 of [HM07] prove under GRH for L(s, f) that for supp(φ̂) ⊂(
− 2
n ,

2
n

)
with 2k ≥ n,

lim
N→∞
N prime

S
(n)
1 =

{
(2m− 1)!!σ2m

φ if n = 2m is even

0 if n is odd
. (2.35)

where

σ2
φ = 2

∫ ∞
−∞
|y|φ̂(y)2 dy. (2.36)

In Appendix C we show how to remove the condition 2k ≥ n so (2.35) holds for all k. Hence, to

find the nth moment of D(f, φ), for φ with supp φ̂ ⊂
(
− 2
n ,

2
n

)
, it suffices to compute the value of

S
(n)
2 . We begin this calculation in the following section.

3. Extending support for the moments of the 1-level density

In this section, we calculate the nth centered moment of D(f ;φ) with supp(φ̂) ⊂ (− 2
n ,

2
n). Note

that (2.32) expresses this value in terms of S
(n)
2 and S

(n)
1 . We break S

(n)
2 into subterms and first

show that certain subterms vanish in the limit. Then we apply various lemmas to the remaining
subterms before calculating them exactly in Section 4. The proofs of these lemmas are mostly
standard and can be found in Appendix A.

3.1. Eliminating subterms of S
(n)
2 . As in [HM07], we evaluate

S
(n)
2 := ik

√
N

∑
p1-N,...,pn-N

n∏
j=1

(
φ̂

(
log pj
logR

)(
2 log pj√
pj logR

))〈
λf (N)

n∏
j=1

λf (pj)

〉
∗

. (3.1)

We rewrite this sum over primes as a sum over powers of distinct primes. Suppose p1 · · · pn =

qn1
1 · · · q

n`
` , where q1, . . . , q` are distinct. We now have a way to write S

(n)
2 as a sum over some

`−tuple of distinct primes (q1, . . . , q`), given a fixed `−tuple of multiplicities (n1, . . . , n`). Hence,

S
(n)
2 can be written as a sum of terms of the form

E′(~n, ~m) := ik
√
N

∑
q1-N,...,q`-N
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj)〈
λf (Nqm1

1 · · · qm`` )
〉
∗ . (3.2)

Here, the mj ’s arise from the multiplicative properties of the Fourier coefficients given by (2.19).
We have that mj ≤ nj and mj ≡ nj (mod 2). Observe that in the sum, there is a distinctness
condition attached. It is advantageous to remove this distinctness condition, and we likewise define
terms of the form

E(~n, ~m) := ik
√
N

∑
q1-N,...,q`-N

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj)〈
λf (Nqm1

1 · · · qm`` )
〉
∗ . (3.3)

In the expansion of S
(n)
2 , the terms of the form (3.3) have an attached combinatorial coefficient

arising from choosing the indices of the primes, expanding the Fourier coefficients using Lemma 2.10,
and inclusion-exclusion from removing the distinctness condition in the sum. In general these
combinatorial coefficients are very difficult to calculate, however we are able to determine them in
the particular cases where they contribute in the limit. First we have the following property.



Extending support for the centered moments of the low lying zeroes of cuspidal newforms 11

Lemma 3.1. In a term of the form E(~n, ~m) suppose there is some j for which nj = mj and nj > 1.

Then this term has combinatorial coefficient 0 in the expansion of S
(n)
2 , and does not contribute.

Since terms in the expansion of S
(n)
2 must have mj ≤ nj , it suffices in the expansion of S

(n)
2 to

only consider terms E(~n, ~m) which satisfy nj > mj or nj = mj = 1 for each 1 ≤ j ≤ `. For each
term E(~n, ~m), we henceforth may reindex the sums so that nj > mj for 1 ≤ j ≤ ω and nj = mj = 1
for ω + 1 ≤ j ≤ ` for some 0 ≤ ω ≤ `. Noting that `− ω ≤ n, we define n′ := `− ω (so 0 ≤ n′ ≤ n)

and can write qω+1 = p1, qω+2 = p2, . . . , q` = pn−n′ . Thus each E(~n, ~m) appearing in S
(n)
2 has the

form

E(~n, ~m) = ik
√
N

∑
q1-N,...,qω -N

ω∏
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj)

×
∑

p1-N,...,pn−n′ -N

n−n′∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)
〈λf (Np1 · · · pn−n′qm1

1 · · · qmωω )〉∗ (3.4)

with each nj > mj and nj > 1. We next have the following result.

Lemma 3.2. Let E(~n, ~m) be as in (3.4). If supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
and n′ ≥ a then E(~n, ~m) is

O (N−ε).

This result states that E(~n, ~m) contributes in the limit only if “most” of the indices satisfy
nj = mj . The next section of our work involves explicitly calculates E(~n, ~m) as expressed in (3.4).

3.2. Simplifying the subterms. Next we apply the Petersson formula to (3.4). Since |H∗k(N)| ∼
N(k − 1)/12 from (2.15), applying (2.24) to (3.4) gives

E(~n, ~m) =
2n+1π√
N

∑
q1-N,...,qω -N

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1-N,...,pn−n′ -N

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∞∑
b=1

S(m2, NQ;Nb)

b
Jk−1

(
4πm
√
Q

b
√
N

)
+O

(
N−ε

)
. (3.5)

where Q = p1 · · · pn−n′qm1
1 · · · qmωω . Note that since R = k2N and supp(φ̂) ⊂

(
− 2
n ,

2
n

)
⊆ (−1, 1), for

sufficiently large N the condition that qj - N and pi - N in (3.5) is automatically satisfied so it can
be removed. We restrict the sum over b in (3.5) with the following two lemmas.

Lemma 3.3. Suppose supp(φ̂) ⊆
(
− 5

2(n−n′) ,
5

2(n−n′)

)
. Then the subterms of E(~n, ~m) in (3.5) for

which (b,N) > 1 are O (N−ε).

Lemma 3.4. Suppose supp(φ̂) ⊂
(
− 1000
n−n′ ,

1000
n−n′

)
. Then, the subterms of E(~n, ~m) in (3.5) for which

b ≥ N2022 are O(N−12).

Applying these to (3.5) gives

E(~n, ~m) =
2n+1π√
N

∑
q1,...,qω

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1,...,pn−n′

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

S(m2, NQ;Nb)

b
Jk−1

(
4πm
√
Q

b
√
N

)
+O

(
N−ε

)
. (3.6)
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Next, we convert the Kloosterman sums in (3.6) to Gauss sums with the following lemma.

Lemma 3.5. Let N be a prime not dividing b,Q,m. Then

S(m2, NQ;Nb) = − 1

ϕ(b)

∑
χ(b)

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
χ(N). (3.7)

Applying Lemma 3.5 to (3.6) gives

E(~n, ~m) = −2n+1π√
N

∑
q1,...,qω

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1,...,pn−n′

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

1

bϕ(b)

∑
χ(b)

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
χ(N)Jk−1

(
4πm
√
Q

b
√
N

)
+O

(
N−ε

)
.

(3.8)

The subterms involving non-principal characters in (3.8) are negligible in the limit. This leaves
only subterms involving χ0 = χ0 modulo b for each b, and Gχ0(x) = R(x, b), a Ramanujan sum,
definition. Additionally, note that χ0(N) = 1 since (b,N) = 1.

Lemma 3.6. Assume GRH for Dirichlet L-functions and suppose that supp(φ̂) ⊂
(
− 2
n−n′ ,

2
n−n′

)
.

Then the sum over all non-principal characters in (3.8) is O (N−ε).

Remark 3.7. Lemma 3.6 is the only place in our calculation of S
(n)
2 where GRH for Dirchlet

L-functions or the restriction supp(φ̂) ⊂
(
− 2
n ,

2
n

)
is necessary. Additionally, Lemma 3.6 corrects

an error made in Lemma 4.7 of [HM07], thus making their work unconditional on this result.

Applying Lemma 3.6 to (3.8) gives

E(~n, ~m) = −2n+1π√
N

∑
q1,...,qω

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1,...,pn−n′

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

R(m2, b)R((Q, b∞), b)

bϕ(b)
χ0

(
Q

(Q, b∞)

)
Jk−1

(
4πm
√
Q

b
√
N

)
+O

(
N−ε

)
.

(3.9)

In Section 4, we explicitly calculate E(~n, ~m) in two different cases starting from (3.9). Our first
result characterizes when E(~n, ~m) vanishes.

Proposition 3.8. Let E(~n, ~m) be defined as in (3.3) with nj +mj > 2 for some 1 ≤ j ≤ `. Under

GRH for L(s, f) and all Dirichlet L-functions, if supp(φ̂) ⊂
(
− 2
n ,

2
n

)
, then E(~n, ~m) = O(log−1N)

and vanishes in the limit.

The second result is the explicit calculation of the “main term,” when nj = mj for all j where
1 ≤ j ≤ n. In this case, we arrive at the following result.

Proposition 3.9. Let E(~n, ~m) be defined as in (3.3) with ` = n and nj = mj = 1 for 1 ≤ j ≤ n.

Under GRH for L(s, f) and all Dirichlet L-functions, if supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
and supp(φ̂) ⊂
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− 2
n ,

2
n

)
, then

E(~n, ~m) = ik
√
N

∑
q1-N,...,qn-N

n∏
j=1

φ̂

(
log qj
logR

)(
2 log qj√
qj logR

)
〈λf (Nq1 · · · qn)〉∗

= (−1)n+1R(n, a;φ) +O

(
log logN

logN

)
, (3.10)

where R(n, a;φ) is defined as in (1.9).

Next we show how to use Propositions 3.8 and 3.9 to complete the calculation of S
(n)
2 and prove

Theorem 1.2.

3.3. Evaluating S
(n)
2 . In this section we evaluate S

(n)
2 by proving the following lemma. By doing

so, we complete the proof of Theorem 1.2.

Lemma 3.10. Let S(n, a;φ) be as in (1.10). Under GRH for L(s, f) and all Dirichlet L-functions,

if supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
and supp(φ̂) ⊂

(
− 2
n ,

2
n

)
, then

S
(n)
2 = (−1)n+1S(n, a;φ) +O

(
log logN

logN

)
. (3.11)

Proof. By Proposition 3.8, S
(n)
2 may be written as the sum of terms of the form (3.3) with nj+mj ≤

2 for each j with an error of O(log−1N). Since nj ≡ mj (mod 2), then nj = mj = 1 or nj = 2
and mj = 0 for each j. Let E` denote the term E(~n, ~m) in which nj = 2 and mj = 0 for exactly `
values of j. By Lemma 3.2, if ` ≥ a/2, then E` will vanish in the limit. Thus we have that

S
(n)
2 =

ba−1
2
c∑

`=0

n!

2`(n− 2`!)`!
E` +O(log−1N). (3.12)

The combinatorial factor n!
2`(n−2`)!`!

arises from choosing the indices of the primes for which nj =

mj = 1, or nj = 2 and mj = 0. We choose the primes for which nj = mj = 1 in
(
n
2`

)
ways, and put

the remaining primes into pairs in (2`− 1)!! = (2`)!/(`!2`) ways. Multiplying and simplifying gives
the desired combinatorial coefficient. Now, to evaluate E`, we write

E` =
∑

q1-N,...,q`-N

∏̀
j=1

(
φ̂

(
log qj
logR

)2( 2 log qj√
qj logR

)2
)

× ik
√
N

∑
p1-N,...,pn−2`-N

n−n′∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)
〈λf (Np1 · · · pn−2`)〉∗ (3.13)

as in (3.4). By Proposition 3.9, the second line of the product in (3.13) equals (−1)n+1R(n−2`, a−
2`;φ) +O

(
log logN

logN

)
as defined in (1.9). We factor the remaining prime sums to get

E` = (−1)n+1

[
R(n− 2`, a− 2`;φ) +O

(
log logN

logN

)]∑
q-N

φ̂

(
log q

logR

)2 4 log2 q

q log2R

` . (3.14)

Similar to Lemma B.4 of [Mil02], we have by Riemann–Stieltjes integration that∑
q-N

φ̂

(
log q

logR

)2 4 log2 q

q log2R
= 2

∫ ∞
−∞
|y|φ̂(y)2dy = σ2

φ, (3.15)
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where σ2
φ is given by (1.8). Applying (3.15) to (3.14) we have that

E` = (−1)n+1
(
σ2
φ

)`
R(n− 2`, a− 2`;φ) +O

(
log logN

logN

)
. (3.16)

Applying this to (3.12) and comparing with (1.10) completes the proof of the lemma. �

Combining Lemma 3.10 with (2.32) and (2.35) completes the proof of Theorem 1.2. �

4. Explicit calculations of E(~n, ~m)

We continue the calculation of the terms E(~n, ~m) starting from (3.9) in order to prove Propo-
sitions 3.8 and 3.9. In Section 4.1 we convert our sums over primes into integrals by applying the
argument principle to ζ(s). We use these results to complete the proof of Proposition 3.8 in Section
4.2 by breaking up E(~n, ~m) into subterms which we show vanish. Then, we prove Proposition 3.9
by finding a closed form integral for E(~n, ~m) in Section 4.3 and doing combinatorial simplification

in Section 4.4. Throughout this section, we will assume that supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
for some

nonnegative integer a. Additionally, we assume supp(φ̂) ⊂
(
− 2
n ,

2
n

)
, so we may without loss of

generality take a ≤ dn/2e.
We begin by casing on the value of r := (Q, b∞) in (3.9). Recall that Q = p1 · · · pn−n′qm1

1 · · · qmωω
and reindex the prime sums so that r = (Q, b∞) = p1 · · · pαqm1

1 · · · qmθθ for some α ≤ n− n′, θ ≤ ω.
Thus E(~n, ~m) can be written as a sum of terms of the form

− 2n+1π√
N

∑
q1,...,qω

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1,...,pn−n′

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

p1,...,pα,q1,...,qθ|b

R(m2, b)R(r, b)

bϕ(b)
χ0 (Q/r) Jk−1

(
4πm
√
Q

b
√
N

)
+O

(
N−ε

)
. (4.1)

In the expansion of E(~n, ~m), the terms in (4.1) have a combinatorial coefficient attached from
choosing the indices of the primes which divide b. In the “main term,” where ω = 0 and so
nj = mj = 1 for all 1 ≤ j ≤ n, this coefficient is

(
n
α

)
and we simplify to get the explicit formula

A := E(~n, ~m)

= −
a−1∑
α=0

(
n

α

)
2n+1π

∑
p1,...,pα

α∏
j=1

φ̂

(
log pj
logR

)
log pj√
pj logR

∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

p1,...,pα|b

1

bϕ(b)
R(m2, b)R(p1 · · · pα, b)

×N−1/2
∑

pα+1,...,pn

Jk−1

(
4πm
√
p1 · · · pn

b
√
N

) n∏
j=α+1

φ̂

(
log pj
logR

)
χ0(pj) log pj√

pj logR
+O

(
N−ε

)
. (4.2)

In the sum over α in (4.2), the value of α ranges from 0 to a − 1 as if α > a − 1 the term is
O (N−ε), which follows by applying Jk−1(x) � x, R(m2, b) ≤ m4 and R(p1 · · · pα, b) ≤ ϕ(b). We
denote the term above by A for the remainder of the section.

4.1. Converting from sums to integrals. Now we focus on the inner sum on the second line of
(4.2), which we denote by B(α):

B(α) := N−1/2
∑

pα+1,...,pn

Jk−1

(
4πm
√
cpα+1 · · · pn
b
√
N

)
×

n∏
j=α+1

φ̂

(
log pj
logR

)
χ0(pj) log pj

p
1/2
j logR

, (4.3)



Extending support for the centered moments of the low lying zeroes of cuspidal newforms 15

where c is some fixed constant. In the context of (4.2), we take c = p1 · · · pα. We evaluate B(α) by
first converting from sums over primes to sums over integers through inclusion-exclusion. Then we
apply Lemma 4.4 to convert the sums over integers into integrals, and finish by doing combinatorial
simplification. Our main result is the following.

Lemma 4.1. Let B(α) be as in (4.3), set Φn−α−δ(x) = φ(x)n−α−δ, and suppose supp φ̂ ⊂
(
− 1
n−a ,

1
n−a

)
.

Under the Riemann Hypothesis for ζ(s), as N tends to infinity,

B(α) =
a−α−1∑
δ=0

(
n− α
δ

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
b

2πm
√
c

∑
p1,...,pδ

δ∏
j=1

φ̂

(
log pj
logR

)
χ0(pj) log pj
pj logR

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(cp1 · · · pδ)/4πm)

logR

)
dx

logR
+O

(
N−ε

)
. (4.4)

First, we want to convert the sums over primes in (4.3) into sums over integers. Define

C ′(α, β) := N−1/2
∑

pα+1,...,pn

∞∑
tα+1,...,tα+β=2

Jk−1

 4πm
√
cpα+β+1 · · · pn

b
√
N/(p

tα+1

α+1 · · · p
tα+β
α+β )


×

α+β∏
j=α+1

φ̂

(
tj log pj
logR

)
χ0(pj) log pj

p
tj/2
j logR

×
n∏

j=α+β+1

φ̂

(
log pj
logR

)
χ0(pj) log pj

p
1/2
j logR

. (4.5)

This is a remainder term when we convert β of the sums over primes in B(α) to sums over integers.
Note that B(α) = C ′(α, 0). Next, define

C(α, β) := N−1/2
∑

pα+1,...,pα+β

∞∑
tα+1,...,tα+β=2

∞∑
vα+β+1,...,vn=1

Jk−1

 4πm
√
cvα+β+1 · · · vn

b
√
N/(p

tα+1

α+1 · · · p
tα+β
α+β )


×

α+β∏
j=α+1

φ̂

(
tj log pj
logR

)
χ0(pj) log pj

p
tj/2
j logR

×
n∏

j=α+β+1

φ̂

(
log vj
logR

)
χ0(vj)Λ(vj)

v
1/2
j logR

. (4.6)

This is the result of converting the inner prime sums in C ′(α, β) to sums over integers (which
are expressed as vα+β, . . . , vn). The following relation between C and C ′ holds via a partitioning
argument.

