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Abstract. An interesting question known as the Gaussian Moat problem asks
whether it is possible to walk to infinity along the Gaussian primes with a
bounded step size. We examine a similar version of this problem in the real
quadratic integer ring Z[

√
2] whose primes mostly cluster along the asymptotes

y = ±x/
√

2 as compared to the Gaussian primes, which mainly cluster at the

origin. A probabilistic model of primes a + b
√

2 in Z[
√

2] is then constructed
according to their norms a2− 2b2 by applying the Prime Number Theorem and
a combinatorial theorem for counting the number of lattice points in the region
|a2− 2b2| ≤ n2. Lastly, we perform a few moat calculations in Z[

√
2] for various

step sizes and make a conjecture about the existence of a prime walk to infinity.
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1. Introduction

1.1. Background. It is known that one cannot walk to infinity along real prime
numbers with a bounded step size, i.e., there is no finite number N such that there
exists an infinite sequence of increasing real primes p1, p2, ... where pi+1 − pi ≤ N
for any i ∈ N. This can be proven by considering the primorial p#, which is
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defined as the product of all primes pi less than or equal to p, i.e.,

p# :=
∏

pi prime, pi≤p

pi.

For any real prime p, consider the following sequence

{p# + j}j=2,3,...,p.

All numbers in this sequence are composite, so we have a gap of length at least
p− 1 between subsequent primes. Thus, it is impossible to walk to infinity along
primes using a bounded gap.

This classical problem is clearly one-dimensional as we only need to find an
arbitrarily large gap on the number line. However, one can ask a more flavorful
question of whether there exists a prime walk to infinity in two dimensions, for
example, in a real or an imaginary quadratic ring. In this case, a gap is considered
as a moat around the starting point. This idea gives rise to the Gaussian Moat
problem, where we ask if there exists a moat of arbitrary large width surrounding
the origin.

1.2. Gaussian prime walks and our motivation. To understand the Gaussian
Moat problem, we first refer to the definition of quadratic integer rings.

Definition 1.1. For a square-free integer d, we define its quadratic integer ring
as

Z[
√
d] :=

{
{a + b1+

√
d

2
, a, b ∈ Z}, d ≡ 1 (mod 4)

{a + b
√
d, a, b ∈ Z}, otherwise.

For both choices of d, the norm of any element in Z[
√
d] is defined as a2 − b2d.

We call an element in Z[
√
d] a unit if its norm is ±1, and call two distinct elements

associate with each other if their norms are the same.
In particular, the set of Gaussian integers which is defined as Z[i] := {a +

bi, a, b ∈ Z} is a special case when d = −1. Thus, the norm of a + bi is defined as
a2 + b2, and any element a + bi is a unit if its norm is 1 as a2 + b2 ≥ 0. Then, the
Gaussian primes are defined as follows.

Definition 1.2. An element a + bi ∈ Z[i] is a Gaussian prime if it satisfies one
of the following requirements up to associates:
1) a, b 6= 0 and a2 + b2 is a real prime,
2) a = 0 and |b| is an ordinary prime such that b ≡ 3 mod 4,
3) b = 0 and |a| is an ordinary prime such that a ≡ 3 mod 4.

Figure 1, which we refer from Gethner [EWW, p. 328], shows all the Gauss-
ian primes with norm less than 1000. Note that Gaussian primes and primes in
Z[
√

2] both have 8-fold symmetry, so it suffices to consider only primes in the
first quadrant with a, b ≥ 0. The Gaussian Moat problem asks whether one can
walk to infinity in Z[

√
i] with a bounded step size, or equivalently, whether there

exists k−moat for any finite real k, where the k−moat is a region of composite
numbers with width k. Jordan and Rabung [JR] constructed a

√
10−moat, while

Gethner [EWW] proved the existence of some larger moats up to the
√

26−moat.
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Figure 1. Gaussian primes with norms less than 1000.

Tsuchimura [T] has shown the existence of a 6−moat in 2004. Based on these
results, we speculate that there is no Gaussian prime walks to infinity with a
bounded step size.

