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Abstract. Let X : y2 = f(x) be a hyperelliptic curve over Q(T ) of genus g ≥ 1. Assume that
the jacobian of X over Q(T ) has no subvariety defined over Q. Denote by Xt the specialization
of X to an integer T = t, let aXt (p) be its trace of Frobenius, and let AX ,r(p) = 1

p

∑p
t=1 aXt (p)r

be its r-th moment. The first moment is related to the rank of the jacobian JX (Q(T )) by a
generalization of a conjecture of Nagao:

lim
X→∞

1

X

∑
p≤X

−AX ,1(p) log p = rank JX (Q(T )).

Generalizing a result of S. Arms, Á. Lozano-Robledo, and S.J. Miller, we compute first moments
for various families resulting in infinitely many hyperelliptic curves over Q(T ) having jacobian
of moderately large rank 4g + 2, where g is the genus; by Silverman’s specialization theorem,
this yields hyperelliptic curves over Q with large rank jacobian. Note that Shioda has the
better record in this direction: he constructed hyperelliptic curves of genus g with jacobian of
rank 4g + 7. In the case when X is an elliptic curve, Michel proved p · AX ,2 = p2 + O

(
p3/2

)
.

For the families studied, we observe the same second moment expansion. Furthermore, we
observe the largest lower order term that does not average to zero is on average negative, a
bias first noted by S.J. Miller in the elliptic curve case. We prove this bias for a number of
families of hyperelliptic curves.

1. Introduction

Given an elliptic curve E/Q : y2 = x3 + Ax + B with A and B integers, the Mordell–Weil
theorem shows that the set of rational solutions E(Q) forms a finitely generated abelian group.
Mazur [Maz1, Maz2] proved there are only fifteen possibilities for the torsion subgroup, all of
which occur for infinitely many non-isomorphic elliptic curves over Q. However, much less is
known about the rank. Recent breakthroughs, such as [Bh, BhSh1, BhSh2], have shown that the
average rank among all elliptic curves over Q is bounded by 7/6, and that a positive percentage
of curves are rank 0, but it is still unknown if the rank is unbounded as we vary over all curves.
The largest known rank is at least 28, due to Noam Elkies [E], and some recent models (see
[PPVW]) suggest that the rank may in fact be bounded (interestingly, their prediction for the
largest rank is very close to the largest observed!).

If the Birch and Swinnerton-Dyer conjecture [BSD1, BSD2] holds, then the order of vanishing
of the Hasse–Weil L-function L(E/Q, s) at the central point (the analytic rank) equals the number
of generators of the Mordell–Weil group (the algebraic rank). Conjecturally, however, there are
other relations between the traces of Frobenius at each prime p and the algebraic rank. Nagao
posited that the first moment sums in a one-parameter family of elliptic curves determine the
rank of the elliptic surface. More concretely, let

(1.1) E : y2 = x2 +A(T )x+B(T )
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be an elliptic curve over Q(T ) and, for an integer t ∈ Z, let
(1.2) aEt(p) = p+ 1−#Et(Fp),

where #Et(Fp) is the number of points over Fp on the specialization of E at T = t. Also, for each
r ≥ 1, we define the rth moment of the traces of Frobenius by

(1.3) AE,r(p) =
1

p

p−1∑
t=0

aEt(p)
r.

Then, Nagao [Na3] conjectured that

(1.4) lim
P→∞

1

P

∑
p≤P

−AE,1(p) log p = rank E(Q(T )).

Rosen and Silverman [RS] have proved that Nagao’s conjecture holds for surfaces where Tate’s
conjecture holds, which includes rational surfaces1. The second author [Kim] has shown that the
Sato-Tate conjecture implies Nagao’s conjecture for certain twist families of elliptic curves, and
also in a generalized form for hyperelliptic curves, that we shall describe below.

There has been a long history of attempts to construct either individual elliptic curves with
large rank, or families with large rank. Many of these were found by looking for curves where these
associated sums are large and then analyzing these curves carefully; however, the work of Nagao,
Rosen and Silverman presents another approach. If one can find a family of elliptic curves so that
the sum AE,1(p) is computable, then we would conjecturally have computed (unconditionally if
Tate’s conjecture is true for the surface) the rank of the family. Thus, the challenge is to find
choices of A(T ) and B(T ) so that the resulting moments AE,1(p) can be computed and are
negative, and large in absolute value. This was first done by Arms, Lozano-Robledo and Miller
[ALM, Mil1, Mil2], where elliptic curves over Q(T ) of rank up to 8 were constructed2, and then
generalized in [MMRSY] to function fields over number fields. In this paper, we are interested in
constructing jacobians of hyperelliptic curves over Q with high rank, conditional on the following
generalization of Nagao’s conjecture.

Conjecture 1.1. Let X be a hyperelliptic curve defined over Q(T ). Assume that the jacobian
of X over Q(T ) has no subvariety defined over Q. For an integer t ∈ Z, let #Xt(Fp) be the
number of points over Fp on the specialization of X at T = t, and for each prime p ≥ 2, we
define aXt(p) = p+ 1−#Xt(Fp), and AX ,1(p) = 1

p

∑p−1
t=0 aXt(p). Then, we have

(1.5) lim
P→∞

1

P

∑
p≤P

−AX ,1(p) log p = rank JX (Q(T )).

We recall here that the Chow Q(T )/Q trace of an abelian variety A/Q(T ) is a pair (τ,B/Q),
where B is an abelian variety over Q, and τ : B → A is a homomorphism of abelian varieties
defined over Q(T ), with the universal mapping property that, given any such pair (τ ′, B′), the
map τ ′ : B′ → A should factor through τ (see [C] for more details on Chow traces). In particular,
we note that if A/Q(T ) has no subvariety defined over Q, then its Chow trace is necessarily
trivial.

Hindry and Pacheco [HP] have given a more general version of Nagao’s conjecture for a pro-
jective surface with a fibration onto a curve. We shall discuss below the relation between their
conjecture and Conjecture 1.1.

In our main theorem, and for each fixed genus g ≥ 1, we construct a hyperelliptic curve
X : y2 = fg(x, T ) such that Nagao’s limit is computable, and if we assume Conjecture 1.1, then
its jacobian has rank 4g + 2. We note that preliminary data of hyperelliptic curves ordered by

1The elliptic surface is rational iff one of the following is true: (1) 0 < max{3degA, 2degB} < 12; (2) 3degA =
2degB = 12 and ordt=0t12∆(t−1) = 0. See [RS], pages 46− 47 for more details.

