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THE PI MU EPSILON 100TH ANNIVERSARY PROBLEMS: PART III

STEVEN J. MILLER∗

As 2014 marks the 100th anniversary of Pi Mu Epsilon, I thought it would be
fun to celebrate with 100 problems related to important mathematics milestones of
the past century. The problems and notes below are meant to provide a brief tour
through some of the most exciting and influential moments in recent mathematics.
As editor I have been fortunate to have so many people contribute (especially James
Andrews and Avery Carr, who assisted greatly in Parts I and II); for each year a
contributor has written a description of the event and proposed a problem for the
reader’s enjoyment. No list can be complete, and of course there are far too many
items to celebrate. This list must painfully miss many people’s favorites.

As the goal is to introduce students to some of the history of mathematics, ac-
cessibility counted far more than importance in breaking ties, and thus the list below
is populated with many problems that are more recreational. Many others are well
known and extensively studied in the literature; however, as the goal is to introduce
people to what can be done in and with mathematics, I’ve decided to include many
of these as exercises since attacking them is a great way to learn. We have tried
to include some background text before each problem framing it, and references for
further reading. This has led to a very long document, so for space issues we split it
into four parts (based on the congruence of the year modulo 4). That said: Enjoy!

1915

General Relativity and The Absolute Differential Calculus
Ricci-Curbastro (1853 - 1925) developed a branch of Mathematics known as the

Absolute Differential Calculus in his studies of geometrical quantities and physical
laws that are invariant under general coordinate transformations. The concept of a
tensor first appeared in Ricci’s work although a restricted form of tensors had been
previously introduced in Vector Analysis. In 1901, Ricci and his student T. Levi-
Civita, published a complete account of the methods of absolute differential calculus
and their applications [7]. Their work was a natural extension of the mathematics of
curved surfaces introduced by Gauss and developed by Riemann and others, and of
the Vector Analysis of Gibbs and Heaviside.

Einstein’s Special Theory of Relativity deals with the study of the dynamics of
matter and light in frames of reference that move uniformly with respect to each other
– the so-called inertial frames. Those quantities that are invariant under the (Lorentz)
transformation from one frame to another are of fundamental importance. They
include the invariant interval between two events (ct)2 − x2, the energy-momentum
invariant E2 − (pc)2, and the frequency-wave number invariant ω2 − (kc)2. Here c
is the invariant speed of light in free space. The Special Theory is formulated in
a gravity-free universe. Ten years after Einstein completed his Special Theory he
published his crowning achievement, The General Theory of Relativity [4, 5]. This
is a theory of space-time and dynamics in the presence of gravity. The essential
mathematical methods used in the General Theory are Differential Geometry, and the
Absolute Differential Calculus (that Einstein referred to as Tensor Analysis). Einstein
devoted more than five years to mastering the necessary mathematical techniques.

∗Williams College, Editor
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He corresponded with Levi-Civita, asking for his advice on applications of Tensor
Analysis.

A tensor is a set of functions, fixed in a coordinate system that transforms under
a change of the coordinate system according to definite rules. Each tensor component
in a given coordinate system is a linear, homogeneous function of the components in
another system. If there are two tensors with components that are equal when both
are written in one coordinate system, then they are equal in all coordinate systems;
these tensors are invariant under a transformation of the coordinates [8]. Physical
laws are true in their mathematical forms for all observers in their own frames of
reference (coordinate systems) and therefore the laws are necessarily formulated in
terms of tensors.

Einstein’s belief that matter generates a curvature of space-time led him to the
notion that space-time is Riemannian; it is locally flat. The entire curved surface can
be approximated by tiling with flat frames. Einstein assumed that in such locally flat
regions, in which there is no appreciable gradient in the gravitational field, a freely-
falling observer experiences all physical aspects of Special Relativity; the effects of
gravity are thereby locally removed! (This assumption is known as the Principle of
Equivalence).

In Special Relativity, the energy-momentum invariant is of fundamental impor-
tance. It involves not only the concepts of energy E and momentum p but also that
of mass m: E2 − (pc)2 = (mc2)2, where m is the rest mass of the object.

Einstein therefore proposed that in General Relativity, it is mass/energy that is
responsible for the curvature. He therefore introduced the stress-energy tensor, well
known in Physics, to be the quantity related to the curvature. He proposed that the
relationship between them is the simplest possible: they are proportional to each other
[?]: Curvature tensor =k·Stress− Energy tensor, where the constant k is chosen so
that the equation agrees with Newton’s Law of Gravity for the motion of low - velocity
objects in weak gravitational fields (k = 8πG/c4 , with G Newton’s constant).

Centennial Problem 1915. Proposed by Frank W. K. Firk, Yale University.

In 1907, Einstein [3] combined his Principle of Equivalence with the Theory of
Special Relativity (1905) and predicted that clocks run at different rates in a grav-
itational potential, and light rays bend in a gravitational field. This work predated
his introduction of the Theory of General Relativity (1915). In General Relativity,
objects falling in a gravitational field are not being acted upon by a gravitational force
(in the Newtonian sense). Rather, they are moving along geodesics (straight lines)
in the warped space-time that surrounds massive objects. The observed deflection
of light, grazing the sun, is a test of the Principle of Equivalence. Tests of General
Relativity are, at the present time, an active part of research in Physics and Astron-
omy. The problem below is related to one of these tests; for a review of early tests of
Gravitation Theory see Will [6].

The famous Schwarzschild line element, in the region of a spherical mass M
(obtained as an exact solution of the Einstein field equations) is, in polar coordinates

ds2 = c2(1− 2GM/rc2)dt2 − (1 − 2GM/rc2)−1dr2 − r2(dθ2 + sin2 θdφ2).

If χ = 2GM/rc2 ≪ 1, the coefficient (1 − χ)−1, of dr2 in the Schwarzschild line
element can be replaced by the leading term of its binomial expansion to give the
“weak field”line element

ds2W = (1− χ)(cdt)2 − (1 + χ)dr2 − r2(dθ2 + sin2 θdφ2).
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At the surface of the Sun, the value of χ is 4.2 · 8−6, so that the weak field approxi-
mation is valid in all gravitational phenomena in our solar system).

Consider a beam of light traveling radially in the weak field of a mass M , then

ds2W = 0 (a light− like interval), and dθ2 + sin2 θdφ2 = 0,

giving

0 = (1− χ)(cdt)2 − (1 + χ)dr2.

The “velocity” of the light vL = dr/dt, as determined by observers far from the
gravitational influence of M , is therefore

vL = c
√

(1− χ)/(1 + χ) 6= c

if χ 6= 0. Note observers in free fall near M always measure the speed of light to be c.
Expanding the term

√

(1− χ)/(1 + χ) to first order in χ, we obtain

vL(r) ≈ c(1− 2GM/rc2 + · · · ),

so that vL(r) < c in the presence of a mass M according to observers far removed
from M .

In Geometrical Optics, the refractive index n of a material is defined as n :=
c/vmedium, where vmedium is the speed of light in the medium. We introduce the
concept of the refractive index of space-time nG(r) at a point r in the gravitational
field of a mass M :

nG(r) := c/vL(r) ≈ 1 + 2GM/rc2.

The value of nG(r) increases as r decreases. This effect can be interpreted as an
increase in the “density” of space-time as M is approached.

As a plane wave of light approaches a spherical mass, those parts of the wave
front nearest the mass are slowed down more than those parts farthest from the mass.
The speed of the wave front is no longer constant along its surface, and therefore the
normal to the surface must be deflected. The deflection of a plane wave of light by a
spherical mass M of radius R, as it travels through space-time, can be calculated in
the weak field approximation. Show that in the weak field approximation the total
deflection ∆α equals 4GM/Rc2. This is Einstein’s famous prediction on the bending
of light in a gravitational field.
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1919

Brun’s Theorem
One of the most tantalizing conjectures about prime numbers is that there are

infinitely many pairs of primes differing by 2 (or, more generally, given any even
integer 2m there are infinitely many pairs of primes differing by 2m). Though still
open, there has been remarkable progress on this problem over the past 100 years,
culminating in Yitang Zhang’s groundbreaking work in 2013 proving that there is
some even number such that infinitely many pairs of primes differ by this. This
result has been improved and generalized by many, especially Maynard, Tao and the
Polymath8 project.

One of the earliest results in the field is due to Brun, who proved the sum of the
reciprocals of the twin primes converged (if that sum diverged there would have to
be infinitely many twin primes; sadly its convergence can’t resolve the question of the
infinitude of such primes). The value of this sum,

∑

p:p,p+2 prime

(

1

p
+

1

p+ 2

)

=

(

1

3
+

1

5

)

+

(

1

5
+

1

7

)

+

(

1

11
+

1

13

)

+ · · · ,

is called Brun’s constant in his honor. It equals approximately 1.9021605, and the
search for a good approximation to it led Thomas Nicely of Lynchburg College to
discovering a floating point error in Intel’s Pentium processor (which led hundreds of
millions of dollars of loss for Intel, demonstrating the power of pure mathematics!).

Centennial Problem 1919. Proposed by Steven J. Miller, Williams College.

Let Ntwin be the set of all integers whose only prime factors are twin primes. Thus
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 25 are all in Ntwin while 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22, 23 and 24 are not. Does

S :=
∑

n∈Ntwin

1

n

converge or diverge? If it converges approximate the sum.
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1923

The Circle Method
In 1920 Hardy and Littlewood published their first joint work on the Circle

Method, where they used it to attack Waring’s Problem (writing all positive inte-
gers as a sum of at most a given number of k-powers); see the problem from that
year for more details about the Circle Method. In 1923 they continued attacking
related additive problems. In Some problems of ‘Partitio Numerorum’: III. On the
expression of a number as a sum of primes, they connected the distribution of zeros
of Dirichlet L-functions to the writing odd numbers as the sum of three primes (if
no Dirichlet L-function has a zero with real part 3/4 or larger, then all sufficiently
large odd numbers are the sum of three primes). Their paper attacks many additive
questions, including how many twin prime pairs there should be up to x, as well as
generalizations to admissible tuples of primes. Not all tuples of primes can appear; for
example, the only triple of primes with the difference between adjacent primes equal
to 2 is (3, 5, 7); this is because if the neighbor difference is 2 then exactly one of the
three numbers must be a multiple of 3, and thus the only way all can be prime is if
the prime 3 is one of the numbers. Hardy and Littlewood conjectured that as long as
there are no congruence obstructions to a k-tuple of primes, then there are infinitely
many such k-tuple. Further, they give formulas for how many such k-tuples exist
when the primes are all at most x. The main term of their answer is the product of a
multiplicative factor that depends on the k − 1 neighbor differences, which vanishes
if there is a congruence obstruction, and x/ logk+1 x.

Centennial Problem 1923. Proposed by Steven J. Miller, Williams College.