In this paper, we therefore investigate another quadratic integer ring, Z[
√

2],
which is more likely to have such prime walks. The prime elements in Z[

√
2] are

defined as followed.

Definition 1.3. An element a + b
√

2 ∈ Z[
√

2] is a prime if it satisfies one of the
following requirements up to associates:
1)
√

2,
2) a2 − 2b2 is an ordinary prime and a2 − 2b2 ≡ 1, 7 mod 8,
3) b = 0 and a is an ordinary prime such that a ≡ 3, 5 mod 8.

Figure 2 shows all the prime elements in Z[
√

2] with Euclidean norms less than
800.

1.3. Results. Note that most primes tend to cluster along the asymptotes y =
±x/
√

2 in Z[
√

2]. Figure 3 shows the comparison between the number of primes
in a disk of radius n in Z[

√
2] and Z[i]. Following this trend, we prove in Section 2

that there exist more primes in Z[
√

2] than in Z[i]. We can also deduce from
Theorem 2.13 and Figure 2 that a prime walk in Z[

√
2] in the first quadrant is

more likely to be found near the asymptote y = x/
√

2. Lastly, the main theorem
of this paper, Theorem 3.1, is presented in Section 3 showing that it is impossible
to perform a walk of a bounded step size to infinity in Z[

√
2] if the walk remains

within some bounded distance from the asymptote y = x/
√

2 after some point.
In Section 4, we then present some evidence that the longest walk possible must
stay close to the asymptote. We therefore remove our assumption and state that
it’s impossible to have a walk in Z[

√
2], which is Conjecture 4.1.



4 B. LI, S. MILLER, T. POPESCU, D. SARNECKI, AND N. WATTANAWANICHKUL

Figure 2. Visualization of primes in the first quadrant of Z[
√

2].

Figure 3. Comparison of primes in Z[
√

2] (top) and Z[i] (bottom).

2. Modeling primes in Z[
√

2]

2.1. Estimating the number of primes. Given the random structure of primes
in Z[

√
2], we would like to approximate the number of primes within certain

bounds. For primes in Z, this is achieved with the Prime Number Theorem (PNT).

Theorem 2.1 (Prime Number Theorem). The interval [1, n] contains about n/ log n
primes.

We can extend the Prime Number Theorem to other integer rings by connecting
primes in Z with those in the Gaussian primes, or Z[i]. Before doing so, we first
refer to a known theorem related to the Dirichlet density.
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Definition 2.2 (Dirichlet density). For S ⊆ T two sets of positive integers, with∑
n∈T n−1 divergent, d(S, T ), the Dirichlet density of S in T , exists if and only if

lim
s→1+

sup

∑
n∈S n

−s∑
n∈T n−s

= d(S, T ) = lim
s→1+

inf

∑
n∈S n

−s∑
n∈T n−s

.

Theorem 2.3. Suppose a,m ∈ Z, with (a,m) = 1. Let P(a;m) be the set of
positive primes p such that p ≡ a (mod m) and P the set of all positive primes.
Then, d(P(a;m),P) = 1/ϕ(m), where ϕ is the Euler Totient function.

Then, the following theorem which we refer its proof from, for example, [HW, ch.
XV] and [R, p. 188], can be obtained.

Theorem 2.4. The number of Gaussian primes contained within the disk of radius
r about the origin is approximately

2r2

log r
+

2r

log r
+ 4.

Proof. Theorem 2.3 implies the densities of primes of the form 4k+1 and 4k+3 are
roughly the same since d(P(1; 4),P) = d(P(3; 4),P) = 1/ϕ(4) = 1/2. We consider
primes of the form 4k + 1 for when a prime is a sum of squares. As in Definition
1.2, all the Gaussian primes can be derived from real primes as follows.

(1) The real prime 2 gives us four Gaussian primes: 1 + i, 1− i,−1 + i,−1− i,
(2) p = 4k + 3 in real primes gives us four Gaussian primes: p,−p, pi,−pi,
(3) p = 4k+1 in real primes gives us eight Gaussian primes as p can be written

as (a+bi)(a−bi), i.e., each p gives a+bi,−(a+bi), (a+bi)i,−(a+bi)i, a−
bi,−(a− bi), (a− bi)i,−(a− bi)i.

