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Abstract

Many datasets and real-life functions exhibit a leading digit bias, where the �rst digit base

10 of a number equals 1 not 11% of the time as we would expect if all digits were equally

likely, but closer to 30% of the time. This phenomenon is known as Benford's Law, and has

applications ranging from the detection of tax fraud to analyzing the Fibonacci sequence. It

is especially applicable in today's world of `Big Data' and can be used for fraud detection to

test data integrity, as most people are unaware of the phenomenon.

The cardinal goal is often determining which datasets follow Benford's Law. We know

that the decomposition of a �nite stick based on a reiterative cutting pattern determined by

a `nice' probability density function will tend toward Benford's Law. We extend the results

of [1] to show that this is also true when the cuts are determined by a �nite set of nice

probability density functions. We further conjecture that when we apply the same exact cut

at every level, as long as that cut is not equal to 0.5, the lengths of the subsegments will

converge to a Benford distribution.
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1. Introduction

Imagine a random dataset of numbers. Maybe it's the results from a scienti�c experiment.

Maybe it's the number of likes on Facebook or stock prices on the New York Stock Exchange.

Or maybe it's the set of numbers (with repeats) that show up in an issue of Reader's Digest.

For each number in the dataset, let us consider just the �rst digit. For example, if the

number is 427,598 we think of it as a `4' and if it is 932 then we think of it as a `9'. Knowing

that we have a random, arbitrary data set, how often would we expect this leading digit to

be a `1'?

Most respondents to this question guess within the range of 10 − 11%, as people often

expect a random dataset to be uniformly distributed, and so have an equally likely chance

of beginning with a 1, 2, 3, 4, 5, 6, 7, 8, or 9. Hence, they expect a 1 to be the leading digit
1
9
of the time (or 1

10
when they forget that 0 cannot be a leading digit). In fact, this is not

the case. In many datasets, 1 is the leading digit approximately 30.1% of the time whereas

9 is the leading digit only 4.6% of the time.

This observation is often called Benford's Law or more speci�cally the First-Digit

Phenomenon [10]. Benford's Law generalizes to include the distribution of all the digits in

a given number, but for our purposes we will only focus on the �rst digit bias. Benford's Law

says that the leading signi�cant digits are not uniformly distributed as one might expect,

but follow a logarithmic distribution skewed toward the smaller digits. The astronomer-

mathematician Simon Newcomb (1835-1909) �rst noted this pattern when he noticed the

increased wear on the �rst few pages of logarithmic tables [12]. Newcomb reached the

following conclusion:

The law of probability of the occurrence of numbers is such that all mantissæ of

their logarithms are equally probable. [12]

The phenomenon was popularized by Frank Benford, after whom the law is named. Along

with pro�ering explanations for why digits follow this distribution, he also presented justi�ca-

tions for the signi�cance of studying such a problem. In referring to Newcomb's observation

that the �rst few pages of a logarithm table are more worn, he wrote:

Recall that the table is used in the building up of our scienti�c, engineering,

and general factual literature. There may be, in the relative cleanliness of the

pages of a logarithm table, data on how we think and how we react when dealing

with things that can be described by means of numbers. [2]
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One of Benford's particularly important observations is that while individual datasets

may fail to satisfy Benford's law, amalgamating many di�erent sets of data leads to a new

sequence whose behavior is typically closer to Benford. Benford's Law is applicable to

numerous situations: it is observed in natural systems such as hydrology data [15] and stock

prices [9]. It is used in computer science [3, 4, 7] and in accounting to detect tax fraud

[13, 14]. A detailed bibliography of the �eld can be found at [5].

In this paper, we are motivated by a common question in physics:

What is the most probable way a conserved quantity can be partitioned into

pieces subject to one or more other constraints? [8]

We will pursue this question of decomposition by investigating a particular cutting algorithm

in which we begin with a stick of length L and at every level the stick or its subsequent

subsegments will be split by a cut K. We show that if each cut it determined by a �nite set

of continuous probability density functions that satisfy a `nice' condition (equation 3.1) on

its Mellin transforms, then as we apply N →∞ levels of cuts, the distribution of the lengths

of the subsegments will converge toward a Benford distribution.

We further conjecture that if we apply the same exact cut at every level, as long as that cut

is not equal to 0.5, then the distribution will converge to Benford. We discuss the intuition

behind this conjecture and provide distribution calculations to several thousand levels.
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2. Notation and Terminology

To give a more rigorous de�nition of Benford's Law, we must �rst introduce some impor-

tant notation and terminology.

2.1. Benford's Law Terminology.

De�nition 2.1. Any positive number x may be written in scienti�c notation as S(x) ·10k

where S(x) ∈ [1, 10) is called the signi�cand and k is an integer (called the exponent).

De�nition 2.2. The integer portion of the signi�cand is called the leading digit or �rst

digit.

De�nition 2.3. The mantissa1 refers to the fractional part of a logarithm.

The leading digit will be our primary focus. Since k merely designates the location of the

decimal point, for the most part it will be inconsequential. The following example helps to

clarify our notation.

Let us take the number x = 5225020.034. This can be written in scienti�c notation as

5.225020034 · 106 which means that the signi�cand is S(x) = 5.225020034, the leading digit

is 5, and the exponent is k = 6. If we take the logarithm base 10 of our number, we

�nd that log10 5225020.034 ≈ 5.71808796 which means that the mantissa is approximately

.71808796. This can also be thought of as taking the logarithm of the number, modulo 1. So

log10(x) mod 1 = mantissa. Since S(x) ∈ [1, 10), we can also directly compute the mantissa

by taking the logarithm of the signi�cand: log10 5.225020034 ≈ .71808796.

Studying the leading digits of a dataset has several advantages. It allows us to compare

data with di�erent scales; one could be the masses of subatomic particles, whereas the other

could be home street addresses of all Williams' students. While the units and magnitudes

di�er greatly, every number has a unique leading digit and thus we can compare them equi-

tably. We are now ready to precisely state Benford's law.

2.2. Statement of Benford's Law.

De�nition 2.4. Benford's Law for the Leading Digit. A set of numbers satis�es Ben-

ford's Law for the Leading Digit if the probability of observing a �rst digit of d is log10
(
d+1
d

)
.