Spectacular recent work by Green and Tao prove that the primes contain arbitrar-
ily long arithmetic progressions; this of course is a trivial consequence of the Hardy-
Littlewood k-tuple conjectures, which are far beyond our ability to prove. Consider
the significantly easier problem of whether or not there are infinitely many triples of
primes with the same difference; in other words, can you prove there are infinitely
many triples of primes of the form (p, p + 2mp, p + 4mp) (so the difference between
neighboring primes can depend on the first prime in the sequence)? Note we are not
asking that two different triples have the same difference between primes; thus (11,
17, 23) (with a common difference of 6) and (29, 41, 53) (with a common difference
of 12) would count. While this follows immediately from the Green-Tao Theorem,
can you prove this elementarily? More generally, consider any sequence of integers
such that the number of terms of {1, . . . , x} in our sequence is f(x). Find a function
g(x) such that if f(x) > g(x) then there will be infinitely many triples of terms in our
sequence where each triple is of the form (n, n+mn, n+ 2mn) (note different triples
can have different nm’s). Find a function h(x) such that if f(x) < h(x) then there is
a choice for our sequence of integers such that we do not have infinitely many such
triples. Of course one could take g(x) = x and h(x) = 2; the question is to find the
best values of these. For the primes, if x is large then the number of primes at most
x is about x/ log x; what do your results say about the primes? If you can’t find a
function which will yield infinitely many triples, can you at least insure the existence
of one, or find a special sequence so that there are no triples?
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1927

William Lowell Putnam Mathematical Competition
Many a problem solver will be aware of the William Lowell Putnam Mathematical

Competition, a North American undergraduate contest administered by the Mathe-
matical Association of America, and founded in 1927 by Elizabeth Lowell Putnam in
honor of her late husband who firmly believed in the virtues of more academic rivalry
between universities. Among the many unwritten traditions of the Putnam exam is
that every exam should have at least one problem that uses the year number as part
of a problem statement or its solution. So, it is also a very fitting reversal of logic, or
a meta-twist, that the Putnam exam itself is the subject of this section titled “1927”.

Joe Gallian has written a fabulous overview of the Putnam exam’s history, mile-
stones, statistics, and trivia [2]. Offered every year since 1938 (except in 1943–45),
the Putnam exam’s roots include a math competition also sponsored by Elizabeth
Lowell Putnam and held in 1933 between ten Harvard students and ten West Point
cadets; the cadets both won the team contest and had the top individual score. Ear-
lier Putnam exams featured problems in areas closer to the introductory technical
undergraduate curriculum such as calculus, differential equations, or geometry; in
more recent years, a very recognizable blend of topics including also linear algebra,
some abstract algebra, combinatorics, number theory (or even an occasional advanced
topic on harder questions) characterizes each year’s 12 problems. Five most success-
ful contestants each year are named Putnam Fellows, one of whom is also awarded a
fellowship for graduate study at Harvard; eight persons so far have been a Putnam
Fellow the maximum possible four times. Other substantial monetary team and indi-
vidual prizes are given, and an Elizabeth Lowell Putnam prize may be awarded to one
female contestant. The original intent to boost team spirit and provide an avenue for
students to fight for their institution’s glory in an academic subject helps understand
the peculiar ranking system, in which every participating institution must designate
a three-person team in advance, and the team ranking is obtained by adding the
team members’ individual ranks (rather than their scores). Since higher scores are
obtained by many fewer students, a university whose all three team members solve
seven problems will usually rank markedly higher than the one where two brilliant
team members solve nine problems and the third solves three.

The Putnam exam has been called “the hardest math test in the world” [1, 3],
and not without reason: the median score has budged above 1 point out of 120 in
only four years since 1999 and then never above 3, while fully 62.6% of 2006 entrants
scored 0. A score of 1 point should be worn as a badge of honor, since a student
must make substantial progress toward an actual solution to receive any points for
a problem; checking small examples or stating some immediate conclusions typically
doesn’t make the cut. Each of the 12 problems is graded on a scale from 0 to 10
points, with the only scores allowed being 0,1,2,8,9,10; thus, the grader must decide
whether the problem is essentially solved or not. A submission that solves one of the
two main cases, or one that contains the structure of a full solution but has a serious
flaw might get 1 or 2 points. On the other hand, a submission that contains all ideas
of a full solution but neglects to check a straightforward sub-case might get 8 or 9
points; the full mark of 10 points is reserved for essentially perfect solutions. The first
round of grading currently occurs in December at Santa Clara University; imagine
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several dozens of mathematicians in a few rooms tackling, one paper at a time over
the span of four days, boxes containing the collective output of over 4,000 competitors
from over 500 colleges on 12 problems, and you will have a pretty good picture.

Undergraduate students solve problems in several competitions around the world,
such as the annual Schweitzer competition in Hungary, the Jarńık competition in
central Europe, the famous competitions at Moscow’s and Kiev’s Mech-Mats, or the
International Mathematics Competition for University Students [5], an annual contest
held in Europe that has also seen participation from several American universities.

Opinions differ on the extent to which the Putnam exam or other competitions
mimic the mathematical research experience or are somehow reflective of the student’s
research aptitude; see several Putnam Fellows’ perspectives in [1]. The Putnam exam
was, of course, never designed for such use. Five Fellows (Feynman, Milnor, Mum-
ford, Quillen, and Wilson) have been subsequently recognized with a Fields Medal or
a Nobel Prize, and many dozens more have become distinguished mathematicians at
top universities and research institutes. Notable Putnam competitors include many
Abel Prize winners, MacArthur Fellows, AMS and MAA presidents, members of the
National Academy of Sciences as well as many winners of the Morgan Prize for under-
graduate research. Many others have chosen entirely different careers, and obviously
many top-notch mathematicians have never taken or particularly enjoyed problem
mathematics. (Also, while many of the Putnam bourgeoisie were successful in the
high-school IMOs, the two contests retain very distinct mathematical profiles.) Ask
mathematics graduate program admissions chairs or hedge fund managers and many
will tell you that, while neither a prerequisite or a guarantee of success, a candidate’s
good showing on the Putnam exam gets their attention. Putnam problems test a
specific kind of ingenuity over technical mastery and are sometimes seen as occupying
a universe of their own, but here as in Hamming [4] we must remember that Putnam
problems “were not on the stone tablets that Moses brought down from Mt. Sinai”
– they are composed by a committee of working mathematicians designated by the
MAA, and so their evolution over time perhaps reflects our collective style and taste.

What makes a good Putnam problem then? Bruce Reznick [7] has written about
the process of writing for the Putnam exam in charm and detail that neither the
length nor the writer’s ability allow here. André Weil [8], paraphrasing the English
poet Housman who had used an example of a fox-terrier hunting for a rat to explain
why he can’t define poetry, famously quipped: “When I smell number-theory I think
I know it, and when I smell something else I think I know it too”. (He then proceeded
to argue that analytic number theory is not number theory, but this is clearly a
subject for another article.) Putnam takers and experienced problem-solvers will
similarly spot a juicy problem. It will be accessible but not trivial, and challenging
but not impossibly so, it will relate to important mathematics but every time with
an unexpected twist, it will make you smile and, in Reznick’s words, leave the exam
whistling it in your mind like a catchy tune.

I propose the following Putnam problem for your whistling enjoyment. It ap-
peared as problem A3 in the 2013 exam and requires nothing beyond first-year college
mathematics, but it was borne out of thinking about measure theory. Don’t just solve
it and bask in your glory. Make yourself a hot beverage, relate the solution to your
other mathematical experiences, continue the story that it tells; you will have new
problems of your own in no time.

Centennial Problem 1927. Proposed by Djordje Milićević, Bryn Mawr College.
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Suppose that the real numbers a0, a1, . . . , an and x, with 0 < x < 1, satisfy

a0
1− x

+
a1

1− x2
+ · · ·+ an

1− xn+1
= 0.

Prove that there exists a real number y with 0 < y < 1 such that

a0 + a1y + · · ·+ any
n = 0.
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1931

The Ergodic Theorem
A mathematical, discrete dynamical system consists of a set of states X and a

map or transformation T from X onto X , which we assume invertible. For example,
for the case of a pendulum a state would be a point consisting of the position of the
pendulum bob and the bob’s momentum. There is an equation based on the laws of
mechanics whose solution gives us what the state would be after a certain amount of
time has elapsed; this gives us the transformation on the set of states.

One of the first questions concerning a dynamical system is the eventual behavior
of points. Given a system in state y, let T (y) be the state of the system one unit of
time later. Thus if the system starts off in state x, it next moves to T (x), then to
T (T (x)) (which for notational ease we denote by T 2(x), though some authors prefer
(T ◦ T )(x) or T ◦2(x)), and more generally after n units of time it is at T n(x). If A is
a set of states and IA is the characteristic or indicator function of A,

∑n
i=1 IA(T

i(x))
counts the number of visits of x to A up to time n. The time average of visits of x to
A is the limit, if it exists, as n → ∞ of 1

n

∑n
i=1 IA(T

i(x)).
A consequence of Gibbs and Boltzman’s investigations in statistical mechanics

was the Ergodic Hypothesis. A version of the ergodic hypothesis states that the time
average of a system should equal the space average, which is the relative size of A in X .
This space average is given by a measure or probability defined on a class of subsets
of X , called the measurable sets. We denote the measure of a set A by m(A), and we
study systems where m(X) is 1 (thus we may view m(A) as the probability we are
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in A). In addition we assume that the measure m is preserved by the transformation
T , i.e., the measure of the set of points in any set A remains the same as they evolve
through time, so m(A) = m(T (A)).

In 1931 von Neumann [2], and shortly after though published a bit earlier Birkhoff
[1], proved that time averages exist and equal the space averages for measure-preserving
systems satisfying a condition called ergodicity. Ergodicity means that the only in-
variant sets of T are the empty set ∅ and the entire space X , or differ from one of
these by a set of measure zero. In other words, if A is invariant then A differs from
either ∅ or X by a set of measure zero. A set E is said to be invariant if T (x) is in E
if and only if x is in E.

If E is invariant and x starts in E, all its iterates stay in E and no point outside
E visits E. That means that if T were not ergodic there would exist sets E and Ec,
both of positive measure, where the dynamics of T on E will be totally unrelated
to the dynamics of T on Ec, in other words, one could decompose T into simpler
systems. The remarkable fact is that when T is ergodic one obtains a time average
which is a limit that exists and equals what is expected.

We can now state the Birkhoff Ergodic Theorem: for all measurable sets A there
exists a set of measure zero N so that

lim
n→∞

1

n

n
∑

i=1

IA(T
i(x)) = m(A) for all x outside N.

This convergence is called almost everywhere pointwise convergence. An impor-
tant part of the theorem is that the limit exists. In fact, once we know the limit exists,
using standard results from analysis it is possible to show the limit must equal the
measure of A. An immediate consequence is that for all sets A of positive measure,
every point of X outside a set of measure zero visits the set A, and furthermore, the
visits are with the right frequency. Thus we know a lot about the orbit of almost
every point.

This theorem has had a strong influence in analysis and has many consequences.
For example, it can be used to prove Weyl’s uniform distribution property1 and the
Law of Large Numbers2 in probability. The ergodic theorem is in fact a bit more
general: one can replace IA by any Lebesgue integrable function f , and then m(A)
is replaced by the integral of f . The theorem proved by von Neumann is similar to
Birkhoff’s but differs in two respects. In von Neumann’s theorem the convergence
is not pointwise but in the norm of the Hilbert space where the functions are, and
also the theorem is in the context of unitary operators on a Hilbert space. For an
introduction and proof the reader may consult [5]. Further historical details and
current developments can be found in [4].

Centennial Problem 1931. Proposed by Cesar E. Silva, Williams College.