Consider a disk centered at 0 and of radius r. For any real (4k + 3)−prime,
there are four Gaussian primes on the real and imaginary axes of the complex
plane. From the PNT and Theorem 2.3 , there are approximately r/(ϕ(4) log r)
(4k + 3)−primes, so we have approximately

4 · r

ϕ(4) log r
=

2r

log r
(2.1)

Gaussian primes lying on the axes.
Now, consider the disk in the first quarter, not including the axes. For positive

integers 1, 2, . . . , r2, there are approximately r2/ log r2 primes. We consider the
integers from 1 to r2 since each lattice point in the disk has norm at most r2. By
Lemma 2.3, approximately half of them are primes of the form 4k + 1. From (3),
these primes give us about

8 · r2

2 log r2
=

4r2

log r2
=

2r2

log r
(2.2)

Gaussian primes. �

Note that in generalizing the PNT to the Gaussian primes, we consider primes
whose norm lies within an interval. In other words, we estimate the number of
Gaussian primes of the form a + bi such that a2 + b2 ≤ r2. We follow this line of
thinking in generalizing further to primes in Z[

√
2], where we take the absolute
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Figure 4. Norm regions NR(1) (blue) and NR(2) (brown), and the
asymptotes y = ±x/

√
2 (green).

value of the norm as it can be negative. Here, we estimate the number of primes
of the form a + b

√
2 such that

|a2 − 2b2| ≤ r2. (2.3)

Definition 2.5. Let NR(r2) be the norm region defined by |x2 − 2y2| ≤ r2 where
x, y ∈ R.

Clearly, NR(r2) contains all the points (a, b) ∈ Z[
√

2] that satisfy (2.3), so our
goal is then to estimate the number of primes within NR(r2). However, unlike the
disk norm region x2 + y2 ≤ r2 we use for counting the Gaussian primes, NR(r2) is
unbounded with infinite area as shown in Figure 4. Thus, there might be infinitely
many primes within NR(r2). To verify this statement, we require the following
definition.

Definition 2.6. Let NC(c) denote the “c-norm curve” or the graph of the equation
x2 − 2y2 = c.

Lemma 2.7. If there exists a prime in some NC(c) for some c, then there are
infinitely many primes in the same curve.

Proof. Suppose that there is a prime a + b
√

2 ∈ NC(c) for some c. This implies
a2 − 2b2 = c. Since the norm in Z[

√
2] is multiplicative, we know that for any

non-negative integer k,

N((a + b
√

2)(1 +
√

2)2k) = N(a + b
√

2)N(1 +
√

2)2k

= c(−1)2k

= c.

Hence, a + b
√

2 and (a + b
√

2)(1 +
√

2)2k are associates. By Definition 1.3, we
know that (a+ b

√
2)(1 +

√
2)2k is also a prime for any non-negative integer k. �
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Corollary 2.8. If r2 ≥ 2, there exists infinitely many primes within the norm
region NR(r2).

Proof. Notice that the first norm curve that contains at least a prime is NC(2)
because

√
2 lies on the curve. Then, Lemma 2.7 implies that there are infinitely

many primes on the same curve. Hence, as any norm region NR(r2) where r2 ≥ 2
contains NC(2), there are infinitely many primes within NR(r2). �

According to Corollary 2.8, it is impossible to approximate the number of primes
in Z[

√
2]. However, as we notice that the number of norm curves within NR(r2)

is finite, we now shift our goal to estimate the number of norm curves within norm
region NR(r2) that contains primes in Z[

√
2]. For convenience, if any elements lie

on the same norm curve, we say that they are in the same family.

Theorem 2.9. The number of families of primes in Z[
√

2] within NR(r2) is about

r2

log r
+

r

2 log r
+ 1.