2Up to rank 6 the constructions gave rational surfaces and the results were unconditional; for the larger rank
the surfaces were not rational, but one can isolate candidate points from the method, and then directly show that
these are linearly independent. The rank 8 case would correspond in this setting to rank 4g+4, but we do not
pursue this in this paper.
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discriminant up to size 106 and 107, due to Sutherland [Su], show that 95.68% of genus 2 curves
(resp. 92.52% of genus 3 curves) have analytic rank 0, 1, or 2 (resp. 0,1,2, or 3). Thus, a rank
of 10 (resp. 14) in a hyperelliptic jacobian of genus 2 (resp. genus 3) is well above the average
rank one would expect.

Theorem 1.2. Let g ≥ 1 be fixed, and assume that the jacobian of X over Q(T ) has no subvariety
defined over Q in its factorization. Then, Conjecture 1.1 implies that the jacobian of X has rank
4g + 2 over Q(T ).

Each specialization of T to an integer t gives a hyperelliptic curve Xt over Q of genus g. By
the specialization theorem of Néron, Silverman, and Tate we produce examples of hyperelliptic
jacobians over Q with moderate rank.

Corollary 1.3. Let g ≥ 1 be fixed, and assume the conditions from Theorem 1.2. Then, there
are infinitely many hyperelliptic curves over Q of genus g with rank at least 4g + 2.

We remark here that Shioda [Sh1] has produced examples of hyperelliptic jacobians over Q
with rank 4g + 7. Our approach, however, is different from that of Shioda because we do not
need to exhibit points in the jacobian JX in order to (conjecturally) deduce its rank. Note also
when g = 1 we recover the result in [ALM] and, in that case, the result is unconditional since
Nagao’s conjecture is known for rational surfaces.

Example 1.4. When g = 2, our construction (see Sections 4.3 and 4.4) yields, for instance,
the following hyperelliptic curve over Q(T ) of genus 2, with trivial Chow trace (see below), and
conjectural rank 10:

X : y2 = f(x, T ) = 62476467927496043633049600000000x5T 2

+ 124952935854992087266099200000000x5T

− 3290807860845345873174084414821262950400000000x5

− 78077124456852074329904550163688002129920000x4T

+ 1266882949301025362537844681132821271997870080000x4

− 123371083167607662332725955346616811520000000x3T

+ 24393131657917882942419531475439645795721984020559648121x3

+ 97780947791238642428587970982523699200000000x2T

+ 77106121667148850964656956255833136751214529427393152000x2

− 2549993916103702826374130630551142400000000000xT

− 1078851918243051493072239063454153306319585738833920000x

+ 3290807860845408349642011910864896000000000000T

+ 1524014810925296267945145551729277974339657041182720000000.

When evaluating at T = 1, we obtain a hyperelliptic curve over Q of genus 2 and rank ≥ 10:

C : y2 = f(x) =− 3290807860845158443770301926690363801600000000x5

+ 1266804872176568510463514776582657583995740160000x4

+ 24393131657794511859251923813106919840375367209039648121x3

+ 77106121667246631912448194898261724722197053126593152000x2

− 1078851920793045409175941889828283936870728138833920000x

+ 1524014810928587075805990960078919986250521937182720000000.

First, we note that the quintic polynomial f(x) = f(x, 1) has Galois group S5 (verified using
Magma). Hence, the polynomial f(x, T ) must have generic Galois group S5 as well. A theorem
of Zarhin (Theorem 3.2) now shows that JX (Q(T )) must be an absolutely simple abelian variety.
In particular, its Chow trace must be trivial.
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In order to verify that the rank of the jacobian JC/Q of C is ≥ 10, we have found 10 rational
points PX ,i on X (Q(T )), given by:

PX ,1 = (1, 7904205711360000T + 40304282819518226626505913739),

PX ,2 = (4, 252934582763520000T − 65685295896309228373784754088),

PX ,3 = (9, 1920721987860480000T − 159820218042093846301934185047),

PX ,4 = (16, 8093906648432640000T − 348080834252094356418710160704),

PX ,5 = (25, 24700642848000000000T − 656377570038206536713751374625),

PX ,6 = (36, 61463103611535360000T − 1113329506187909618252508872376),

PX ,7 = (49, 132845985390827520000T − 1748266818700297788803284771523),

PX ,8 = (64, 259005012749844480000T − 2590716593774949584327684741632),

PX ,9 = (81, 466735443050096640000T − 3670270185462998197299916564269),

PX ,10 = (100, 790420571136000000000T − 5016542911649893790058312437000).

We evaluated PX ,i at T = 1 to obtain points Pi on C(Q), and finally we defined points (Pi)− (O)
on the jacobian JC , where O is the unique point at infinity. Here are the points:
P1 = (1, 40304282819526130832217273739), P2 = (4, 65685295896056293791021234088),

P3 = (9, 159820218040173124314073705047), P4 = (16, 348080834244000449770277520704),

P5 = (25 : 656377570013505893865751374625 : 1), P6 = (36 : 1113329506126446514640973512376 : 1),

P7 = (49 : 1748266818567451803412457251523 : 1), P8 = (64 : 2590716593515944571577840261632 : 1),

P9 = (81 : 3670270184996262754249819924269 : 1), P10 = (100 : 5016542910859473218922312437000 : 1).

Further, we have computed the canonical height matrix for these 10 points, and its determinant,
which equals 1131062371638072163.8139 . . . 6= 0. Thus, the points {(Pi)− (O)} are independent
and the rank of JC(Q) is at least 10. Further, since these points come from evaluating points on
JX (Q(T )), we conclude that the points {(PX ,i) − (O)} on JX must be independent also, and so
the rank of JX must be ≥ 10 as well, in agreement with the generalized Nagao’s Conjecture 1.1.

Note that Shioda [Sh1] has constructed a curve of genus g defined over Q(t1, t2, . . . , tn) of rank
4g+ 7 for any g > 1. In a private communication, Elkies has pointed out that methods using K3
surfaces one can construct genus 2 jacobians with rank about 20.