Property 4.2. For any ε > 0,

C ′(α, β) = C(α, β)−
a−1−α−β∑

i=1

(
n− α− β

i

)
C ′(α, β + i) +O(N−ε). (4.7)

We are able to restrict the sum over i in (4.7) up to a− 1−α− β as when i > a− 1−α− β the
term is O (N−ε) (which be seen by taking Jk−1(x)� 1 in (4.5)). We repeatedly apply Property 4.2
to B(α) to get the following relation between B and C.

Property 4.3. For any ε > 0,

B(α) =
a−1−α∑
i=0

(
n− α
i

)
C(α, i)(−1)i +O(N−ε). (4.8)

Proof of Property 4.3. We proceed by induction. Define the sum

B′(α, η) :=

η∑
i=0

(
n− α
i

)
C(α, i)(−1)i −

a−1−α∑
i=η+1

(
n− α
i

)
C ′(α, i)

η∑
j=0

(−1)j
(
i

j

)
+O

(
N−ε

)
. (4.9)
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Our inductive hypothesis is that B′(α, η) = B(α). The base case η = 0 holds by Property 4.2 and
the fact that B(α) = C ′(α, 0). For the inductive step, we assume that B′(α, k) = B(α) for some
non-negative integer k and show that under this assumption, B′(α, k+1) = B(α). By the inductive
hypothesis we have

B(α) =
k∑
i=0

(
n− α
i

)
C(α, i)(−1)i −

a−1−α∑
i=k+1

(
n− α
i

)
C ′(α, i)

k∑
j=0

(−1)j
(
i

j

)
+O(N−ε). (4.10)

We examine the i = k+ 1 term in the second sum and simplify it using the fact (from the binomial

theorem) that
∑k+1

j=0(−1)j
(
k+1
j

)
= 0:

−
(
n− α
k + 1

)
C ′(α, k + 1)

k∑
j=0

(−1)j
(
k + 1

j

)
=

(
n− α
k + 1

)
(−1)k+1C ′(α, k + 1). (4.11)

Applying Property 4.2 (and reindexing the sum using a change of variables ` = k + 1 + j) gives(
n− α
k + 1

)
(−1)k+1C ′(α, k + 1)

=

(
n− α
k + 1

)
(−1)k+1

C(α, η + 1)−
a−α−k∑
j=1

(
n− α− k − 1

j

)
C ′(α, k + 1 + j)

+O
(
N−ε

)
=

(
n− α
k + 1

)
(−1)k+1C(α, k + 1)−

a−α−k∑
j=1

(
n− α

k + 1 + j

)(
k + 1 + j

k + 1

)
(−1)k+1C ′(α, k + 1 + j) +O(N−ε)

=

(
n− α
k + 1

)
(−1)k+1C(α, k + 1)−

a−α−1∑
`=k+2

(
n− α
`

)(
`

k + 1

)
(−1)k+1C ′(α, `) +O(N−ε). (4.12)

Substituting this term back into (4.10) gives B(α) = B′(α, k+ 1), proving the inductive hypothesis
and completing the proof of the property. �

Property 4.3 allows us to convert the prime sums in B(α) to sums over integers in C(α, β), with
β of the sums being over higher powers of primes which are “left over” from this conversion. We
convert from sums to integrals using the following lemma, which generalizes Lemma 4.9 of [HM07]
and is proven in Appendix A.7.

Lemma 4.4. Set Φn−η−γ(x) = φ(x)n−η−γ. Under the Riemann Hypothesis for ζ(s), if supp(φ̂) ⊂(
− 1
n−a ,

1
n−a

)
, then, as N tends to infinity,

∑
v1,...,vn−η

[
n−η∏
i=1

φ̂

(
log vi
logR

)(
χ0(vi)Λ(vi)√
vi logR

)]
Jk−1

(
4πm
√
cv1 · · · vn−η
b
√
N

)

=

a−η−1∑
γ=0

a−η−1∑
j=γ

(−1)j−γ
(
n− η
j

)(
j

γ

)
b
√
N

2πm
√
c

∞∑
v1,...,vγ=1

[
γ∏
i=1

φ̂

(
log vi
logR

)
χ0(vi)Λ(vi)

vi logR

]

×
∫ ∞
x=0

Jk−1(x)Φ̂n−η−γ

(
2 log(bx

√
N/(cv1 · · · vγ)/4πm)

logR

)
dx

logR
+O

(
N1/2−ε

)
. (4.13)

We apply Lemma 4.4 in order to convert the sums in C(α, β) into integrals (see (4.6) for the
definition of C(α, β)). To do so, we first define the following term which emerges from applying
Lemma 4.4:
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D(α, β, γ) :=
b

2πm
√
c

∑
pα+1,...,pα+β+γ

∞∑
tα+1,...,tα+β=2

∞∑
tα+β+1,...,tα+β+γ=1

(4.14)

×
∫ ∞
x=0

Jk−1(x) ̂Φn−α−β−γ

(
2 log(bx

√
N ′′/4πm)

logR

)
dx

logR

α+β+γ∏
j=α+β+1

φ̂

(
tj log pj
logR

)
χ0(pj) log pj

p
tj
j logR

.

(4.15)

Here, N ′′ = N/(cp
tα+1

α+1 · · · p
tα+β+γ
α+β+γ). The three sums in (4.15) can be interpreted as follows: the first

α primes are those that divide b; the next two sums involving β powers of primes are those left
over from converting to sums over integers; and the last sums over γ integers are those left over
from applying Lemma 4.4. We have the following relation between C(α, β) and D(α, β, γ).

Property 4.5. We have(
n− α
β

)
C(α, β) =

a−α−β−1∑
γ=0

D(α, β, γ)

[
a−α−β−γ−1∑

i=0

(−1)i
(
n− α
γ + β

)(
n− α− β − γ

i

)(
γ + β

γ

)]
+O

(
N−ε

)
. (4.16)

Proof. Carefully applying Lemma 4.4 to C(α, i) using the definition in (4.6) gives

(
n− α
β

)
C(α, β) =

(
n− α
β

) a−α−β−1∑
γ=0

D(α, β, γ)

a−α−β−1∑
j=γ

(−1)j−γ
(
n− α− β

j

)(
j

γ

)+O
(
N−ε

)
.

(4.17)
The property follows from reindexing the sum by setting i = j − γ and simplifying. �

We apply Property 4.5 to our formula for B(α) given by Property 4.3.

Property 4.6. We have

B(α) =

a−α−1∑
δ=0

(
n− α
δ

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

) δ∑
γ=0

(−1)δ−γ
(
δ

γ

)
D(α, δ − γ, γ) +O

(
N−ε

)
.

(4.18)

Proof. The proof follows from applying Property 4.5 to (4.8) and collecting terms with δ = β+γ. �

We want to eliminate the remaining sums over powers of primes in D by recombining terms.
First we define the following term.

G(α, δ) :=
b

2πm
√
c

∑
p1,...,pδ

∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(cp1 · · · pδ)/4πm)

logR

)
dx

logR

×
α+δ∏
j=α+1

φ̂

(
log pj
logR

)
χ0(pj) log pj
pj logR

. (4.19)

D(α, β, γ) and G(α, δ) (where δ = β + γ, as above) satisfy the following relation:

Property 4.7. We have

G(α, δ) =

δ∑
γ=0

(−1)δ−γ
(
δ

γ

)
D(α, δ − γ, γ). (4.20)
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To prove this, we first prove an intermediate result.

Lemma 4.8. Let f(t1, . . . , tn) be a symmetric function which takes as an input a finite sequence
t1, . . . , tn of arbitrary length and define the following transform T (i, j) on f :

T (i, j)(f) :=

∞∑
t1,...,ti=2

∞∑
s1,...,sj=1

f(t1, . . . , ti, s1, . . . , sj). (4.21)

Then
n∑
i=0

(−1)i
(
n

i

)
T (i, n− i)(f) = f([1]n) (4.22)

where [1]n is a sequence of n 1’s.

Proof. We proceed by induction on n. The base case n = 1 holds immediately. Assume the result
holds up to n and define a new function g(t1, . . . , tn) = f(t1, . . . , tn, 1). Then

f([1]n+1) = g([1]n)

=

n∑
i=0

(−1)i
(
n

i

) ∞∑
t1,...,ti=2

∞∑
s1,...,sn−i=1

f(t1, . . . , ti, s1, . . . , sn−i, 1)

=
n∑
i=0

(
n

i

)[
(−1)iT (i, n+ 1− i)(f) + (−1)i+1T (i+ 1, n+ 1− (i+ 1))(f)

]
=

n+1∑
i=0

(−1)iT (i, n+ 1− i)(f)

(
n+ 1

i

)
, (4.23)

proving the inductive hypothesis and the result. �

Proof of Property 4.7. This is just a special case of Lemma 4.8. It follows from setting f([1]δ) =
G(α, δ) and T (i, j) = D(α, i, j). �

Applying Property 4.7 to (4.18) gives the following relation between B(α) and G(α, δ).

Property 4.9. We have

B(α) =
a−α−1∑
δ=0

(
n− α
δ

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
G(α, δ). (4.24)

Applying the definition of G(α, δ) from (4.19) to (4.24) completes the proof of Lemma 4.1. �

4.2. Vanishing off the diagonal. In this section we complete the proof of Proposition 3.8 using
Lemma 4.1. First we apply Lemma 4.1 to (4.1) with c = p1 · · · pαqm1

1 · · · qmωω . Since E(~n, ~m) is a
sum of a fixed number of terms of the form (4.1), in order to prove Proposition 3.8 it suffices to
show that these terms vanish when nj +mj > 2 for some j. We do so in Lemma 4.10, which relies
on eliminating the sum over b using Lemma 4.11 followed by careful bounding of the result. Since
we eventually show that these terms vanish, we omit the combinatorial coefficients. Recall that
Q = p1 · · · pn−n′qm1

1 · · · qmωω and r = (Q, b∞) = p1 · · · pαqm1
1 · · · qmθθ . Then, E(~n, ~m) can be written

as a sum of terms of the form
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∑
q1,...,qω

ω∏
j=1

φ̂

(
log qj
logR

)nj lognj qj

q
(nj+mj)/2
j lognj R

∑
p1,...,pα+δ

α+δ∏
i=1

φ̂

(
log pi
logR

)
log pj
pj logR

×
∑
m≤Nε

1

m2

∑
(b,N)=1
b<N2022

p1,...,pα,q1,...,qθ|b

R(m2, b)R(p1 · · · pαqm1
1 · · · qmθθ , b)

ϕ(b)
χ0

(
pα+1 · · · pα+δq

mθ+1

θ+1 · · · q
mω
ω

)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(p1 · · · pα+δq

m1
1 · · · qmωω )/4πm)

logR

)
dx

logR
+O

(
N−ε

)
.

(4.25)

We simplify this term in a few ways. First, we extend the b sum by removing the condition
b < N2022, as the integral decays rapidly with respect to b. Next, the principal character modulo
b equals 1 when (b, pα+1 · · · pα+δqθ+1 · · · qω) = 1 and 0 otherwise, so we may add this condition to
the sum over b and remove the character. Thus (4.25) equals

∑
q1,...,qω

ω∏
j=1

φ̂

(
log qj
logR

)nj lognj qj

q
(nj+mj)/2
j lognj R

∑
p1,...,pα+δ

α+δ∏
i=1

φ̂

(
log pi
logR

)
log pj
pj logR

×
∑
m≤Nε

1

m2

∑
(b,Npα+1···pα+δqθ+1···qω)=1

p1,...,pα,q1,...,qθ|b

R(m2, b)R(p1 · · · pαqm1
1 · · · qmθθ , b)

ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(p1 · · · pα+δq

m1
1 · · · qmωω )/4πm)

logR

)
dx

logR
+O

(
N−ε

)
.

(4.26)

We break up the term (4.26) in two ways. First, we convert the sums over qj and pi into sums
over distinct primes, requiring us to case on when some of the primes in the sum are equal. Next,
we case on the multiplicity of the primes dividing b. Thus we see that E(~n, ~m) can be written as a
sum of terms of the form

F (~a,~b,~c, ~d,~e) :=
∑

q1,...,q`
qj distinct

∏̀
j=1

φ̂

(
log qj
logR

)aj logaj qj

q
bj
j logaj R

∑
m≤Nε

1

m2

∑
(b′,Nq1...q`)=1

b=b′q
c1
1 ···q

cκ
κ

R(m2, b)R(qd11 · · · qdκκ , b)
ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−ν

2 log(b′x
√
Nqe11 · · · q

e`
` /4πm)

logR

 dx

logR
(4.27)

with an error term of O (N−ε), where ai, bi, ci, and di are positive integers, and the ei’s are integers.
Additionally, we have that

∑
aj = ν and bi > 1 for some i since nj + mj > 2 for some j. Lastly,

we have that bj ≥ dj for all j, since nj ≥ mj in (4.26). Since E(~n, ~m) is the sum of terms of the
form (4.27) with some bi > 1, proving the following lemma completes the proof of Proposition 3.8.
The next lemma is also useful in Section 4.3.

Lemma 4.10. Let F (~a,~b,~c, ~d,~e) be defined as in (4.27) with aj , bj , cj , dj positive integers, ej inte-

gers, bj ≥ dj for all 1 ≤ j ≤ κ. If bi > 1 or di < ci for some i, then F (~a,~b,~c, ~d,~e)� O(log−1N).

In order to prove this lemma, we need the following integral identity, which generalizes Section
7 of [ILS99] and is proven in Appendix A.8.
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Lemma 4.11. Let φ be an even Schwartz class function such that the Fourier transform φ̂ has
compact support. Then∑

(b,M)=1

R(1, b)R(m2, b)

ϕ(b)

∫ ∞
0

Jk−1(y)φ̂

(
2 log(by

√
Q/4πm)

logR

)
dy

logR

= δ

(
m

(m,M∞)
, 1

)
ϕ(M)

M

(
−1

2

∫ ∞
−∞

φ(x) sin

(
2πx

log(k2Q/16π2m2)

logR

)
dx

2πx
+

1

4
φ(0)

)
+Oε′

(
mε′ log logM

logR

)
, (4.28)

where the implied constant depends on ε′.

While the error term limits the effectiveness of this bound in the m aspect, in practice we only
need to take ε′ � 1/n. To prove Lemma 4.10, we only need the above lemma to show that the sum
over b is bounded by mε. We use the full result in Section 4.3 to prove Proposition 3.9.

Proof of Lemma 4.10. We begin by expanding the fraction in the sum over b in (4.27) using
the multiplicative properties of Ramanujan sums and ϕ and the fact that b = b′qc11 · · · qcκκ with
(b′, Nq1 · · · q`) = 1. Doing so gives

R(m2, b)R(qd11 · · · qdκκ , b)
ϕ(b)

= X
R(m2, b′)R(m2, qc11 · · · qcκκ )R(1, b′)

ϕ(b′)
, (4.29)

where X = R(qd11 · · · qdκκ , q
c1
1 · · · qcκκ )/ϕ(qc11 · · · qcκκ ). Applying (4.29) to (4.27) gives

F (~a,~b,~c, ~d,~e) =
∑

q1,...,q`
qj distinct

∏̀
j=1

φ̂

(
log qj
logR

)aj logaj qj

q
bj
j logaj R

∑
m≤Nε

X
R(m2, qc11 · · · qcκκ )

m2

×
∑

(b′,Nq1...q`)=1

R(m2, b′)R(1, b′)

ϕ(b′)

∫ ∞
x=0

Jk−1(x)Φ̂n−ν

(
2 log(b′x

√
Q/4πm)

logR

)
dx

logR
,

(4.30)

where Q = Nqe11 · · · q
e`
` . By Lemma 4.11, we have that the sum over b′ in (4.30) is� mε. Applying

this bound to (4.30) gives

F (~a,~b,~c, ~d,~e) �
∑

q1,...,q`
qj distinct

∏̀
j=1

φ̂

(
log qj
logR

)aj logaj qj

q
bj
j logaj R

∑
m≤Nε

X

∣∣R(m2, qc11 · · · qcκκ )
∣∣

m2−ε . (4.31)

We bound the sum over m using the multiplicative properties of Ramanujan sums as

∑
m≤Nε

X

∣∣R(m2, qc11 · · · qcκκ )
∣∣

m2−ε �

 ∑
(m′,q1···pκ)=1

1

(m′)2−ε

 κ∏
i=1

∑
t≥0

|R(q2t
i , q

ci
i )||R(qdii , q

ci
i )|

q
(2−ε)t
i ϕ(qcii )

 . (4.32)

The sum over m′ converges absolutely. Now we analyze the sum over t, primarily relying on (2.3)
to bound the Ramanujan sums. When 2t < ci − 1, then R(q2t

i , q
ci
i ) = 0. When 2t = ci − 1, then

R(q2t
i , q

ci
i ) = q2t

i . When 2t ≥ ci, we have that R(q2t
i , q

ci
i ) = ϕ(qcii ) ≤ qcii .

When di ≥ ci, we may apply the bound |R(qdii , q
ci
i )| ≤ ϕ(qcii ) to find that the sum over t is

O(q
εbci/2c
i ). When di < ci, we use the bound |R(qdii , q

ci
i )| ≤ qdii to find that the sum over t is

O(q
−1+εbci/2c
i ). Applying these bounds to (4.31) gives
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F (~a,~b,~c, ~d,~e) �
∑

q1,...,q`
qj distinct

∏̀
j=1

φ̂

(
log qj
logR

)aj logaj qj

q
bj+ηj−εbcj/2c
j logaj R

, (4.33)

where ηj = 1 if dj < cj and 0 otherwise. Removing distinctness from (4.33) and factoring gives

F (~a,~b,~c, ~d,~e) �
∏̀
j=1

[∑
p

φ̂

(
log p

logR

)aj logaj p

pbj+ηj−εbcj/2c logaj R

]
. (4.34)

Set xj = bj + ηj − εbcj/2c. If xj > 1, the sum over p in (4.34) is O(log−aj R). If xj = 1, then the
sum is O(1). First suppose that dj ≥ cj . By assumption we have that bj ≥ dj so bj ≥ cj so if bj = 1
then xj = 1 and if bj > 1 then xj > 1. If dj < cj , then we have xj > 1. We have shown that each
xj ≥ 1, so each term in the product in (4.34) is at most O(1). By assumption there exists some i
for which either di < ci or bj > 1. By the above arguments, we have that xi > 1, so the ith factor

in (4.34) is then O(log−ai R)� O(log−1N), since ai > 0 by assumption. Taking the product over

all j, we then have that F (~a,~b,~c, ~d,~e)� O(log−1N), completing the proof of the lemma. �

By the above lemma and the arguments preceding (4.27), E(~n, ~m) can be written as the sum of
finitely many terms, the number of which is independent of N and each of which is O(log−1N) if
nj +mj > 2 for some j. This completes the proof of Proposition 3.8.