1In some texts, the term mantissa is used to refer to the signi�cand. In this paper, we will refer to the

mantissa only as the fractional part of a logarithm.
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When using real data it is often necessary to modify this de�nition of Benford's Law to

include anything that is approximately close to or a good visual �t for Benford. This is

because it is impossible for a �nite set of data to perfectly equal the irrational value of

log10
(
d+1
d

)
, as d is the leading digit an integer number of times, and the total size of the

data must be an integer. Since we are working with mathematical functions, however, we

will continue to use the stated de�nition of Benford's Law.

2.3. Terms used in Proof.

De�nition 2.5. For s ∈ [1, 10), let

ϕs(x) =

{
1 if the signi�cand of x is at most s

0 otherwise.

We call ϕs the indicator function of the event that the signi�cand is at most s.

De�nition 2.6. The proportion PN(s) of partition pieces x1, ..., x2N whose signi�cand is

less than or equal to s is de�ned as follows:

PN(s) =

2N∑
i=1

ϕs(xi)

2N
. (2.1)

De�nition 2.7. The probability density function (PDF), also known as the density

of a continuous random variable, is a function that describes the relative likelihood of that

random variable taking on a given value. A probability density function is nonnegative ev-

erywhere, and its integral over the entire space is equal to one.

De�nition 2.8. The cumulative distribution function (CDF) describes the probability

that a real-valued random variable x with a given PDF will be found at a value less than or

equal to x. Essentially, if f(x) gives the density of x, then
∫ x
0
f(t)dt gives the cumulative

distribution.

De�nition 2.9. The Mellin transform (Mf)(s) of a function f is de�ned by

(Mf)(s) =

∞∫
0

xs−1f(x)dx. (2.2)

De�nition 2.10. The inverse Mellin transform (M−1g)(x), is given by

(M−1g)(x) =
1

2πi

∫ c+i∞

c−i∞
g(s)x−sds. (2.3)
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De�nition 2.11. The Fourier transform f̂ of a function f is de�ned as

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx. (2.4)

The Fourier and Mellin transforms are related by a logarithmic change in variables. To

see this relationship explicitly, let us set x = e2πu and s = σ − iξ and rewrite the de�nition

of the Mellin transform as follows:

(Mf)(σ − iξ) =
∫ ∞
−∞

e2πu(σ−iξ)f(e2πu)2πdu

=

∫ ∞
−∞

2πf(e2πu)e2πuσe−2πuiξdu. (2.5)

If we label g(u) = 2πf(e2πu)e2πuσ, we see that this is merely the Fourier transform ĝ(u).

Hence we can transition between the Fourier transform of a function and its Mellin trans-

form easily. Using Poisson Summation, we can relate the Fourier series coe�cients of the

function to its Fourier transform, and subsequently its Mellin transform as well. Note that

(Mf)(s) = E[xs−1], and hence results on Mellin transforms further translate to results about

expected values.

In this paper we extend the results of [1] who show that if we repeatedly apply cuts based

on a single `nice' continuous probability density function, then the resulting decomposition

will converge to Beford as we apply more and more cuts. We extend this to the case where

we have multiple probability density functions, and show that the same result holds for any

�nite set of `nice' density functions.
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3. Results

We are concerned with the physical deomposition of matter and the most probable way

a conserved quantity will be partitioned into pieces. We model this by considering a stick

of length L. We apply cuts in proportion to its length, and then analyze the distribution of

the lengths of the substicks produced as we apply in�nitely many cuts.

At the �rst level, we apply some cut K1 ∈ (0, 1), which will produce two new substicks:

one of length LK1 and the other of length L(1−K1). At the second level, we will then apply

two unrelated cuts K2 and K3 to the two substicks, where again K2, K3 ∈ (0, 1). Note that

K2 and K3 need not be equal, although it is a possibility. The �rst substick will now be

split into two substicks of length LK1K2 and LK1(1−K2) whereas the second substick will

be split into substicks of length L(1−K1)K3 and L(1−K1)(1−K3). We can continue this

process of decomposition, resulting in 2N substicks of varying lengths at the N th level.

The Ki values that we apply are determined by a set of probability density functions. At

any stage, each cut is determined by a single density function, where the choice of function

is arbitrary. The value of each cut relies on its corresponding probability density function,

in that drawing from the uniform distribution means that any cut between (0, 1) is equally

likely to be used.

As we progress through N →∞ levels of applying this cutting pattern, we show that the

distribution of the lengths of the subsegments will converge to Benford.

3.1. Statement of Theorem.

Theorem 3.1. Let {f1, f2, ..., fM} be a �nite set of continuous probability density functions

on [0, 1] such that all functions satisfy the following property:

lim
N→∞

∞∑
l=−∞
l 6=0

N∏
n=1

(Mfmn)

(
1− 2πi`

log 10

)
= 0. (3.1)

Given a stick of length L, apply cuts based on the probability density functions {f1, f2, ..., fM}
where the choice of which PDF to use is random. As we apply N →∞ cuts, the distribution

of the lengths of the remaining subsegments will converge to Benford's Law.

3.2. Outline of Proof. To simplify notation, we �rst prove the case when we have only

two probability density functions f1 and f2, and then generalize our conclusion to apply

to any �nite set of functions. This means that in Equation (3.1), fmn(x) represents f1(x),
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f1(1 − x), f2(x), or f2(1 − x). Since either f1 or f2 will be chosen as the density of K the

complementary section 1−K will have density f1(1− x) or f2(1− x).
Given a stick of length L, choose independent identically distributed random variables

K1;a, K2;a, ..., K(2N−1);a with density f1 and i.i.d. random variables K1;b, K2;b, ..., K(2N−1);b

with density f2. Divide the stick of length L as follows:

(1) Divide L into LK1;a and L(1−K1;a) or divide L into LK1;b and L(1−K1;b). Regardless

of whether the K1 is drawn from a density f1 or f2, let us label the new lengths LK1;r1

and L(1−K1;r1) where r1 ∈ {a, b}.
(2) Divide LK1;r1 into LK1;r1K2;a and LK1;r1(1−K2;a), or LK1;r1K2;b and LK1;r1(1−K2;b).

Again, let us call these LK1;r1K2;r2 and LK1;r1(1−K2;r2) where r2 ∈ {a, b}.
(3) Divide L(1−K1;ra) into L(1−K1;r1)K3;r3 and L(1−K1;r1)(1−K3;r3) where r3 ∈ {a, b}.