Proof. According to Definition 1.3 (3), the number of primes in Z[
√

2] within
NR(r2) that lie on the positive real axis is the same as the number of ordinary
primes ≡ 3, 5 (mod 8) that are less than r. Hence, by the PNT and Theorem 2.3,
there are approximately

2 · r

ϕ(8) log r
=

r

2 log r
(2.4)

such primes. Since, for each prime p on positive real axis, −p and p supply the
same family NC(p2), there are exactly r/2 log r families within NR(r2) when
considering the entire real axis.

Similarly, as for Definition 1.3 for primes of the form (2), there are approximately

2 · 2 · r2

ϕ(8) log r2
=

r2

log r
(2.5)

ordinary primes ≡ 1, 7 (mod 8) from −r2 to r2. In this case, each norm p of the
r2/ log r norms supplies a unique family NC(p).

Combining (2.4), (2.5), and another family of primes containing ±
√

2, NC(−2),
there are approximately

r2

log r
+

r

2 log r
+ 1 (2.6)

distinct families of primes within the region NR(r2). �

This analysis confirms our observation that primes in Z[
√

2] are most dense
along the asymptotes y = ±x/

√
2, since the region NR(r2) for any r all straddle

the asymptotes. The distribution of primes in Z[
√

2] differs from the Gaussian
primes which are most dense at the origin. This fact may have implications towards
how to construct the longest walk possible in Z[

√
2].
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2.2. Estimating the total number of integers. Now that we have an estimate
on the number of families of primes within NR(r2), we want to determine the total
number of families of integers within this region to make a statement about the
probability of encountering a family of primes.

Similar to the number of primes in NR(r2), the number of integers within
NR(r2) is also infinite, so we aim to count the number of families instead. In
order to do so, we refer to the following theorem from Bernays [B].

Theorem 2.10. Let f(x, y) = rx2+sxy+ty2 be defined on Z2 such that r, s, t ∈ Z
and s2 − rt is not square. Then, the number of positive integers less than n that
can be expressed as f(x, y) is

O

(
n√

log n

)
.

By Theorem 2.10, taking f(x, y) = x2 − 2y2, we verify that 02 − 1 · (−2) = 2
is not a square. Then, we can apply the theorem to find the number of positive
integers c < n such that

c = x2 − 2y2 = N(x + y
√

2)

for some x + y
√

2 ∈ Z[
√

2]. In other words, we have an estimate for the number
of c-norm curves with 0 < c < n. We determine that the number of c-norm curves
with −n < c < 0 is the same using Lemma 2.11.

Lemma 2.11. There exist a1, b1 ∈ Z such that a21 − 2b21 = c if and only if there
exist a2, b2 ∈ Z such that a22 − 2b22 = −c.

Proof. Suppose a1, b1 ∈ Z satisfy a21 − 2b21 = c. Then consider

(a1 + b1
√

2)(1 +
√

2) = (a1 + 2b1) + (a1 + b1)
√

2.

Taking a2 = a1 + 2b1 and b2 = a1 + b1, we verify that

a22 − 2b22 = (a1 + 2b1)
2 − 2(a1 + b1)

2

= −a21 + 2b21
= −(a21 − 2b21)

= −c.
Given any a2, b2 ∈ Z such that a22− 2b22 = −c, we can perform the same change of
variables to find integers a1, b1. �

Remark 2.12. Lemma 2.11 can also be proven using the fact that the norm in
Z[
√

2] is multiplicative. Since N(1 +
√

2) = −1, we simply have

N(a1 + b1
√

2)N(1 +
√

2) = −c = N((a1 + b1
√

2)(1 +
√

2)).

In geometrical terms, Lemma 2.11 tells us that if we have an integer that lies
on the norm curve NC(c), then there also exists an integer that lies on the related
norm curve NC(−c). Therefore, for any r ∈ N, the number of norm curves within
NR(r2) is

O

(
2r2√
log r2

)
= O

(
r2√
log r

)
.
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2.3. Probability of a prime in Z[
√

2]. Using the bound from Theorem 2.10, we
can divide our estimate of the number of families of primes by the total number of
families of integers in Z[

√
2] to determine the probability of encountering a family

of primes. Thus, our work culminates in the following estimate.