4.3. Converting to closed form integrals. Now we resume proving Proposition 3.9 by first
applying Lemma 4.1 to (4.2). Then we apply Lemma 4.11 to the result before simplifying by
carefully bounding error terms. Applying Lemma 4.1 to (4.2) and simplifying gives

A = −
a−1∑
α=0

(
n

α

) a−α−1∑
δ=0

(
n− α
δ

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
2n

∑
p1,...,pα+δ

∑
m≤Nε

1

m2

×
∑

(b,Npα+1···pα+δ)=1
p1,...,pα|b

R(m2, b)R(p1 · · · pα, b)
ϕ(b)

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(p1 · · · pα+δ)/4πm)

logR

)
dx

logR
+O

(
N−ε

)
, (4.35)

where we eliminate the character and modify the sum over b as in the beginning of Section 4.2. Let
H(α, δ) denote the sum over primes in (4.35) for some fixed α, δ so that

H(α, δ) :=
∑

p1,...,pα+δ

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

∑
m≤Nε

1

m2

∑
(b,Npα+1···pα+δ)=1

p1,...,pα|b

R(m2, b)R(p1 · · · pα, b)
ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(4πm

√
p1 · · · pα+δ))

logR

)
dx

logR
. (4.36)

Our main result is the following.



22 Cohen, Dell, González, Iyer, Khunger, Kwan, Miller, Shashkov, Smith Reina, Sprunger, Triantafillou, Truong, Van Peski, Willis, Yang

Lemma 4.12. Let H(α, δ) be defined as above. Then

H(α, δ) = −2−1−α−δ(−1)α
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xα+δ+1)

×
[∫ ∞
−∞

φn−α−δ(x1)
sin (2πx1(1 + |x2|+ · · ·+ |xα+1| − |xα+2| − · · · − |xα+δ+1|))

2πx1
dx1

− 1

2
φn−α−δ(0)

]
dx2 · · · dxα+δ+1 +O

(
log logN

logN

)
. (4.37)

First, we transform the sum over the primes p1, . . . , pα+δ in H(α, δ) to a sum over distinct primes.

Property 4.13. A distinctness condition may be added to (4.36), introducing an error of O(log−1N).

Proof. To introduce the distinctness condition, we apply inclusion-exclusion by casing on which
primes are equal. If pi = pj for some 1 ≤ i ≤ α and α + 1 ≤ j ≤ α + δ, then the corresponding
term of H(α, δ) is zero due to the condition on the sum over b. Thus, without loss of generality,

we let p1 · · · pα = qu11 · · · q
uα′
α′ and pα+1 · · · pα+δ′ = q

uα′+1

α′+1 · · · q
uα′+δ′
α′+δ′ , where the primes qi are distinct

and at least one ui > 1. Thus, when adding a distinctness condition to H(α, δ), we add additional
terms of the form

∑
q1,...,qα′+δ′
qi distinct

α′+δ′∏
j=1

φ̂

(
log qj
logR

)uj loguj qj

q
uj
j loguj R

∑
m≤Nε

1

m2

∑
(b,Nqα′+1···qα′+δ′ )=1

q
u1
1 ,...,q

uα′
α′ |b

R(m2, b)R(qu11 · · · q
uα′
α′ , b)

ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

2 log(bx
√
N/(4πm

√
qu11 · · · q

uα′+δ′
α′+δ′ ))

logR

 dx

logR
. (4.38)

After breaking up (4.38) based on the multiplicities of the primes dividing b, we may appeal to
Lemma 4.10 to find that the these terms are O(log−1N) since at least one ui > 1, completing the
proof of the property. �

Now that we have introduced a distinctness condition, we case on the multiplicities of the
primes dividing b. Suppose we take the b sum in (4.36) over all b satisfying b = b′pc11 · · · pcαα
with (b′, p1 · · · pα) = 1. Then, again utilizing Lemma 4.10, we find that if any ci > 1 then the
corresponding term is O(log−1N). Thus, the only case which contributes is when each ci = 1, so
we find that

H(α, δ) =
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

∑
m≤Nε

1

m2

∑
b=b′p1···pα

(b′,Np1···pα+δ)=1

R(m2, b)R(p1 · · · pα, b)
ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(4πm

√
p1 · · · pα+δ))

logR

)
dx

logR
+O(log−1N).

(4.39)

We simplify the fraction in the b sum using the multiplicative properties of Ramanujan sums
and ϕ and the fact that b = b′p1 · · · pα with (b′, Np1 · · · pα+δ) = 1. Doing so gives

R(m2, b)R(p1 · · · pα, b)
ϕ(b)

=
R(m2, b′)R(m2, p1 · · · pα)R(1, b′)

ϕ(b′)
, (4.40)



Extending support for the centered moments of the low lying zeroes of cuspidal newforms 23

where we use the fact that R(x, x) = ϕ(x) from (2.3). Applying this to (4.39) and setting Q =
Np1 · · · pα/(pα+1 · · · pα+δ) gives

H(α, δ) =
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

∑
m≤Nε

1

m2
R(m2, p1 · · · pα)

×
∑

(b′,Np1···pα+δ)=1

R(m2, b′)R(1, b′)

ϕ(b′)

∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(b′x

√
Q/(4πm))

logR

)
dx

logR

+O(log−1N). (4.41)

Now we are ready to apply Lemma 4.11 to the sum over b′ in (4.41). First we show that

the resulting error term, which arises from the error term in (4.28), is O
(

log logN
logN

)
. Using the

multiplicativity of Ramanujan sums, we find that the sum over m in the error term is

∑
m≤Nε

R(m2, p1 · · · pα)

m2
O

(
mε log logN

logN

)
� log logN

logN

∑
(m′,p1···pα)=1

1

(m′)2−ε

α∏
i=1

∑
t≥0

R(p2t
i , pi)

p
(2−ε)t
i

 .
(4.42)

The sum over m′ converges absolutely. When t = 0, R(p2t
i , pi) = R(1, pi) = 1. When t > 0,

R(p2t
i , pi) = ϕ(pi) < pi. From this it is clear that the sum over t is bounded above by an absolute

constant independent of pi so the sum over m is O
(

log logN
logN

)
. Introducing this into the sum over

primes, we find that in all the error term is O
(

log logN
logN

)
. Thus, after applying Lemma 4.11 to

(4.41), we have that

H(α, δ) =
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

∑
m≤Nε

1

m2
R(m2, p1 · · · pα)δ

(
m

(m,M∞)
, 1

)
ϕ(M)

M

×
(
−1

2

∫ ∞
−∞

φ(x)n−α−δ sin

(
2πx

log(k2Q/16π2m2)

logR

)
dx

2πx
+

1

4
φ(0)n−α−δ

)
+O

(
log logN

logN

)
,

(4.43)

where M = Np1 · · · pα+δ. We must have that m = pt11 · · · p
tα+δ
α+δ , since otherwise δ

(
m

(m,M∞) , 1
)

= 0,

as N does not divide m. Additionally, we use that ϕ(pi)/pi = 1 − 1/pi and note that as N grows
large, ϕ(N)/N → 1, as N is prime. Lastly, we recall that Q = Np1 · · · pα/(pα+1 · · · pα+δ) allowing
us to simplify (4.43) as

H(α, δ) =
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

(
1− 1

pj

) ∑
0≤t1,...,tα+δ≤ε logN

R(p2t1
1 · · · p2tα

α , p1 · · · pα)

p2t1
1 · · · p

2tα+δ
α+δ

×
(
−1

2

∫ ∞
−∞

φ(x)n−α−δ sin

(
2πx

(
1 +

log p1

logR
+ · · ·+ log pα

logR
− log pα+1

logR
− · · · − log pα+δ

logR

))
dx

2πx

+
1

4
φ(0)n−α−δ

)
+O

(
log logN

logN

)
. (4.44)

We show that the only term in (4.44) which contributes is when t1 = · · · = tα+δ = 0. We chose
some i and sum over ti ≥ 1 and t` ≥ 0 for ` 6= i:
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∑
p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

(
1− 1

pj

) ∑
0≤t1,...,tα+δ≤ε logN

ti 6=0

|R(p2t1
1 , p1)| · · · |R(p2tα

α , pα)|
p2t1

1 · · · p
2tα+δ
α+δ

×
(
−1

2

∫ ∞
−∞

φ(x)n−α−δ sin

(
2πx

(
1 +

log p1

logR
+ · · ·+ log pα

logR
− log pα+1

logR
− · · · − log pα+δ

logR

))
dx

2πx

+
1

4
φ(0)n−α−δ

)
+O

(
log logN

logN

)
. (4.45)

Noting that the integral above is bounded and φ̂ is bounded, we take absolute values and remove
distinctness over the prime sum to bound (4.45) by

∑
p1,...,pα+δ
pj<R

α+δ∏
j=1

log pj
pj logR

∑
0≤t1,...,tα+δ≤ε logN

ti 6=0

|R(p2t1
1 , p1)| · · · |R(p2tα

α , pα)|
p2t1

1 · · · p
2tα+δ
α+δ

. (4.46)

We factor (4.46) into sums over primes as

α+δ∏
j=1

∑
pj<R

log pj
pj logR

∑
δ(i,j)≤tj≤ε logN

R(p
2tj
j , p

sj
j )

p
2tj
j

 , (4.47)

where δ(i, j) = 1 if j = i and 0 otherwise, and sj = 1 for 1 ≤ j ≤ α and 0 for α + 1 ≤ j ≤ α + δ.

When tj = 0, |R(1, psj )| = 1. When tj ≥ 1, we bound the summand by 1/p
2tj−sj
j so the sum over

tj ≥ 1 is O(1/pj). Thus when j 6= i, the sum over tj is O(1) and we find that the sum of pj is O(1)
as well. When j = i, the sum over ti is O(1/pi), as there is no ti = 0 term. Thus, we have that∑

pi<R

log pi
pi logR

∑
1≤ti≤ε logN

R(p2ti
i , psii )

p2ti
i

�
∑
pi<R

log pi
p2
i logR

� O(log−1N). (4.48)

Taking a product over all j in (4.47) we find that the entire term is O(log−1N). For each choice
of i, summing over ti ≥ 1 yields similar results, so the the only term in (4.44) not absorbed by the
error term is the one for which each tj = 0, so m = 1. We further simplify (4.44) in two ways.
First, since R(1, p) = −1, we may eliminate the Ramanujan sums and introduce a factor of (−1)α.
Additionally, note that we may multiply out by (1 − 1/pj) in the product in (4.44) to get a sum

involving
log pj
pj

and a sum involving
log pj
p2j

. In the latter case, we bound the sum by O(log−1N) and

it is absorbed by the error term. Thus we have from (4.44) that

H(α, δ) = (−1)α
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

×
(
−1

2

∫ ∞
−∞

φ(x)n−α−δ sin

(
2πx

(
1 +

log p1

logR
+ · · ·+ log pα

logR
− log pα+1

logR
− · · · − log pα+δ

logR

))
dx

2πx

+
1

4
φ(0)n−α−δ

)
+O

(
log logN

logN

)
. (4.49)

We wish to remove the distinctness condition from (4.49).

Property 4.14. Equation (4.49) holds with the distinctness condition in the prime sum removed.
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Proof. When removing the distinctness condition, we use inclusion-exclusion to eliminate terms
where some pi = pj . Suppose p1 · · · pα+δ = qa11 · · · q

a`
` , where qi 6= qj when i 6= j and where some

aj > 1. Noting that the integral and φ̂ in (4.49) are bounded, we bound these terms by

∑
q1,...,q`
qi distinct
qi<R

∏̀
j=1

logaj qj

q
aj
j logaj R

�
∑

q1,...,q`
qi<R

∏̀
j=1

logaj qj

q
aj
j logaj R

�
∏̀
j=1

∑
qj<R

logaj qj

q
aj
j logaj R

 . (4.50)

When aj = 1 the sum is O(1). When aj > 1 the sum is O(log−aj R). Since some aj > 1, taking

the product over j in (4.50) we find that the term is O(log−2R), completing the proof. �

To complete the proof of Lemma 4.12, we apply Riemann–Stieltjes integration to each of the
prime sums in (4.49) without the distinctness condition to find that

H(α, δ) = −2−1−α−δ(−1)α
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xα+δ+1)

×
[∫ ∞
−∞

φn−α−δ(x1)
sin (2πx1(1 + |x2|+ · · ·+ |xα+1| − |xα+2| − · · · − |xα+δ+1|))

2πx1
dx1

− 1

2
φn−α−δ(0)

]
dx2 · · · dxα+δ+1 +O

(
log logN

logN

)
(4.51)

as desired. �

4.4. Simplifying the main term. In this section we finish the proof of Proposition 3.9 by applying
Lemma 4.12 to (4.35) and simplifying. This step is mostly combinatorial, although we need the
following lemma.

Lemma 4.15. We have∫ ∞
−∞

φ̂(y) (sin(z + 2πx|y|) + sin(z − 2πx|y|)) dy = 2 sin(z)φ(xy). (4.52)

Proof. Using that sin(z + 2πx|y|) + sin(z − 2πx|y|) = 2 sin(z) cos(2πxy) we have that∫ ∞
−∞

φ̂(y) (sin(z + 2πx|y|) + sin(z − 2πx|y|)) dy = 2 sin(z)

∫ ∞
−∞

φ̂(y) cos(2πxy)dy

= 2 sin(z)

∫ ∞
−∞

φ̂(y)Re(exp(2πixy))dy

= 2 sin(z)φ(xy). (4.53)

�

Applying Lemma 4.12 to (4.35) gives

A =
a−1∑
α=0

a−α−1∑
δ=0

(
n

α+ δ

)(
α+ δ

α

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
2n−1−α−δ(−1)α

×
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xα+δ+1)

×
[∫ ∞
−∞

φn−α−δ(x1)
sin (2πx1(1 + |x2|+ · · ·+ |xα+1| − |xα+2| − · · · − |xα+δ+1|))

2πx1
dx1

− 1

2
φn−α−δ(0)

]
dx2 · · · dxα+δ+1 +O

(
log logN

logN

)
. (4.54)
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Our first step is to eliminate the integral over φn−α−δ(0) in (4.54) when α + δ > 0. We fix some
ν ≤ a and collect the terms of (4.54) for which α+ δ = ν:[

ν∑
α=0

(
ν

α

)
(−1)α

](
n

ν

) a−ν−1∑
i=0

(−1)i
(
n− ν
i

)
2n−1−ν

×
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xν+1)

[
−1

2
φn−ν(0)

]
dx2 · · · dxν+1. (4.55)

By the binomial theorem,
∑ν

α=0

(
ν
α

)
(−1)α = (1− 1)ν = 0 for ν > 0, so the sum over α in (4.55) is

0 unless ν = 0. Thus, the terms where α+ δ = ν cancel when ν > 0. When ν = 0, we pull out the
−1

2φ
n(0) term and find that

A =
a−1∑
α=0

a−α−1∑
δ=0

(
n

α+ δ

)(
α+ δ

α

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
2n−1−α−δ(−1)αI(α, δ)

− 2n−2φn(0)

a−1∑
i=0

(−1)i
(
n

i

)
+O

(
log logN

logN

)
(4.56)

where

I(α, δ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xα+δ+1)

∫ ∞
−∞

φn−α−δ(x1)

× sin (2πx1(1 + |x2|+ · · ·+ |xα+1| − |xα+2| − · · · − |xα+δ+1|))
2πx1

dx1 · · · dxα+δ+1. (4.57)

We want to simplify the first sum over α in (4.56), which we denote by A′. By Lemma 4.15 we
have that I(α, δ) = 2I(α, δ − 1) − I(α + 1, δ − 1). We want to express A′ in terms of I(α, 0). We
do so with the following result:

Lemma 4.16. Let I(α, δ) be defined as above. Then

I(α, δ) =

δ∑
j=0

2δ−j(−1)j
(
δ

j

)
I(α+ j, 0). (4.58)

Proof. We prove the following claim holds by induction, after which setting k = δ completes the
proof of the lemma:

I(α, δ) =

k∑
j=0

2k−j(−1)j
(
k

j

)
I(α+ j, δ − k). (4.59)

The base case k = 0 holds immediately. Suppose the result holds up to k. Then using that
I(α, δ) = 2I(α, δ − 1)− I(α+ 1, δ − 1) we have that

I(α, δ) =
k∑
j=0

2k−j(−1)j
(
k

j

)
(2I(α+ j, δ − k − 1)− I(α+ j + 1, δ − k − 1))

=
k+1∑
j=0

2k+1−j(−1)j
[(
k + 1

j + 1

)
−
(
k

j

)]
I(α+ j, δ − k − 1)

=
k+1∑
j=0

2k+1−j(−1)j
(
k + 1

j

)
I(α+ j, δ − k − 1) (4.60)

completing the inductive hypothesis and the proof of the lemma. �
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Applying Lemma 4.16 to (4.56) gives

A′ =
a−1∑
α=0

a−α−1∑
δ=0

δ∑
j=0

(
n

α+ δ

)(
α+ δ

α

) a−α−δ−1∑
i=0

(−1)α+j+i

(
n− α− δ

i

)
2n−1−α−j

(
δ

j

)
I(α+ j, 0).

(4.61)

We group terms in the above with fixed ω = α+ j. Doing so and simplifying gives

A′ = 2n−1
a−1∑
ω=0

2−ω(−1)ωI(ω, 0)

ω∑
α=0

a−1−α∑
δ=ω−α

a−δ−α−1∑
i=0

(−1)i
(

n

δ + α

)(
δ + α

α

)(
n− δ − α

i

)(
δ

ω − α

)
.

(4.62)

We set δ = `+ ω − α to change variables in the sum over δ, giving

A′ = 2n−1
a−1∑
ω=0

2−ω(−1)ωI(ω, 0)
ω∑
α=0

a−1−ω∑
`=0

a−`−ω−1∑
i=0

(−1)i
(

n

`+ ω

)(
`+ ω

α

)(
n− `− ω

i

)(
`+ ω − α
ω − α

)
.