Continue cutting each piece into two in this fashion, by pulling an arbitrary cut from

either density function f1 or f2, where the probability of applying each cut is determined by

the value of the density function. After N iterations we obtain the following set of cuts:

x1 = LK1;r1K2;r2K4;r4 · · ·K2N−2;r
(2N−2)

K2N−1;r
(2N−1)

x2 = LK1;r1K2;r2K4;r4 · · ·K2N−2;r
(2N−2)

(
1−K2N−1;r

(2N−1)

)
...

x2N−1 = L (1−K1;r1) (1−K3;r3) (1−K7;r7) · · ·
(
1−K2N−1;r

(2N−2)

)
K2N−1;r

(2N−1)

x2N = L (1−K1;r1) (1−K3;r3) (1−K7;r7) · · ·
(
1−K2N−1;r

(2N−2)

)(
1−K2N−1;r

(2N−1)

)
.

A visualization of this splitting pattern can be seen in Figure 3.1.

The satisfaction of the following two properties guarantees convergence to a Benford distri-

bution [1], so we want to show that they are true for our cutting method:

lim
N→∞

E[PN(s)] = log10 s (3.2)

lim
N→∞

Var(PN(s)) = 0. (3.3)

Part one (equation (3.2)) says that as N approaches in�nity, the expected value of the

amalgamation of the partition pieces will approach Benford. Part two (equation (3.3)) says

that as N approaches in�nity, the variance around the expected value will tend toward zero,
10



L K1;r1 K2;r2 (1-K4;r4)
L K1;r1 (1-K2;r2 )K5;r5

L K1;r1 (1-K2;r2 )(1-K5;r5)
L (1-K1;r1 ) K3;r3 K6;r6

L (1-K1;r1 ) K3;r3 (1-K6;r6)
L (1-K1;r1 ) (1-K3;r3 ) K7;r7

L (1-K1;r1 )(1-K3;r3 )(1-K7;r7)
L K1;r1 K2;r2 K4;r4

L K1;r1 K2;r2 L K1;r1 (1-K2;r2 ) L (1-K1;r1 ) K3;r3 L (1-K1;r1 ) (1-K3;r3 )

L K1;r1 L (1-K1;r1 ) 

L

Figure 3.1. The decomposition achieved by splitting a stick of length L into

pieces using cuts Ki;ri based on densities f1 and f2; N = 3 levels.

which means that as N →∞ the decomposition process will in fact tend toward Benford.

3.3. Proof of Part 1: Benford Behavior. We begin by proving that the �rst statement is

true; that as we take more and more cuts, the distribution of the cuts tends toward Benford

given that both functions f1(x) and f2(x) satisfy the condition stated in our theorem. We

start by showing that this is equivalent to studying the distribution of a product of N

independent random variables.

3.3.1. Equivalence to a Product of N independent random variables. By the linearity of the

expectation operator, we know that

E[PN(s)] = E


2N∑
i=1

ϕs(xi)

2N

 =
1

2N

2N∑
i=1

E[ϕs(xi)]. (3.4)
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Since we are merely summing over 2N expected values and then dividing by 2N , we are in a

sense �nding the average of E[ϕs(xi)]. Hence, to complete the proof, we must show that

lim
N→∞

E[ϕs(xi)] = log10 s. (3.5)

By de�nition, all pieces xi can be expressed as the product of the starting length L and N

independent random variables with values in the range (0, 1). While there are dependencies

amongst the xi's, there are no dependencies among the Ki's by construction.

For a given value of i, there will be some number of cuts drawn from each of the distri-

butions (Kf1 , (1−Kf1), Kf2 , and (1−Kf2) ). By relabeling if necessary, we can write every

subsegment xi as:

xi =LK1;aK2;a · · ·KMi;aKMi+1;b · · ·KMj ;b(1−KMj+1;a)

· · · (1−KM`;a)(1−KM`+1;b) · · · (1−KN ;b) (3.6)

where 0 ≤Mi ≤Mj ≤M` ≤ N . This means that there are:

(1) Mi cuts with factors drawn from Kf1 .

(2) Mj −Mi cuts with factors drawn from Kf2 .

(3) M` −Mj cuts with factors drawn from (1−Kf1).

(4) N −M` cuts with factors drawn from (1−Kf2).

We can calculate the expected value by multiplying the value of a given cut by the probability

of that cut occuring, which is given by the probability density function. Because we are only
12



concerned as N →∞, we will integrate over the PDF's. Hence, we have that

E[ϕs(xi)] =
∫ 1

K1=0

∫ 1

K2=0

· · ·
∫ 1

KN=0

·

LMi∏
s=1

Ks

Mj∏
t=Mi+1

Kt

M∏̀
u=Mj+1

(1−Ku)
N∏

v=M`+1

(1−Kv)



·

Mi∏
s=1

f1(Ks)dKs

Mj∏
t=Mi+1

f2(Kt)dKt



·

 M∏̀
u=Mj+1

f1(Ku)dKu

N∏
v=M`+1

f2(Kv)dKv

 . (3.7)

This is equivalent to studying the distribution of a product of N independent random

variables and then rescaling the product by L. By the Pigeon-Hole Principle we know that

at least one of the following conditions must be met by at least N
4
random variables:

(1) Has factors Ks and density f1(Ks).

(2) Has factors Kt and density f2(Kt).

(3) Has factors Ku and density f1(1−Ku).

(4) Has factors Kv and density f2(1−Kv).

Because at least one of these must occur at least N
4
times in the product, as N → ∞

the number of factors N
4
→ ∞ as well. For this reason, we can use results proved by [6] to

show that this converges to Benford. A sketch of the proof that the product of N → ∞
independent random variables that satisfy our `nice' condition will tend toward Benford is

provided in Appendix A.1.

3.3.2. Use of Mellin Transforms. The key observation is to note that theMellin transform

at 1 − 2πi`
log 10

is strictly less than 1 in absolute value for continuous densities if ` 6= 0. This

can be seen by trivially inserting absolute values in the de�nition of the Mellin transform.

Explicitly, from Appendix A.1.3 we �nd that E[ϕs(xi)] is equal to log10 s plus a rapidly

decaying N-dependent error term for all probability densities that satisfy the condition in

the statement of the theorem.
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We may take the error to be independent of Mi since the formula does not depend on the

choice of Mi. Because all error terms are independent and do not depend on Mi, there must

be some bound that holds for all decompositions simultaneously. To �nd this bound, let

us note that the Mellin transforms we have (with ` 6= 0) are always less than 1 in absolute

value. Thus the error is bounded by the maximum of the error from one of the following

four products:

(1) Product of N
4
terms with density f1(x).