Theorem 2.13. The probability an integer z ∈ NR(r2) lies on a prime c−norm
curve is about

O

(
1√

log r

)
.

It is worth noting that analogous probabilities for Z and Z[i] are both

O

(
1

log r

)
,

which indicates a greater density of primes for Z[
√

2] within its respective norm-
region.

3. Proof of main results

Now we address the main question of this paper, which regards the possibility
of a walk to infinity of a bounded step size along the primes in Z[

√
2]. In the

previous section, we have shown that the number of primes in Z[
√

2] is infinite,
yet the number of prime norm curves is not. In this section, we again view primes
roughly as norm curves that converge to a single line. While these curves have
infinitely many primes, their exponential growth renders them increasingly and
negligibly sparse as our walk of linear growth rate progresses. This observation
leads to the following theorem.

Theorem 3.1. It is impossible to perform a walk of a bounded step size k to
infinity in Z[

√
2] if the walk remains within some bounded distance r from the

asymptote y = x/
√

2.

Proof. Because Z[
√

2] is a unique factorization domain, so there is only one prime
with norm c up to associates for any c ∈ Z. For each norm curve a2 − 2b2 =
c, there is only 1 solution up to associates, but these associates are spread out
exponentially, so we do not expect them to affect our walk which takes steps of
a bounded size. Therefore, after we walk on a prime from a norm curve, we are
likely not using that norm curve again.

First, we can examine the number of norm curves a2−2b2 = c that intersect our
disk of possible next steps, where the disk is centered at the current prime with
radius k. If we can show that the number of these norm curves that are accessible
from the previous prime in the walk grows slower than the number of steps in the
walk, then we know that we eventually run out of possible primes to walk to.

Since each norm curve a2−2b2 = c1 is closer to the asymptote than a2−2b2 = c2
if and only if |c1| < |c2|, we only need to find the largest positive c for which
a2 − 2b2 = c is within distance r from the asymptote as in Figure 5. This is
achieved by examining the growth of the vertical gap between x2 − 2y2 = c and
y = x/

√
2, where c > 0. We can represent half the vertical gap length as a function
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Figure 5. Assorted norm curves converging within bounded
asymptote region |y − 1√

2
x| = k (red).

of x as g(x) = (x −
√
x2 − c)/

√
2. Then, an upper bound and a lower bound of

g(x) can be found as follows.

g(x) =
x−
√
x2 − c√
2

=
c√

2(x +
√
x2 − c)

≤ c√
2x

, (3.1)

g(x) =
x−
√
x2 − c√
2

=
c√

2(x +
√
x2 − c)

≥ c

2
√

2x
. (3.2)

Thus, the gap closes at a rate of Θ(1/x). However, as the actual gap we want
is not vertical, but rather perpendicular to the asymptote, we have to take into
account the slope of the asymptote. This gives the actual gap to be

√
2/
√

3 of its
vertical distance. Letting g′(x) be the function of half of the perpendicular gap
length, we have

c

2
√

3x
≤ g′(x) ≤ c√

3x
. (3.3)

To find the largest positive c for which a2 − 2b2 = c is within r, we solve

r ≥ c

2
√

3x
, (3.4)

which is true when c ≤ 2
√

3rx, so we estimate roughly at most 2 ·2
√

3rx = 4
√

3rx
norm curves and possible choices of points for the next step.

Moreover, when we are x units from the origin, we take as few as x/k steps.
This is a rough lower bound that occurs when we step only along one of the axes,
taking the maximum k-length step each time. Then, the upper bound is also in
the order of x, which is found by taking steps of a unit length and finishing on the
line y = x. Thus, the number of steps taken is Θ(x).
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Even though both the number of norm curves and the number of steps estimates
have the same growth, Θ(x), not all of the norm curves contains primes, so we
can narrow down the number of possible norm curves by using Theorem 2.9.