(4.63)

We rewrite the binomial coefficients in (4.63) as

A′ = 2n−1
a−1∑
ω=0

2−ω(−1)ωI(ω, 0)
ω∑
α=0

a−1−ω∑
`=0

a−`−ω−1∑
i=0

(−1)i
(

n

`+ ω + i

)(
`+ ω + i

`+ i

)(
ω

α

)(
`+ i

i

)
.

(4.64)

Grouping terms with fixed m = `+ i and rearranging gives

A′ = 2n−1
a−1∑
ω=0

2−ω(−1)ωI(ω, 0)
ω∑
α=0

(
ω

α

) a−1−ω∑
m=0

(
n

m+ ω

)(
m+ ω

m

) m∑
i=0

(−1)i
(
m

i

)
. (4.65)

As a consequence of the binomial theoremm, the sum over i is zero unless m = 0 as it is the
binomial expansion of (1− 1)m. Thus, summing over α yields

(
n
ω

)
2ω so we simplify the entire term

as

A′ = 2n−1
a−1∑
ω=0

(
n

ω

)
(−1)ωI(ω, 0). (4.66)

Applying this to (4.56), we find that A = (−1)n+1R(n, a;φ) + O
(

log logN
logN

)
, where R(n, a;φ) is

defined as in (1.9). This completes the calculation of the main term and the proof of Proposition 3.9.

5. Extending support for random matrix theory

In this section, we compute the nth centered moment of Zφ(U) for test functions φ with supp(φ̂) ⊆[
− 2
n ,

2
n

]
. This computation plays a crucial role in the proof of Theorem 1.3. We focus on the case

where n ≥ 3 as [HM07] have proved the n = 1, 2 case.

5.1. Introduction. If U is an M × M unitary matrix, all of the eigenvalues of U have norm
1, which we denote by eiθ1 , . . . , eiθM . Then for any test function φ (φ is even, real-valued, and
integrable) with suitable decay so that the following sums converge, define the 2π periodic function

FM (θ) :=

∞∑
j=−∞

φ

(
M

2π
(θ + 2πj)

)

=
1

M

∞∑
k=−∞

φ̂

(
k

M

)
eikθ. (5.1)
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Note that this function corresponds to gM in [HR03]. Since φ decays rapidly, this function measures
the closeness of the input point to the angle 0 in some sense. Define

Zφ(U) :=

M∑
n=1

FM (θn). (5.2)

The function Zφ is well-defined since FM is 2π-periodic. Moreover, since FM (θ) measures how close
θ is to the “central point” 0, the function Zφ measures how close the eigenvalues of U are to the
“central point” 1 on the unit circle.

In this section, we focus on studying the centered moments of Zφ(U) averaging over the SO(even)

and SO(odd) groups as they correspond to H+
k (N) and H−k (N) respectively. Weyl’s explicit rep-

resentation of Haar measure would allow us to compute the higher moments explicitly. However,
to facilitate the comparison with number theory, we first compute the cumulants as in [HR03] and

[HM07]. The cumulants C
SO(odd)
` and C

SO(even)
` are defined to satisfy the following equality of

formal power series:

∞∑
`=1

C
SO(even)
` (φ)

λ`

`!
= lim

M even
M→∞

logESO(M)[exp(λZφ(U))], (5.3)

∞∑
`=1

C
SO(odd)
` (φ)

λ`

`!
= lim

M odd
M→∞

logESO(M)[exp(λZφ(U))]. (5.4)

Given the first n cumulants, one can compute the first n moments and vice-versa, as we now
explain. For n > 1, if µ′n is the nth centered moment then

µ′n =
∑

2k2+3k3+···+nkn=n
kj≥0

(
C2

2!

)k2
· · ·
(
Cn
n!

)kn n!

k2! · · · kn!
. (5.5)

A similar formula recovers the Cn from the µ′n.

Set S(x) = sin(πx)
πx and define

Qn(φ) := 2n−1
n∑

m=1

∑
λ1+···+λm=n

λj≥1

(−1)m+1

m

n!

λ1! · · ·λm!

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ(x1)λ1 · · ·φ(xm)λm

× S(x1 − x2)S(x2 − x3) · · ·S(xm−1 − xm)S(xm + x1)dx1 · · · dxm. (5.6)

We have the following result due to [HR03].

Lemma 5.1. Let φ be a Schwartz test function such that supp(φ̂) ⊆
[
− 2
n ,

2
n

]
. For n ≥ 3,

CSO(even)
n (φ) = Qn(φ)

CSO(odd)
n (φ) = −Qn(φ). (5.7)

Moreover, for n ≥ 4,

C
SO(even)
2 = C

SO(odd)
2 = 2

∫ ∞
−∞
|y|φ̂(y)2dy = σ2

φ (5.8)

where σ2
φ is defined as in (1.8).

Thus, in order to prove Theorem 1.3, it suffices to calculate Qn(φ). The main result of this section
is Proposition 5.2.



Extending support for the centered moments of the low lying zeroes of cuspidal newforms 29

Proposition 5.2. Let φ be a Schwartz test function such that supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
for some

nonnegative integer a and supp(φ̂) ⊆
[
− 2
n ,

2
n

]
. Let R(n, a;φ) be as in (1.9). Then

Qn(φ) = R(n, a;φ). (5.9)

Assuming Proposition 5.2, we now prove Theorem 1.3.

By [HM07, Theorem 1.4], for supp(φ̂) ⊆
[
−1
j ,

1
j

]
, then the first j moments (resp. cumulants)

of Zφ(U) averaged with respect to Haar measure are equal to the moments (resp. cumulants) of a

Gaussian. In particular, for j ≥ 3 we have C
SO(even)
j (φ) = C

SO(odd)
j (φ) = 0. Recall that supp(φ̂) ⊆[

− 1
n−a ,

1
n−a

]
and supp(φ̂) ⊆

[
− 2
n ,

2
n

]
, so we may without loss of generality take a ≤ dn/2e. Hence,

restricting the sum in (5.5) to those terms with k3 = · · · = kn−a = 0 does not change its value.
Moreover, a ≤ dn/2e and

∑n
`=2 `k` = n imply that kn, kn−1, . . . , kn−a+1 ∈ {0, 1} and at most one

of kn, kn−1, . . . , kn−a+1 is equal to 1.
Thus, we can rewrite (5.5) as

µ′n = 1{n even}

(
C2

2

)n/2 n!

(n/2)!
+

∑
2k2+(n−`)=n

0≤`≤a−1

(
C2

2!

)k2 ( Cn−`
(n− `)!

)
n!

k2!
. (5.10)

Observing that 2k2 + (n− `) = n forces ` = 2k2 and specializing to SO(even), we have

lim
M→∞
M even

[(
Zφ(U)− CSO(even)

1

)n]
= n!

ba−1
2
c∑

k2=0

C
SO(even)
n−2k2

k2!(n− 2k2)!

(
C

SO(even)
2

2

)k2
+ 1{n even}

(
C

SO(even)
2

)n/2 n!

2(n/2)(n/2)!
. (5.11)

The analogous equation holds for SO(odd). Now, applying Theorems Lemma 5.1 and Proposi-
tion 5.2 to the right hand side of (5.11) and simplifying completes the proof of Theorem 1.3 after
comparing with (1.10).

The remainder of the section is devoted to proving Proposition 5.2. The section is structured
as follows. In Section 5.2, we prove Lemma 5.11, which allows us to express Qn(φ) as the product
of a combinatorial term and an integral term. In Section 5.3 we evaluate this combinatorial term,
and in Section 5.4 we calculate the integral term.

5.2. Preliminaries. In this section, we work towards Proposition 5.2 by evaluating Qn(φ) as

defined in (5.6) when supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
and a ≤ dn/2e. The main result of this subsection

is Lemma 5.11, which splits Qn(φ) into a combinatorial term and an integral term which we will
then evaluate separately.

Equation (5.27) of [HM07] gives (independent of the choice of support) that

Qn(φ) = 2n−2

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)K(y1, . . . , yn)dy1 · · · dyn, (5.12)

where

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m

n!

λ1! · · ·λm!

∑
ε1,...,εn∈{±1}

m∏
`=1

χ{|∑n
j=1 η(`,j)εjyj|≤1} (5.13)

and

η(`, j) =

{
+1 if j ≤

∑`
k=1 λk

−1 if j >
∑`

k=1 λk.
(5.14)
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Important in our evaluation of Qn(φ) will be the following identity given by Soshnikov [Sos00]:

z = log(1 + (ez − 1)) =

∞∑
n=1

zn
n∑

m=1

∑
λ1+···+λm=n

λj≥1

(−1)m+1

m

1

λ1! · · ·λm!
. (5.15)

5.2.1. Simplifying K(y1, . . . , yn). To evaluate Qn(φ), we first discuss how we will interpret the

expression K(y1, . . . , yn) for y1, . . . , yn ∈
[
0, 1

n−a

]
. Throughout this paper, if I ⊆ {1, . . . , n}, we

write

χI = χ{y1+···+yn>1+2
∑
i∈I yi}. (5.16)

Definition 5.3. A system of parameters (or s.o.p.) is an ordered tuple (m,λ1, . . . , λm, ε1, . . . , εn)
with 1 ≤ m ≤ n, λ1 + · · ·+ λm = n, λi ≥ 1 for all 1 ≤ i ≤ m, and εj = ±1 for each 1 ≤ j ≤ n.

Given a system of parameters S, we may use ηS(`, j) to denote the function η(`, j) where the λk
are taken from S. When it is clear from context that the λk are taken from the s.o.p. S, we simply
denote this function η(`, j). Fix n ≥ 2a and a s.o.p. S = (m,λ1, . . . , λm, ε1, . . . , εn). Consider the
product

m∏
`=1

χ{|
∑n
j=1 η(`,j)εjyj |≤1} (5.17)

from (5.13). Fix 1 ≤ `0 ≤ m. In order to study (5.17), we study the complement of the indicator
functions in (5.17), given by

χ{|
∑n
j=1 η(`0,j)εjyj |>1}. (5.18)

For y1, . . . , yn ∈
[
0, 1

n−a

]
, if
∑n

j=1 η(`0, j)εjyj > 1 then we cannot find y′1, . . . , y
′
n ∈

[
0, 1

n−a

]
such

that
∑n

j=1 η(`0, j)εjyj < −1 because a ≤ dn/2e. Thus the indicator function (5.18) is identical to

(5.16) for a particular choice of I. Moreover, there exists yi ∈
[
0, 1

n−a

]
such that (5.18) is nonzero

if and only if one of the following (mutually exclusive) conditions holds:

(i) |{1 ≤ j ≤ n : η(`0, j)εj = +1}| ≤ a− 1, or
(ii) |{1 ≤ j ≤ n : η(`0, j)εj = −1}| ≤ a− 1 .

If case (i) holds, we define

J`0 = {1 ≤ j ≤ n : η(`0, j)εj = +1} (5.19)

and say that J`0 has sign ζ`0 = +1.
If case (ii) holds, we define

J`0 = {1 ≤ j ≤ n : η(`0, j)εj = −1} (5.20)

and say that J`0 has sign ζ`0 = −1.
If neither case holds, then J`0 is undefined.

Lemma 5.4. If S = (m,λ1, . . . , λm, ε1, . . . , εn) is a system of parameters and J ⊆ [1, n] is any
subset, then there is at most one `0 ∈ [1,m] and ζ ∈ {±1} such that η(`0, i)εi = ζ for i ∈ J and
η(`0, j)εj = −ζ for j /∈ J .

Proof. Suppose `1 > `0 and that both `0 and `1 have this property for some ζ0 and ζ1. Without
loss of generality, we assume that J = {i : η(`0, i)εi = −1}. It is clear that we cannot also have
I = {i : η(`1, i)εi = −1}, so we may assume that I = {i : η(`1, i)εi = +1}, but then we must have
η(`0, j) = −η(`1, j) for all j, and this is clearly impossible. �

In particular, if J`0 and J`1 are both defined, then J`0 6= J`1 .



Extending support for the centered moments of the low lying zeroes of cuspidal newforms 31

Definition 5.5. For a s.o.p. S = (m,λ1, . . . , λm, ε1, . . . , εn), let {`1, . . . , `t} ⊆ {1, . . . ,m} be the
set of indices for which I`j is defined. Define

J(S) := {J`1 , . . . , J`t} . (5.21)

Define
I(S) := {I1, . . . , Ir} (5.22)

to be the subset of elements of J(S) which are minimal with respect to inclusion. That is, I(S)
consists of those elements of J(S) which do not strictly contain any other elements of J(S). By
Lemma 5.4, for each i ∈ [1, r] there is a unique `i such that Ii = J`i. Finally, define the function

σS(y1, . . . , yn) :=
r∑
i=1

∑
1≤j1<···<ji≤r

(−1)i(χIj1 · · ·χIji )(y1, . . . , yn), (5.23)

and the quantity

A(S) :=
(−1)m+1

m

n!

λ1! · · ·λm!
. (5.24)

The next lemma provides a sort of “Möbius inversion formula” for σS .

Lemma 5.6. For any s.o.p. S, we have

σS(y1, . . . , yn) =

{
−1 if χI(y1, . . . , yn) = 1 for some I ∈ I(S)

0 otherwise.
(5.25)

Proof. Fix (y1, . . . , yn). Suppose there are k elements in I(S) whose support contains (y1, . . . , yn).

If k = 0 the result is immediate. Now, for k ≥ 1 and 1 ≤ i ≤ k, there are
(
k
i

)
terms in the ith

summand of with coefficient (−1)i and all the other terms vanish. Thus we have

σS(y1, . . . , yn) =
k∑
i=1

(
k

i

)
(−1)i = (1− 1)k − 1 = −1. (5.26)

�

We now have the following.

Lemma 5.7. For (y1, . . . , yn) ∈
[
0, 1

n−a

]n
,

K(y1, . . . , yn) =
n∑
t=1

(−1)t
∑

(I1,...,It)
valid

(χI1 · · ·χIt)(y1, . . . , yn)
∑

s.o.p. S with
I1,...,It∈I(S)

A(S). (5.27)

Proof. The product (5.17) vanishes at (y1, . . . , yn) if and only if there is some J ∈ J(S) such that
χJ is supported at (y1, . . . , yn) if and only if there is some I ∈ I(S) such that χI is supported at
(y1, . . . , yn). So, by Lemma 5.6,

m∏
`=1

χ{|
∑n
j=1 η(`,j)εjyj |≤1}(y1, . . . , yn) = 1 + σS(y1, · · · , yn) . (5.28)

Substituting (5.28) into (5.13), we have that

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m

n!

λ1! · · ·λm!
· 2n +

∑
s.o.p.’s S

A(S)σS(y1, . . . , yn). (5.29)

Applying (5.15), we find that the first sum is 0. Expanding the second sum using the definition of
σS from (5.23) and rearranging completes the proof. �
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5.2.2. Simplifying Qn(φ). In this section we simplify Qn(φ) by applying Lemma 5.7 to (5.12).
First we define further notation which allows us to express Qn(φ) (through Lemma 5.11) in terms
of combinatorial quantities which we then compute in Section 5.3.1 and 5.3.2.

The symmetric group Sn acts naturally on sets of (unordered) t-tuples of subsets of [1, n] by
permuting the elements in each subset of each tuple. Take such a t-tuple (I1, . . . , It) and some
Ij = {i1, . . . , ik}. Given some τ ∈ Sn, we have that τ(Ij) = {τ(i1), . . . , τ(ik)}. Let χI1 · · ·χIt and
χJ1 · · ·χJt be elements of Ω such that there exists a permutation τ ∈ Sn so that for each 1 ≤ ` ≤ t,
τ(I`) = J`. Then∫ ∞

0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)(χI1 · · ·χIt − χJ1 · · ·χJt)(y1, . . . , yn)dy1 · · · dyn = 0. (5.30)

This motivates the following definition.

Definition 5.8. The symmetric group Sn acts naturally on sets of (unordered) t-tuples of subsets
of [1, n], as described above. A t-class is an orbit of this action.

Now, for a t-class C, let∫
Cdy :=

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)χ(y1, . . . , yn) dy1 · · · dyn (5.31)

where χ = χI1 · · ·χIt with (I1, . . . , It) any element of C. (5.30) shows that
∫
Cdy is well defined.

Definition 5.9. We call an unordered tuple (I1, . . . , It) of subsets of {1, . . . , n} valid if I1, . . . , It ∈
I(S) for some s.o.p. S and χI1 · · ·χIt is supported at some point in

[
0, 1

n−a

]n
.

Definition 5.10. We call a t-class valid if it contains at least one valid tuple.

We are now ready to prove the main result of the section.

Lemma 5.11. For a s.o.p. S and a t-class C, set

T (S,C) := # {(I1, . . . , It) ∈ C : I1, . . . , It ∈ I(S)} . (5.32)

We have

Qn(φ) = 2n−2
n∑
t=1

(−1)t
∑

valid t-classes C

 ∑
s.o.p.’s S

T (S,C)A(S)

∫ Cdy. (5.33)

Proof. Given a valid t-class C, there is a valid tuple (I1, . . . , It) ∈ C for which χI1 · · ·χIt is supported

at some point (y1, . . . , yn) ∈
[
− 1
n−a ,

1
n−a

]n
. Therefore, if τ ∈ Sn, then χτ(I1) · · ·χτ(It) is supported

at (yτ(1), . . . , yτ(n)). Since Sn acts transitively on C, this means that every tuple in C is valid. Now,
applying Lemma 5.7 to (5.12) and grouping tuples into t-classes completes the proof. �

Lemma 5.11 shows that in order to calculate Qn(φ) it suffices to calculate
∑
T (S,C)A(S) and∫

Cdy for t-classes C. In Section 5.3, we calculate
∑
T (S,C)A(S) and then in Section 5.4 we

calculate
∫
Cdy.

5.3. Computing the combinatorial piece. In this section, we calculate
∑
T (S,C)A(S) for

valid t-classes C, where T (S,C) and A(S) are defined as in (5.32) and (5.24), respectively. In
Section 5.3.1 we find a closed form for the case t = 1, and then in Section 5.3.2 we show that when
t ≥ 2 the quantity vanishes.
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5.3.1. Computing for valid 1-classes. In this section, we compute the terms in (5.33) for which
t = 1. We first classify the valid 1-tuples.