In 1988 Bourgain [3] proved that for every function f whose square is integrable,
if p(x) is a polynomial with integer coefficients then the time average along polyno-
mial times exists outside a set of measure zero. In other words 1

n

∑n
i=1 f(T

p(i)(x))
converges for almost all x. When all powers of T are ergodic it follows that this limit
equals the integral that is expected. It is reasonable to ask what happens when the

1If α is irrational, then the set {nα mod 1}∞
n=1

is equidistributed in [0, 1]
2Let X1, . . . ,Xn be independent random variables drawn from a common, nice distribution with

mean µ. If we observe values x1, . . . , xn then as n → ∞ the sample average (x1 + · · · + xn)/n
converges (in some sense) to µ.
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function f is merely integrable, even in the case of the squares: p(i) = i2. It was
shown recently by Buczolich and Mauldin [6] that the theorem for the squares fails
when f is only assumed to be integrable. This proof has been extended recently by
P. LaVictoire. It would be interesting to find simpler proofs of all of these results.
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1935

Hilbert’s Seventh Problem
Our collection of one hundred problems celebrating 100 years is inspired, as are

so many other collections, by the set of problems David Hilbert proposed at his
keynote address at the International Congress of mathematicians in Paris in 1900 (see
[2]). These problems were meant to chart important directions of research for the
new century. Solution to any of these brings instant fame and membership in “The
Honors Class” [3].

Hilbert seventh problem is the following: Let α and β be two algebraic numbers
(this means they are solutions to polynomials of finite degree and integer coefficients;
a transcendental number is a number that is not algebraic). Assume further that β
is irrational. Then αβ is transcendental whenever α is neither 0 nor 1.

Problems along these lines have a long history. They have been studied by many
mathematicians over the years. For example, in 1748 Euler proposed that if α 6∈ {0, 1}
is a non-zero rational number and β is an irrational, algebraic number, then αβ is
irrational. Notice this is a weak version of Hilbert’s seventh problem.

In 1934 and 1935 Gelfond and Schneider independently resolved Hilbert’s prob-
lem, successfully proving that under the assumptions above, αβ is transcendental.

Centennial Problem 1935. Proposed by Jesse Freeman and Steven J. Miller,
Williams College.

The following problems are designed to give the reader an intuition of the de-
velopment of the study of transcendental numbers and of the power of Gelfond and
Schneider’s result.

1. Euler: For α ∈ C, let Bα = {β ∈ C : αβ ∈ Q}. Show that for a general
algebraic, but irrational γ, we have

Bγ (
⋂

α∈Q

Bα;

denote the union on the right by B. You may assume Gelfond and Schneider’s
result. Describe B, and investigate the algebraic structure of Bγ for a general
γ.

2. Cantor: Using the fundamental theorem of algebra, prove that the set of
algebraic numbers is countable. As the set of real numbers is uncountable,
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this implies that almost all real numbers are transcendental. Interestingly,
while this argument proves that almost all numbers are transcendental it
doesn’t explicitly give us any!

3. Liouville: Liouville gave a method to construct transcendental numbers.
The key ingredient is the following. Suppose α is an algebraic number of
degree d > 1. Then there exists a positive constant c(α) such that for any
rational number a/b,

∣

∣

∣
α− a

b

∣

∣

∣
>

c(α)

bd
.

We say α ∈ R is a Liouville number if for every positive integer n there are
integers a and b with b > 1 such that

0 <
∣

∣

∣
α− a

b

∣

∣

∣
<

1

bn
.

The result above implies that all Liouville numbers are transcendental; how-
ever, not all transcendental numbers are Liouville numbers. Show that the
set of Liouville numbers in the interval [−1, 1] has measure 0.

4. Gelfond/Schneider/Hilbert: Using Gelfond and Schneider’s result, show
that if the ratio of two angles in an isosceles triangle is algebraic and irrational
that the ratio between the sides opposite those angles is transcendental.
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1939

The Power of Positive Thinking
A student doing a homework problem has an enormous advantage over a re-

searcher: almost always the problem is solvable! This is especially true in under-
graduate and beginning graduate classes, as these assignments are meant to reinforce
lessons and help students learn techniques and how to attack problems in the field.
It is hard to understate how important this is in successfully attacking a problem;
psychologically it’s a huge boost to know a solution exists.

There are many anecdotes and studies of people who were unaware of the diffi-
culty of a problem, and blissfully unaware proceeded to make great progress. The
following story and its variants have been circulating for years, and are the subject of
this year’s entry. We’ll meet the protagonist, George B. Dantzig, again in the 1947
entry. The quote below is from an interview of him which appeared in the College
Mathematics Journal in 1986 (available online; see [1]). He was asked why his PhD
was on a statistics topic when he had taken so few stats courses.

It happened because during my first year at Berkeley I arrived late
one day at one of Neyman’s classes. On the blackboard there were two
problems that I assumed had been assigned for homework. I copied

http://www.math.sc.edu/~filaseta/gradcourses/Math785/Math785Notes8.pdf
http://en.wikipedia.org/wiki/Hilbert's_problems
http://en.wikipedia.org/wiki/Hilbert's_problems
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them down. A few days later I apologized to Neyman for taking so
long to do the homework – the problems seemed to be a little harder
to do than usual. I asked him if he still wanted it. He told me to
throw it on his desk. I did so reluctantly because his desk was covered
with such a heap of papers that I feared my homework would be lost
there forever. About six weeks later, one Sunday morning about eight
o’clock, Anne and I were awakened by someone banging on our front
door. It was Neyman. He rushed in with papers in hand, all excited:
“I’ve just written an introduction to one of your papers. Read it so
I can send it out right away for publication.” For a minute I had no
idea what he was talking about. To make a long story short, the prob-
lems on the blackboard that I had solved thinking they were homework
were in fact two famous unsolved problems in statistics. That was the
first inkling I had that there was anything special about them.

Later in the interview he discusses how the story found its way into sermons.

The origin of that minister’s sermon can be traced to another
Lutheran minister, the Reverend Schuler of the Crystal Cathedral in
Los Angeles. Several years ago he and I happened to have adjacent
seats on an airplane. He told me his ideas about thinking positively,
and I told him my story about the homework problems and my thesis.
A few months later I received a letter from him asking permission to
include my story in a book he was writing on the power of positive
thinking. Schuler’s published version was a bit garbled and exagger-
ated but essentially correct. The moral of his sermon was this: If
I had known that the problems were not homework but were in fact
two famous unsolved problems in statistics, I probably would not have
thought positively, would have become discouraged, and would never
have solved them.

Centennial Problem 1939. Proposed by Steven J. Miller, Williams College.

Find the statements of the two problems Dantzig solved, read papers, and believe
in yourself when confronted with challenges in the future.
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1943

Breaking Enigma
One group of mathematicians played a crucial role in the Allied victory in World

War II: the codebreakers. The German army encrypted its communications with
Enigma machines, typerwriter-like devices that produce a fiendishly complicated code.
The Polish Cipher Bureau developed the strategies to break the Enigma code in the
early 1930’s, but the largest codebreaking operation was British, headquartered at
Bletchley Park, a Victorian manor northwest of London. The top-secret Bletchley
Park project, codenamed “Ultra,” is legendary. It employed mathematicians, lin-
guists, chess masters, academics, composers, and puzzle experts. Recruiters once
asked the Daily Telegraph to organize a crossword competition, and then secretly

http://www.jstor.org/stable/2686279
http://www.jstor.org/stable/2686279
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offered jobs to the winners. One of the leaders of Ultra was Alan Turing, the mathe-
matician and pioneer of theoretical computer science.

Mathematically speaking, the Enigma machine generates a permutation τ ∈ S26

of the 26 letters of the alphabet. The permutation τ changes with every keystroke.
Typing one letter sends electrical current through scrambling mechanisms–a plug-
board, then a set of rotors, then a reflector, then back through the rotors and the
plugboard–causing a different letter to light up. It also turns the rotors so that the
next letter will be scrambled differently.

The scramblers are wired as follows: the plugboard has one plug for each letter,
and 10 pairs of letters wired together. It defines a permutation π, which is a product
of 10 two-cycles. The rotors are rotating wheels with a circle of 26 brass pins on
one side and 26 electrical contacts on the other. The wiring from contacts to pins
gives a fixed permutation ρ; depending on the position of the rotor, this permutation
is conjugated by a power of α = (1 2 3 . . .26). The reflector simply has 26 electrical
contacts, connected in pairs by 13 wires. It gives a fixed permutation σ, a product of
13 two-cycles.

All together, the permutation τ is:

π−1(α−i1ρ1α
i1)−1(α−i2ρ2α

i2 )−1(α−i3ρ3α
i3 )−1σ(α−i3ρ3α

i3 )(α−i2ρ2α
i2)(α−i1ρ1α

i1 )π,

where the i1, i2, i3, which represent the positions of rotors 1, 2, and 3, are varying.
Since each permutation τ is a conjugate of σ, τ is also a product of 13 two-cycles, and
τ−1 = τ , so a message can be encrypted and decrypted by machines with the same
settings. The operator could choose 10 pairs of letters to connect in the plugboard,
three out of five exchangeable rotors in any order, and 26 initial positions for each
rotor: a total of 150, 738, 274, 937, 250 initial settings for the machine.

This vast number of settings makes the Enigma code almost unbreakable, but it
does have weaknesses. Since τ is a product of 13 two-cycles, no letter is ever encoded
as itself. A codebreaker can look for common words and phrases in the encrypted text,
and rule them out if any letters match. German messages also had various common
formats which made them easier to guess. Furthermore, the Allied spies captured
parts of enigma machines, decrypted messages, and information about initial settings.
All this was just enough to break the code. By 1943, British Intelligence was able to
decrypt most Enigma codes without knowing the initial settings of the machine. This
capability was kept utterly secret–the Nazis never knew. Winston Churchill later told
King George VI, “It was thanks to Ultra that we won the war.”

Centennial Problem 1943. Proposed by Ian Whitehead, University of Minnesota.

Here, in honor of the Bletchley Park crossword contest, is a cryptography-themed
cryptic crossword (see Figure 1), jointly written with Joey McGarvey. As in all cryptic
crosswords, each clue contains a regular definition and a pun/anagram/wordplay hint.
You must figure out how to parse the clue.
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Fig. 1. Cryptography themed crossword.
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1947

The Simplex Method
We often encounter important problems where, while it is easy to write down an

algorithm to find the solution, the run-time is so long that the method is worthless for
practical purposes. One of the first examples of this is factorization: given an integer
N , write it as a product of primes. It is ridiculously simple to write down a solution;
we give one below without any attempts to improve its efficiency.

http://www.nsa.gov/about/_files/cryptologic_heritage/publications/wwii/solving_enigma.pdf
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• Step 1: Initialize Factors(N) to be the empty set; as the name suggests,
we’ll store N ’s factors here. Let M = N and n = 2 and continue to Step 2.

• Step 2: If n divides M then add n to Factors(N), replace M with M/n,
and continue to Step 3. If n does not divide M then let n = n+1; if n = M
then add n to Factors(N) and go to Step 4, else repeat this step.

• Step 3: If M > 1 then set n = 2 and repeat Step 2, else go to Step 4.
• Step 4: Print Factors(N) and stop.