(2) Product of N
4
terms with density f2(x).

(3) Product of N
4
terms with density f1(1− x).

(4) Product of N
4
terms with density f2(1− x).

As N → ∞, N
4
→ ∞ as well. Since each set of terms is still independent and identically

distributed random variables that satisfy equation (3.1), by Theorem 1.1 (proven in [6] and

shown in the appendices) we see that

Prob (YN mod 1 ∈ [a, b])→ b− a.

This implies that the base 10 logarithms are uniformly distributed, which means that

limN→∞ E[PN(s)] = log10 s. This by de�nition proves that the distribution is Benford. 2

3.4. Proof of Part II: Convergence to Benford. Now we prove part two of the conjec-

ture, namely that the variance tends toward zero:

lim
N→∞

Var(PN(s)) = 0.

Recall our de�nition of the indicator function ϕs(xi):

ϕs(u) =

{
1 if the signi�cand is at most s

0 otherwise.

Since ϕs(xi) is either 0 or 1, ϕs(xi)
2 = ϕs(xi). We will use this observation, the de�nition

of variance, and the linearity of the expectation operator to prove that Equation (3.2) is true.

By the de�nition of variance, we know that

Var(PN(s)) = E[PN(s)2]− E[PN(s)]2. (3.8)
14



As we showed at the beginning of the proof of part 1, by the linearity of the expectation

operator

E[PN(s)] = E


2N∑
i=1

ϕs(xi)

2N

 . (3.9)

We can now substitute this into (3.8) to get

Var(PN(s)) = E




2N∑
i=1

ϕs(xi)

2N


2− E[PN(s)]2. (3.10)

When we square two sums, the resulting sum will have the products of all combinations of

i's and j's. We can pull out all cases where i = j and rewrite (3.10) as the following:

E


2N∑
i=1

ϕs(xi)
2

22N
+

2N∑
i,j=1
i 6=j

ϕs(xi)ϕs(xj)

22N

− E[PN(s)]2. (3.11)

Because N is an integer, we can pull the denominator 1
22N

out in front of the expectation

operator. We can also separate the two terms so that we have:

Var(PN(s)) =
1

22N
E

 2N∑
i=1

ϕs(xi)
2

+
1

22N
E

 2N∑
i,j=1
i 6=j

ϕs(xi)ϕs(xj)

− E[PN(s)]2. (3.12)

As we said before, since ϕs(xi) = 0 or 1, we can make the substitution ϕs(xi)
2 = ϕs(xi).

Furthermore, we can include one 1
2N

inside the expected value to get PN(s):

Var(PN(s)) =
1

2N
E[PN(s)] +

1

22N

 2N∑
i,j=1
i 6=j

E[ϕs(xi)ϕs(xj)]

− E[PN(s)]2. (3.13)

Recall from the proof of part 1 that

Prob(YN mod 1 ∈ [a, b]) = b− a+ εN (3.14)
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where εN is some error term that depends on N . We showed that εN → 0 as N → ∞
because of our original assumption (3.1). Let us label o(1) an error term that tends to zero

as N →∞. We know from [6] that

E[PN(s)] = log10 s+ o(1). (3.15)

We can now substitute this back into (3.13) to get

Var(PN(s)) =
1

22N

 2N∑
i,j=1
i 6=j

E[ϕs(xi)ϕs(xj)]

+
1

2N
(log10 s+ o(1))− (log10 s+ o(1))2 . (3.16)

As N →∞, 1
2N

(log10 s+ o(1)) and o(1) · log10 s will tend toward zero, so we can lump them

in with the error term o(1) to get:

Var(PN(s)) =
1

22N

 2N∑
i,j=1
i 6=j

E[ϕs(xi)ϕs(xj)]

− (log10 s)
2 + o(1). (3.17)

For the ease of notation, we will expand the double summation and rewrite it as two separate

summations over distinct indices. We will also separate out the ( 1
2N

)2 term:

Var(PN(s)) =
1

2N
1

2N

 2N∑
j=1
j 6=i

2N∑
i=1

E[ϕs(xi)ϕs(xj)]

− (log10 s)
2 + o(1). (3.18)

Since we are in essence taking an average of the expected values, what we want to show is

that E[ϕs(xi)ϕs(xj)] ≈ (log10 s)
2. We have now reduced the problem to evaluating the cross

terms over all i 6= j. This is the hardest part of the analysis, and it is not feasible to evaluate

the resulting integrals directly. Instead, for each i we will partition the pairs (xi, xj) based

on how close xj is to xi in the tree in Figure 3.1.

3.4.1. Counting. Recall that each of the 2N pieces is a product of the starting length L and

N random variables between 0 and 1. Writing any (xi, xj) pair in this form, it is clear that

they must share some number of these random variables as factors. Let us say that they

share M terms. This means that after M stages, the pieces xi and xj split such that one

piece has a factor KM+1 in its product while the other contains the factor (1−KM+1). the
16



remaining N − M − 1 elements in each product are independent from one another. By

relabeling the indices, we can thus express any pair without loss of generality as follows:

xi = L ·K1 ·K2 · · ·KM ·KM+1 ·KM+2 · · ·MN

xj = L ·K1 ·K2 · · ·KM · (1−KM+1) · K̃M+2 · · · K̃N .

Note that this expression does require a relabelling of the indices, as it is not the same as

when we �rst began constructing the xi tree.

We again denote the probability density functions from which these random variables are

drawn as f1 and f2. Keeping these de�nitions in mind, for a �xed pair i, j we can adjust the

order of the factors by separating cuts pulled from f1 and cuts drawn from f2:

E[ϕs(xi)ϕs(xj) =

∫ 1

K1=0

∫ 1

K2=0

· · ·
∫ 1

KN=0

∫ 1

K̃M+2=0

· · ·
∫ 1

K̃N=0

· ϕs

(
L

M∏
r=1

Kr

N∏
r=M+1

Kr

)

· ϕs

(
L

M∏
r=1

Kr

)
· (1−KM+1) ·

(
N∏

r=M+2

K̃r

)

·
M1∏
r=1

f1(Kr) ·
M∏

r=M1

f2(Kr)

·
N1∏

r=M+1

f1(Kr) ·
N∏

r=N1

f2(Kr)

·
N2∏

r=M+2

f1(1− K̃r) ·
N∏

r=N2

f2(1− K̃r)

· dK1dK2 · · · dKNdK̃M+2 · · · dK̃N . (3.19)

In the expression above, we have already integrated over the remaining 2N−N−(N−M−1) =
2N − 2N +M + 1 variables. Because none of these variables appear in the cuts of xi or xj,

their corresponding integrals are 1, so they do not a�ect the product and we will no longer

write them.
17



The challenge in understanding (3.19) is that many variables occur in both xi and xj.