Lemma 5.12. If I and J are subsets of [1, n] such that |I ∪ J | ≥ a, then χI ·χJ is identically zero

on
[
0, 1

n−a

]n
.

Proof. Let I and J be as in the hypotheses, and assume for contradiction that both y1 + · · ·+yn >

1 + 2
∑

i∈I yi and y1 + · · · + yn > 1 + 2
∑

j∈J yj for some (y1, . . . , yn) ∈
[
0, 1

n−a

]n
. Since

yh ≤ 1
n−a for every h,

∑
h/∈I∪J yh ≤ 1, so we must have that

∑
i∈I yi <

∑
j∈J\I yj and similarly∑

j∈J yj <
∑

i∈I\J yi by our assumptions. Adding these inequalities gives∑
i∈I

yi +
∑
j∈J

yj <
∑
i∈I\J

yi +
∑
j∈J\I

yj , (5.34)

which is a contradiction, as all the yh’s are nonnegative and the terms on the right are a subset of
those on the left. �

Lemma 5.13. If I is a subset of [1, n], then the 1-tuple (I) is valid if and only if |I| ≤ a− 1.

Proof. If |I| > a− 1, then (I) is not valid by Lemma 5.12, taking both subsets to be I.
Now suppose |I| ≤ a−1. Let yj = 1/(n−a) for each j /∈ I and let yi = 0 for each i ∈ I. It is clear

that χI(y1, . . . , yn) = 1. Now consider the system of parameters S = (m,λ1, . . . , λm, ε1, . . . , εn),
where m = 1, λ1 = n, and εi = −1 if and only if i ∈ I. Clearly, I ∈ I(S). Therefore, (I) is
valid. �

It follows from Lemma 5.13 that the valid 1-classes are exactly the classes

Cf := {(I) : I ⊆ [1, n], |I| = f} (5.35)

with 0 ≤ f ≤ a− 1.

Lemma 5.14. Let 1 ≤ f ≤ a − 1. Let S = (m,λ1, . . . , λm, ε1, . . . , εn) be a system of parameters
with m ≥ 2 and suppose (I) ∈ Cf is such that, for some 1 ≤ ` ≤ m, we have I = J` ∈ J(S). Define
Λ` := λ1 + · · · + λ`. Then I ∈ I(S) if and only if [Λ`−1 + 1,Λ`] 6⊆ I and [Λ` + 1,Λ`+1] 6⊆ I. If
` = m, then we set [Λm + 1,Λm+1] to [1,Λ1] = [1, λ1].

Proof. Assume without loss of generality that J` has sign ζ` = −1, i.e. J` = {j : η(`, j)εj = −1}.
For any `′ < `, we have

η(`, j)εj =

{
−η(`′, j)εj if j ∈ [Λ`′ + 1,Λ`] ,

η(`′, j)εj if j /∈ [Λ`′ + 1,Λ`] .
(5.36)

If [Λ`−1 + 1,Λ`] ⊆ J`, then J`−1 = J` r [Λ`−1 + 1,Λ`] ( J`. In particular, J` is not minimal, so
J` /∈ I(S). Similarly, if [Λ` + 1,Λ`+1] ⊆ J` then J`+1 = J` r [Λ` + 1,Λ`+1] so J` is not minimal.

Now assume J` is not minimal, so there exists some J`′ ( J`.
First, suppose the sign of J`′ is ζ`′ = −1. Suppose that `′ < `. By (5.36), J`′ r [Λ`′ + 1,Λ`] =

J`r [Λ`′+1,Λ`], while J`′ ∩ [Λ`′+1,Λ`] and J`∩ [Λ`′+1,Λ`] are disjoint with union [Λ`′+1,Λ`]. So,
so J`′ ( J` implies [Λ`−1 +1,Λ`] ⊆ [Λ`′+1,Λ`] ⊂ J`. Similarly, if `′ > `, we have [Λ`+1,Λ`+1] ⊂ J` .

Next suppose that the sign ζ`′ = 1. Suppose that `′ < `. By (5.36), J`′ ∩ [Λ`′ + 1,Λ`] =
J`∩[Λ`′+1,Λ`], while J`′r[Λ`′+1,Λ`] and J`r[Λ`′+1,Λ`] are disjoint with union [1, n]r[Λ`′+1,Λ`].
Since J` is not minimal, we must have [Λ` + 1,Λ`+1] ⊂ [1, n]r [Λ`−1 + 1,Λ`] ⊂ J`. When `′ > `, by
the same reasoning we have that [Λ`−1 + 1,Λ`] ⊆ J`.

�
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Lemma 5.15. Fix 1 ≤ f ≤ a− 1. We have∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = 2n!(−1)n
∑
c+d≤n
c,d≥0

(−1)c+d+1G(n, f, c, d)
1

(n− c− d)!c!d!
, (5.37)

where

G(n, f, c, d) =

(
n

f

)
−
(
n− c
f − c

)
−
(
n− d
f − d

)
+

(
n− c− d
f − c− d

)
. (5.38)

Proof. Let S = (m,λ1, . . . , λm, ε1, . . . , εn) denote a variable system of parameters. By Lemma 5.4,
we can rewrite T (S,Cf ) as

T (S,Cf ) =
m∑
`=1

1{J`∈I(S) and #J`=f} . (5.39)

We sum over systems of parameters by first summing over all values of m, then summing over all
possible values of `, then summing over all possible values of c = λ` and d = λ`+1, then summing
over all possible values of λ1, . . . , λm and finally summing over all possible choices of ε1, . . . , εn. For
fixed m,λ1, . . . , λm, the ε1, . . . , εn and J`, ζ` uniquely determine each other, so we may rewrite the
innermost sum as∑

(εj)∈{±1}n
A(S)1{J`∈I(S) and J`:#J`=f} = A(S)

∑
ζ`∈{±1}

∑
#J`=f

1{J`∈I(S)} . (5.40)

By Lemma 5.14, the sum over J` is G(n, f, c, d), since we can choose a general f element subset in(
n
f

)
ways, and we need to subtract off when the c element subset [λ1+· · ·+λ`−1+1, λ1+· · ·+λ`] ⊆ I

or when the d element subset [λ1 + · · ·+λ` + 1, λ1 + · · ·+λ`+1] ⊆ I. Then, we add back in the case
when both subsets are contained in J` since we have double counted it. Finally, there are 2 choices
for ζ`. We have∑

s.o.p.’s S
with m≥2

T (S,Cf )A(S) =
n∑

m=2

m∑
`=1

∑
c,d≥1
c+d≤n

∑
λ1+···+λm=n

λi≥1,λ`=c,λ`+1=d

(−1)m+1

m

n!

λ1! · · ·λm!
2G(n, f, c, d).

(5.41)

Noting that for each value of ` the inner summand is the same, we can set ` = m− 1 and write∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = 2n!
∑
c,d≥1
c+d≤n

G(n, f, c, d)

c!d!

n∑
m=2

m
∑

λ1+···+λm−2=n−c−d

(−1)m+1

m

1

λ1! · · ·λm−2!
.

(5.42)

The sum over m equals (−1)n+c+d+1/(n− c− d)!, which follows from evaluating the coefficient of
zn in

∞∑
n=0

(−1)n

n!
zn = e−z =

1

1 + (ez − 1)
=

∞∑
n=0

zn
n∑

m=1

∑
λ1+···+λm=n

λj≥1

(−1)m

λ1! · · ·λm!
.

(5.43)

Applying this to (5.42) gives∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = 2n!(−1)n
∑
c+d≤n
c,d≥1

(−1)c+d+1G(n, f, c, d)
1

(n− c− d)!c!d!
.

(5.44)

Now, we can extend the sum to include when c = 0 or d = 0 to complete the proof as in this case
G(n, f, c, d) = 0. �
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We complete our evaluation of the case when m ≥ 2 with the following lemma, proven in
Appendix B.1.

Lemma 5.16. Fix 1 ≤ f ≤ a− 1. We have∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = 2

(
n

f

)(
(−1)n+f+1 − 1

)
. (5.45)

Now we evaluate the case when m = 1.

Lemma 5.17. Fix 1 ≤ f ≤ a− 1. We have∑
s.o.p.’s S
with m=1

T (S,Cf )A(S) = 2

(
n

f

)
. (5.46)

Proof. We let S = (1, λ1, ε1, . . . , εn) denote a variable system of parameters. Since m = 1, we have

λ1 = n and A(S) = (−1)2

1
n!
n! = 1 for all S. Now, as in (5.40), we may rewrite the sum over ε1, . . . , εn

as a sum over J1, ζ1. Since m = 1, any f -element J1 ∈ J(S) will be minimal. So,∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = A(S)
∑

ζ1∈{±1}

∑
#J1=f

1{J1∈I(S)} =
∑

ζ1∈{±1}

∑
#J1=f

1 = 2

(
n

f

)
. (5.47)

�

Adding equations (5.45) and (5.46) gives the main result of the section.

Lemma 5.18. Fix 1 ≤ f ≤ a− 1. Then∑
s.o.p.’s S

T (S,Cf )A(S) = 2(−1)n+f+1

(
n

f

)
. (5.48)

5.3.2. The vanishing of valid t-classes for t ≥ 2. In this section, we show that all terms with t ≥ 2
in (5.33) vanish. Our main result is the following.

Lemma 5.19. Let C be a valid t-class with t ≥ 2. Then∑
s.o.p.’s S

T (S,C)A(S) = 0. (5.49)

Throughout this section, let S = (m,λ1, . . . , λm, ε1, . . . , εn) be a system of parameters, C a valid
class, and (I1, . . . , It) ∈ C a tuple of subsets of [1, n] such that for each 1 ≤ i ≤ t, there is some
`i and ζ`i ∈ {±1} such that Ii = {j : η(`i, j)εj = ζ`i}. I.e., Ii = J`i with sign ζ`i . Reorder the Ii
so that `1 < `2 < · · · < `t and set I ′i := Ii −

⋂t
k=1 Ik and ji = Λ`i =

∑`i
k=1 λk. To begin, we prove

lemmas which characterize (I1, . . . , It).

Lemma 5.20. Set I1 = J`1 with sign ζ`1 and suppose there is some minimal T such that IT = J`T
with sign ζ`T = −ζ`1. Then, for all i ≥ T , we have Ii = ζ`i with sign ζ`i = −ζ`1.

Proof. Assume WLOG that ζ`1 = −1 so I1 = {j : η(`1, j)εj = −1} and let T be the smallest value
such that IT = {j : η(`T , j)εj = 1}. Suppose there exists some s > T such that Is = {j : η(`s, j)εj =
−1}. If j ≤ jT−1 or j > js, then η(`T , j) = η(`s, j), so j ∈ IT ∪ Is so [1, jT−1]∪ [js + 1, n] ⊆ IT ∪ Is.
Similarly, if j ∈ [jT−1+1, js], then η(`T−1, j) = −η(`s, j), so j ∈ IT−1∪Is so [jT−1+1, js] ⊆ IT−1∪Is.
Since [1, jT−1]∪ [js+1, n]∪ [jT−1 +1, js] = [1, n] and a ≤ n/2, we must have that either |IT ∪Is| ≥ a
or |IT−1 ∪ Is| ≥ a. Then, by Lemma 5.12, C is not valid, a contradiction. Thus such an s cannot
exist so Ii = {j : η(`i, j)εj = +1} for all i ≥ T . �
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The above lemma shows that the sign of (I1, I2, . . . , It) can switch at most once. We call the
minimal T such that ζ`T = −ζ`1 the transition point of (I1, . . . , It). If I1, I2, . . . , It all have the
same sign (so that no such T exists), then we set T = 1.

Lemma 5.21. Let T be the transition point of (I1, . . . , It). Then

t⋃
i=1

I ′i = I ′T−1 ∪ I ′T = [1, n] r [jT−1 + 1, jT ] , (5.50)

I ′T−1 ∩ I ′T = ∅ , and (5.51)

t⋂
i=1

Ii = IT−1 ∩ IT ⊆ [jT−1 + 1, jT ] , (5.52)

taking indices cyclically in [1, t] and intervals cyclically in [1, n] so that I ′0 := I ′t and I0 := It and
[j0 + 1, j1] = [jt + 1, n] ∪ [1, j1]. Additionally, if 1 ≤ i ≤ t with i 6= T − 1, then

(Ii ∩ [ji + 1, ji+1]) ∪ (Ii+1 ∩ [ji + 1, ji+1]) = [ji + 1, ji+1] and (5.53)

(Ii ∩ [ji + 1, ji+1]) ∩ (Ii+1 ∩ [ji + 1, ji+1]) = ∅. (5.54)

In other words, the restriction of Ii and Ii+1 to the interval [ji + 1, ji+1] forms a partition of the
interval. If i = t and T 6= 1, again taking indices and intervals cyclically, we set It+1 = I1 and
[jt + 1, j1] = [jt + 1, n] ∪ [1, j1].

Proof. We consider indices and intervals cyclically in [1, t] and [1, n] respectively, as in Lemma 5.21.
For j ∈ [jT−1 +1, jT ], the value η(`i, j)εjζ`i is independent of i since for any i, i′ either ζ`i/ζ`i′ and

η(`i, j)/η(`i′ , j) are both 1 or both −1. So, for any j ∈ [jT−1 + 1, JT ] either j ∈ Ii for all i of j /∈ Ii
for all i. So,

⋃t
i=1 I

′
i ⊂ [1, n]r [jT−1 + 1, jT ] and

⋂t
i=1 Ii ∩ [jT−1 + 1, jT ] = IT−1 ∩ IT ∩ [jT−1 + 1, jT ].

For j /∈ [jT−1 + 1, jT ], we have η(`T−1, j) = η(`T , j) and so η(`T−1, j)εj , ζ`T−1
= −η(`T , j)εj , ζ`T .

So, every j /∈ [jT−1 + 1, jT ] belongs to exactly one of I ′T−1 and I ′T . We conclude that
⋃t
i=1 I

′
i =

I ′T−1 ∩ I ′T ⊂ [1, n] r [jT−1 + 1, jT ] and IT−1 ∩ IT ⊂ [jT−1 + 1, jT ]. So, IT−1 ∩ IT ∩ [jT−1 + 1, jT ] =

IT−1 ∩ IT =
⋂t
i=1 Ii.

For i 6= T − 1, we have η(`i, j) = −η(`i+1, j) if and only if j ∈ [ji + 1, ji+1] . Since ζ`i = ζ`i+1
, this

means η(`i, j)εjζ`i = −η(`i+1, j)εjζ`i+1
if and only if j ∈ [ji + 1, ji+1] . Hence, each j ∈ [ji + 1, ji+1]

is contained in exactly one of Ii and Ii+1, as desired. �

Definition 5.22. For each 1 ≤ i ≤ t, set

ri = |Ii ∩ [ji + 1, ji+1]| and (5.55)

si = |Ii+1 ∩ [ji + 1, ji+1]|. (5.56)

We call the ordered tuple (T, r1, s1, . . . , rt, st) the structure of (I1, . . . , It) in S where T is the
transition point of (I1, . . . , It). If (T, r1, s1, . . . , rt, st) is a structure for some (I1, . . . , It) ∈ C, we
call it a valid structure for C.

By Lemma 5.21, rT−1 = sT−1 =
∣∣⋂t

k=1 Ik
∣∣. Lemma 5.21 also shows that when i 6= T − 1,

ri + si = |[ji + 1, ji+1]| = ji+1 − ji = λ`i+1 + · · ·+ λ`i+1
. The following lemma shows that the two

tuples with the same structure are in the same t-class.

Lemma 5.23. Let C be a valid t-class and let (I1, . . . , It) ∈ C such that (I1, . . . , It) ∈ I(S) for some
s.o.p. S. Let (J1, . . . , Jt) be another tuple such that (J1, . . . , Jt) ∈ I(P ) for some s.o.p. P . If the
structure of (I1, . . . , It) in S is the same as the structure of (J1, . . . , Jt) in P , then (J1, . . . , Jt) ∈ C.

Proof. We first set notation. Set S = (m,λ1, . . . , λm, ε1, . . . , εn) and P = (m,λ′1, . . . , λ
′
m, ε

′
1, . . . , ε

′
n).

Set `1 < · · · < `t and `′1 < · · · < `′t such that Ii = {j : ηS(`i, j) = ζ`i} and Ji = {j : ηP (`′i, j) = ζ`′i}.
Lastly, define ji =

∑`i
k=1 λk and j′i =

∑`′i
k=1 λ

′
k.
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Without loss of generality, we may assume ζ`1 = ζ`′1 or else we may replace each εi with −εi.
Since (I1, . . . , It) and (J1, . . . , Jt) have the same structure, for each i, we have

|Ii ∩ [ji + 1, ji+1]| = |Ji ∩ [j′i + 1, j′i+1]| and (5.57)

|Ii+1 ∩ [ji + 1, ji+1]| = |Ji+1 ∩ [j′i + 1, j′i+1]|. (5.58)

Let τ ∈ Sn be the permutation which maps the kth smallest element of |Ii ∩ [ji + 1, ji+1]| to the
kth smallest element of |Ji ∩ [j′i + 1, j′i+1]| and the kth smallest element of |Ii+1 ∩ [ji + 1, ji+1]| to
the kth smallest element of |Ji+1 ∩ [j′i + 1, j′i+1]|.

Since τ([ji + 1, ji+1]) = [j′i + 1, ji+1], for all i ∈ [1, t] and j ∈ [1, n] we have η(`i, j) = η(`′i, τ(j)).
Since (I1, . . . , It) and (J1, . . . , Jt) have the same transition value T and we assumed ζ`1 = ζ`′1 , we

have ζ`i = ζ`′i for all i. Moreover, for j ∈ [ji + 1, ji+1] we have η(`i, j)εjζ`i = η(`′i, τ(j))ε′τ(j)ζ`′i so

that εj = ε′τ(j) . But this is true for all i, so in fact εj = ε′τ(j) for all j ∈ [1, n]. So, for all i ∈ [1, t]

and j ∈ [1, n] we have η(`i, j)εjζ`i = η(`′i, τ(j))ε′τ(j)ζ`′i . It follows that τ(I1, . . . , It) = (J1, . . . , Jt) so

(J1, . . . , Jt) ∈ C. �

Lemma 5.23 shows that if a structure is valid for C, then all tuples with that structure are
in C. Thus in order to calculate

∑
T (S,C)A(S), we can first sum over all valid structures for

C and then count tuples and s.o.p.s with that structure. All that remains is to determine when
(I1, . . . , It) ∈ I(S).