This algorithm is painfully slow, and requires us to check all numbers up to N as
potential divisors. While there are many improvements we can make to this algorithm,
it will still be too slow to be practical for large N . The first is that once we find an
n dividing M we should see how many times n goes into M ; this would save us from
having to return to n = 2 each time we restart Step 2. Next, we can notice that any
prime factor of N is at most

√
N , and hence once n >

√
N we know M is prime.

Finally, if we are able to store the earlier prime numbers we need only check n that
are prime. Even if we do all of these, however, we still have to check all primes at
most

√
N . The Prime Number Theorem tells us that the number of primes at most

x is approximately x/ log x; thus if N is around 10406 we would need to check about
2 · 10200 numbers! This is well beyond what computers can do.

The lesson from the above is that, while factorization is easy to do in principle, in
practice the ‘natural’ approach is too slow to be useful. It is a major open problem to
find a fast way to factor numbers; if such an algorithm existed then encryption schemes
such as RSA (described in the 1977 entry) would not be secure. Interestingly, while
we cannot quickly factor a number, we can quickly tell if a number is prime (see the
Primes in P entry from 2002).

Our topic for this year concerns a different problem where we are more fortunate,
and a fast algorithm is available. Linear Programming is a beautiful subject, and
a natural outgrowth of linear algebra. In linear algebra we try and solve systems

of linear equations, such as A−→x =
−→
b . In linear programming we have a constraint

matrix A and are now looking for a solution to A−→x =
−→
b that maximizes the profit−→c · −→x . Initially one allows inequalities in the linear system of constraints; however,

by introducing additional variables we can replace all the inequalities with equalities.
We also require each component of −→x to be non-negative (it is a nice exercise to show
we may always do this, though we may need to introduce some additional variables);
doing so allows us to put our linear programming problem into a standard, canonical
form.

For example, one of the earliest successes in the subject concerns the Diet Prob-
lem. Here the entries of −→x are constrained to be non-negative, with xk equaling the
amount of product k consumed. Each food provides a different amount of essential
vitamins and minerals, and we wish to find the cheapest diet that will keep us alive
while ensuring that we get the minimum daily recommended allowance of each nutri-
ent. See [2] for a humorous recounting of the meeting between linear programming
and the Diet problem.

One of the first theorems proved in the subject concerns the candidates for our

solution. We say −→x is feasible if it solves A−→x =
−→
b . It turns out that the space of

feasible solutions has many nice properties. We call a solution −→x of the constraints a
basic solution if the columns corresponding to the non-zero entries of −→x are linearly
independent. It turns out that if there is an optimal solution to our problem, then
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that optimal solution is a basic solution. Moreover, there are only finitely many basic
solutions. Thus we need only check all the basic solutions to find the optimal solution!

The problem is that if we try to search the space of basic solutions in the same
manner we did to factor N , we’ll never finish for large, real world problems. Let A
be an m × n matrix. Thus our vector −→x has n components. We assume n > m, as
otherwise the system is over-determined and there is at most one solution. If every
subset of at most m columns of A is linearly independent, then the number of basic
solutions is at most

(

n
0

)

+
(

n
1

)

+ · · ·+
(

n
m

)

. For n,m large this is approximately nm/m!;
to get some feel for how quickly this grows, if n = 10000 andm = 100 then the number
of candidates exceeds 10241, which is well beyond our factorization nightmare.

While it is nice that there are only finitely many candidates, typically there are
too many to make checking each practical. We need an efficient way to navigate the
space. Amazingly, there is such an approach. It is called The Simplex Algorithm,
and was introduced by George Dantzing (whom we met in the 1939 entry) in 1947.
His procedure, and other people’s generalizations, allow us to solve many real world
problems in reasonable amounts of time on everyday laptops, and transforms linear
programming from theoretically interesting to practical.

Centennial Problem 1947. Proposed by Steven J. Miller, Williams College.

Building on the success of the Simplex Algorithm, it is natural to consider other
generalizations of linear programming and ask if they too can be solved efficiently. The
first natural candidate is to replace the word linear with quadratic. Unfortunately,
while quadratic objective functions can often be handled, to date we still require the
constraints to be linear.

To see why, we first consider another generalization. Instead of requiring the
solution vector −→x to have non-negative real entries, let us require it to have non-
negative integral entries. This is an extremely important special case of optimization
problems. In the special case when the integers are either 0 or 1, we can interpret the
components as binary indicator variables. Do we have a plane leave from Albany to
Charlotte at 2:45pm? Do we show The Lego Movie on our biggest screen at 10:30am?
If we’re trying to solve the Traveling Salesman Problem (what is the route of least
distance through a given set of cities), is the fifth leg of our trip from Boston to
Rochester? These examples should hopefully convey the importance of solving binary
integer programming problems.

Prove that if we could modify the simplex method to handle problems with
quadratic constraints then we could solve all integer programming problems! For
those familiar with the P versus NP problem (see the description at the Clay Mathe-
matics Institute’s list of Millenial Problems [1]), this would prove P equals NP.
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1951

Tennenbaum’s proof of the irrationality of
√
2

One of the rights of passage to being a mathematician, as opposed to simply a
calculator and number cruncher, is the proof of the irrationality of

√
2 (which means

http://www.claymath.org/millennium-problems
http://dl.dropboxusercontent.com/u/5317066/1990-dantzig-dietproblem.pdf
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we cannot write
√
2 as a/b for two integers a and b). There are now many proofs of

this fact. Perhaps the most famous runs roughly as follows: (1) We may assume a
and b are relatively prime. (2) Cross multiply and square, which yields 2b2 = a2. (3)
Since 2 divides the right hand side, 2 divides the left hand side (this is non-trivial and
must be proved!). After a little work we find 2|a, and thus we can write a = 2x for
an integer x. (4) We then find 2b2 = 4x2, so b2 = 2x2, and a similar argument now
gives b = 2y for y an integer. This is a contradiction, as we assumed a and b were
relatively prime.

There are, however, other proofs. Sometime in the 1950s Tennenbaum came up
with the following geometric gem. Again we proceed by contradiction, and assume√
2 = a/b (so a2 = 2b2). We may assume b is the smallest integer where we have such

a relation. Consider a square with sides of length a, and draw squares of length b in
the upper left and lower right corners. By assumption, the area of the two squares
of length b equals that of the large square of length a (as a2 = 2b2). If you draw the
picture, you see the two squares miss two small squares of length a − b, and double
count a square of length b− 2a. Thus the double counted region must have the same
area as the two missing squares, or (b− 2a)2 = 2(a− b)2. Thus

√
2 = (b− 2a)/(a− b),

and a little work shows a − b < b. Thus we’ve found a smaller denominator that
works, contradiction!

Centennial Problem 1951. Proposed by Steven J. Miller, Williams College.

Tennenbaum’s construction is beautiful, and gives the irrationality of
√
2. Miller

and Montague used similar geometric arguments to get the irrationality of
√
3,
√
5,
√
6

and
√
10. Can you geometrically prove the irrationality of

√
7, or 3

√
2?
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1955

Furstenberg’s topological proof of the infinitude of primes
Every so often a proof comes along that acts as a looking glass, providing a rare

glimpse at the beauty and simplicity of mathematics. In 1955 one such opportu-
nity presented itself, in the form of Hillel Furstenberg’s paper, “On the infinitude of
primes”. In a brilliant proof by contradiction, Furstenberg used topological language
with the basic properties of arithmetic sequences and open and closed sets to show the
existence of infinitely many prime numbers. The essence of the proof was highlighted
by Idris D. Mercer in 2009 when he provided a variant of Furstenberg’s proof without
the use of topology.

Furstenberg begins his proof by constructing a topology using the set of all arith-
metic sequences (from−∞ to +∞) as a basis. It is easily verified that this construction
satisfies all necessary conditions for it to be considered a topology. If a set in this
topology is open, then it is either empty or a union of arithmetic sequences. Simi-
larly, every open set must also be closed since its compliment is a union of arithmetic
sequences and therefore open. As the finite union of closed sets is closed, it follows
that a finite union of arithmetic sequences is closed. Consider the set A = ∪Ap where
Ap is the set of all integer multiples of p where p runs over all prime numbers. The
only integers not in A are -1 and 1. Since the set {−1, 1} is clearly not open, it’s com-

http://arxiv.org/pdf/0909.4913.pdf
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pliment cannot be a finite union of closed sets. This implies that there are infinitely
many primes.

Centennial Problem 1955. Proposed by James M. Andrews, University of Mem-
phis.

Consider the topology generated by the base Ba,b := {an + b : n ∈ Z} where
a ∈ N and b is a non-negative integer. Is the topology Hausdorff? Is it regular? Is
it normal? (If you haven’t taken a topology class, here is a quick explanation of the
terminology. A space X is a Hausdorff space if and only if whenever x, y ∈ X are
distinct points, there are disjoint open sets U, V ⊂ X where x ∈ U and y ∈ V . A
space X is a regular space if and only if whenever A ⊂ X is closed and x ∈ X\A, there
are disjoint open sets U, V ⊂ X where x ∈ U and A ⊂ V . A space X is normal if
and only if whenever A,B ⊂ X are disjoint closed sets, there are disjoint open sets
U, V ⊂ X where A ⊂ U and B ⊂ V .
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1959

100th Anniversary of Riemann’s Paper on the Zeta Function
Though Riemann only wrote one paper on the function which now bears his name

[4], he made it count and packed in enough mathematics to keep researchers busy for
a hundred years and more. Initially defined for the real part of s exceeding 1 by

ζ(s) =

∞
∑

n=1

1

ns
,

by the Fundamental Theorem of Arithmetic (every positive integer n ≥ 2 can be
written uniquely as a product of prime powers, up to reordering the factors) and the
Geometric Series Formula, in this region it also equals

∏

p prime(1 − 1/ps)−1; this is
called the Euler product of the zeta function. The function can be meromorphically
continued to the entire complex plane, with the only pole a simple one at s = 1.

The reason this function occupies such a central role in number theory is that
it relates the prime numbers to the integers, and the hope is that we can pass from
knowledge of the integers to knowledge of the primes. We discussed one of these
connections in the 1948 entry, where we translated results on the sums of 1/n and
1/n2 to proofs of the infinitude of primes.

Riemann pursued another connection in his paper. He showed how knowledge
of the zeros of ζ(s) yields information on the number of primes. His idea was to use
complex analysis. There one of the fundamental quantities to study is the logarithmic
derivative of a function f ( d

ds
log f = f ′(s)/f(s)), as integrals of f ′(s)/f(s) are related

to sums of the residues of the function at its zeros and poles. While the logarithmic
derivative of the sum formulation of ζ(s) is not pleasant, the situation is very different
for the Euler product. The logarithm of the product becomes a sum of logarithms, and
the resulting integrals are tractable. The problem now reduces to a contour integral
of the logarithmic derivative, which yields sums over the zeros and poles; thus it is

http://thales.doa.fmph.uniba.sk/sleziak/vyuka/2010/semtc/clanky/FurstenbergPrimes.pdf
http://www.idmercer.com/primes.pdf
http://www.idmercer.com/primes.pdf


100th Anniversary Problems 391

important to know the locations of these. Up to lower order terms, when we integrate
ζ′(s)/ζ(s) times xs/s along the line Re(s) = 2, we find

∑

p≤x

log p = x−
∑

ρ=σ+iγ

ζ(ρ)=0

xρ

ρ
.