The key observation is that most of the time there are many variables occuring in one but

not the other, which minimizes the e�ect of the common variables, allowing us to evaluate

E[ϕs(xi)ϕ(xj)] at almost independent arguments. We will now make the argument precise.

We can study the behavior of the integral in (3.19) as a function of the signi�cand of the

�rst M + 1 random variables. More speci�cally, we de�ne the following functions:

I1(L1) =

∫ 1

KM+1=0

· · ·
∫ 1

KN=0

ϕs

(
L1

N1∏
r=M+1

Kr

N∏
r=N1

Kr

)
N1∏

r=M+1

f1(Kr)
N∏

r=N1

f2(Kr)dKM+1dKM+2 · · · dKN (3.20)

I2(L2) =

∫ 1

K̃M+1=0

· · ·
∫ 1

K̃N=0

ϕs

(
L2

N2∏
r=M+1

K̃r

N∏
r=N2

K̃r

)
N2∏

r=M+1

f1(1− K̃r)
N∏

r=N2

f2(1− K̃r)dK̃M+1dK̃M+2 · · · dK̃N . (3.21)

These two functions are de�ned for all L1, L2 ∈ [1, 10). We will show that for any L1, L2

we have

|I1(L1)I2(L2)− (log10 s)
2| = o(1). (3.22)

Once we have this, all that remains is to integrate I(L1)I(L2) over the remainingM variables

(K1, ..., KM) that both cuts share. We know that this will equal (log10 s)
2 + o(1) because it

is the product of random variables, and hence Benford. The rest of the proof follows from

counting for a given i, how many j lead to a given M . 2

3.4.2. Proving |I(L1)I(L2)−(log10 s)
2| = o(1). We know by Theorem A.1 (proved by [6] and

summarized in Appendix A.1) that as N →∞ the distribution of leading digits of xi tends

to Benford's Law. Furthermore, the error term is a nice function of the Mellin transforms.
18



Explicitly, if yN = logB xN then

|Prob(yn mod 1 ∈ [a, b])− (b− a)|

≤ (b− a)

∣∣∣∣∣∣∣
∞∑

`=−∞
` 6=0

N∏
m=1

(Mfmn)

(
1− 2πi`

logB

)∣∣∣∣∣∣∣ . (3.23)

This means that our functions I1(L1) and I2(L2) are bounded by

|I1(L1)− log10 s| ≤ (b− a)

∣∣∣∣∣∣∣
∞∑

`=−∞
` 6=0

N∏
m=1

(Mfmn)

(
1− 2πi`

logB

)∣∣∣∣∣∣∣ . (3.24)

To simplify our computations, let us label

Mn = (b− a)

∣∣∣∣∣∣∣
∞∑

`=−∞
` 6=0

N∏
m=1

(Mfmn)

(
1− 2πi`

logB

)∣∣∣∣∣∣∣ . (3.25)

Recall from our original assumption (3.1) that as N →∞, the limit of the expression within

the absolute value converges to zero, and that a and b are merely constants. By the rules of

absolute value, we know that

0 ≤ |I1(L1)− log10 s| ≤ Mn

0 ≤ |I2(L2)− log10 s| ≤ Mn. (3.26)

Using the Triangle Inequality (worked out in detail in Appendix A.2) we get

|I1(L1)I2(L2)− (log10 s)
2| ≤ 2Mn. (3.27)

For each of the 2N choices of i and for each 1 ≤ n ≤ N there are 2n−1 choices of j such that

xj has exactly n factors not in common with xi. We can therefore obtain an upper bound for

the sum of the expectation cross terms by summing the bound obtained for 2n−1I1(L1)I2(L2)

over all n and all i:∣∣∣∣∣∣∣
∞∑

`=−∞
6̀=0

(
E[ϕs(xi)ϕs(xj)]− (log10 s)

2
)∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
2N∑
i=1

N∑
n=1

2n−1Mn

∣∣∣∣∣∣ . (3.28)
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We know that limN→∞Mn = 0 so no matter how many error terms we add up, when we

divide by 22N the right side will approach zero. Since an absolute value must be ≥ 0, this

means that equality holds:∣∣∣∣∣∣∣
∞∑

`=−∞
6̀=0

(
E[ϕs(xi)ϕs(xj)]− (log10 s)

2
)∣∣∣∣∣∣∣ = 0. (3.29)

Recall from Equation (3.17) that

Var(PN(s)) =
1

22N

 2N∑
i,j=1
i 6=j

E[ϕs(xi)ϕs(xj)]

− (log10 s)
2 + o(1). (3.30)

Since N is a positive integer, we know that

1

22N

 2N∑
i,j=1
i 6=j

E[ϕs(xi)ϕs(xj)]

− (log10 s)
2 ≤

∣∣∣∣∣∣∣∣
2N∑
i,j=1
i 6=j

E[ϕs(xi)ϕs(xj)]− (log10 s)
2

∣∣∣∣∣∣∣∣ , (3.31)

where we just showed in (3.29) that the right side is 0. This means that

Var(PN(s)) ≤ 0 + o(1)

Var(PN(s)) ≤ o(1). (3.32)

By de�nition, this means that the error tends to zero as N →∞ which completes the second

part of our proof. 2
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4. Conjecture

We have shown that if we pull cuts from a �nite set of nice density functions, the distribu-

tion of the lengths of the resulting subsegments will tend toward Benford. This agrees with

our intuition, as the mixture of possible cuts is diverse, leading to a sense of randomness

which is often associated with Benford's Law. We might expect that when we reduce this

randomness, say to the extreme of specifying only one cut to repeatedly apply at every level

and for every subsegment, that the distribution of cuts would no longer follow Benford's

Law. Consider, if we were to always cut a stick in the middle at 0.5 times its length, then at

any given stage, all subsegments will have the same exact length. Clearly, the distribution

of the lengths would no longer follow Benford's Law.

Contrary to our intuition, however, we �nd that even when we apply the exact same cut,

as long as that cut is not 0, 0.5, or 1, as we increase the number of levels used, the distribu-

tion of lengths will in fact tend toward Benford.