Lemma 5.24. Suppose I1, . . . , It ∈ J(S). Then, I1, . . . , It ∈ I(S) if and only if for each 1 ≤ i ≤ t,
[ji − λ`i + 1, ji] 6⊆ Ii and [ji + 1, ji + λ`i+1] 6⊆ Ii.

Proof. Note that Ii ∈ J(S) implies #Ii ≤ a− 1. So, this is an immediate corollary of Lemma 5.14
which says Ii ∈ I(S) if and only if [ji − λ`i + 1, ji] 6⊆ Ii and [ji + 1, ji + λ`i+1] 6⊆ Ii. �

Now we are ready to calculate
∑
T (S,C)A(S).

Lemma 5.25. Let C be a valid t-class with t ≥ 2. Then∑
s.o.p.’s S

T (S,C)A(S) (5.59)

is a sum of terms of the form

f∑
d=1

∑
µ1+···+µd=f

µi≥1

(−1)d

µ1! · · ·µd!
H(f, g, µ1, µd), (5.60)

for some f and g, where

H(f, g, µ1, µd) :=

(
f

g

)
−
(
f − µ1

g − µ1

)
−
(
f − µd
g

)
+

(
f − µ1 − µd
g − µ1

)
. (5.61)

Proof. Let C be a valid t-class. By Lemma 5.23, when summing over all s.o.p.s, we can first sum
over all valid structures, and then over all s.o.p.s and tuples with that structure. To do this, we
can sum over all m, then over all possible values of `1, . . . , `t, then over all λ1, . . . , λm such that
λ1 + · · ·+ λm = n and λ`i+1 + · · ·+ λ`i+1

= ri + si for each i 6= T − 1. Now we use Lemma 5.24 to

determine the summand. We can pick the elements of
⋂t
k=1 Ik, which by Lemma 5.21 is a subset of

[jT−1 +1, jT ], in G(jT − jT−1, rT , λ`T−1
, λ`T ) ways, where G is defined as in (5.38). Next, we choose

the ri elements of Ii contained in the interval [ji + 1, ji+1] in H(ri + si, ri, λ`i+1, λ`i+1
) ways. Then,

there are two possible choices for the sign ζ`1 of I1 and then the signs for the rest of the Ii’s follow
because the point of transition T is fixed. The choice of ζ`1 and each ri-element set [ji+ 1, ji+1]∩ Ii
determines all εj , so they determine exactly the same data as the Ii.
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Lastly, we multiply by A(S). We have that∑
s.o.p.’s S

T (S,C) ·A(S) =
∑

(T,r1,s1,...,rt,st)
a valid structure for C

n∑
m=1

∑
1≤`1<···<`t≤m

∑
λ1+···+λm=n

λ`i+1+···+λ`i+1
=ri+1+si+1 for each i 6= T

λi≥1

× 2G(u, v, λ`1 , λ`t+1)
∏

1≤i≤t
i 6=T−1

H(ri + si, ri, λ`i+1, λ`i+1
)
(−1)m+1

m

n!

λ1! · · ·λm!
.

(5.62)

For each structure, we can fix some i 6= T − 1, which exists since t ≥ 2, to see that this is a sum of
terms of the form

ri+si∑
d=1

∑
µ1+···+µd=ri+si

µi≥1

(−1)d

µ1! · · ·µd!
H(ri + si, ri, µ1, µd). (5.63)

�

We finish the calculation with the following combinatorial lemma, proven in Appendix B.2.

Lemma 5.26. Fix f, g and let H(f, g, µ1, µd) be as in (5.61). Then

f∑
d=1

∑
µ1+···+µd=f

µi≥1

(−1)d

µ1! · · ·µd!
H(f, g, µ1, µd) = 0. (5.64)

Combining Lemmas 5.25 and 5.26 completes the proof of Lemma 5.19. �

5.4. Computing the integral piece. In this section we complete the proof of Proposition 5.2 by
calculating the integral

∫
Cdy appearing in (5.33). Applying Lemmas 5.19 and 5.18 to (5.11) gives

Qn(φ) = 2n−1(−1)n
a−1∑
`=0

(−1)`
(
n

`

)∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)χ{n−`+1,...,n}dy1 · · · dyn. (5.65)

Next we define

ξ`(φ) :=

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)χ{y1+···+yn−`−yn−`+1−···−yn>1}dy1 · · · dyn (5.66)

and

ξ`(φ) :=

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(y1) · · · φ̂(yn)χ{|y1+···+yn−`|−|yn−`+1|−···−|yn|>1}dy1 · · · dyn. (5.67)

We have that (5.65) equals

Qn(φ) = 2n−1(−1)n
a−1∑
`=0

(−1)`
(
n

`

)
ξ`(φ). (5.68)

We express Qn(φ) in terms of ξ`(φ) with the following lemma.

Lemma 5.27. Let supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
. We have

Qn(φ) = 2n−2(−1)n
a−1∑
t=0

(−1)t
(
n

t

)
ξt(φ). (5.69)



Extending support for the centered moments of the low lying zeroes of cuspidal newforms 39

Proof. Given supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
and t ≤ a− 1, if |y1 + · · ·+ yn−t| − |yn−t+1| − · · · − |yn| > 1,

then either at most i ≤ a− 1 − t of the yj ’s in the first absolute value are nonnegative and the
rest are negative or at most i ≤ a− 1 − t of the yj ’s in the first absolute value are nonpositive or
zero and the rest are positive. Moreover, the sign of y1 + · · · yn−t matches the second group. There
are

(
n−t
i

)
ways to choose these indices and we introduce a factor of 2 from choosing the sign of

y1 + · · · + yn−t. Lastly, since φ̂ is even, we multiply by a factor of 2t to account for changing the
limits of integration over yn−t+1, . . . , yn. Thus we have

ξt(φ) = 2t+1

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)

[
a−1−t∑
i=0

(
n− t
i

)
χ{y1+···+yn−i−t−yn−i−t+1−···−yn>1}

]
dy1 · · · dyn

= 2t+1
a−1−t∑
i=0

(
n− t
i

)
ξi+t(φ). (5.70)

Applying the identity

∑̀
t=0

(−2)t
(
n

t

)(
n− t
`− t

)
=

(
n

`

)∑̀
t=0

(−2)t
(
`

t

)
=

(
n

`

)
(1− 2)` =

(
n

`

)
(−1)` (5.71)

to (5.68) gives

Qn(φ) = 2n−1(−1)n
a−1∑
`=0

ξ`(φ)
∑̀
t=0

(−2)t
(
n

t

)(
n− t
`− t

)
. (5.72)

Switching the order of summation and setting i = `− t gives

Qn(φ) = 2n−2(−1)n
a−1∑
t=0

(−1)t
(
n

t

)[
2t+1

a−1−t∑
i=0

(
n− t
i

)
ξi+t(φ)

]
. (5.73)

Applying (5.70) gives the desired result. �

We complete the evaluation of Qn(φ) by computing ξt(φ).

Lemma 5.28. Let φ be an even Schwartz function with supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
. Then, for ` ≤

a− 1, we have

ξ`(φ) = φn(0)

− 2

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x`+1) · · · φ̂(x2)

∫ ∞
−∞

φn−`(x1)
sin(2πx1(1 + |x2|+ · · ·+ |x`+1|))

2πx1
dx1 · · · dx`+1.

(5.74)

Proof. We apply a change of variables given by

x1 = y1 y1 = x1

x2 = y1 + y2 y2 = x2 − x1
...

...

xn−` =
∑n−`

j=1 yj yn−` = xn−` − xn−`−1

xn−`+1 = yn−`+1 yn−`+1 = xn−`+1
...

...
xn = yn yn = xn

(5.75)
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to (5.67), giving

ξ`(φ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x1)φ̂(x2 − x1) · · · φ̂(xn−` − xn−`−1)

× φ̂(xn−`+1) · · · φ̂(xn)χ{|xn−`|−(|xn−`+1|+···+|xn|)>1}dx1 · · · dxn. (5.76)

Repeatedly applying the identity
∫∞
−∞ f̂(v)ĝ(u − v)dv = f̂g(u) (which arises from the convolution

theorem) to (5.76) gives

ξ`(φ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂n−`(xn−`)φ̂(xn−`+1) · · · φ̂(xn)χ{|xn−`|−(|xn−`+1|+···+|xn|)>1}dxn−` · · · dxn.

(5.77)
We rename xn−` to x1, xn−`+1 to x2, and so on until xn to x`+1. This and the identity

χ{|x1|−(|x2|+···+|x`+1|)>1} = 1− χ{|x1|≤1+|x2|+···+|x`+1|} (5.78)

gives

ξ`(φ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂n−`(x1)φ̂(x2) · · · φ̂(x`+1)(1− χ{|x1|≤1+|x2|+···+|x`+1|})dx1 · · · dx`+1. (5.79)

Distributing and using the identity φ(0) =
∫∞
−∞ φ̂(x)dx, we have that

ξ`(φ) = φn(0)−
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂n−`(x1)φ̂(x2) · · · φ̂(x`+1)χ{|x1|≤1+|x2|+···+|x`+1|}dx1 · · · dx`+1. (5.80)

Fix x2, . . . , x`+1 and set S`(x1) = sin(2πx1(1 + |x2|+ · · ·+ |x`+1|))/(2πx1). We have the identity

χ{|x1|≤1+|x2|+···+|x`+1|}(x1) = 2Ŝ`(x1), (5.81)

which follows from the Fourier pair

sin(2πAx)

2πx
=

∫ ∞
−∞

1

2
χ{|u|≤A}e

2πixudu. (5.82)

Thus Plancherel’s theorem gives us that

ξ`(φ) = φn(0)

− 2

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x`+1) · · · φ̂(x2)

∫ ∞
−∞

φn−`(x1)
sin (2πx1(1 + |x2|+ · · ·+ |x`+1|))

2πx1
dx1 · · · dx`+1

(5.83)

as desired. �

Applying Lemma 5.28 to (5.69) and comparing with (1.9) completes the proof of Proposition
5.2.

Appendix A. Proofs of lemmas in Sections 3 and 4

In this section, we prove the lemmas stated in Sections 3 and 4.



Extending support for the centered moments of the low lying zeroes of cuspidal newforms 41

A.1. Proof of Lemma 3.1.

Proof. We sum over n primes p1, . . . , pn in (3.1). Utilizing (2.19) we see that S
(n)
2 is made up of

terms of the form

ik
√
N

∑
q1-N,...,q`-N
qj distinct

∏̀
j=1

ψ(qj)
nj
〈
λf (Nqm1

1 · · · qm`` )
〉
∗ , (A.1)

where mj ≤ nj , mj ≡ nj (mod 2) for each j and

ψ(qj) := φ̂

(
log qj
logR

)(
2 log qj√
qj logR

)
. (A.2)

Additionally, we have that
∑`

j=1 nj = n. From (A.1) we may write p1 · · · pn = qn1
1 · · · q

n`
` . With an

appropriate reindexing of the pi’s and qj ’s, there exists some n′ ≤ n, ω < ` such that pn−n′+1 · · · pn =
qn1

1 · · · qnωω and p1 · · · pn′ = q
nω+1

ω+1 · · · q
n`
` , where mj < nj for 1 ≤ j ≤ ω and mj = nj for ω+1 ≤ j ≤ `.

Then we can write the summand in (A.1) as

ω∏
j=1

(
φ̂

(
log qj
logR

)(
2 log qj√
qj logR

))nj n−n′∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)
〈λf (Np1 · · · pn−n′qm1

1 · · · qmωω )〉∗ ,

(A.3)

where each mj < nj . Combining this expression with (A.1), we see that S
(n)
2 is made up of terms

of the form

ik
√
N

∑
q1-N,...,qω -N
qj distinct

ω∏
j=1

(
φ̂

(
log qj
logR

)(
2 log qj√
qj logR

))nj ∑
p1,...,pn′ -N
pi 6=qj

n′∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)

× 〈λf (Np1 · · · pn−n′qm1
1 · · · qmωω )〉∗ . (A.4)

Notice
∑ω

j=1 nj = n′, and the inner sum is over n − n′ primes pi, where pi 6= qj for all qj and pi,
which do not divide N .

We now remove the condition pi 6= qj through inclusion-exclusion. In order to do this, we
subtract off terms of the following form, where we fix a constant β1 > 0 and values n′j and m′j for

each j so that for each j, n′j ≥ nj , n′j − nj = m′j −mj and
∑ω

j=1 n
′
j = n′ + β1:

ik
√
N

∑
q1-N,...,qω -N
qj distinct

ω∏
j=1

(
φ̂

(
log qj
logR

)(
2 log qj√
qj logR

))n′j ∑
p1,...,pn−n′−β1

-N
pi 6=qj

n∏
i=n′+β1+1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)

×
〈
λf (Np1 · · · pn−n′−β1q

m′1
1 · · · qm′ωω )

〉
∗
. (A.5)

These terms emerge when β1 of the pi’s in (A.4) are equal to some of the qj ’s. These terms are
of the same form as in (A.4), so we again apply inclusion-exclusion to them to remove the pi 6= qj
condition. We repeat this process until every term has the pi 6= qj condition removed. In particular,

since β1 > 0, this process may take at most n− n′ steps. Thus, S
(n)
2 can be written as the sum of

terms of the form

ik
√
N

∑
q1-N,...,qω -N
qj distinct

ω∏
j=1

(
φ̂

(
log qj
logR

)(
2 log qj√
qj logR

))nj ∑
p1,...,pn−n′ -N

n−n′∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)

× 〈λf (Np1 · · · pn−n′qm1
1 · · · qmωω )〉∗ . (A.6)
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We can remove the distinctness condition on the qj ’s in (A.6) by using inclusion-exclusion. We
subtract off terms when some of the qj ’s are equal, which have the following form:

ik
√
N

∑
q1-N,...,qω′ -N
qj distinct

ω′∏
j=1

(
φ̂

(
log qj
logR

)(
2 log qj√
qj logR

))n′j ∑
p1,...,pn−n′ -N

n−n′∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)

×
〈
λf (Np1 · · · pn−n′q

m′1
1 · · · qm

′
ω′

ω′ )
〉
∗
. (A.7)

Here, we have some fixed ω′ < ω and
∑ω′

j=1 n
′
j = n′. These terms appear when some of the qj ’s

in (A.6) are equal to each other. In particular, if qj1 = qj2 for j1 6= j2, the exponent of qj1 in
this term will be n′j1 = nj1 + nj2 and m′j1 = mj1 + mj2 . Notice that mj1 + mj2 < nj1 + nj2 , so

the condition m′j < n′j is preserved. Thus, the terms (A.7) are of the same form as (A.6), so we
may apply inclusion exclusion to them again. We repeat this process until all of the sums over qj
have the distinctness condition removed or sum over only one qj , in which case we can remove the
distinctness condition immediately.

Thus, S
(n)
2 can be written as the sum of terms of the form

ik
√
N

∑
q1-N,...,qω -N

ω∏
j=1

(
φ̂

(
log qj
logR

)(
2 log qj√
qj logR

))nj ∑
p1,...,pn−n′ -N

×
n−n′∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)
〈λf (Np1 · · · pn−n′qm1

1 · · · qmωω )〉∗ , (A.8)

where each nj > mj . �

A.2. Proof of Lemma 3.2.

Proof. Let supp(φ̂) ⊂ (−σ, σ) with σ < 1/(n − a). Using Lemma 2.12, we may use the prime
number theorem and partial summation to bound the sum over p1, . . . , pn−n′ in (3.4) by

N−3/2+ε (qm1
1 · · · qmωω )1/2Rσ(n−n′). (A.9)

Next, since nj > mj for 1 ≤ j ≤ ω and nj − mj is even, we have that nj − mj ≥ 2 so we can
again use the prime number theorem and partial summation on the sums over q1, . . . , qω in (3.4) to

bound (3.4) by N−1+εRσ(n−n′). This is negligible when n′ ≥ a, since in this case σ(n−n′) < 1. �

A.3. Proof of Lemma 3.3.

Proof. Let supp(φ̂) ⊂ (−σ, σ). We set b = cN and sum over all c ≥ 1. The sum over all such b in
(3.5) is then

2n+1π√
N

∑
q1-N,...,qω -N

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1-N,...,pn−n′ -N

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∞∑
c=1

S(m2, NQ;N2c)

Nc
Jk−1

(
4πm

cN
√
N

)
. (A.10)

We use the bound (2.5) to find that S(m2, NQ;N2c) � m2(Nc)1/2+ε. Combining this with the
bounds Jk−1(x)� x and m ≤ N ε, we find that the sum over c in (A.10) is bounded by N−2+ε

√
Q.

Using the fact that nj −mj ≥ 2, applying the prime number theorem and partial summation to

(A.10) with our bound on the sum over c, we find that (A.10) is bounded by N−5/2+εR(n−n′)σ,
which is negligible when σ < 5

2(n−n′) . �
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A.4. Proof of Lemma 3.4.

Proof. Let supp(φ̂) ⊂ (−σ, σ). The sum over all such b ≥ N2022 in (3.5) is

2n+1π√
N

∑
q1-N,...,qω -N

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1-N,...,pn−n′ -N

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
b≥N2022

S(m2, NQ;Nb)

b
Jk−1

(
4πm

b
√
N

)
. (A.11)

We use the bound (2.5) to find that S(m2, NQ;Nb) � m2b1/2+εN ε. Combining this with the
bounds Jk−1(x)� x and m ≤ N ε, we find that the sum over b in (A.11) is bounded by

N−1/2+ε
∑

b≥N2022

b−3/2+ε. (A.12)

Using the integral comparison test, we find that (A.12) is b−1011−1/2+ε. We can use the fact that
nj−mj ≥ 2 and apply the prime number theorem and partial summation to (A.11) with our bound

on the sum over b to find that (A.11) is bounded by N−1012+εR(n−n′)σ, which is O(N−12) when
σ < 1000

n−n′ . �

A.5. Proof of Lemma 3.5.