1.1. Results on higher moments. So far we have just focused on the first moments; however,
the second moments are also interesting and play a key role in several problems. For one-
parameter families of elliptic curves, Michel [Mi] proved that if j(T ) is non-constant then

(1.6) pAE,2(p) = p2 +O
(
p3/2

)
(we have multiplied the second moment by p to match the quantity he studied); there are coho-
mological interpretations of the lower order terms, and Miller [Mil3] showed that the bound is
sharp by exhibiting a family with a term of that size. While early investigations of the second
moment was for the purpose of bounding the average rank in families, these are also key ingredi-
ents in understanding the behavior of zeros of the L-functions near the central point. According
to the Katz-Sarnak theory [KS1, KS2], in the limit as the conductors tend to infinity the behavior
of zeros near the central point behave similarly with the scaling limit of a subgroup of unitary
matrices as their sizes tend to infinity (this is true for far more than just families of elliptic curves;
see for example the survey article [MMRTW]).

Interestingly, the main terms for the n-level densities of the low-lying zeros of families of
elliptic curves depend only very weakly on the different values of the moments AE,r(p). The first
two moments contribute to the main term; if the first moment is k then there is a contribution
equal to what one would expect if there were k zeros at the central point, providing evidence in
support of the Birch and Swinnerton-Dyer Conjecture (for more on this see [GM]). The second
moment’s universality (of p2 for families with non-constant j(T ), and 2p2 half the time and 0
half the time for j(T ) constant) is similar to the universality of the second moments of Satake
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parameters in the work of Rudnick and Sarnak [RuSa], which was responsible for the universal
behavior in the n-level correlations. If r ≥ 3 then these terms never contribute to the main term.
It is also similar to the Central Limit Theorem, where the universality is due to our ability to
standardize any nice density to have mean zero and variance one (i.e., fix the first two moments),
and the higher moments only surface in controlling the rate of convergence.

While the main term in the behavior of low-lying zeros is independent of the finer properties of
the arithmetic of the curve, the higher moments (r ≥ 3) and the lower order terms in the first and
second moments are observable in lower order corrections (i.e., in the rate of convergence). In
particular, the lower order terms in the second moment have applications towards understanding
the observed excess rank in many families of elliptic curves (see [Mil3]), while the higher moments
allow us to distinguish different families of elliptic curves in fine properties of the behavior of
zeros near the central point (see [Mil4]).

In this paper we concentrate on the first two moments. As has been remarked above, the
first moment can be used to construct families with rank. The second moment is related to
finer questions about the distribution of zeros. Interestingly, in all families of elliptic curves
investigated to date, the first lower order term in the second moment AE,2(p) which does not
average to zero always averages to a negative value; see [A–, MMRW] for results for families of
elliptic curves, as well as generalizations to other families of L-functions. In our study of families
of hyperelliptic curves, we observe this same bias.

Our results are as follows. Let g ≥ 1 be arbitrary, put n = 2g+ 1, and let 0 ≤ k < n. We shall
consider the family Xn,h,k : y2 = xn + xhT k. We show the following (the proof can be found in
Section 5):

Theorem 1.5. Suppose gcd(k, n− h, p− 1) = 1. Then

p ·AXn,h,1,2(p) =


(gcd(p− 1, n− h)− 1)(p2 − p) if h even,
gcd(n− h, p− 1)(p2 − p) if h odd and ν2(p− 1) > ν2(n− h),

0 otherwise.
(1.7)

The paper is organized as follows. In Section 2 we recall the Hindry–Pacheco generalized
version of Nagao’s conjecture for surfaces and compare it to our version Conjecture 1.1. In
Section 3 we give some related results and some preliminary lemmas about computations with
Legendre symbols. In Section 4 we give constructions of hyperelliptic jacobians of rank 2g, 2g+1,
and finally 4g+ 2, in Sections 4.1, 4.2, and 4.3, respectively, and in Section 4.4 we specialize our
4g + 2 construction in the case of g = 2 and rank 10. Finally, in Section 5, we compute the
second moments in a family of hyperelliptic curves of arbitrary genus.

2. Generalized Nagao’s conjecture for surfaces

In this section, we recall Hindry and Pacheco’s [HP] generalized Nagao’s conjecture for a
projective surface with a fibration onto a curve. Let X be a projective smooth irreducible surface
over Q with a proper flat fibration f : X → P1 which allows us to have (arithmetic) curves of
genus g ≥ 1 for each fiber. Moreover, this implies that the generic fiber X is a smooth irreducible
curve over the function field of P1, i.e., Q(T ). Denote by JX the jacobian variety of X and (τ,B)
the Q(T )/Q-Chow trace of JX . The following theorem of Lang and Néron shows a Mordell–Weil
analogue for a jacobian variety over function field.

Theorem 2.1. The quotients JX (Q(T ))
/
τ(B(Q)) and JX (Q̄(T ))

/
τ(B(Q̄)) are both finitely gen-

erated groups.

Hindry and Pacheco generalized Nagao’s conjecture to compute the rank of JX (Q(T ))/τ(B(Q)).
We describe Hindry and Pacheco’s work next (over Q for simplicity, but they work over a number
field).

Let X be a smooth irreducible projective surface over Q and let C be a smooth irreducible
projective curve over Q which allows a proper flat morphism f : X → C so that the fibers are
curves of (arithmetic) genus g ≥ 1. Let JX be the jacobian of X/Q(C), and let (τ,B) be the
Q(C)/Q-Chow trace of JX . For a prime p, we can consider the reduction f̃ : X̃ → C̃ of f . Define

5



a finite set of primes S which satisfies the following conditions: for all p 6∈ S, the surface X and
the curve C have good reduction and the reduced morphism f̃ : X̃ → C̃ is proper and flat. And,
the fibers are curves with arithmetic genus g over the residue field Fp.

Denote X̃t = f̃−1(t), i.e., the fiber of f̃ at t ∈ C̃(Fp). Denote X t = Xt ×Q Q, where Q is a
fixed algebraic closure of Q. Let GQ be the absolute Galois group of Q. Let Frobp ∈ GQ be a
Frobenius element and Ip ⊂ GQ be the inertia group at p. Also, define the discriminant of the
fibration f by ∆f = {t ∈ C : X̃t is singular}. By enlarging the set S if necessary, we can make
the discriminant of f̃ be the same as the discriminant of f modulo p outside of S.