Some care is needed in writing down the sum so that it converges (this is typically
done by taking the zeros in complex conjugate pairs). When we write the zeros of
ζ(s) we always take σ and γ to be real numbers.

As remarked above the continuation of ζ(s) has only one pole, which is at s = 1
with residue 1; this is responsible for the x = x1/1 term. The remaining terms come
from the zeros of ζ(s). One can show that these zeros have real part at most 1 without
too much trouble; the key step in the proof of the prime number theorem (which says
∑

p≤x 1 ≈ x/ log x, which by partial summation is the same as
∑

p<x log p ≈ x) is
to extend this zero-free region to show that if ζ(σ + iγ) = 0 then σ < 1. Riemann
conjectured this is the case; in fact, he conjectured more. He wrote in [4]: and it is
very probable that all roots are real. Certainly one would wish for a stricter proof here;
I have meanwhile temporarily put aside the search for this after some fleeting futile
attempts, as it appears unnecessary for the next objective of my investigation. This is
now known as the Riemann Hypothesis. It makes appearances both on Hilbert’s list
[6] and the Clay list of millenium problems [1], and is considered by many to be the
most important open conjecture in mathematics.

It is interesting to note that the complex analytic proofs of the Prime Number
Theorem start by considering the weighted sum

∑

p<x log p, and then pass from this
to the unweighted sum

∑

p<x 1 by partial summation (see the 1948 entry for remarks
on proofs that avoid complex analysis). The reason it is easier to understand the
weighted sums is that when we take the logarithmic derivative of the Euler product
we get −∑p

d
ds

log(1− p−s), and the derivative gives us log p · p−s/(1− p−s); we then
expand the denominator by using the geometric series formula, and find the main
term is log p/ps. See [5] for a more fleshed out sketch of this proof, or [2, 3] for full
details.

Centennial Problem 1959. Proposed by Steven J. Miller, Williams College.

The purpose of this problem is to prove that ζ(s) 6= 0 whenever s = σ + iγ with
σ, γ ∈ R and σ ≥ 1. First use the series expansion to prove ζ(σ) 6= 0 if σ > 0, and
then use the product expansion to show that ζ(σ + it) 6= 0 if σ > 0.

We are left with the case of σ = 1. This was originally independently proved
by Hadamard and de la Vallée-Poussin in 1896; fill in the details of Mertens’ elegant
proof from a few years later by proving the following statements (where we write ℜz
to denote the real part of a complex number z):

1. 3 + 4 cos θ + cos 2θ ≥ 0 (Hint: Consider (cos θ + 1)2).

2. For s = σ + it, log ζ(s) =
∑

p

∑∞
k=1

p−kσ

k
e−itk log p.

3. ℜlog ζ(s) =∑p

∑∞
k=1

p−kσ

k
cos
(

t log pk
)

.
4. 3 log ζ(σ) + 4ℜlog ζ(σ + it) + ℜlog ζ(σ + 2it) ≥ 0.
5. ζ(σ)3|ζ(σ + it)4ζ(σ + 2it)| ≥ 1.
6. If ζ(1 + it) = 0, then as σ decreases to 1 from above, |ζ(σ + it)| < A(σ − 1)

for some A.
7. As ζ(σ) ∼ (σ − 1)−1 (ζ(s) has a simple pole of residue 1 at s = 1) and

ζ(σ + 2it) is bounded as σ → 1 (the only pole of ζ(s) is at s = 1), the above
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implies that if ζ(1 + it) = 0 then as σ → 1, ζ(σ)3|ζ(σ + it)4ζ(σ + 2it)| → 0.
As the product must be at least 1, this proves ζ(1 + it) 6= 0.

The key to Mertens’ proof is the positivity of our trigonometric expression.

While there are partial results towards the Riemann Hypothesis, it is still un-
proved whether or not there is a c < 1 such that all zeros of ζ(s) have real part at
most c (the Riemann Hypothesis is equivalent to being able to take c = 1/2). The
best results are zero free regions where how far to the left of the line Re(s) = 1 we
can go tends to zero rapidly with the height t, giving regions where ζ(σ + it) 6= 0 if
σ > 1−A(log |t|)−r1(log log |t|)−r2) for some positive constants A, r1, r2.
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1963

Continuum Hypothesis
One of the first mathematical concepts learned is that of comparison. This collec-

tion has one element, this has two and so on. While there is no dearth of picture books
on the market with different sets for different numbers (for example, one dinosaur,
two planes, three cars [1]), not surprisingly these books only show small finite sets.
What about infinite sets? Can we look at two different sets and determine if one is
‘larger’ than the other?

One of the most important results in set theory is that there are different orders
of infinity. The smallest is the size of the integers Z, which also equals the size of the
rationals Q or algebraic numbers A; we denote this size by ℵ0. There is no largest
infinity, as given any set S its power set (which is the set of all subsets of S) has
strictly larger cardinality. We often write 2S for the power set of S. The real number
line, often called the continuum, can be viewed as the power set of the integers. To
see this, we may regard a subset of the positive integers as an infinite string of 0s and
1s, giving the binary expansion of a number in [0, 1]. For more on infinities, especially
the difference in the cardinalities of the integers and the reals, see the problems from
1918 and 1935.

If X is a set we write |X | for its cardinality; if X is finite then its cardinality
is simply the number of elements. The notation for the power set of S is highly
suggestive. For finite sets S, we have |2S | = 2|S|. Let’s investigate what happens
for different S. There is only one set with no elements, the empty set ∅. It has
cardinality zero, and its power set is simply {∅} (the set containing the empty set),
which has cardinality 1. All sets of just one element are equivalent to {∅}; the powerset
here has two elements: the empty set and the set containing the empty set. Thus
2{∅} = {∅, {∅}}. Arguing along these lines we see that if S has n elements (for n a
non-negative integer) then 2S has 2|S| = 2n elements, which justifies our notation.

http://www.claymath.org/millennium-problems
http://www.claymath.org/millennium/Riemann_Hypothesis/1859_manuscript/EZeta.pdf
http://en.wikipedia.org/wiki/Hilbert's_problems
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Interestingly, for finite sets the only time |2S | = |S|+ 1 is when |S| is the empty
set or the set containing the empty set. In all other cases there is a set T such that
|S| < |T | < |2S|. It is natural to ask if this is true for infinite sets. In particular,
denoting the size of the integers by ℵ0, how should we denote the size of the continuum
R (i.e., the size of the real numbers)? Generalizing our notation from the power set of
finite sets, it seems reasonable to write |R| = 2ℵ0 = 2|Z|; however, this is just notation.
What is the difference in size between 2|Z| and |Z|? Using Cantor’s diagonalization
argument (see the entry from 1918) we have |2Z| > |Z|; how much can they differ by?
In particular, for finite sets we saw that if S has at least two elements then we can
always find a set of size strictly between |S| and 2|S|; does this hold for infinite sets
as well? Is 2ℵ0 the next smallest infinity and thus merits being called ℵ1, or is there
an infinity between the two? Could there be infinitely many infinities between?

Cantor’s Continuum Hypothesis states that there is no set of cardinality strictly
between that of the integers and that of the reals. Hilbert made the resolution of
this conjecture the first problem in his celebrated list [10] (see the entry for 1935
for more on Hilbert’s problems). Interestingly, this question is independent of the
standard axioms of set theory. What this means is that if the standard axioms are
consistent, then so too is the model obtained by adding the Continuum Hypothesis, or
by adding its negation. Typically one uses either ZFC, the Zermelo-Fraenkel axioms
with the additional assumption of the Axiom of Choice, or ZF without Choice. Kurt
Gödel [6] proved in 1940 that the Continuum Hypothesis cannot be disproved if one
assumes ZF (or ZFC) is consistent. Almost 20 years later, in 1963 Paul Cohen [2, 3]
introduced the concept of forcing (see [4]) and proved that one cannot prove the
Continuum Hypothesis under the same assumptions. Thus the Continuum Hypothesis
is independent of the standard axioms of set theory, and one can construct models
where it holds or fails: take your pick! See [?, 8] for remembrances of Paul Cohen (on
a personal note, the editor is proud to be one of his mathematical grandsons).

Centennial Problem 1963. Proposed by Steven J. Miller, Williams College.

Cardinality is merely one way of measuring the complexity of a set. Another
option is to use the notion of dimension. Given a set S and a positive real number
r, let rS denote the dilation of S by r; for example, if S is a unit square then rS is
an r × r square. A good working definition is to say a set S is of dimension d if the
‘measure’ (we are being deliberately vague as to what this means!) of rS is rd times
the measure of S. Note that for a square we have 2S has measure 4 times that of S,
and thus its dimension would be 2. Similarly a cube would have dimension 3.

Interestingly, not all sets have integral dimension! A terrific example is the Cantor
set. It is defined as follows. Let C0 equal the unit interval, and let C1 equal the unit
interval minus the middle third, so C1 = [0, 1/3] ∪ [2/3, 1]. We continue, and define
Cn+1 to be Cn minus the middle third of each of the 2n subintervals of length 1/3n

making up Cn. The Cantor set C is ∩nCn. Clearly the length of C is zero, as the
length is less than that of Cn for each n, and the length of Cn is (2/3)n. Prove that
the dimension of C is log3 2, which is approximately .63. This proves that there exists
a set whose dimension is strictly between sets of dimension 0 and 1.

The Cantor set is one of the first encountered fractals; for more on fractals see
the entry for 1978. For another interesting fractal, look at an equilateral triangle
and subdivide into four equilateral triangles. If you continue this process you get the
Sierpinski triangle, which you should prove has dimension of log2 3 ≈ 1.585, which
is strictly between 1 and 2. Interestingly, one can also obtain the Sierpinski triangle
by looking at Pascal’s triangle modulo 2; we sketch the idea and leave it to you to
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Fig. 2. Pascal’s triangle modulo 2. For ease of plotting in Mathematica, instead of filling in
the cell we put a dot only if we should take the cell. The three triangles correspond to taking 31, 63
and 511 rows (for displaying purposes, it is easier for the program to include the first entry of the
next row).

make it rigorous. For each non-negative integer k draw the first n = 2k − 1 rows of
Pascal’s triangle, where row m is the row that corresponds to the coefficients arising
from expanding (x + y)m. Thus the entries of this row are

(

m
0

)

= 1,
(

m
1

)

= m,

. . . ,
(

m
ℓ

)

= m!
ℓ!(m−ℓ)! , . . . ,

(

m
m

)

= 1. Adjust the scale so that the three vertices of

this finite version of Pascal’s triangle give an equilateral triangle of height 1. We
divide the corresponding triangle into small equilateral triangular cells centered about
the different lattice points corresponding to the locations of the elements of Pascal’s
triangle. Keep all the points in a cell if the entry in Pascal’s triangle is odd, and
delete the cell if the entry is even. Taking the limit as k → ∞ yields the Sierpinski
triangle; see Figure 2 for some finite approximations to this limit.