4.1. Statement of Conjecture.

Conjecture 4.1. We are given a stick of length L and a cut p ∈ (0, 1) where p 6= 0.5. In

the �rst level N = 1, we cut L into two subsegments L · p and L · (1− p). At the second level

N = 2, we cut both subsegments again using p and (1 − p) (resulting in four cuts of length

L · p2, L · p(1− p), L · (1− p)p, and L · (1− p)2). We continue this cutting process, applying

p and (1 − p) at every level to each subsegment. As we apply N → ∞ levels of cuts, the

distribution of the lengths of the cuts will tend toward Benford's Law.

Applying the same cut p at every stage will lead to the general decomposition visualized

in Figure 4.1. As we can see, at any level N there will be 2N subsegments. Of those subseg-

ments,
(
2N

nd

)
of them will have the value L · pnd(1− p)N−nd . Given a starting length L, a set

cut p, and choice of level N , we can explicitly calculate the frequency of any leading digit

and compare it to the Benford probabilities.

4.2. Discussion of Conjecture. Although we are currently unable to prove that this dis-

tribution will converge to Benford for any p ∈ (0, 1) where p 6= 0.5, through calculation we

can see that Conjecture 4.1 seems to hold at high levels of N . In Figure 4.2 we visualize

the distribution where p = 0.75 and N = 1000. The Mathematica code used to perform the

calculations can be found in Appendix A.3.
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L

Lp L(1-p)

Lp2 L(1-p)2Lp (1-p) Lp (1-s)p

Lp3 Lp2 (1-p) Lp2 (1-p) Lp (1-p)2 Lp2 (1-p) Lp (1-p)2 Lp (1-p)2 L(1-p)3

Lp4

Lp3 (1-p) Lp2 (1-p)2

Lp3 (1-p)

Lp2 (1-p)2

Lp3 (1-p) Lp2 (1-p)2

Lp (1-p)3

Lp3 (1-p)

Lp2 (1-p)2

Lp2(1-p)2

Lp (1-p)3

Lp2 (1-p)2

Lp (1-p)3

Lp (1-p)3

L(1-p)4

Figure 4.1. Lengths of subsegments when we split L into subsegments using

p at every level, N = 4 levels.

We may expect this tendency to hold only to a certain point, hypothesizing that if p is

close enough to 0, 0.5, or 1, that the relationship will stop tending toward Benford. When

we �rst simulate p = 0.51 at N = 1000 levels, this appears to be the case, as seen in Figure

4.3a. But when we increase N by a factor of 10 and simulate to N = 10000 levels, we �nd

that the distribution will eventually tend toward Benford (Figure 4.3b). Since we are only

concerned with the distribution as N → ∞, this implies that we did not complete enough

levels when we �rst calculated the distribution, and at higher levels of N the distribution

will in fact converge to Benford.

A common mistake in analyzing whether such a process will tend toward Benford is to

stop after too few levels, before the pattern becomes evident. This may lead to inconclusive

or inaccurate results, so we want to analyze the distribution after as many levels as possible.

Ideally, we would compute a trillion levels, or even more. We are limited by computing

power, however, as each computation takes time to perform.
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Figure 4.2. The distribution of leading digits for a constant cut p = 0.75

to N = 1000 levels with the Benford probabilities overlaid. Probability of a

leading digit occurring as a function of the value of that leading digit.

Leading

Digit

Benford

Probability

Observed Frequency

(p = 0.75, N = 1000)

Observed Frequency

(p = 0.51, N = 10000)

1 0.30103 0.306156 0.302846494679860

2 0.176091 0.170253 0.175495691232183

3 0.124939 0.127292 0.121681641185727

4 0.09691 0.0901434 0.096031886085056

5 0.0791812 0.0898191 0.078481103805340

6 0.0669468 0.0680362 0.068912864854509

7 0.0579919 0.0474461 0.061279883596516

8 0.0511525 0.0536766 0.0513891557265013

9 0.0457575 0.0471777 0.043881278834309

Table 1. Table of expected versus observed frequencies of leading digits when

applying a constant cut p.

Fortunately, because we know the distribution and values of the subsegments at each

level, we need not compute the value of 2N di�erent cuts but merely N + 1 values (LpN ,
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(a) p = 0.51 and N = 1000.
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(b) p = 0.51 and N = 10000.

Figure 4.3. Distribution of leading digits for a constant cut p = 0.51 calcu-

lated to N levels. Expected Benford distribution overlaid.

LpN−1(1 − p), LpN−2(1 − p)2, · · · , Lp2(1 − p)N−2, Lp(1 − p)N−1, L(1 − p)N) and count

how many subsegments of each length we will have at the N th stage, namely
(
2N

nd

)
. But at

N = 1000000, even a million values requires a nontrivial amount of time to compute, thus

limiting our computing ability.

As the examples with p = 0.51 and p = 0.99 show, even if there is only a little variation

to begin with, as we increase the number of levels the distribution becomes close to Benford

in at least one point. As p → 0, p → 0.5, or p → 1, it may take longer for the distribution

to appear Benford, but it seems that they will ultimately follow Benford's Law.

4.2.1. Potential Periodic Behavior. The counts may be displaying periodic behavior or there

may be an underlying pattern that is non-Benford. Even though the distribution seems to

tend toward Benford at �rst, if we increase N even larger (beyond our computing power) it

may tend away from Benford.

4.2.2. Transformation of leading digit distribution. To examine this case, we consider the

changing distribution of p = 0.501 as we increase N from 1000 → 10000 and compare it to

the changing distribution of p = 0.51 as N increases from 100→ 2200.

When we simulate the distribution for a value that is closer to 0.5 (such as p = 0.501) the

distribution seems to remain peaked near the value of 0.5N where the median of the peak

shifts to the left and the base of the peak does not widen (Figure A.1). This implies that

p = 0.501 may be `too close' to 0.5, and that it will not ultimately converge to Benford. Yet

if we compare it to how the distribution of p = 0.51 transforms at lower levels of N (from 100
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to 500) we �nd that the changes in distribution are similar to those that p = 0.51 undergo

from 1000 to 9000 (Figure A.2). This implies that p = 0.501 may still converge to Benford

like p = 0.51 (Figure A.2), just at a slower rate. Figures depicting these transformations can

be referenced in Appendices A.4 and A.5.