Let Frobp be the Frobenius automorphism on H1
ét(X t,Q`). Define the trace of Frobenius using

cohomology as
aXt

(p) = Tr(Frobp|H1
ét(X t,Q`)),

where we consider `-adic cohomology with compact support if t ∈ ∆̃f (Fp), that is to say,

aXt
(p) = Tr(Frobp|H1

c (X t,Q`)).(2.1)

Also define a trace of Frobenius for the Chow trace B by

aB(p) = Tr(Frobp|H1
ét(B,Q`)

Ip),

where B = B×QQ. By enlarging the set S if necessary, we can assume that B has good reduction
for primes p 6∈ S, i.e.,

aB(p) = Tr(Frobp|H1
ét(B,Q`)).

Now we are ready to state Hindry and Pacheco’s version of [Na3].

Conjecture 2.2 (Hindry–Pacheco, [HP]). Let X , C, and f be as above, and define

AX ,1(p) =
1

p

∑
t∈C(Fp)

aXt(p), and A∗X (p) = AX ,1(p)− aB(p).

Then:

(2.2) lim
P→∞

1

P

∑
p/∈S
p≤P

−A∗X (p) · log p = rank

(
JX (Q(C))

τ(B(Q))

)
.

Under the hypothesis that the surface satisfies Tate’s conjecture, they show the following.

Theorem 2.3 (Hindry–Pacheco, [HP], Thm. 1.3). Suppose that the surface X satisfies Tate’s
conjecture. Then,

res
s=1

∑
p 6∈S

−A∗X (p) · log p

ps

 = rank

(
JX (Q(C))

τ(B(Q))

)
.

If in addition the L function L2(X/Q, s) associated to H2
ét(X ,Q`) has an analytic continuation

on <(s) = 2, and does not have zeros on this line, then Conjecture 2.2 holds.

In order to compare Conjecture 1.1 with the Hindry–Pacheco version, we quote the following
lemma from [HP, Lemme 3.2] (see also [RS, Lemma 1.7.]).

Lemma 2.4. Let X/Q be a surface as above, with C = P1. Let p /∈ S, and t ∈ Fp. Denote
by mt,p the number of Fp-rational components of the reduced fiber X̃t modulo p. We denote by
#Xt(Fp) the number of solutions on the reduced fiber X̃t over Fp. Let aXt

(p) be the trace of
Frobenius defined by Equation (2.1). Then

(2.3) aXt(p) = p ·mt,p + 1−#Xt(Fp).

In particular, when Xt has good reduction at p /∈ S, we get mt,p = 1 and therefore the
definitions of aXt

(p) in Equation (2.1) and Conjecture 1.1 coincide.
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3. Preliminaries and Auxiliary Lemmas

First, we cite a result of Nagao, about the convergence of the limits that appear in the
conjectures. Below, π(x) is the prime counting function.

Lemma 3.1 (Nagao, [Na3], Lemmas 2.1 and 2.2). Let {cp}p be a bounded sequence of non-
negative numbers indexed by prime numbers. If one of the sequences of numbers 1

π(N)

∑
p≤N

cp


N

and

 1

N

∑
p≤N

cp · log p


N

converges, then both of them converge to a common limit. In particular, { 1
N

∑
p≤N log p}N is a

convergent sequence, and the limit is 1.

Next we cite work of Zarhin [Za1, Za2, Za3] that we shall use in order to prove that a Chow
trace is trivial.

Theorem 3.2 (Zarhin). Let K be a field of characteristic different from 2, and suppose that
f ∈ K[x] is a polynomial of degree n without multiple roots, such that Gal(f) is either Sn or An.
Let C : y2 = f(x) and let J(Cf ) be its jacobian. Assume also that either char(K) 6= 3 or n ≥ 7.
Then, End(J(Cf )) = Z. In particular, J(Cf ) is an absolutely simple abelian variety.

Let C : y2 = f(x) be a hyperelliptic curve, with f(x) of odd degree, and let p be a prime
number. Since the degree of f is odd, there is a unique point O at infinity. Then, one can count
the (affine) points on C∗(Fp) = C(Fp)− {O} via Legendre symbols, by

#C∗(Fp) =
∑
x(p)

f(x)≡0 mod p

1 +
∑
x(p)

f(x) 6≡0 mod p

(
1 +

(
f(x)

p

))
= p+

∑
x(p)

(
f(x)

p

)
,

where x(p) = {x : 0 ≤ x ≤ p− 1}. Thus,

aC(p) = p+ 1−#C(Fp) = p+ 1−

1 + p+
∑
x(p)

(
f(x)

p

) = −
∑
x(p)

(
f(x)

p

)
,

Thus, if X : y2 = f(x, T ) is a hyperelliptic surface, then

AX ,1(p) =
1

p

∑
t(p)

aXt(p) = −1

p

∑
t,x(p)

(
f(x, t)

p

)
,

where t, x(p) means that both t and x range in the interval 0, . . . , p− 1. In the remainder of this
section, we show a number of lemmas about sums of Legendre symbols that we will use in the
next sections. First, we reproduce [ALM, Lemma A.2] that shall be used in computing first and
second moments.

Lemma 3.3. Assume a and b are not both zero modp and p > 2. Then

(3.1)
p−1∑
t=0

(
at2 + bt+ c

p

)
=

(p− 1)
(

a
p

)
if p | b2 − 4ac,

−
(

a
p

)
otherwise.

Lemma 3.4. For any p > 2, we have
∑

t(p)

(
at+b
p

)
= 0, for any integers a, b ∈ Z with a 6≡

0 mod p.

Proof. As t runs over all elements of Fp, the quantity at + b also runs over all elements of Fp.
There are (p− 1)/2 quadratic residues, and (p− 1)/2 quadratic non-residues, so the sum cancels
out. �

Lemma 3.5. Fix n ≥ 1 and a prime number p. Then, the number of solutions (x, y) to the
congruence xn ≡ yn mod p is given by gcd(p− 1, n) · (p− 1) + 1.
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Proof. First note that x ≡ y ≡ 0 mod p is a solution. Otherwise, let x, y be non-zero mod p,
with xn ≡ yn mod p. Let g be a generator of F×p , and write x ≡ ga and y ≡ gb mod p for some a
and b. Hence we have gan ≡ gbn mod p and so gan−bn ≡ 1 mod p. Since the order of g is p − 1,
by Lagrange’s theorem, we have

an− bn ≡ n(a− b) ≡ 0 mod p− 1.