Thus the notion of dimension is more involved than you might expect. We proved
that there is a set of dimension strictly between that of 0 and 1, and one of dimension
between 1 and 2. More generally, if you have two sets of positive dimension d1 and
d2, can you always construct a set whose dimension is strictly between these two?
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1967

The Langlands Program
Robert Langlands’s 1967 handwritten letter to the master number theorist André
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Weil begins modestly: “Your opinion of these questions would be appreciated.... I
hope you will treat them with the tolerance they require at this stage.” But Lang-
lands’s letter was in fact a tour de force, a manifesto that would shape the next
half-century (and more) of number theory.

The main characters in Langlands’s drama are automorphic forms: functions on a
topological space which are invariant under a discrete group of symmetries (the actual
definition is much longer and much more particular). There are two crucial supporting
characters: first, Galois representations, or homomorphisms Gal(Q̄/Q) → GLn(C),
where Q̄ is the algebraic closure of Q. This Galois group is one of the richest objects in
algebraic number theory, and describing its representations is a complicated problem.
Second, L-functions, of which the simplest example is the Riemann zeta function:

ζ(s) =
∞
∑

n=1

1

ns
=

∏

p prime

(

1− 1

ps

)−1

. (0.1)

Every L-function can be written as a product over primes in this way, and extended
to all s ∈ C, with a symmetry in s 7→ 1 − s. L-functions encode all kinds of data,
from the distribution of prime numbers to point counts on algebraic varieties.

The Langlands Program, very roughly, is to show that wherever we see a Ga-
lois representation or an L-function in number theory, there is an automorphic form
lurking behind it. Here is one example: suppose that we have an L-function:

L(s) =
∏

p prime

(

1− αp

ps

)−1(

1− βp

ps

)−1

(0.2)

where αp, βp ∈ C with αpβp = 1. This kind of L-function might come from an elliptic
curve y2 = x3 + ax+ b, a representation Gal(Q̄/Q) → GL2(C), a modular form, or a
more mysterious Maass form. (In the case of an elliptic curve, αp and βp are functions
of the number of points on the curve mod p.) Langlands conjectures that not only do
these L-functions have automorphic forms behind them, but so too do the “symmetric
power L-functions”

Lr(s) =
∏

p prime

r
∏

i=0

(

1− αi
pβ

r−i
p

ps

)−1

. (0.3)

Just the convergence of the symmetric powers implies two famous conjectures: the
Ramanujan conjecture, that all αp, βp are on the unit circle, and the Sato-Tate
conjecture, that they are equidistributed on the circle.

The Langlands Program encompasses a vast range of conjectures and theorems,
more than one person could ever prove. For example, class field theory is just the
simplest case of the Langlands Program. Andrew Wiles’s proof of Fermat’s Last
Theorem? Just part of the next simplest case. There have been huge breakthroughs
on the Langlands Program since 1967, but we’ll be working on it for a long time to
come.

Centennial Problem 1967. Proposed by Ian Whitehead, University of Minnesota.

In this problem we’ll show that Langlands’ conjecture for symmetric power L-
functions implies the Ramanujan conjecture. Consider one factor of the product of
symmetric power L-functions L0(s)L2(s)L4(s) · · ·L2m(s):

m
∏

r=0

2r
∏

i=0

(1− αiβ2r−ix)−1. (0.4)
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Here we’ve substituted α, β for αp, βp, and x for p−s. Assume that αβ = 1 and α+β ∈
R. Prove that this expands as a power series in x with positive real coefficients (hint:
you could take a logarithm first). This fact, together with Langlands’s conjecture,
implies that the series converges for x < 1/p, regardless of m. Conclude that |α| =
|β| = 1.
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1971

Society for American Baseball Research
Founded in Cooperstown, New York by Bob Davids in 1971, the Society for

American Baseball Research (http://www.sabr.org/) has many objectives. One
of them is to encourage and aid the application of mathematics and statistics to the
analysis of baseball. One consequence of their efforts is the alphabet soup of acronyms
for new metrics to measure player performance (VORP, WAR, OPS, ...). This is an
extremely important task, not just for baseball but for other fields as well. It is
important to know what to measure. For example, originally walks were viewed as
errors by the pitcher and not a positive event by the batter. This led to an enormous
undervaluation of walks, which is remedied now with on-base percentage. As the
annual revenues in Major League Baseball (MLB) are measured in the billions, there
is a lot at stake and a team that has a better understanding of which statistics truly
matter can assemble a better team for less, which can translate to World Series rings
and greater revenue. Most teams now have sabermetricians helping with the analysis,
player selection and strategy. Moneyball, by Michael Lewis, is an excellent popular
account of how the Oakland A’s applied these principles and, with a budget a third
to a fourth of other teams, fielded competitive teams reaching the playoffs.

Centennial Problem 1971. Proposed by Steven J. Miller, Williams College.

Only seven times in MLB history has a team had four consecutive batters hit home
runs: the Milwaukee Braves in 1961, the Cleveland Indians in 1963, the Minnesota
Twins in 1964, the Los Angeles Dodgers in 2006, the Boston Red Sox in 2007, the
Chicago White Sox in 2008, and the Arizona Diamondbacks in 2010. Estimate the
probability that some team during the season performs this feat. Hint: a simple model
is to calculate the average home run frequency of players, and essentially raise that to
the fourth power. What is wrong with this argument? There are many articles with
arguments and calculations of this problem; what makes this problem interesting is
trying to account for all the different factors.

1975

Szemerédi’s Theorem
Let us call a set A ⊂ N AP-rich (correspondingly, GP-rich) if it contains arbitrar-

ily long arithmetic progressions (correspondingly arbitrarily long geometric progres-
sions). In his 1975 paper Szemerédi [1] has shown that any set A ⊂ N having positive
upper density d(A) := lim supN→∞

1
N
|A ∩ {1, . . . , N}| > 0 is AP-rich, thereby con-

firming the Erdős-Turán conjecture formulated in [5]. It is not too hard to show

http://publications.ias.edu/rpl/paper/43
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that Szemerédi’s theorem implies an ostensibly stronger theorem which states that
if for some sequence of intervals In = {an, . . . , bn} ⊂ N with bn − an → ∞, one has
d(In)(A) := lim supN→∞ |A∩ In|/|In| > 0, then A is AP-rich. It is customary to view
Szemerédi theorem as a density version of van der Waerden’s result [6], which states
that for any finite coloring N = ∪r

i=1Ci, one of the Ci is AP-rich. Now, it is also
true that one of the Ci is GP-rich (consider the restriction of our r-coloring to the set
{2n : n ∈ N} and apply van der Waerden’s theorem).

This naturally leads to the question whether sets of positive upper density are
GP-rich. The answer turns out to be NO!. Consider for example the set R of square-
free numbers. IT clearly cannot contain length 3 geometric progressions {x, xq, xq2}
with q > 1. At the same time, it is known that limN→∞

1
N
|R ∩ {1, . . . , N}| = 6/π2.

So, if one believes in the idea that any partition result of Ramsey theory has a density
version (see [3] for a discussion of some of the principles of Ramsey theory), a new
notion of largeness, geared towards the multiplicative structure of N, should be looked
for.

Let (an)n∈N be an arbitrary sequence in N, let (pn)n∈N be any ordering of the

set of primes P = {2, 3, 5, 7, . . .} and let, for any j ∈ N, (N
(j)
n )n∈N be an increasing

sequence of natural numbers. Let Fn = {anpi11 · · · pinn , 0 ≤ iℓ ≤ N
(j)
n }. Finally,

for a set A ⊂ N let us define the upper multiplicative density with respect to the
family (Fn)n∈N as d×(A; (Fn)) := lim supN→∞ |A ∩ Fn|/|Fn|. The main reason we
have chosen the sequence (Fn)n∈N to appear in this definition is that the quantity
d×(A; (Fn)) is invariant with respect to multiplication and division: for any k ∈ N

one has

d×(A; (Fn)) = d×(kA; (Fn)) = d×(A/k; (Fn))

(where kA = {ka : a ∈ A} and A/k = {b : kb ∈ A}). The best way of thinking of
the sets Fn, n ∈ N, is to view them as multiplicative counterparts of the family of
intervals In, n ∈ N, which appear above in the definition of the “generalized” upper
density d(In).

While the additive semigroup of natural numbers (N,+) have a single generator
(and k ∈ N is a multiple of 1), the multiplicative semigroups (N,×) has infinitely
many generators (the primes). This accounts for the somewhat cumbersome defini-
tion of d×(·; (Fn)). Let us call a set A ⊂ N multiplicatively large if for some sequence
(Fn)n∈N as defined above, d×(A; (Fn)) > 0, and let us call A additively large if for
some sequence of intervals In with |In| → ∞, d(In)(A) > 0. It is not hard to see that
these two notions of largeness do not overlap (see the discussion in [3]). The following
result, obtained in [3], may be viewed as a multiplicative analogue of Szemerédi’s
theorem.

Theorem: Any multiplicatively large set is GP-rich.

Returning for a moment to van der Waerden’s theorem, let us observe that one
can actually derive from it the fact that for any finite partition N =

∑r
i=1 Ci, one of

Ci is simultaneously AP-rich and GP-rich. It turns out, surprisingly, that the notion
of multiplicative largeness provides for a density version of this result as well.

Theorem [3]: Any multiplicatively large set is AP-rich.
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Note that the set R of square-free number, while being free of geometric progres-
sions, has quite a bit of multiplicative structure: for any distinct primes p1, . . . , pk, the
product p1 · · · pk belongs to R. It turns out that any set of positive upper logarithmic
density (a notion slightly stronger than that of upper density) contains an infinite
divisibility chain, i.e., a sequence (xn)n∈N such that, for any n, xn divides xn+1. See
[4] for the details.

Assume now that S is a syndetic set in (N,+), that is a set with the property
that finitely many of its shifts cover N. Equivalently, S is syndetic if it has bounded
gaps. This property is quite a bit stronger than that of positive upper logarithmic
density, and one may expect that syndetic sets, in addition to having a divisibility
chain, have some additional multiplicative structure.

Centennial Problem 1975. Proposed by Vitaly Bergelson, The Ohio State Univer-
sity.

Assume that S is a syndetic set in N. Is S GP-rich?

See [1, 2] for discussion and some equivalent forms of this conjecture. As a matter
of fact, it is not even known whether any syndetic set contains a pair of the form
{x, xq2} with q > 1.
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1979

TEX
This entry honors two fundamental contributions of computer science to the math-

ematical and scientific communities: first, Donald Knuth’s creation of the TEX type-
setting system, released in 1978; and second, off-by-one errors, which is why this entry
is listed under 1979.3

Donald Knuth is perhaps best known for his monumental, encyclopedic, and
stunningly readable series The Art of Computer Programming. Begun in 1962 while
he was a graduate student at Caltech, the project continues to this day, with volume
4A published in 2011 and several remaining volumes in preparation. While preparing
a second edition of Volume 2, Knuth was dismayed with the quality of the typesetting
done by the publisher. Realizing that digital typesetting boiled down to 0s and 1s—is
this pixel black or not?—Knuth saw this as a problem amenable to computer science
and set out to design his own system.

3For the purists, though, Knuth was honored with the National Medal of Science in 1979.

http://www.scholarpedia.org/article/Szemer%C3%A9di's_Theorem
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Then came another classic computer science insight: Knuth estimated he could
have the system ready in six months. Instead, it was almost ten years before the
“first” TEX was released. This was called version 3. (You may have heard that
computer scientists start counting at 0, but this is apparently incorrect: they start at
3.) The next version was 3.1, which was followed by version 3.14. The current version
is 3.14159265. You get the idea.