Similarly, when we simulate p = 0.99 to N = 10, 000 levels the distribution seems to follow

a pattern that is distinctly non-Benford (Figure 4.4a). When we increase our calculation

to N = 50, 000 levels, however, we see that the distribution seems to converge to Benford

(Figure 4.4b).

2 4 6 8

0.1

0.2

0.3

0.4

0.5

(a) p = 0.99 and N = 10000.

2 4 6 8 10

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) p = 0.99 and N = 50000. Benford dis-

tribution overlaid.

Figure 4.4. Distribution of leading digits for a constant cut p = 0.99 calcu-

lated to N levels.

If the distribution is in fact displaying periodic behavior, then our conjecture may not be

true, although we could calculate the number of levels needed to be `close' to Benford as a

function of p.
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Appendix A. Appendices

A.1. Proof that the product of i.i.d. random variables is Benford. We sketch the

proof from [6] and modi�ed by [1] of the theorem that the product of N `nice' independent

identically distributed random variables as N → ∞ will tend toward Benford. Whereas

[6] proved this for chains of random variables, we reiterate the modi�ed version of [1] who

showed the same results for products of random variables.

A.1.1. Terminology. First, let us set notation and review some pertinent properties of the

Mellin transform. Let K1 and K2 be two independent random variables from the probability

density function f with cumulative distribution function F . Then the density of their

product is given by

∫ ∞
t=0

f
(x
t

)
f(t)

dt

t
. (A.1)

This can be easily generalized to the product of more factors. To understand why this is

the case, we �rst calculate the probability that K1 · K2 ∈
[
0, x

t

]
and then di�erentiate our

result with respect to x:

Prob(K1 ·K2 ∈ [0, x]) =

∫ ∞
t=0

Prob
(
K2 ∈

[
0,
x

t

])
f(t)dt. (A.2)

Since Prob
(
K2 ∈

[
0, x

t

])
is the cumulative distribution function F

(
x
t

)
we can rewrite

equation (A.2) as

∫ ∞
t=0

F
(x
t

)
f(t)dt. (A.3)

Di�erentiating the cumulative density function merely returns the density of K1 ·K2 as seen

in (A.1).

If g(s) is an analytic function for R(s) ∈ (a, b) such that g(c+ iy) tends to zero uniformly

as |y| → ∞ for any c ∈ (a, b), then the inverse Mellin transform, (M−1g)(x), is given by

(M−1g)(x) =
1

2πi

∫ c+i∞

c−i∞
g(s)x−sds. (A.4)

The Mellin convolution theorem states that

(M(f1 ? f2))(s) = (Mf1) · (Mf2)(s), (A.5)
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which by induction gives

(M(f1 ? · · · ? fN))(s) = (Mf1)(s) · · · (MfN)(s). (A.6)

Note that f1 ? · · · ? fN is the density of the product of N independent random variables.

Now that we have set notation, we sketch the proof that products of independent identi-

cally distributed random variables converge to Benford, and isolate out the error term. This

proof was �rst given by [6] and later modi�ed by [1].

A.1.2. Statement of Theorem.

Theorem A.1. Let K1, ..., KN be independent random variables with densities fmn. Assume

lim
N→∞

∞∑
`=−∞
` 6=0

N∏
n=1

(Mfmn)

(
1− 2πi`

logB

)
= 0. (A.7)

Then as N →∞, xN = K1 · · ·KN converges to Benford's law. In particular, if yN = logB xN

then

|Prob(yN mod 1 ∈ [a, b])− (b− a)|

≤ (b− a) ·

∣∣∣∣∣∣∣
∞∑

`=−∞
`6=0

N∏
n=1

(Mfmn)

(
1− 2πi`

logB

)∣∣∣∣∣∣∣ . (A.8)

A.1.3. Proof of Theorem.

Proof. To investigate the distribution of the digits of xN = K1K2 · · ·KN (base B) let us �rst

make a logarithmic change of variables, setting yN = logB xN . We now have

Prob(yN ≤ Y ) = Prob(xN ≤ BY ) = FN(B
Y ), (A.9)

where fN is the density of Xn and FN is the cumulative distribution function. As we said

before, taking the derivative gives the density of yN which we denote by gN(Y ):

gN(Y ) = fN(B
Y )BY logB. (A.10)

A standard method to show that xN tends to Benford behavior is to show that yN mod 1

tends to the uniform distribution on [0, 1]. The key ingredient to this calculation is Poisson

Summation [10], which relates the Fourier series coe�cients of the periodic summation of

a function to values of the function's continuous Fourier transform. Namely,
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∞∑
j=−∞

f(j) =
∞∑

j=−∞

f̂(j) (A.11)

where f̂ is the Fourier transform of f , de�ned as:

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx. (A.12)

We show that yN mod 1 tends to the uniform distribution in the following calculation. Let

hN ;Y (t) = gN(Y + t). Then

∞∑
l=−∞

gN(Y + `) =
∞∑

l=−∞

hN ;Y (`).

Poiss Sum
=

∞∑
l=−∞

ĥN ;Y (`)

=
∞∑

l=−∞

e2πiY `ĝN(`). (A.13)

Letting [a, b] ⊂ [0, 1], we see that

Prob(yN mod 1 ∈ [a, b]) =
∞∑

l=−∞

∫ b+`

a+`

gN(Y )dy

=
∞∑

l=−∞

∫ b+`

a+`

gN(Y + `)dy

=
∞∑

l=−∞

∫ b+`

a+`

e2πiY `ĝN(`)dy

= b− a+ Err

(
(b− a)

∑
l 6=0

|ĝN(`)|

)
(A.14)

where Err(z) means an error at most z in absolute value. Note that since gN is a probability

density, ĝN(0) = 1. The proof is completed by showing that the sum over ` tends to zero

as N → ∞. we thus need to compute ĝN(`). Using equation (A.10) and the substitution
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t = BY we have the following:

ĝN(ξ) =

∫ ∞
−∞

gN(Y )e−2πiY ξdy

=

∫ ∞
−∞

fN(B
Y )BY logB · e−2πiY ξdy

=

∫ ∞
−∞

fN(t)t
−2πiξ/ logBdt

= (MfN)

(
1− 2πiξ

logB

)
=

N∏
n=1

(MfN)

(
1− 2πiξ

logB

)
. (A.15)

We know by the condition stated in our theorem that every density function fmn satis�es

N∏
n=1

(Mfmn)

(
1− 2πiξ

logB

)
= 0. (A.16)

We can now substitute (A.16) into (A.14) to show that the error term will tend toward zero,

which means that as N →∞, the following equality will hold:

Prob(yN mod 1 ∈ [a, b]) = b− a.