Proof. Set r = (Q, b∞) and Q′ = Q/r. Then (Q′, b) = 1. Then we have that

S(m2, NQ;Nb) =
1

ϕ(b)

∑
χ(b)

∑∗

a(b)

χ(a)χ(Q′)S(m2, Nra;Nb)

=
1

ϕ(b)

∑
χ(b)

∑∗

a(b)

χ(a)χ(Q′)
∑∗

d(Nb)

e

(
m2d

Nb

)
e

(
Nrad

Nb

)

=
1

ϕ(b)

∑
χ(b)

χ(Q′)
∑∗

d(Nb)

e

(
m2d

Nb

) ∑∗

a(b)

χ(a)

(
rad

b

)
. (A.13)

As (d, b) = 1, we can do a change of variables from a to ad in the inner sum:

S(m2, NQ;Nb) =
1

ϕ(b)

∑
χ(b)

χ(Q′)Gχ(r)
∑∗

d(Nb)

χ(d)e

(
m2d

Nb

)
. (A.14)

In the inner sum, we rewrite d = u1N + u2b with (u1, b) = 1 and (u2, N) = 1 since (N, b) = 1. We
have that χ(u1N + u2b) = χ(u1)χ(N) which gives∑∗

d(Nb)

χ(d)e

(
m2d

Nb

)
=
∑∗

u1(b)

∑∗

u2(N)

χ(u1)χ(N)e

(
m2u1N

Nb

)
e

(
m2u2b

Nb

)

=
∑∗

u1(b)

χ(u1)χ(N)e

(
m2u1

b

) ∑∗

u2(N)

e

(
m2u2

N

)
. (A.15)

Since (m2, N) = 1, the inner sum equals -1 so we have∑∗

d(Nb)

χ(d)e

(
m2d

Nb

)
= −χ(N)

∑∗

u1(b)

χ(u1)e

(
m2u1

b

)
= −χ(N)Gχ(m2). (A.16)
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Applying this to (A.14) gives

S(m2, NQ;Nb) = − 1

ϕ(b)

∑
χ(b)

Gχ(m2)Gχ(r)χ
(
Q′
)
χ(N) (A.17)

as desired. �

A.6. Proof of Lemma 3.6. We first prove an auxiliary lemma.

Lemma A.1. Assuming GRH for Dirichlet L-functions, if χ is a primitive character of modulus
b, then for real x and t we have that∑

n≤x
Λ(n)χ(n)n−it = O(x1/2(bxt)ε). (A.18)

Proof of Lemma A.1. Let χ be a primitive character modulo b and let L(s, χ) be its L-function.
For ease of notation, define

ψ(χ, x, t) :=
∑
n≤x

Λ(n)χ(n)n−it. (A.19)

By Proposition 5.54 of [IK04] and Mellin inversion,∑
n≤x

Λ(n)χ(n)n−it =

∫ 3/2+ix

3/2−ix

L′

L
(s+ it, χ)

xs

s
ds+O

(
x1/2

)
. (A.20)

We evaluate the integral on the right hand side of (A.20). We complete the contour by integrating
counter-clockwise around a box with vertices at 3/2−ix, 3/2+ix,−1/2+ix,−1/2−ix. In doing so,
we pick up residues at the nontrivial zeros of L(s+ it, χ). To bound the contribution from the three

sides, we use the following bound for L′

L (s, χ) from page 116 of [Dav80], valid for −1 ≤ Re(s) ≤ 2:

L′

L
(s, χ)� (log b|s|)2. (A.21)

Applying this bound gives∑
n≤x

Λ(n)χ(n)n−it =
∑
|γ−t|≤x

xρ−it

ρ− it
+O

(
x1/2(bxt)ε

)
. (A.22)

where the sum is over the nontrivial zeros ρ = β + iγ of L(s, χ). Assuming GRH for Dirichlet
L-functions we have that ρ = 1/2 + iγ. Taking absolute values in (A.22) gives

ψ(χ, x, t) ≤ x1/2
∑
|γ−t|≤x

1

|1/2 + i(γ − t)|
+O

(
x1/2(bxt)ε

)
(A.23)

since |xiγ−it| = 1. By equation (1) on page 101 of [Dav80], the number of zeros satisfying u ≤
γ − t ≤ u+ 1 is � log(b(|u|+ |t|). Thus we can bound (A.23) by

ψ(χ, x, t) � x1/2 log(b(|x|+ |t|) log(|x|+ |t|) +O
(
x1/2(bxt)ε

)
(A.24)

� x1/2(bxt)ε (A.25)

as desired. �
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Proof of Lemma 3.6. We show that subterms involving non-principal characters do not contribute

to S
(n)
2 in the limit. Suppose φ̂ has support in (−σ, σ). The sum of subterms over non-principal

characters in (3.8) is

− 2n+1π√
N

∑
q1,...,qω

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1,...,pn−n′

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

1

bϕ(b)

∑
χ(b)
χ 6=χ0

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
χ(N)Jk−1

(
4πm
√
Q

b
√
N

)
.

(A.26)

where Q = p1 · · · pn−n′qm1
1 · · · qmωω . We case on the value of (Q, b∞). Without loss of generality, set

(Q, b∞) = p1 · · · pαqm1
1 · · · qmθθ for some α ≤ n− n′, θ ≤ ω. Thus (A.26) can be written as a sum of

terms of the form

S := −2n+1π√
N

∑
q1,...,qω

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1,...,pα

α∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

p1,...,pα,q1,...,qθ|b

1

bϕ(b)

∑
χ(b)
χ 6=χ0

Gχ(m2)Gχ((Q, b∞))χ
(
q
mθ+1

θ+1 · · · q
mω
ω

)
χ(N)

×
∑

pα+1,...,pn−n′

Jk−1

(
4πm
√
Q

b
√
N

) α∏
i=1

φ̂

(
log pi
logR

)
log piχ(pi)√
pi logR

. (A.27)

We first evaluate the sum over pα+1, . . . , pn−n′ in (A.27), which we denote by T . First, we write
Jk−1 as an integral along the line Re(s) = −1 + ε using the inverse Mellin transform (2.10):

T =
∑

pα+1,...,pn−n′

1

2πi

∫
Re(s)=−1+ε

(
4πm
√
Q

b
√
N

)−s
Gk−1(s)

α∏
i=1

φ̂

(
log pi
logR

)
log piχ(pi)√
pi logR

ds, (A.28)

where Gk−1(s) is the Mellin transform of the Bessel function. Now, we may swap the sum and
integral by Fubini’s theorem and set s = −1 + ε+ it to simplify (A.28) as

T =
1

2π

∫ ∞
−∞

(
4πm
√
Q′

b
√
N

)1−ε−it
Gk−1(1−ε+it)

[∑
p

φ̂

(
log p

logR

)
log pχ(p)

p(ε+it)/2 logR

]n−n′−α
dt, (A.29)

where Q′ = p1 · · · pαqm1
1 · · · qmωω . Using partial summation and Lemma A.1, we find that∑

p

φ̂

(
log p

logR

)
log pχ(p)

p(ε+it)/2 logR
� Rσ/2(Rbt)ε

′
. (A.30)

Applying this bound to (A.29) gives

T �
(
m
√
Q′

b
√
N

)1−ε
Rσ(n−n′−α)/2(Rb)ε

′
∫ ∞
−∞
|Gk−1(1− ε+ it)tε

′ |dt. (A.31)

From (4.42) of [HM07] we have that |Gk−1(1−ε+ it)| � (1+ |t|)2−ε. Applying this bound to (A.29)
we see that the integral converges and

T �
(
m
√
Q′

b
√
N

)1−ε
Rσ(n−n′−α)/2(Rb)ε

′
. (A.32)
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Now, applying (A.32) to (A.27) and using the bound

1

ϕ(b)

∑
χ(b)

|Gχ(x)Gχ(y)| � b (A.33)

gives

S � N1−εRσ(n−n′−α)/2Rε
′ ∑
q1,...,qω

ω∏
j=1

φ̂

(
log qj
logR

)nj lognj qj

q
(nj−mj)/2
j lognj R

∑
p1,...,pα

α∏
i=1

φ̂

(
log pi
logR

)
log pi
logR

×
∑

(b,N)=1
b<N2022

p1,...,pα,q1,...,qθ|b

b−1+ε+ε′ . (A.34)

The sum over b in (A.34) is N ε′′(p1 · · · pαq1 · · · qθ)−1. Applying this bound, partial summation and
the prime number theorem to (A.34) we finally have that

S � N1+ε′′Rσ(n−n′−α)/2, (A.35)

which is negligble if σ < 2/(n− n′) since α ≥ 0. �

A.7. Proof of Lemma 4.4.

Proof. Given nonnegative integers γ, n with γ < n, define

T (γ, n) :=
1

2πi

∫
Re(s)=1

(
4πm
√
c

b
√
N

)−s
Gk−1(s)

[ ∞∑
v=1

φ̂

(
log v

logR

)
χ0(v)Λ(v)

v(1+s)/2 logR

]γ
φ

(
1− s
4πi

logR

)n−γ
ds

(A.36)
where Gk−1(s) is the Mellin transform of the Bessel function (see (2.9). Via a change of variable
s = 1 + it and the definition of the Mellin transform,

T (γ, n) =
b
√
N

8π2m
√
c

∫ ∞
t=−∞

φ

(
−t logR

4π

)n−γ  ∞∑
v1,...,vγ=1

γ∏
i=1

φ̂

(
log vi
logR

)
χ0(vi)Λ(vi)

v
it/2+1
i logR


×
(

4πm
√
c

b
√
N

)−it ∫ ∞
x=0

Jk−1(x)xitdxdt. (A.37)

Setting Φk(x) = φ(x)k, applying Fubini, and then applying another change of variable u =
−t logR/(4π) gives

T (γ, n) =
b
√
N

2πm
√
c

∞∑
v1,...,vγ=1

[
γ∏
i=1

φ̂

(
log vi
logR

)
χ0(vi)Λ(vi)

vi logR

]

×
∫ ∞
x=0

Jk−1(x)Φ̂n−γ

(
2 log(bx

√
N/cv1 · · · vγ/4πm)

logR

)
dx

logR
. (A.38)

We now consider the left hand side of the original statement in equation (4.13), which we denote
by U . Using the Mellin transform of the Bessel function (2.9) gives

U =
1

2πi

∫
Re(s)=1

[ ∞∑
v=1

φ̂

(
log v

logR

)
χ0(v)Λ(v)

v(1+s)/2 logR

]n−η (
4πm
√
c

b
√
N

)−s
Gk−1(s)ds. (A.39)
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By Equation (4.34) of [HM07] we have that

∞∑
v=1

φ̂

(
log v

logR

)
χ0(v)Λ(v)

v(1+s)/2 logR
= φ

(
1− s
4πi

logR

)
+ E(s), (A.40)

where

E(s) := − 1

2πi

∫
Re(z)=3/4

φ

(
(2z − 1− s) logR

4πi

)
L′

L
(z, χ0)dz. (A.41)

We substitute this formula into (A.39) to find

U =
1

2πi

∫
Re(s)=1

[
φ

(
1− s
4πi

logR

)
+ E(s)

]n−η (4πm
√
c

b
√
N

)−s
Gk−1(s)ds

=

n−η∑
γ=0

(
n− η
γ

)
1

2πi

∫
Re(s)=1

φ

(
1− s
4πi

logR

)n−η−γ
E(s)γ

(
4πm
√
c

b
√
N

)−s
Gk−1(s)ds. (A.42)

Equation (4.43) of [HM07] gives the bound

1

2πi

∫
Re(s)=1

φ

(
1− s
4πi

logR

)n−η−γ
E(s)γ

(
4πm
√
c

b
√
N

)−s
Gk−1(s)ds � N (n−η−γ)σ/2+ε. (A.43)

Since we have σ < 1
n−a , when γ > a− η − 1 the term is be O

(
N1/2−ε). Thus we have that

U =

a−η−1∑
γ=0

(
n− η
γ

)
1

2πi

∫
Re(s)=1

φ

(
1− s
4πi

logR

)n−η−γ
E(s)γ

(
4πm
√
c

b
√
N

)−s
Gk−1(s)ds+O

(
N1/2−ε

)
.

(A.44)

Using the formula for E(s) in (A.40) and the definition of T in (A.36) gives

U =

a−η−1∑
γ=0

(
n− η
γ

) γ∑
j=0

(−1)j−γ
(
γ

j

)
T (j, n− η) +O

(
N1/2−ε

)
. (A.45)

Rearranging gives

U =

a−η−1∑
γ=0

a−η−1∑
j=γ

(−1)j−γ
(
n− η
j

)(
j

γ

)
T (γ, n− η) +O

(
N1/2−ε

)
. (A.46)

Now, applying (A.38) to (A.46) completes the proof of the lemma. �

A.8. Proof of Lemma 4.11.

Proof of Lemma 4.11. Set

S :=
∞∑
b=1

(b,M)=1

R(1, b)R(m2, b)

ϕ(b)

∫ ∞
0

Jk−1(y)φ̂

(
2 log(by

√
Q/4πm)

logR

)
dy

logR
. (A.47)
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First, note that for ε > 0 (and via the change of variable y = m
√
R

b
√
Q
x),∣∣∣∣R(1, b)R(m2, b)

ϕ(b)bε

∫ ∞
0

Jk−1(y)φ̂

(
2 log(by

√
Q/4πm)

logR

)
dy

logR

∣∣∣∣
� m4

ϕ(b)bε

∣∣∣∣∣
∫ ∞

0
Jk−1

(
m
√
R

b
√
Q
x

)
φ̂

(
2 log(x

√
R/4π)

logR

)
m
√
R

b
√
Q

dx

logR

∣∣∣∣∣
� b−3/2, (A.48)

where we use the estimates |R(1, b)| = 1, |R(m2, b)| ≤ m4, J(x) � 1 and ϕ(b) ≤ b. Since∑
(b,M)=1 b

−3/2 converges, we have by the dominated convergence theorem that

S = lim
ε→0

∑
(b,M)=1

R(1, b)R(m2, b)

ϕ(b)bε

∫ ∞
0

Jk−1(y)φ̂

(
2 log(by

√
Q/4πm)

logR

)
dy

logR
. (A.49)

Using the Mellin transform of the Bessel function (2.9) gives∫ ∞
y=0

Jk−1(y)φ̂

(
2 log(by

√
Q/4πm)

logR

dy

logR

)
=

∫ ∞
−∞

φ(x logR)

(
2πm

b
√
Q

)4πix Γ
(
k
2 − 2πix

)
Γ
(
k
2 + 2πix

)dx.
(A.50)

Thus after interchanging the sum and integral in (A.49) using Fubini’s theorem, we have

S = lim
ε→0

∫ ∞
−∞

φ(x logR)

(
2πm√
Q

)4πix Γ
(
k
2 − 2πix

)
Γ
(
k
2 + 2πix

) ∑
(b,M)=1

R(1, b)R(m2, b)

ϕ(b)bε+4πix
dx. (A.51)

We now define

χ(s) :=
∑

(b,M)=1

R(1, b)R(m2, b)

ϕ(b)bs
(A.52)

so that

S = lim
ε→0

∫ ∞
−∞

φ(x logR)

(
2πm√
Q

)4πix Γ
(
k
2 − 2πix

)
Γ
(
k
2 + 2πix

)χ(ε+ 4πix)dx. (A.53)

To evaluate this expression, we break the integral into two pieces: one for x close to 0 and one
for |x| large. We will show that the part with |x| large has insignificant contribution as a result of
the rapid decay of φ and then use Laurent expansions to handle the portion where |x| is small.

First, we note that our sum χ can be expressed as a product over primes as

χ(s) =
∏

(p,M)=1

∞∑
t=0

R(1, pt)R(m2, pt)

ϕ(pt)pts

=
∏

(p,M)=1


(

1 + 1
(p−1)ps

)
, if (p,m) = 1,(

1− 1
ps

)
if (p,m) > 1,

(A.54)

since R(1, b) = µ(b), R(m2, 1) = 1, R(m2, p) = −1 if (m, p) = 1, and R(m2, p) = ϕ(p) = p − 1 if
(p,m) > 1. It is convenient to rewrite this formula as

χ(s) =
∏
p

(
1 +

1

(p− 1)ps

)∏
p|M

(
1 +

1

(p− 1)ps

)−1 ∏
p| m

(m,M∞)

(
1− 1

ps

)(
1 +

1

(p− 1)ps

)−1

.

(A.55)
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We start by bounding the integral when |x| is large. In particular, we consider the portion of the
integral with |x| ≥ X, where X is some function of R that we determine later. [Mil09] observed
that ∏

p

(
1 +

1

(p− 1)ps

)
=
∏
p

(
1 +

1

p1+s

)(
1 +

1

(p− 1)(p1+s + 1)

)

=
∏
p

(
1 + 1

p1+s

)(
1− 1

p1+s

)
(

1− 1
p1+s

) (
1 +

1

(p− 1)(p1+s + 1)

)

=
ζ(1 + s)

ζ(2 + 2s)

∏
p

(
1 +

1

(p− 1)(p1+s + 1)

)
. (A.56)

For Re(s) > −1, Equation (7) from page 32 of [Dav80] gives that

ζ(1 + s) =
1

s
+ 1− (1 + s)

∫ ∞
1
{y}y−2−sdy, (A.57)

where {y} denotes the fractional part of y. For s = ε+ 4πix, |x| > X, this gives us that

|ζ(1 + s)| ≤ 1

4πX
+ 2 + |s|. (A.58)

We also have that∣∣∣∣ 1

ζ(2 + 2s)

∣∣∣∣ =
∏
p

∣∣∣∣1− 1

p2+s

∣∣∣∣ ≤ ∏
p

(
p2 + 1

p2

)
≤
∏
p

(
p2

p2 − 1

)
= ζ(2) (A.59)

and ∣∣∣∣1 +
1

(p− 1)(p1+s + 1)

∣∣∣∣ ≤ ∣∣∣∣1 +
1

(p− 1)2

∣∣∣∣ , (A.60)

whence∣∣∣∣∣∏
p

(
1 +

1

(p− 1)(p1+s + 1)

)∣∣∣∣∣ ≤ ∏
p

(
1 +

1

(p− 1)2

)
≤ 2

∏
p

(
1 +

1

p2

)
≤ 2ζ(2). (A.61)

For the other products, it is useful to consider the p = 2 case separately, which gives us the
alternate bound of ∣∣∣∣∣∏

p

(
1 +

1

(p− 1)(p1+s + 1)

)∣∣∣∣∣ ≤
∣∣∣∣1 +

1

21+s + 1

∣∣∣∣ · ζ(2). (A.62)

Next we bound the product over p|M . Suppose M is the product of α primes. The magnitude
of each term is maximized when ps is a purely negative real. If p1, · · · , pα > 2, we get the bound

∣∣∣∣∣∣
∏
p|M

(
1 +

1

(p− 1)ps

)−1
∣∣∣∣∣∣ ≤

∏
p|M

(
1− 1

(p− 1)|ps|

)−1

≤
α∏
i=1

pi − 1

pi − 2
< 2α. (A.63)

If pn = 2, we can combine this term with our previous estimate and instead bound∣∣∣∣∣
(

1 +
1

21+s + 1

)
·
(

1 +
1

2s

)−1
∣∣∣∣∣ . (A.64)
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Writing c = 2s and noting that 1 < |c| < 2, we have∣∣∣∣(1 +
1

21+s + 1

)
/

(
1 +

1

2s

)∣∣∣∣ =

∣∣∣∣∣1 + 1
2c+1

1 + 1
c

∣∣∣∣∣ =

∣∣∣∣ 2c2 + 2c

2c2 + 3c+ 1

∣∣∣∣ =

∣∣∣∣ 2c

2c+ 1

∣∣∣∣ =

∣∣∣∣1− 1

2c+ 1

∣∣∣∣ < 2.