TEX is now used extensively. Essentially every contemporary paper in mathe-
matics and computer science is typeset using some system based on TEX, including
this very document! TEX has several features that distinguish it from other digital
typesetting and publishing systems, but we only discuss two points of interest here.

First, TEX is designed as a programming language. The user writes a program
that describes both the content and layout of the document. The program is then
interpreted by TEX to produce the desired document. This design choice means that
TEX is extraordinarily flexible and customizable. The price is that TEX and related
systems can be hard for beginners to pick up from scratch. Fortunately there are
many templates available online, and by looking at the code and compiled documents
you can learn over 90% of what you need fairly quickly, and then search the web or
ask experts for the rest. For example, the editor of these problems maintains TEX
templates (for papers and presentations) online:

http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm

(the website also has a link to a YouTube video going through how to write simple
articles using the above TEX template).

Second, TEX uses sophisticated algorithms to layout text on the page. Consider
the problem of breaking a paragraph of text into justified lines. Each line must begin
at the left margin and end at the right margin, and there cannot be too much nor
to little space between words. Line breaks are allowed only between words and, if
necessary, inside a word at a known hyphenation point.

How would you solve this problem? The solution used in most digital typesetting
systems and word processors is a greedy strategy. We consider the words of the
paragraph one at a time, adding them to the current line. When the current line
is full, it is added to the page, and we begin adding words to the next line. This
approach is fast—it considers each word only once—but it can lead to unappealing
results because it never changes its mind about lines that have already been added
to the page. For example, the greedy algorithm may put vastly different amounts of
space between words on different lines, which looks strikingly bad.

Centennial Problem 1979. Proposed by James Wilcox, University of Washington.

Instead, TEX tries harder to optimize for a good-looking paragraph. To do so,
it uses a notion called badness, which is computed using rather complex rules that
are designed to penalize ugly layouts. For example, we wish to penalize paragraphs
that contain lines with too much or too little space between words. Given a definition
of badness, the problem is now to minimize badness over all possible sets of line
breaks. A näıve implementation of this approach would consider all exponentially
many choices, but it is possible to do better. Give a quadratic-time algorithm for
finding the optimal set of line breaks. For a detailed discussion of TEX’s line breaking
algorithm, see [1].

REFERENCES

[1] D. E. Knuth and M. F. Plass “Breaking paragraphs into lines”, Software: Experience and
Practice, Vol. 11, Iss. 11, November 1981.

http://web.williams.edu/Mathematics/sjmiller/public_html/math/handouts/latex.htm


400 MILLER

[2] D. E. Knuth, “The Art of Computer Programming, Volume 1: Fundamental Algorithms”,
3rd ed., Addison-Wesley, 1997.

[3] D. E. Knuth, “The Art of Computer Programming”,
http://www-cs-faculty.stanford.edu/~uno/taocp.html.

[4] The TEX User Group, “History of TEX”, http://www.tug.org/whatis.html.

1983

Julia Robinson
The year 1983 marks the service of Julia Robinson as the first woman to hold

office as president of the American Mathematical Society. Born on December 8,
1919, Robinson shared a passion for mathematics at an early age with her sister
and notable biographer, Constance Reid. Reid wrote extensively about Robinson
in several publications, including her award winning Mathematical Association of
America article, “The Autobiography of Julia Robinson”. In the article’s introduction,
Reid expresses some personal remarks about her sister. “She herself, in the normal
course of events, would never have considered recounting the story of her own life.
As far as she was concerned, what she had done mathematically was all that was
significant.” Indeed, significant is a fitting word when speaking of the magnitude of
Robinson’s mathematical ability, especially with her collaborative involvement that
ultimately led to the resolution of Hilbert’s Tenth Problem.

In the early years of the 20th century, the German mathematician David Hilbert
published a set of twenty-three open problems that challenged the foundation of math-
ematical formalism. One of the underlying themes of the list was the question of
decidability. Decision problems that originate from these questions are summarized
in the following way: Given a mathematical problem that falls into a certain class of
problems, is there a general algorithm that can solve every problem in that class? In
the case of Hilbert’s Tenth Problem, Hilbert proposed the question for the general
solvability of Diophantine equations (a Diophantine equation is an equation of the
form p(x0, x1, . . . , xn) = 0 where p is a polynomial with integer coefficients and only
integer solutions are considered). A more formal statement of Hilbert’s Tenth Prob-
lem is the following: Is there a general algorithm that can determine the solvability
of an arbitrary Diophantine equation?

Over the span of several decades, Robinson and several collaborators, includ-
ing Martin Davis and Hillary Putnam, formulated a necessary condition to answer
Hilbert’s question in the negative. In particular, they proved that if there is at least
one Diophantine relation of exponential growth, then no such solvability algorithm ex-
ists. A general family of Diophantine equations is given by p(a1, . . . , an, x1, . . . , xm) =
0, where a1, . . . , an are parameter relations which hold if and only if the equation
has a solution in the remaining variables x1, . . . , xm. Furthermore, the form of p
can be addition, multiplication, and exponentiation constructed from the variables
x1, . . . , xm. Robinson, Putnam, and Davis established that if a Diophantine equation
Q(a, b, c, x1, . . . , xm) = 0 has a solution in integers x1, . . . , xm if and only if a = bc,
then the necessary condition of finding a Diophantine relation of exponential growth
is met. Furthermore, Robinson showed that it is equally sufficient to have an equation
G(a, b, x1, . . . , xm) which defines the relation J(a, b) such that for any a and b, J(a, b)
implies that a < bb and for any k, there exist a and b such that J(a, b) and a > bk. In
1970, a young Russian mathematician named Yuri Matiyasevich discovered such an
equation that ultimately ended the search and answered Hilbert’s Tenth Problem in
the negative.

With her notable achievements aside, Julia Robinson was a remarkable mathe-

http://www-cs-faculty.stanford.edu/~uno/taocp.html
http://www.tug.org/whatis.html
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matician and pioneer for women in modern mathematics. Though she passed away in
1984, her work still forms a foundation for further questions to be explored. It is such
questions that find their way into the imaginations of the mathematically curious and
stretch the boundary of what is decidable.

Centennial Problem 1983. Proposed by Avery T. Carr, Emporia State University.

Decision problems are found in many areas of mathematics, including Combina-
torics and Graph Theory. A discrete graph G is a set of n vertices (much like points
in a projective plane) and m edges (similar to straight lines in a plane) such that
there is an irreflexive relation between the vertices and edges. The order of G is the
number of vertices of G. For a simple discrete graph, every edge has exactly two
vertices, one at each end, called end vertices. A cycle in G is a path traversing a
subset of vertices, each only once, and closing with the starting vertex of the path.
Hamiltonian cycles of G are cycles that span every vertex of G. Weighted edges are
edges with numerical values assigned to them. Summing the weighted edges of an
arbitrary cycle gives the total weight of the cycle. An open unresolved question is:
Given an arbitrary edge-weighted discrete graph G with sufficiently large order, is
there a general algorithm to find the Hamiltonian cycle (provided at least one exists)
of G with the minimal weight? This is an equivalent abstract version of the famed
Traveling Salesman Problem, and a positive solution would have notable implications
in several industries, including logistics and computer engineering.
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1987

Primes, the zeta function, randomness, and physics
The Centennial Problem 1942 featured the Riemann zeta function, ζ(s), and its

intimate connection with primes. For Re(s) > 1, ζ(s) =
∑∞

n=1 n
−s, and simultane-

ously ζ(s) =
∏

p prime(1 − p−s)−1. The equality of the series and the product is a
simple consequence of the unique factorization of integers into prime powers. But it
does lead to a potentially much more fruitful observation. The zeta function can be
continued analytically to the entire complex plane with the exception of a first order
pole at s = 1, and aside from so-called trivial zeros at negative even integers, has
all its other (called non-trivial) zeros inside the critical strip 0 < Re(s) < 1. Those
non-trivial zeros determine the primes through explicit formulas that date back to
Riemann. Thus the very discrete primes, the fundamental building blocks of arith-
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metic, dance to the tune of zeros of an analytic function! This unusual connection of
continuous and discrete has fascinated mathematicians for a long time.

The Riemann Hypothesis (RH), one of the most famous unsolved problems in
mathematics, says that all the non-trivial zeros lie on the critical line, Re(s) = 1

2 .
Conrey’s 2003 article provides a nice survey of the main approaches that have been
taken to it, and there are many other sources of information on the Web. The con-
ventional analytic methods have not produced a proof so far, and there is general
opinion among experts in the area that other approaches are needed. The one that
has stimulated the largest effort in the last few decades is founded on the Hilbert and
Pólya conjecture, which says that the RH is true because there is a positive opera-
tor whose eigenvalues correspond in a canonical way to the non-trivial zeros. This
conjecture leads to potential connections with extensive work on physics on random
matrices. It gained credibility as a result of a theoretical advance by Montgomery in
the early 1970s, followed by the production of extensive empirical data by Odlyzko in
1987. While this line of attack has produced many intriguing results, it is not clear
whether it will lead to a proof of the RH.

Many approaches to the RH, such as that through random matrix theory, require
substantial background. However, it is still conceivable that simpler attacks will
succeed. If we don’t insist for direct attacks on the RH, the range of interesting
questions related to the RH that are amenable to experimentation and simple proofs
grows substantially.

Centennial Problem 1987. Proposed by Andrew Odlyzko, University of Minnesota.

The sieve of Eratosthenes is the standard method for producing all primes up to
a given bound. In order to understand the extent to which conjectures such as the
RH or the twin prime conjecture are outcomes of general sieving procedures, Hawkins
proposed a probabilistic version of the sieve of Eratosthenes. We start with a list
of integers > 1, and perform an infinite series of passes through the list, each pass
producing what is called a Hawkins prime. On the first pass, we identify 2 as the first
element in the list, and we call it the first Hawkins prime, p1 = 2. We then go through
the remainder of the list, and cross out each element with probability 1/p1 = 1/2. On
the k-th pass, for k > 1, we look for the first element in the list that is > pk−1 and
has not been crossed out, declare it to be pk, and cross out every subsequent integer
with probability 1/pk. Thus it might happen that on the first pass, 3 will be crossed
out, but not 4, in which case we will obtain the counter-intuitive result that p2 = 4.
(The Hawkins sieve loses many natural properties of the ordinary primes, and for
finite sequence of integers 2 < q3 < q4 < · · · < qk there will be a positive probability
that pj = qj for 2 < j ≤ k.)

The Hawkins sieve is easy to simulate on a computer, and, of more interest, to
analyze rigorously. It turns out that many properties of primes, both proven and
conjectured, can be shown to hold for Hawkins primes, but only with probability
one. Can one come up with other random sieves that can be analyzed rigorously,
even though probabilistically, and which produce numbers that are closer to ordinary
primes?
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1991

arXiv
In many lists of the most influential people of all time, Gutenberg frequently not

only makes the cut, but is often towards the top. The reason is that the ability to mass
produce printed works allowed information to be greatly disseminated, which fosters
collaborations and creates a powerful feedback loop. This year’s problem honors the
founding of the arXiv, http://arxiv.org/. Begun by Paul Ginsparg in August 1991
as a repository for physics papers, there are now well over half a million articles in
Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance
and Statistics; each day over a hundred papers are added in math alone!