The congruence nX ≡ 0 mod p − 1 has gcd(n, p − 1) solutions for X and each solution for X
yields p− 1 solutions (a, b). Hence, there are gcd(n, p− 1) · (p− 1) + 1 solutions to the original
congruence. �

Lemma 3.6. Let h ≥ 2 be even. Let Sh(p) :=
∑

x,y(p)

xh≡yh mod p

(
xy

p

)
. Furthermore, let ν2 be the

usual 2-adic valuation. Then,

(3.2) Sh(p) =

{
gcd(h, p− 1)(p− 1) if ν2(p− 1) > ν2(h),

0 otherwise.

Proof. We proceed by passing from the multiplicative group F×p to the cyclic additive group
Z/(p − 1)Z (by implicitly fixing a primitive root). In Z/(p − 1), we use 〈a〉 to denote the
subgroup generated by a.

Sh(p) :=
∑
a,b(p)

ah≡bh mod p

(
ab

p

)
=

∑
x,y(p−1)

ha≡hb mod p−1

({
1 a+ b ∈ 〈2〉
−1 otherwise

)
.(3.3)

We know that h(y−x) ≡ 0 mod p iff y−x ∈
〈

p−1
gcd(h,p−1)

〉
iff y ∈ x+

〈
p−1

gcd(h,p−1)

〉
. Furthermore,

x+ y ∈ 〈2〉 iff x+ y − 2x ∈ 〈2〉 iff y ∈ x+ 〈2〉. Thus, we have

=
∑

x,y(p−1)
y∈〈 p−1

gcd(h,p−1) 〉

({
1 y ∈ x+ 〈2〉
−1 otherwise

)
=

∑
x(p−1)

∑
y(p−1)

y∈x+〈 p−1
gcd(h,p−1) 〉

(2(1y∈x+〈2〉)− 1)(3.4)

=
∑

x(p−1)

(
2

∣∣∣∣〈 p− 1

gcd(h, p− 1)

〉
∩ 〈2〉

∣∣∣∣− ∣∣∣∣〈 p− 1

gcd(h, p− 1)

〉∣∣∣∣) .(3.5)

If p−1
gcd(h,p−1) ∈ 〈2〉, then this is

=
∑

x(p−1)

(
2

∣∣∣∣〈 p− 1

gcd(h, p− 1)

〉∣∣∣∣− ∣∣∣∣〈 p− 1

gcd(h, p− 1)

〉∣∣∣∣) = (p− 1) gcd(h, p− 1).(3.6)

If p−1
gcd(h,p−1) 6∈ 〈2〉, then this is

=
∑

x(p−1)

(
2 · 1

2

∣∣∣∣〈 p− 1

gcd(h, p− 1)

〉∣∣∣∣− ∣∣∣∣〈 p− 1

gcd(h, p− 1)

〉∣∣∣∣) = 0.(3.7)

Since p−1
gcd(h,p−1) ∈ 〈2〉 precisely when ν2(p− 1) > ν2(h), this completes the proof. �

Lemma 3.7. Let k, n1, and n2 be integers. If gcd(k, n1, n2) = 1, then there exists an m such
that gcd(m,n1) = 1 and m ≡ k mod n2.

Proof. By Dirichlet’s theorem on primes in arithmetic progressions, one can choose a prime
m ≡ k mod n2 such that m > n1. �

4. Jacobians of Hyperelliptic Curves with Positive Rank Over Q(T )

In this section we will show a number of constructions that yield hyperelliptic curves X/Q(T )
such that their jacobians have positive rank.
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4.1. Rank 2g. In [Na3, Proposition 3.2.], Nagao considers the elliptic curve

E/Q(T ) : y2 = f(x) + T 2,

where f(x) ∈ Z[x] is a monic cubic polynomial without double roots, and computed AE,1(p) for
this family. In particular, he showed

(4.1) −AE,1(p) =


2p if f(x) mod p factors completely,
−p if f(x) mod p is irreducible,
0 if otherwise.

.

We now present an analogous construction for curves of genus g and compute their corresponding
Legendre sums. Let g ≥ 1 be fixed, and let

X/Q(T ) : y2 = f(x) + T 2,

where f(x) is a monic degree 2g+1 polynomial without double roots. Note that the discriminant
in t of f(x) + t2 is −4f(x), and so if p > 2, then the condition that p | −4f(x) is equivalent to
p | f(x). Hence, using Lemma 3.3, we have

−p ·AX ,1(p) =
∑
t,x(p)

(
f(x) + t2

p

)

=
∑
x(p)

f(x)≡0 mod p

(p− 1)

(
1

p

)
−

∑
x(p)

f(x)6≡0 mod p

(
1

p

)

=
∑
x(p)

f(x)≡0 mod p

p

(
1

p

)
−

∑
x(p)

f(x)≡0 mod p

(
1

p

)
−

∑
x(p)

f(x)6≡0 mod p

(
1

p

)

=
∑
x(p)

f(x)≡0 mod p

p−
∑
x(p)

(
1

p

)
= p#{x ∈ Z/pZ | f(x) ≡ 0 mod p} − p.

(4.2)

Let f̃(x) denote f(x) mod p and write Lf for the number of distinct linear factors in the factor-
ization of f̃(x). Then

(4.3) − p ·AX ,1(p) = (Lf − 1) · p,

and in particular, if f̃(x) factors completely, then Lf = 2g + 1 and −p · AX ,1(p) = 2gp. If we
choose f(x) so that it splits completely over Q, then we have −p·AX ,1(p) = 2gp for all sufficiently
large p. Thus, Lemma 3.1 implies that

lim
P→∞

1

P

∑
p≤P

−AX ,1(p) · log p = lim
P→∞

1

P

∑
p≤P

2g · log p = 2g.

Further, if f(x) is a Morse function, then the Galois group of f(x) + T 2 over Q(T ) is Sn, by [Se,
Theorem 4.4.5]. Hence, Zarhin’s Theorem 3.2 shows that, under these conditions, JX (Q(T )) is
an absolutely simple abelian variety, and therefore the Q(T )/Q-Chow trace of X is trivial. Thus,
Conjecture 1.1 implies that rank JX (Q(T )) = 2g.

In this case, Shioda [Sh2] has shown that JX (Q(T )) has rank 2g by exhibiting 2g independent
points. Moreover, Hindry and Pacheco [HP, Exemple 5.6] show that X is a rational surface,
and therefore Tate’s conjecture and Conjecture 2.2 hold for this surface, showing again that
rank JX (Q(T )) = 2g.