From (3.4), we know that for any x, the largest c such that the c-norm curve is
within r is 4

√
3rx. Then, at any x, all the norm curves we can step on lie within

the norm region NR(4
√

3rx). Thus, there are approximately

4
√

3rx

log
√

4
√

3rx
+

√
4
√

3rx

2 log
√

4
√

3rx
+ 1 = Θ

(
x

log x

)
(3.5)

curves that we can actually step on.
We note that the growth of the number of possible curves we can walk, Θ(x/ log x),

is less than the growth of the number of steps, Θ(x). This means that a walk to
infinity is impossible because the number of options is not growing as fast as what
is required for the walk. �

4. Visualizing prime walks

In the previous section, we have proven that it is impossible to have a prime
walk to infinity in Z[

√
2] if all the possible prime walks in Z[

√
2] eventually remain

within some bounded distance from the asymptote. In this section, we would like
to present some evidence of why any possible walk is likely to stay close to the
asymptote.

4.1. Random walks. We construct a random walk of primes in Z[
√

2] with
bounded step size k by starting at

√
2 and searching randomly for the next prime

within distance k with the previous one. We also require the next prime has a
larger Euclidean norm than the previous one to let the walk always spread further
away from the origin. Figure 6 shows a collection of such random walks with step
size
√

8 starting from the origin. It’s interesting to discover that nearly all of the
longest random walks are close to the asymptote x2− 2y2 = 0. When the starting
point is chosen randomly and not necessarily

√
2, the resulting random walks will

also have the same property. In figure 7, we have a collection of random walks
with step size

√
8 starting from 13 + 15

√
2. Again, the longest walk is very close

to the asymptote in the first quadrant.

4.2. Prime walks for small step size. We now describe the algorithm used to
visualize the actual prime walks for small step sizes (k =

√
2,
√

8) starting from
the origin. The algorithm consists of four main steps. The first step is to identify
all the primes in a disk of radius n, which is achieved by checking whether each
element in the disk satisfies Definition 1.2. Then, for each prime p, we find its
k−neighbors which are the primes within the distance k from p. Next, we form the
road network connecting all primes and their k−neighbors, and find the connected
component of

√
2 which is the prime closest to the origin. Finally, we can calculate

a prime walk with a bounded step size k starting from the origin.
Figure 8 shows a prime walk with a step size

√
2 from the origin, which is closed

and ends at 31 + 24i. When we change k to
√

8, as in Figure 9, the prime walk
does not end at x = 1500. This is not the best we can do but with this algorithm,
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Figure 6. Random walks with k =
√

8 starting at
√

2.

Figure 7. Prime walks with k =
√

8 starting at 13+15
√

2 and the
asymptote

√
2y − x = 0 (straight line).

the time spent will increase dramatically if we go further. There is a clear trend
that the longest walk is along the asymptote y = x/

√
2, which agrees with our

assumption in Theorem 3.1. We have the following conjecture which removes such
assumption.

Conjecture 4.1. It is impossible to perform a prime walk of a bounded step size
to infinity in Z[

√
2].

5. Conclusion

By estimating the number of primes along the asymptote y = x/
√

2, we show
that there is no prime walk to infinity with a bounded step size in Z[

√
2] if any

possible prime walk in Z[
√

2] is guaranteed to stay within some bounded distance
from y = x/

√
2. With some moat calculations, we demonstrate that the longest

prime walk tend to cluster along the asymptote, which leads to Conjecture 4.1.
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Figure 8. Prime walk with k =
√

2 from the origin.

Figure 9. Prime walk with k =
√

8 from the origin.

One direction for the future work is to prove Conjecture 4.1 without the assump-
tion as in Theorem 3.1 and generalize this result to Q[

√
2]. Figure 10, which we

refer from Dekker [D, p. 13], shows that primes in Q[
√

2] also cluster along the
asymptote x2 − 2y2 = 0 similar to the case in Z[

√
2], which suggests that there

also exists no possible prime walk to infinity with a bounded step size in Q[
√

2].
Another direction is to study prime walks in some quadratic integer rings which
is not a unique factorization domain such as Z[

√
5] since our proof of the main

theorem requires the ring to be a UFD.
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Figure 10. Primes (blue) and units (red) in Q[
√

2].
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