The arXiv is generously supported by Cornell University, the Simons Founda-
tion (see https://www.simonsfoundation.org/ for their homepage; their magazine
https://www.simonsfoundation.org/quanta/ is a wonderful source of interesting
articles), and member institutions. It allows researchers and interested parties all
over the world immediate access to research and expository papers. As the time from
when a paper is submitted to when it appears in press at a journal is usually mea-
sured in years, the importance of the arXiv becomes apparent, as it allows people to
share their ideas in real time. See http://arxiv.org/help/stats for some interest-
ing graphs on the growth of the use of the arXiv over the years (both in posting and
downloading articles).

Centennial Problem 1991. Proposed by Steven J. Miller, Williams College.

Every day you can check for new posts to the arXiv. Spend ten minutes a day,
every day for a month, skimming the titles of papers, the names and affiliations of the
authors, and the abstracts. For me, there’s exponential (or worse!) decay between
these categories and one more, actually clicking and opening the paper! That said,
it is excellent advice to keep abreast of what is happening in your field. Get to know
whom the players are, and what they study. Get a sense of what topics are popular.
Years ago Jeff Lagarias gave me this advice; I’ve mostly followed it and frequently
this is how I learn about developments in my field.

For the especially brave: go to the general math category, find a paper claiming a
proof of the Riemann Hypothesis, the Twin Prime Conjecture, or Goldbach’s problem.
Find the mistake in the proof, and if you’re brave communicate with the author.

Spend ten minutes a day for a month reading the titles, abstracts, and names of
authors who have posted a paper
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1995

Fermat’s Last Theorem
Fermat’s Last Theorem (FLT) states: Cubum autem in duos cubos, aut quadrato-

quadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadra-
tum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem
mirabilem sane detexi. Hanc marginis exiguitas non caperet. Or, as most of us know,
there are no solutions in non-zero integers to xn+yn = zn if n > 2. This year marked
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the publication of papers by Andrew Wiles and Richard Taylor and Andrew Wiles
finally proving this claim. Their work is the outgrowth of numerous other people,
which connected Fermat’s problem to the theory of elliptic curves. Thus, while Fer-
mat’s result has held mathematicians’ interest for centuries, the method of proof was
at least as important as the result, as it yielded important results in active areas of
research.

Centennial Problem 1995. Proposed by proposed by the students in Frank Morgan’s
‘The Big Questions’ class at Williams College, Fall 2008).

The status of Fermat’s Last Theorem for rational exponents is known; what about
real exponents? Are there integral solutions to xr + yr = zr for r real? If yes, can
you give a nice example?
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1999

Baire’s Category Theorem

A very important result in analysis, Baire’s Category Theorem was published by
the French mathematician René-Louis Baire in 1899 in his doctoral thesis titled “Sur
les fonctions de variables réelles”. As explained in [1], [2], and [3], Baire’s Category
Theorem has numerous applications to various branches of analysis; in particular,
it is the main ingredient in the proof of three fundamental theorems in Functional
Analysis: the Open Mapping Theorem, the Closed Graph Theorem, and the Uniform
Boundedness Principle.

A few definitions are necessary in order to state this important theorem. A subset
A of a topological space is called nowhere dense if its closure A has empty interior. A
subset A of a topological space is called a set of the first Baire category (or “meagre”)
if it can be written as the countable union of nowhere dense sets; otherwise A is called
a set of the second Baire category. The first version of Baire’s Category Theorem is:
In a complete metric space X , the set X is of the second Baire category.

An equivalent version of the Baire’s Category Theorem is obtained by using the
concept of Baire space: a topological space X is a Baire space if it has the property
that any intersection of open dense sets is dense. The second version of Baire’s
Category Theorem is: Any complete metric space is a Baire space.

Centennial Problem 1999. Proposed by Mihai Stoiciu, Williams College.

Let C[x] be the vector space of polynomials in one variable with complex co-
efficients and let ‖ · ‖ : C[x] → [0,∞) be a norm on C[x] (for example, ‖P‖ =
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√

∫ 1

0 |P (x)|2 dx, for P ∈ C[x]). Use Baire’s Category Theorem to prove that the

metric induced by ‖ · ‖ on C[x] is not complete (or, equivalently, (C[x], ‖ · ‖) is not a
Banach space).
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2003

Poincaré Conjecture
In 2003 the first of the million dollar Clay millennial prizes (see the problem

from 1925 for more on these problems) fell as Perelman proved the Poincaré Conjec-
ture, which says that a compact, simply connected 3-dimensional manifold must be a
sphere. To understand what this means, it’s worthwhile exploring the 2-dimensional
equivalent. Consider a compact two-dimensional surface without a boundary. If every
closed loop on it can be contracted, staying on the surface, to a point, then the surface
is topologically homeomorphic to the two-dimensional sphere. Thus a donut is not
the same as a basketball, as a ring around the donut cannot be contracted to a point.
Thus the Poincaré conjecture says that this condition detects spheres in 3-dimensions
as well.

Centennial Problem 2003. Proposed by Frank Morgan, Williams College.

Show that a nice simply connected 4-dimensional manifold need not be a 4-sphere.
(One also needs some assumption on the 2-homotopy.)
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2007

Flatland
The year 2007 marks the latest attempt to capture the classic book “Flatland”

on film, and it is one of the most successful. “Flatland: the Movie” is a creation of
three filmmakers from the University of Texas, Austin who discovered that they had
all read and enjoyed the book when they were young students. Seth Caplan is the
producer, Jeffrey Travis the director, and Dano Johnson the chef animator and their
film has become a hit among teachers in middle and high school geometry classes.

Although some of the social satire of the original book has been modified, the
central part of the story remains. The precocious hexagonal grandson in the classic
has been replaced by an equally precocious granddaughter, Hex, with the voice of
Kristin Bell (who voiced Princess Anna in the recent smash “Frozen”). She is a good
spokesperson for mathematics in the extras at the end of the DVD, along with Martin
Sheen (of “West Wing”).

The major innovation in the film is a mysterious artifact left in the two-dimensional
world of Flatland by a visitor from the third dimension, namely a cube that rotates
about a point so that the Flatlanders can see all of its various cross-sections. The
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challenge is for the onlookers is to imagine what kind of object could produce all of
those slices, and it is only when A Square and Hex are taken up into the third di-
mension by the three-dimensional visitor Spherius that they can begin to appreciate
geometric phenomena in a dimension higher than their own.

Edwin Abbott Abbott definitely wanted to challenge his readers to imagine the
analogous situation if we were confronted by phenomena originating in a fourth di-
mension of space. The film concludes with views of a four-dimensional cube, a “hy-
percube”, that is projected into our space as it rotates in various ways in the fourth
dimension.

Centennial Problem 2007. Proposed by Thomas Banchoff, Brown University.

For starters, describe all of the kinds of slices that occur when a cube in three-
space is sliced through it center by a various planes. In particular when the plane is
parallel to a face of the cube or to an edge of the cube or corner first. The real challenge
is to generalize this exercise to the fourth dimension–what are the three-dimensional
slices through the origin of a hypercube?

It may be helpful to think in terms of 2-dimensional coordinate geometry, where
a two-dimensional square has four vertices (1,1), (-1,1), (-1,-1) and (1,-1). What
happens when we slice by the y-axis? What about the line y = x?

In three dimensions, consider the cube with eight vertices (1,1,1), (-1,1,1), (-1,-
1,1), (1,-1,1) and the four vertices with the third coordinate changed to -1. What are
the slices by the plane perpendicular to (1,0,0), or the plane perpendicular to (1,1,0),
or, most interestingly, the plane perpendicular to (1,1,1), the longest diagonal?

The analogue is clear. A four-dimensional cube has sixteen vertices, each with
four coordinates that are 1 or -1. The most symmetric slicing hyperplanes are the ones
perpendicular to (1,0,0,0), or (1,1,0,0), or (1,1,1,0), and, most interestingly, (1,1,1,1),
the long diagonal.

Martin Gardner, who is being celebrated this year on the hundredth anniversary
of his birth, treated the hypercube more than once in his columns. He raised the
question of which of the central slices of the three-dimensional cube has the greatest
area (the answer might be surprising). The analogous question asks which central
slice of the hypercube has the greatest volume.

A harder problem, also quite fascinating, asks for the structure of the central
slice of the five-dimensional cube by a four-dimensional hyperplane perpendicular to
its long diagonal.
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“On voit sans peine que ce théorème est susceptible d’un grand nombre
d’applications” (“One sees with no effort that this theorem is prone to a great number
of applications”). This is the proud, yet unostentatious, end of Dmitri F. Egorov’s pa-
per on the fundamental result in measure theory commonly know as Egorov’s theorem.
(It would be unfair to reduce Egorov’s contribution to Mathematics to this theorem,
for he is one of the most influential intellectuals of his generation. If we accept to
measure someone’s ‘mathematical influence’ by the number of academic ‘descendants’
recorded by the Mathematics Genealogy Project, then Egorov is the most prominent
mathematician among the graduates of 1901. As of September 10th 2013, he has
4587 descendants, far ahead of the second most descendant-prolific mathematician of
the 1901 cohort (I. Schur, 2115 descendants)). His theorem allows us –for a small
price– to recoup the familiar notion of uniform convergence for a pointwise conver-
gent sequence of functions over an interval, assuming only their measurability. The
price we pay is to restrict the functions to a subset of the interval whose complement
has arbitrarily small measure. Egorov has to share the paternity of his theorem with
Carlo Severini, a lesser known mathematician who actually preceded Egorov by few
months. Severini published his theorem in April 1910 in a journal of rather limited
diffusion, and his contribution was not acknowledged outside Italy until 1924 when
the famous L. Tonelli published a short note crediting him with the initial discovery.
Severini’s and Egorov’s proof are practically identical but discovered independently.

Let us formulate the celebrated theorem precisely. Let (fn)n∈N be a sequence of
real-valued measurable functions defined over [a, b] ⊂ R. Assume that limn→∞ fn(x)
= f(x) for almost every x ∈ [a, b], where the function f is automatically measurable.
Severini-Egorov’s theorem states that for every ε > 0 there exists a measurable subset
E ⊂ [a, b] such that |E| < ε and (fn) converges to f uniformly on [a, b]rE. Here | · |
denotes the Lebesgue measure.

Centennial Problem 2011. Proposed by Francesco Cellarosi, University of Illinois
Urbana-Champaign.

Severini-Egorov’s theorem has been assumed to be true (e.g. page 79 of Hardy-
Rogosinski) when (fn) is replaced by a family of functions that depends on a real
parameter and tends continuously to some measurable function. This is false, however,
as shown by J. D. Weston in 1958. The problem we propose is to re-discover Weston’s
counterexample. Hint : Find a family of functions (fh)0≤h<1 on [0, 1) such that (i)
for each h ∈ [0, 1), fh(x) = 0 except possibly at a single point x where fh(x) = 1; (ii)
for each x ∈ [0, 1), fh(x) → 0 as h → 0; (iii) the convergence is not uniform on any
set of positive measure. Warning: If you are reluctant to use the Axiom of Choice to
construct a useful non-measurable set, you might be out of luck here!
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