Thus the product of these independent, identically distributed random variables converges

to Benford's law, which concludes our proof [10]. �

A.2. Triangle Inequality. Although each individual pair of cuts has a �nite distance

bounded by the number of separations N , we are concerned with the distribution as N

approaches in�nity. If our original condition holds, we know that as N →∞,

∞∑
`=−∞
6̀=0

N∏
n=1

(Mfmn)

(
1− 2πi`

logB

)
→ 0.

This means that

lim
N→∞

|I1(L1)− log10 s)| ≤ (b− a) lim
N→∞

∣∣∣∣∣∣∣
∞∑

`=−∞
`6=0

N∏
n=1

(Mfmn)

(
1− 2πi`

logB

)∣∣∣∣∣∣∣
lim
N→∞

|I1(L1)− log10 s)| ≤ 0. (A.17)
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Since absolute values must be non-negative, equality holds:

lim
N→∞

|I1(L1)− log10 s)| = 0. (A.18)

Similarly, we �nd that

lim
N→∞

|I2(L2)− log10 s)| = 0. (A.19)

We know that |I1(L1)|, |I2(L2)|, and | log10 s| ≤ 1, so we can compute the following:

|I1(L1)I2(L2)− (log10 s)
2|

= |I1(L1)I2(L2)− I2(L2) log10 s+ I2(L2) log10 s− (log10 s)
2|

≤ |I1(L1)I2(L2)− I2(L2) log10 s|+ |I2(L2) log10 s− (log10 s)
2|

= |I2(L2)||I1(L1)− log10 s|+ | log10 s||I2(L2)− log10 s|

≤ |I1(L1)− log10 s|+ |I2(L2)− log10 s|. (A.20)

From equation (A.18) and (A.19) we know that both of these expressions tend to 0. Hence,

the entire expression is = 0.

A.3. Mathematica Code for Conjecture Calculation. The following is the Mathemat-

ica code used to calculate cutting a stick of length L = 1 into pieces where at any given

level we cut at p ∈ (0, 1) times the length of each subsegment. The function also displays

the observed frequency of each leading digit and compares it to its associated probability of

occurence under Benford's Law.

fd[x_] := Floor[10^Mod[Log[10, 1.0 x], 1]]

BenfordFixedCut[s_, level_] := Module[{},

data = {};

For[d = 1, d <= 9, d++, count[d] = 0];

For[k = 0, k <= level, k++,

{

x = fd[(s)^k (1 - s)^(level - k)];

count[x] = count[x] + Binomial[level, k];

}];

(*data = AppendTo[data, fd[(3/4)^k (1/4)^(level-k)]]*)

dataplot = {};
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For[d = 1, d <= 9, d++,

dataplot = AppendTo[dataplot, {d, count[d]/2.^level}]];

Print[ListPlot[dataplot]];

For[d = 1, d <= 9, d++,

Print["d = ", d, " and Benford Prob = ", Log[10, (d + 1.)/d],

" and observe ", count[d]/2.^level, "."]];

]

Calculating the distribution when p = 0.75 and N = 1000 produces the following output

(as well as the graph in Figure 4.2):

BenfordFixedCut[3/4, 1000]

d = 1 and Benford Prob = 0.30103 and observe 0.306156.

d = 2 and Benford Prob = 0.176091 and observe 0.170253.

d = 3 and Benford Prob = 0.124939 and observe 0.127292.

d = 4 and Benford Prob = 0.09691 and observe 0.0901434.

d = 5 and Benford Prob = 0.0791812 and observe 0.0898191.

d = 6 and Benford Prob = 0.0669468 and observe 0.0680362.

d = 7 and Benford Prob = 0.0579919 and observe 0.0474461.

d = 8 and Benford Prob = 0.0511525 and observe 0.0536766.

d = 9 and Benford Prob = 0.0457575 and observe 0.0471777.

The expected Benford distribution was included by using the command

Print[Show[

Plot[Log[10, (d + 1.)/d], {d, 0, 10}],

ListPlot[dataplot]

]]

in place of:

Print[ListPlot[dataplot]];.
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A.4. Distribution Transformation: p = 0.501.

(a) p = 0.501, N = 1000, and

S(0.51000) = 9.

(b) p = 0.501, N = 2000, and

S(0.52000) = 8

(c) p = 0.501, N = 3000, and

S(0.53000) = 8

(d) p = 0.501, N = 4000, and

S(0.54000) = 7

(e) p = 0.501, N = 5000, and

S(0.55000) = 7

(f) p = 0.501, N = 6000, and

S(0.56000) = 6

(g) p = 0.501, N = 7000, and

S(0.57000) = 8

(h) p = 0.501, N = 8000, and

S(0.58000) = 5

(i) p = 0.501, N = 9000, and

S(0.59000) = 5

Figure A.1. Distribution of leading digits for a constant cut p = 0.501 cal-

culated to N levels.
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A.5. Distribution Transformations: p = 0.51 and p = 0.99.

(a) p = 0.51, N = 100. (b) p = 0.51, N = 300. (c) p = 0.51, N = 500.

(d) p = 0.51, N = 700. (e) p = 0.51, N = 900 (f) p = 0.51, N = 1000.

(g) p = 0.51, N = 1300 (h) p = 0.51, N = 1500 (i) p = 0.51, N = 1700

(j) p = 0.51, N = 1900 (k) p = 0.51, N = 2100 (l) p = 0.51, N = 2200

Figure A.2. Distribution of leading digits for a constant cut p = 0.51 calcu-

lated to N levels.
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(a) p = 0.99 and N = 1000. (b) p = 0.99 and N = 2000. (c) p = 0.99 and N = 3000.

(d) p = 0.99 and N = 4000. (e) p = 0.99 and N = 5000. (f) p = 0.99 and N = 6000.

(g) p = 0.99 and N = 7000. (h) p = 0.99 and N = 8000. (i) p = 0.99 and N = 9000.

(j) p = 0.99 and N = 10000. (k) p = 0.99 and N = 15000. (l) p = 0.99 and N = 20000.

(m) p = 0.99 and N = 30000. (n) p = 0.99 and N = 40000. (o) p = 0.99 and N = 50000.

Figure A.3. Distribution of leading digits for a constant cut p = 0.99 calcu-

lated to N levels.
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