Example 4.1. Let f(x) = (x− 1)(x− 2) · · · (x− 7) and let X : y2 = f(x) + T 2. Specializing at
T = 2 we obtain the hyperelliptic curve of genus 3 given by

X2 : y2 = x7 − 28x6 + 322x5 − 1960x4 + 6769x3 − 13132x2 + 13068x− 5036,

which Magma shows to be of rank 2g = 6. In fact, one can check that the points (Pi)− (O) given
by Pi = (i, T ), for T = 2, are independent in JX2

(Q). Hence, the same points are independent
9



in JX over Q(T ). Magma also verifies that the Galois group of f(x) + 4 is S7, and therefore the
Galois group of f(x) + T 2 over Q(T ) is S7 as well. Thus, JX (Q(T )) is a simple hyperelliptic
jacobian of rank 6.

If we put f(x) = (x − 1)(x − 2) · · · (x − 8)(x − 9) and let X : y2 = f(x) + T 2, then Magma
verifies that the specialization at T = 2 yields a curve of genus 4 given by

y2 = x9 − 45x8 + 870x7 − 9450x6 + 63273x5 − 269325x4 + 723680x3 − 1172700x2 + 1026576x− 362876

with rank 9. Note that here JX (Q(T )) is of rank 2g = 8, but the specialization at T = 2 has higher rank
equal to 9.

4.2. Rank 2g + 1. We consider the family X : y2 = f(x)T + 1, where f(x) is a polynomial of
degree 2g + 1 that splits completely, with no double roots. We compute the first moment of X
as follows:

−p ·A1,X = −
∑
t(p)

∑
x(p)

(
f(x)t+ 1

p

)
(4.4)

= −
∑
x(p)

f(x)≡0 mod p

∑
t(p)

(
1

p

)
−

∑
x(p)

f(x)6≡0 mod p

∑
t(p)

(
f(x)t+ 1

p

)
(4.5)

= −p
∑
x(p)

f(x)≡0 mod p

1 + 0 = −Lf · p,(4.6)

where we have used Lemma 3.4, and Lf is the number of linear factors in the factorization of
f̃(x) modulo p, as before. Since f(x) factors completely over Q, it follows that Lf = 2g + 1 for
all sufficiently large p. Thus, −AX ,1(p) = 2g + 1, and Lemma 3.1 implies that

lim
P→∞

1

P

∑
p≤P

−AX ,1(p) · log p = 2g + 1.

Thus, if we assume that f(x) is chosen so that the Q(T )/Q-Chow trace of X is trivial, then
Conjecture 1.1 implies that the rank of JX (Q(T )) is 2g + 1.

Example 4.2. Let f(x) = (x− 1)(x− 2) · · · (x− 7) and let X : y2 = f(x)T + 1. Specializing at
T = 2 we obtain the hyperelliptic curve of genus 3 given by

X2 : y2 = 2x7 − 56x6 + 644x5 − 3920x4 + 13538x3 − 26264x2 + 26136x− 10079,

which Magma shows to be of rank 2g+1 = 7. In fact, one can check that the points (Pi)−(O) given
by Pi = (i, 1), for T = 2, are independent in JX2(Q). Hence, the same points are independent
in JX over Q(T ). Magma also verifies that the Galois group of 2f(x) + 1 is S7, and therefore
the Galois group of f(x)T + 1 over Q(T ) is S7 as well. Thus, JX (Q(T )) is a simple hyperelliptic
jacobian of rank 7.

4.3. Rank 4g + 2. Consider the following genus g curve:

X : y2 = f(x, T ) = x2g+1T 2 + 2q(x)T − h(x)(4.7)

where q(x) and h(x) are polynomials in Z[x] of degree 2g+1 to be chosen at a later time. We will
imitate the construction in [ALM] for g = 1, and choose q(x) and h(x) such that rank(X ) = 4g+2.
In order to do so, we define DT (x) as a fourth of the discriminant of f(x, T ) as a polynomial in
the variable T .

Lemma 4.3. Suppose that DT (x) has distinct integer roots ri = ρ2i for 1 ≤ i ≤ 4g + 2. Then,
the first moment of the surface X satisfies −p ·AX ,1(p) = (4g + 2)p, for all sufficiently large p.
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Proof. We use Lemma 3.3 to compute

−p ·AX ,1(p) =
∑
t(p)

∑
x(p)

(
f(x, t)

p

)
=
∑
t(p)

∑
x(p)

(
x2g+1T 2 + 2q(x)T − h(x)

p

)
(4.8)

=
∑
x(p)

Dt(x)≡0 mod p

(p− 1)

(
x2g+1

p

)
−

∑
x(p)

Dt(x)6≡0 mod p

(
x2g+1

p

)
(4.9)

=
∑
x(p)

Dt(x)≡0 mod p

p

(
x

p

)
−
∑
x(p)

(
x

p

)
= p ·

 ∑
x(p)

Dt(x)≡0 mod p

(
x

p

) .(4.10)

Since DT (x) has 4g+2 distinct integer roots, for large enough p these will also be distinct modulo
p, and therefore −p ·AX ,1(p) = (4g + 2)p, as claimed. �

Lemma 4.4. For any choice of distinct integers ρ1, . . . , ρ4g+2, there exists polynomials

q(x) = x2g+1 +

2g∑
i=0

aix
i, and h(x) = (A− 1)x2g+1 +

2g∑
i=0

Aix
i,

in Z[x] so that DT (x) = q(x)2 + x2g+1h(x) has 4g + 2 distinct roots ri = ρ2i .

Proof. We want to choose ai and Ai such that

DT (x) = q(x)2 + x2g+1h(x)

= Ax4g+2 + (A2g + 2a2g)x4g+1 +
(
A2g−1 + a22g + 2a2g−1

)
x4g + · · ·+ (2a0a1)x+ a20

= A
(
x4g+2 +R4g+1x

4g+1 +R4gx
4g + · · ·+R1x+R0

)
= A(x− ρ21)(x− ρ22) · · · (x− ρ24g+1)(x− ρ24g+2).