(A.65)

Finally, we bound the last product. We begin by noting that by our previous work and a trivial
estimate, for all primes p > 2 we have∣∣∣∣∣

(
1− 1

ps

)(
1 +

1

(p− 1)ps

)−1
∣∣∣∣∣ ≤ 2 · p− 1

p− 2
≤ 4. (A.66)

For the case p = 2, we again proceed as in the product over p|M , this time getting the estimate∣∣∣∣∣
(

1− 1

2s

)(
1 +

1

2s

)−1(
1 +

1

21+s + 1

)∣∣∣∣∣ < 4. (A.67)

In any case, grouping all of the terms together, we find that for s = ε+ 4πix with |x| > X,

|χ(s)| ≤
(

1

4πX
+ 3 + 4π|x|

)
8ζ(2)2

∏
p|m

4 �
(
X−1 + 1 + |x|

)
4logpi (m)+i (A.68)

where pi is the ith prime number. We can get an arbitrarily small exponent for m at the expense
of a greater constant, so we have that

|χ(s)| ≤
(

1

4πX
+ 3 + 4π|x|

)
Oε′(m

ε′). (A.69)

Letting X = (logR)−1/2, we apply (A.69) and use the decay of φ to get∣∣∣∣∣
∫ ∞
X

φ(x logR)χ(ε+ 4πix)

(
2πm√
Q

)4πix Γ(k2 − 2πix)

Γ(k2 + 2πix)
dx

∣∣∣∣∣
�ε′ m

ε′
∫ ∞
X

(x logR)−4
(
X−1 + 1 + x

)
dx

�ε′ m
ε′(logR)−1. (A.70)

While [ILS99] gives an incorrect factorization for the Laurent expansion of χ(s) near s = 0, their
result is still correct within the listed error terms. Specifically,∏

p

(
1 +

1

(p− 1)ps

)
= s−1 +O(1)

∏
p|M

(
1 +

1

(p− 1)ps

)−1

=
ϕ(M)

M
(1 +O(|s| log log 3M))

∏
p| m

(m,M∞)

(
1− 1

ps

)(
1 +

1

(p− 1)ps

)−1

= δ

(
m

(m,M∞)
, 1

)
+O(|s| logm). (A.71)

Thus, we have that for s� X = (logR)−1/2,

χ(s) =
ϕ(M)

sM
δ

(
m

(m,M∞)
, 1

)
+O (log(m logM)) , (A.72)
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where we simplify the error term using ϕ(M) ≤M . (8.322) of [GR65] gives

Γ

(
k + s

2

)
= Γ

(
k − s

2

)(
k

2

)s [
1 +O

(
|s|
k

)]
. (A.73)

We have for small x and ε that

χ(ε+ 4πix)
Γ(k2 − 2πix)

Γ(k2 + 2πix)
=

ϕ(M)

sM
δ

(
m

(m,M∞)
, 1

)(
k

2

)−4πix

+O (log(m logM)) . (A.74)

In particular, after changing x to −x and noting the evenness of φ, the “small x” integral is∫ X

−X
φ(x logR)

(
k
√
Q

4πm

)4πix
dx

ε− 4πix
+O

(
log(m logM)

logR

)
. (A.75)

To extend the integral again, we use the decay of φ to find that∣∣∣∣∣
∫ ∞
X

φ(x logR)

(
k
√
Q

4πm

)4πix
dx

ε− 4πix

∣∣∣∣∣ �
∫ ∞
X

1

4πx
φ(x logR)dx � (X logR)−2. (A.76)

Since X = (logR)−1/2, the contribution from this term is absorbed into our error term. Adding
both terms back in, keeping track of all of our error terms, and noting that φ is even, we have that

S = δ

(
m

(m,M∞)
, 1

)
ϕ(M)

M
lim
ε↓0

∫ ∞
−∞

φ(x logR)

(
k
√
Q

4πm

)4πix
dx

ε− 4πix
+Oε′

(
mε′ log logM

logR

)
.

(A.77)

Arguing as on page 100 of [ILS99], we find that this equals

S = δ

(
m

(m,M∞)
, 1

)
ϕ(M)

M

(
−1

2

∫ ∞
−∞

φ(x) sin

(
2πx

log
(
k2Q/16π2m2

)
logR

)
dx

2πx
+

1

4
φ(0)

)

+Oε′

(
mε′ log logM

logR

)
(A.78)

as desired. �

Appendix B. Proofs of lemmas in Section 5

B.1. Proof of Lemma 5.16.

Proof. We will consider each term appearing in (5.38) separately. First, define

g1(n, f, c, d) =

(
n

f

)
, g2(n, f, c, d) =

(
n− c
f − c

)
g3(n, f, c, d) =

(
n− d
f − d

)
, g4(n, f, c, d) =

(
n− c− d
f − c− d

)
(B.1)

and

Gi(n, f) = 2(−1)nn!
∑
c+d≤n
c,d≥0

(−1)c+d+1 gi(n, f, c, d)

(n− c− d)!c!d!
. (B.2)

We want to evaluate G1(n, f)−G2(n, f)−G3(n, f) +G4(n, f). We set ` = c+d to rewrite (B.2) as

Gi(n, f) = 2(−1)n+1n!
n∑
`=0

(−1)`
∑̀
c=0

gi(n, f, c, `− c)
(n− `)!(`− c)!c!

. (B.3)
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To evaluate G1(n, f), we group the binomial coefficients to find that

G1(n, f) = 2(−1)n+1

(
n

f

) n∑
`=0

(−1)`
(
n

`

)∑̀
c=0

(
`

c

)

= 2(−1)n+1

(
n

f

) n∑
`=0

(−2)`
(
n

`

)
= −2

(
n

f

)
. (B.4)

Next, we note that G2(n, f) = G3(n, f). We have that

G2(n, f) = 2(−1)n+1

(
n

f

) n∑
`=0

(−1)`
∑̀
c=0

(
f

c

)(
n− c
n− `

)

= 2(−1)n+1

(
n

f

) n∑
c=0

(
f

c

) n∑
`=c

(−1)`
(
n− c
n− `

)
. (B.5)

We reindex the sum by setting `′ = `− c. Doing so, we see that sum over `′ is zero unless n− c = 0.
However, in this case we have that

(
f
c

)
= 0 since f ≤ n/2 < n. Thus each term vanishes and

G2(n, f) = G3(n, f) = 0. (B.6)

Lastly, again grouping terms into binomial coefficients gives

G4(n, f) = 2(−1)n+1

(
n

f

) n∑
`=0

(−1)`
(
f

`

)∑̀
c=0

(
`

c

)

= 2(−1)n+1

(
n

f

) n∑
`=0

(−2)`
(
f

`

)
. (B.7)

We may restrict the sum in the last line to 0 ≤ ` ≤ f since f ≤ n and
(
f
`

)
= 0 when ` > f . Doing

so, we find the sum over ` is (−1)f so

G4(n, f) = 2(−1)n+f+1

(
n

f

)
. (B.8)

Combining (B.4), (B.6) and (B.8) completes the proof of the lemma. �

B.2. Proof of Lemma 5.26.

Proof. We consider each term appearing in (5.61) separately. First, define

h1(f, g, µ1, µd) :=

(
f

g

)
, h2(f, g, µ1, µd) :=

(
f − µ1

g − µ1

)
h3(f, g, µ1, µd) :=

(
f − µd
g

)
, h2(f, g, µ1, µd) :=

(
f − µ1 − µd
g − µ1

)
(B.9)

and

Hi(f, g) :=

f∑
d=1

∑
µ1+···+µd=f

µi≥1

(−1)d

µ1! · · ·µd!
hi(f, g, µ1, µd) (B.10)

for i ∈ {1, 2, 3, 4}. We will show that Hi(f, g) = (−1)f/g!(f − g)! independent of i, so that
H1 − H2 − H3 + H4 = 0 as desired. For H1 the result follows immediately from comparing
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coefficients of zf in the identity (5.43). For H2, we pull out the µ1 term to get

H2(f, g) = −
f∑

µ1=1

1

µ1!

(
f − µ1

g − µ1

) f−µ1∑
d=1

∑
µ2+···+µd=f−µ1

µi≥1

(−1)d−1

µ2! · · ·µd!
. (B.11)

Applying (5.43) and simplifying gives

H2(f, g) = −
f∑

µ1=1

1

µ1!

(
f − µ1

g − µ1

)
(−1)f−µ1

(f − µ1)!

= − (−1)f

(f − g)!

f∑
µ1=1

(−1)µ1

µ1!(g − µ1)!
=

(−1)f

g!(f − g)!
, (B.12)

where the last step comes from restricting the summation to 1 ≤ µ1 ≤ g and using the binomial
expansion of (1− 1)g. We can show the result for H3 similarly. For H4, we pull out the µ1 and µd
terms to get

H4(f, g) =

f∑
µd=1

f−µd∑
µ1=1

1

µ1!µd!

(
f − µ1 − µd
g − µ1

) f−µ1−µd∑
d=1

∑
µ2+···+µd−1=f−µ1−µd

µi≥1

(−1)d−2

µ2! · · ·µd−1!
. (B.13)

Applying (5.43) and simplifying gives

H4(f, g) =

f∑
µ1=1

f−µ1∑
µd=1

1

µ1!µd!

(
f − µ1 − µd
g − µ1

)
(−1)f−µ1−µd

(f − µ1 − µd)!

= (−1)f
f∑

µd=1

(−1)µd

(f − g − µd)!µd!

f−µd∑
µ1=1

(−1)µ1

µ1!(g − µ1)!

=
(−1)f+1

g!

f∑
µd=1

(−1)µd

(f − g − µd)!µd!
=

(−1)f

g!(f − g)!
(B.14)

where the last two steps come from restricting the summation to 1 ≤ µ1 ≤ g and 1 ≤ µd ≤ f − g
and using the binomial expansion of (1− 1)g and (1− 1)f−g. �

Appendix C. Increasing support for the non-split family

In this section, we show how to prove Theorem 1.4 without the condition 2k ≥ n. Arguing as in
Appendix E of [HM07], we need to bound terms of the form

E := 2πik
∑

q1,...,q`
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj) ∑
m≤Nε

1

m

∞∑
b=1

S(m2, Q;Nb)

Nb
Jk−1

(
4πm
√
Q

Nb

)
(C.1)

where Q = qm1
1 · · · qm`` and nj ≡ mj (mod 2) for all j. Showing that these terms vanish as N →∞

for φ with supp φ̂ ⊂
(
− 2
n ,

2
n

)
completes the proof of Theorem 1.4. These terms are very similar

to the E(~n, ~m) terms introduced in Section 3 (see (3.5) for example), and we are able to evaluate
them in a similar fashion. We omit proofs as they are analogous to the proofs of the corresponding
lemmas in Section 3, which we refer to. We will eventually prove the following lemma.
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Lemma C.1. Let E be defined as in (C.1). Under GRH for Dirichlet L-functions, if supp(φ̂) ⊂(
− 2
n ,

2
n

)
, then E � N−ε and thus does not contribute in the limit.

First we restrict the sum over b as in Lemmas 3.3 and 3.4, which are proven in Appendices A.3
and A.4, respectively.

Lemma C.2. Suppose supp(φ̂) ⊆
(
− 7

2n ,
7

2n

)
. Then the subterms of E in (C.1) for which (b,N) > 1

are O (N−ε).

Lemma C.3. Suppose supp(φ̂) ⊂
(
−1000

n , 1000
n

)
. Then, the subterms of E in (C.1) for which

b ≥ N2022 are O(N−12).

Applying Lemmas C.2 and C.3 to (C.1) gives

E = 2πik
∑

q1,...,q`
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj) ∑
m≤Nε

1

m

×
∑

(b,N)=1
b<N2022

S(m2, Q;Nb)

Nb
Jk−1

(
4πm
√
Q

Nb

)
+O

(
N−ε

)
. (C.2)

We convert the Kloosterman sums to sums over Gauss sums as in Lemma 3.5, which is proven in
Appendix A.5.

Lemma C.4. Let N be a prime not dividing b,Q,m. Then

S(m2, NQ;Nb) = − 1

ϕ(Nb)

∑
χ(Nb)

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
. (C.3)

Applying Lemma C.4 to (C.2) gives

E = −2πik
∑

q1,...,q`
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj) ∑
m≤Nε

1

m

×
∑

(b,N)=1
b<N2022

1

Nbϕ(Nb)

∑
χ(Nb)

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
Jk−1

(
4πm
√
Q

Nb

)
+O

(
N−ε

)
.

(C.4)

Next, it holds that subterms involving non-principal characters in (C.4) are negligible in the limit.
This leaves only subterms involving χ0 = χ0 (mod Nb) for each b. It holds that Gχ0(x) = R(x,Nb),
a Ramanujan sum.

Lemma C.5. Assume GRH for Dirichlet L-functions and suppose that supp(φ̂) ⊂
(
− 2
n ,

2
n

)
. Then

the sum over all non-principal characters in (C.4) is O (N−ε).
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This lemma corresponds to Lemma 3.6, proven in Appendix A.6. Applying Lemma C.5 to (C.4)
gives

E = −2πik
∑

q1,...,q`
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj) ∑
m≤Nε

1

m

×
∑

(b,N)=1
b<N2022

R(m2, Nb)R((Q, b∞), Nb)

Nbϕ(Nb)
χ0

(
Q

(Q, b∞)

)
Jk−1

(
4πm
√
Q

Nb

)
+O

(
N−ε

)
. (C.5)

Now, applying the bounds R(m2, Nb) ≤ m4, R(x,Nb) ≤ ϕ(Nb), and Jk−1(x) � x to (C.5) and

using the fact that supp φ̂ ⊂
(
− 2
n ,

2
n

)
, we find that the main term is absorbed by the error term,

completing the proof of Lemma C.1.

Appendix D. Bounding the order of vanishing at the central point

In this section, we follow the arguments of Section 6 of [HM07] in order to bound the proportion
of newforms with negative sign whose order of vanishing exceeds a certain threshold r. While they
are conditional on GRH, our results surpass the best known conditional and unconditional bounds
established in [ILS99], [HM07], and [BCD+20] when r ≥ 5. We focus on the case r = 5, however
our results may be easily generalized the case when r > 5. Additionally, we study the 4th-centered
moment as it provides the best bounds for the case r = 5, but utilizing higher moments provides
better bounds as r increases. Lastly, similar results may be obtained for the positive sign family.
See [DM22] for a more in-depth analysis, where the results of this paper are used to find excellent
bounds for vanishing to order r or more; specifically, for a fixed test function Dutta and Miller
determine what level density gives the best bound.

We utilize Theorem 1.2 with n = 4 and

φ(x) =

(
sinπσx

πσx

)2

, φ̂(y) =

{
1
σ −

|y|
σ2 |y| < σ

0 |y| ≥ σ.
(D.1)

This test function is likely not optimal in general for minimizing the nth-centered moment, and
optimal test functions for the case n = 1 and n = 2 are found in [ILS99] and [BCD+20]. However,
they are sufficient to surpass the bounds established in those papers. While Theorem 1.2 requires
σ < 0.5 when n = 4, we may utilize the bounds given by σ = 0.5 by setting σ = 0.5− ε and letting
ε→ 0. Now, Theorem 1.2 gives

lim
N→∞
Nprime

〈(D(f ;φ)− 〈D(f ;φ)〉−)4〉− = 3σ4
φ −R(4, 2;φ) =

31

105
. (D.2)

Now, if a newform f with negative sign has order of vanishing r ≥ 5 at the central point, then by
Theorem 1.4,

D(f ;φ)− 〈D(f ;φ)〉− ≥ rφ(0)−
(
φ̂(0) +

1

2
φ(0)

)
= r − 5

2
≥ 5

2
. (D.3)

Let Pr(r ≥ 5) be the proportion of newforms with negative sign whose order of vanishing at the
central point is at least 5. Then (D.2) and (D.3) give

Pr(r ≥ 5)

(
5

2

)4

≤ 31

105
(D.4)

so Pr(r ≥ 5) ≤
(

2
5

)4 31
105 = 496

65625 ≈ 0.00756. [ILS99] and [HM07] obtain upper bounds of 1
32 =

0.03125 and 1
49 ≈ 0.02040, respectively, our results surpass both of these. As the order of vanishing

increases, our results are even better. For instance, taking r = 19 and n = 20, we find the proportion
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of newforms with negative sign whose order of vanishing exceeds 19 is at most 2.86·10−15, improving
the upper bound 5.77 ·10−6 given in [BCD+20] and the upper bound 3.29 ·10−3 implicit in [ILS99].
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