The only nontrivial equality here is between the second and third lines. We choose ai and Ai by
equating coefficients between those two lines. Thus, we have 4g+ 1 equations in 4g+ 3 variables.
In particular, the equation of the kth coefficient is the following (where (·)k denotes the coefficient
of xk):

RkA = (DT (x))k,

for 0 ≤ k ≤ 4g + 2. Note that R4g+2 = 1. Furthermore, we have

(DT (x))k = (q(x)2)k + (h(x)x2g+1)k

= (h(x)x2g+1)k +
∑

i+j=k
0≤i,j≤k

(q(x))i(q(x))j

= Ak−(2g+1) +
∑

i+j=k
0≤i,j≤k

aiaj ,

where Ai = 0 by convention if i < 0. Therefore, it suffices to solve for the variable RkA via

(4.11) RkA = Ak−(2g+1) +
∑

i+j=k
0≤i,j≤k

aiaj

for 0 ≤ k ≤ 4g + 2. For consistency, we require A2g+1 = A and a2g+1 = 1. Recall that Rk are
fixed for 0 ≤ k ≤ 4g + 2. First of all, for 2g + 1 ≤ k ≤ 4g + 2, we can choose the adequate
coefficients of h(x) to satisfy (4.11). Thus, if we list these equations for 0 ≤ k ≤ 2g as k increases,
we should determine the coefficients of q(x). In the k = 0 case, the equation is R0A = a20. Thus,
if we allow rational solutions and choose A such that R0A is a square in Z, then these equations
have solutions.

This yields h, q ∈ Q[x] such that the roots of DT (x) meet the stated condition. However,
we require h, q ∈ Z[x]. To move h and g into Z[x] without changing the roots of DT (x) =

11



q(x)2 + h(x)x2g+1, we replace q(x) with L · q(x) and h(x) with L2 · h(x) where L is the least
common multiple of the denominators of the coefficients of h and q. �

We are now ready to restate and prove our main Theorem 1.2.

Theorem 4.5. Let g ≥ 1 be fixed, and let ρ1, . . . , ρ4g+2 be distinct integers. Let h(x) and q(x)
be chosen as in Lemma 4.4, and let

X : y2 = x2g+1T 2 + 2q(x)T − h(x).

Assume that the jacobian of X over Q(T ) has no subvariety defined over Q in its factorization.
Then, Conjecture 1.1 implies that the jacobian of X has rank 4g + 2 over Q(T ).

Proof. Let g ≥ 1 be fixed, and let ρ1, . . . , ρ4g+2 be distinct integers. By Lemma 4.4, we can find
polynomials h(x) and q(x) such that DT (x) = (q(x))2 + x2g+1h(x) = A(x − ρ21) · · · (x − ρ24g+2).
If we define X as in the statement, then Lemma 4.3 shows that −p · AX ,1(p) = (4g + 2)p for all
sufficiently large primes p. Therefore, Lemma 3.1 shows that

lim
P→∞

1

P

∑
p≤P

−AX ,1(p) log p = 4g + 2.

Moreover, if we assume that JX has no subvariety defined over Q, then its Chow trace must be
trivial. Thus, Conjecture 1.1 implies that the rank of JX (Q(T )) is 4g + 2, as claimed. �

Remark 4.6. If desired, we can change variables so that X is given in the form y2 = F (x, T )
with F (x, T ) monic in the variable x. Indeed, we replace y2 = f(x, T ) by the form y2 = F (x, T )
with a monic polynomial F (x, T ) by changing the basis

y → y

(T 2 + 2T −A+ 1)2
, x→ x

T 2 + 2T −A+ 1
.

Then we have
y2 = f(x, T )

= x5T 2 + 2(x5 + ax4 + bx3 + cx2 + dx+ e)T − (A− 1)x5 −Bx4 − Cx3 −Dx2 − Ex− F

= (T 2 + 2T −A+ 1)x5 + (2aT −B)x4 + (2bT − C)x3 + (2cT −D)x2 + (2dT − E)x+ (2eT − F )

y2 = F (x, T )

= x5 + (2aT −B)x4 + (2bT − C)(T 2 + 2T −A+ 1)x3 + (2cT −D)(T 2 + 2T −A+ 1)2x2

+ (2dT − E)(T 2 + 2T −A+ 1)3x+ (2eT − F )(T 2 + 2T −A+ 1)4.

4.4. An example in genus 2 and rank 10. In this section, we follow the recipe of Theorem
4.5 to construct a hyperelliptic curve X/Q(T ) with jacobian of rank 10, which is how we found
the curve in Example 1.4 of the introduction. Let ρ1, . . . , ρ10 be distinct integers. We need to
find polynomials

q(x) = x5 + ax4 + bx3 + cx2 + dx+ e and h(x) = (A− 1)x5 +Bx4 + Cx3 +Dx2 + Ex+ F,

such that

D(x) = q(x)2 + x5h(x)

= Ax10 + (B + 2a)x9 + (C + a2 + 2b)x8 + (D + 2ab+ 2c)x7

+ (E + 2d+ 2ac+ b2)x6 + (F + 2e+ 2ad+ 2bc)x5

+ (2ae+ 2bd+ c2)x4 + (2be+ 2cd)x3 + (2ce+ d2)x2 + (2de)x+ e2.

= A(x10 +R9x
9 +R8x

8 +R7x
7 +R6x

6 +R5x
5 +R4x

4 +R3x
3 +R2x

2 +R1x+R0)

= A(x− ρ21)(x− ρ22)(x− ρ23)(x− ρ24)(x− ρ25)(x− ρ26)(x− ρ27)(x− ρ28)(x− ρ29)(x− ρ210).

(4.12)

Now we will explicitly describe how to determine coefficients of q(x) and h(x) for given Ri,
i = 0, 1, . . . , 9. Since we can adjust the integer values of B,C,D,E, and F , solving the following
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simultaneous equations from (4.12) is equivalent to give q(x), h(x) ∈ Z[x] for any given distinct
roots of DT (x).

2ae+ 2bd+ c2 = R4A,

2be+ 2cd = R3A,

2ce+ d2 = R2A,

2de = R1A,

e2 = R0A.

For simplifying the procedure, let A = 2e. Then, we can find the values for the rest of the
constants recursively as follows:

e = 2R0, d = R1, c = (2eR2 − d2)/2e, b = (2eR3 − 2cd)/2e, a = (2eR4 − c2 − 2bd)/2e,

F = R5A− 2e− 2ad− 2bc, E = R6A− 2d− 2ac− b2, D = R7A− 2ab− 2c,

C = R8A− a2 − 2b, B = R9A− 2a, A = 4R0 = 2e.

(4.13)

Note: these coefficients are not in Z but later it is easy to find an integral model for X .

Example 4.7. For simplicity, let ρi = i, for i = 1, . . . , 10. Then we get

R0 = 13168189440000, R1 = −20407635072000, R2 = 8689315795776,

R3 = −1593719752240, R4 = 151847872396, R5 = −8261931405,

(4.14) R6 = 268880381, R7 = −5293970, R8 = 61446, R9 = −385.

From Eq. (4.13), we obtain the coefficients a, . . . , e, and then A, . . . , F , and we build a hyperel-
liptic curve:

X : y2 = 62476467927496043633049600000000x5T 2

+ 124952935854992087266099200000000x5T

− 3290807860845345873174084414821262950400000000x5

− 78077124456852074329904550163688002129920000x4T

+ 1266882949301025362537844681132821271997870080000x4

− 123371083167607662332725955346616811520000000x3T

+ 24393131657917882942419531475439645795721984020559648121x3

+ 97780947791238642428587970982523699200000000x2T

+ 77106121667148850964656956255833136751214529427393152000x2

− 2549993916103702826374130630551142400000000000xT

− 1078851918243051493072239063454153306319585738833920000x

+ 3290807860845408349642011910864896000000000000T

+ 1524014810925296267945145551729277974339657041182720000000.

Then, we can proceed as in Example 1.4 to show that rank JX (Q(T )) = 10, unconditionally, and
therefore verifying Conjecture 1.1 in this case.

5. The Second Moments

In this section we compute the second moments in a family of hyperelliptic curves of the form

Xn,h,k : y2 = xn + xhT k

where n = 2g + 1, and g is the genus of X , and 0 ≤ k < n.
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We first write a formula for AX ,2(p) = 1
p

∑
t(p) aXt(p)

2 in a useful way. For convenience, let c
be 2 if h is even and 1 if h is odd. Then we have

p ·AXn,h,k,2(p) =
∑
t(p)

aXt
(p)2 =

∑
t(p)

−∑
x(p)

(
xn + xhtk

p

)2

=
∑
t(p)

∑
x(p)

∑
y(p)

(
xn + xhtk

p

)(
yn + yhtk

p

)

=

p−1∑
t=1

∑
x(p)

∑
y(p)

(
xn + xhtk

p

)(
yn + yhtk

p

)

=

p−1∑
t=1

∑
x(p)

∑
y(p)

(
xhyh

p

)(
xn−h + tk

p

)(
yn−h + tk

p

)

=

p−1∑
t=1

∑
x(p)

∑
y(p)

(
xy

p

)c(
xn−h + tk

p

)(
yn−h + tk

p

)
.

(5.1)

where we have used Lemma 3.4 to remove t = 0 from the summations. This formula is effectively
casewise on the parity of h: if h is odd, there is an

(
xy
p

)
term, and if h is even, there is not an(

xy
p

)
term. We first use this formula to prove a k-periodicity result:

p ·AXn,h,k,2(p) =

p−1∑
t=1

∑
x(p)

∑
y(p)

(
xy

p

)c(
xn−h + tk

p

)(
yn−h + tk

p

)

=

p−1∑
t=1

∑
x(p)

∑
y(p)

(
(t−1x)(t−1y)

p

)c(
th−nxn−h + tk

p

)(
th−nyn−h + tk

p

)

=

p−1∑
t=1

∑
x(p)

∑
y(p)

(
xy

p

)c(
xn−h + tk+(n−h)

p

)(
yn−h + tk+(n−h)

p

)
= p ·AXn,h,k+(n−h),2(p).

(5.2)

Next, we prove a lemma that greatly simplifies the calculation.

Lemma 5.1. Suppose gcd(k, n− h, p− 1) = 1. Then, AXn,h,k,2(p) = AXn,h,1,2(p).

Proof. By Lemma 3.7, there exists an m such that gcd(m, p − 1) = 1 and m ≡ k mod (n − h).
Thus

p ·AXn,h,k,2(p) = p ·AXn,h,m,2(p)

=

p−1∑
t=1

∑
x(p)

∑
y(p)

(
xy

p

)c(
xn−h + tm

p

)(
yn−h + tm

p

)

=

p−1∑
t=1

∑
x(p)

∑
y(p)

(
xy

p

)c(
xn−h + t

p

)(
yn−h + t

p

)
= p ·AXn,h,1,2(p).

(5.3)

�

Finally, it remains to compute AXn,h,1,2(p). We now turn our attention to this.
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Theorem 5.2. Suppose gcd(k, n− h, p− 1) = 1. Then

p ·AXn,h,1,2(p) =


(gcd(p− 1, n− h)− 1)(p2 − p) if h even
gcd(n− h, p− 1)(p2 − p) if h odd and ν2(p− 1) > ν2(n− h)

0 otherwise.
(5.4)

Proof. We have

p ·AXn,h,1,2(p) =

p−1∑
t=1

∑
x(p)

∑
y(p)

(
xy

p

)c(
xn−h + t

p

)(
yn−h + t

p

)

=
∑

x,y(p)

(
xy

p

)c∑
t(p)

(
xn−h + t

p

)(
yn−h + t

p

)

=
∑

x,y(p)

xn−h≡yn−h mod p

(
xy

p

)c

(p− 1)−
∑

x,y(p)

xn−h 6≡yn−h mod p

(
xy

p

)c

= p
∑

x,y(p)

xn−h≡yn−h mod p

(
xy

p

)c

−
∑

x,y(p)

(
xy

p

)c

(5.5)

First, suppose that c = 2. Then, by Lemma 3.5, we have

p ·AXn,h,1,2(p) = pNp(xn−h ≡ yn−h)− p2

= p(gcd(p− 1, n− h)(p− 1) + 1))− p2

= (gcd(p− 1, n− h)− 1)(p2 − p).
(5.6)

Second, suppose that c = 1. Then Lemma 3.6 yields

p ·AXn,h,1,2(p) = p
∑

x,y(p)

xn−h≡yn−h mod p

(
xy

p

)

=

{
gcd(n− h, p− 1)(p2 − p) ν2(p− 1) > ν2(n− h)

0 otherwise,

(5.7)

as desired. �
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