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Abstract. Zeckendorf proved that any positive integer has a unique
decomposition as a sum of non-consecutive Fibonacci numbers, here in-
dexed by F1 = 1, F2 = 2, Fn+1 = Fn + Fn−1. Motivated by this result,
Baird et al. [3] defined the two-player Zeckendorf game, in which two
players take turns acting on a multiset of Fibonacci numbers that al-
ways sums to N . The game terminates when no possible moves remain,
which importantly always happens, and the final player to perform a
move wins. Notably, Baird et al. [3] empirically studied the setting of
random games, in the sense that the game proceeds by always choosing
an available move uniformly at random, and conjecture that as the in-
put N → ∞, the distribution of random game lengths converges to a
Gaussian.

We study various combinatorial questions concerning the Zeckendorf
game. We found that the sum of the number of times certain moves
are performed is constant. We prove that the number of shortest games
on input N is at least

∏n−2
k=1 Cat(Fk), where n denotes the index of the

largest Fibonacci number in the Zeckendorf decomposition of N and
Cat(Fk) is the Fk

th Catalan number. The works of Baird, Epstein, Flint,
and Miller [3] and Cuzensa et al. [5] determined how to play in order to
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achieve the shortest and longest possible Zeckendorf game on a given in-
put N , respectively: we improve the current understanding of achievable
game lengths by establishing that for any input N , the range of possible
game lengths constitutes an interval of natural numbers; in other words,
for every input N , every game length between the shortest and longest
game lengths can be achieved by some Zeckendorf game.
Motivated towards the resolution of the Gaussianity conjecture, we also
further the study of probabilistic aspects of random Zeckendorf games.
In particular, we study two probability measures on the space of all Zeck-
endorf games on input N : the uniform measure, and the measure induced
by choosing moves uniformly at random at any given configuration. We
show under both measures that in the limit N → ∞, both players win
with probability 1/2 when playing under the random game setting. We
also find natural partitions of the collection of all Zeckendorf games of a
fixed input N , on which we observe weak convergence to a Gaussian in
the limit N → ∞. We conclude the work with many open problems.

1 Introduction

The Fibonacci numbers are widely considered to be the most interesting and
well-known recursive sequence in mathematics. In this article, we shall index the
Fibonacci numbers by F1 = 1, F2 = 2, and for general n ≥ 3, Fn = Fn−1+Fn−2.
Zeckendorf proved the following fundamental theorem: the decomposition in the
proceeding theorem is referred to as the Zeckendorf decomposition of the
positive integer N .

Theorem 1 ([9]). Every positive integer N can be decomposed uniquely into a
sum of distinct, non-consecutive Fibonacci numbers.

Inspired by this result, the authors of [3] constructed the two-player Zeck-
endorf game.

Definition 1 ([3]). Given input N ∈ N, the Zeckendorf game is played on a
multiset of Fibonacci numbers, initialized at S = {FN

1 }. On each turn, a player
can act on the multiset by performing one of the following moves if it is available.

1. If we have two consecutive Fibonacci numbers Fk−1, Fk for some k ≥ 2, then
we can replace them by Fk+1, denoted Fk−1 ∧ Fk → Fk+1.

2. If we have two instances of the same Fibonacci number Fk, then
(a) If k = 1, we can play F1 ∧ F1 → F2.
(b) If k = 2, we can play F2 ∧ F2 → F1 ∧ F3.
(c) If k ≥ 3, we can play Fk ∧ Fk → Fk−2 ∧ Fk+1.

The two players alternate turns until no playable moves remain. The last player
to move wins the game.

Observe that the moves of the game are consistent with the Fibonacci recurrence:
we either combine two consecutive terms, or split terms with multiple instances.
Perhaps more intuitively, we can understand the game as acting on a row of
bins, with bin k corresponding to the Fibonacci number Fk and its height being
the multiplicity of Fk in the multiset.
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1.1 Prior Work

The article [3] introduces the two-player Zeckendorf game, determine upper and
lower bounds on the length of a game on input N (showing in particular that the
game always terminates), and shows non-constructively that Player 2 has the
winning strategy for all N ≥ 2. In particular, they provide the following explicit
formula for the length of the shortest Zeckendorf game on input N , achieved by
only playing combine moves.

Theorem 2 ([3]). The number of combine moves in any Zeckendorf game
on input N is is N − Z(N). Furthermore, any such shortest game terminates
in N − Z(N) moves, where Z(N) is the number of terms in the Zeckendorf
decomposition of N .

The works [7] and [5] successively improved the upper bound of [3] on the length
of a Zeckendorf game on fixed input N ; the former article finds a deterministic
game which has longest possible length for input N , while the latter generalizes
this paradigm. We frequently make use of the following two results from [5] in
our arguments. We note that although the following result provides a strategy
to achieve a longest game, finding a convenient closed form for the length of
the longest game for non-Fibonacci input N remains open (with the case of
Fibonacci input treated by [5]).

Theorem 3 ([5]). The longest game on any N is achieved by applying split
moves or combine 1s (in any order) whenever possible, and, if there is no split or
combine 1 move available, combine consecutive indices from smallest to largest.

Theorem 4 ([5]). A Zeckendorf game on input N can be played with strictly
splitting and combine 1 moves if and only if N = Fk − 1 for some k ≥ 2.

Finally, we remark that analogous two-player games have been developed for
other recurrences: the work [2] extends [3] by defining and studying such games
for recursive sequences defined by linear recurrence relations of form Gn =∑k

i=1 cGn−i (c = k − 1 = 1 yielding the Fibonacci numbers), again giving lower
and upper bounds on game lengths (including showing termination) and show-
ing non-constructively that Player 2 has a winning strategy, while [4] similarly
studies recurrences of form an+1 = nan + an−1.

1.2 Notation and Conventions

We let C1 denote the combine move F1∧F1 → F2, and (for k ≥ 2) let Ck denote
the combine move Fk−1 ∧ Fk → Fk+1. Let S2 denote the splitting move 2F2 →
F1 ∧ F3, and (for k ≥ 3) let Sk denote the splitting move 2Fk → Fk−2 ∧ Fk+1.
We prefix a particular type of move with M to denote the number of such moves
(e.g. MC1 denotes the number of C1’s in a game).

We let Z(N) denote the number of terms in the Zeckendorf decomposition
of N . We loosely refer to the number of instances of Fk as the height of bin
k, denoted hk; it will usually be clear from context at which point in the game
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the quantity hk refers to. When discussing the height of bin k after a specific
number m of moves in the game, we notate this by hk(m). For λ ∈ N, we shall
also occasionally use the shorthand [λ] = {1, 2, . . . , λ}.

In this work, we shall generally work under the assumption that Fn ≤ N <
Fn+1 for some n ∈ N (i.e., n is the index of the largest Fibonacci number that
is no larger than N)8. While proving Theorem 7, we occasionally refer to moves
C1, S2, . . . , Sn−1 as Type A moves, and all other moves (namely, moves Ck

for k ≥ 2) as Type B moves. The work [5] also achieved an understanding
of precisely when playing strictly Type A moves throughout the whole game is
possible.

Finally, the present article furthers the study of random Zeckendorf games.
Here, we let ΩN denotes the (finite) collection of all Zeckendorf games on in-
put N , with FN = 2ΩN the associated σ-algebra, and express a given Zeckendorf
game G ∈ ΩN as a (finite) sequence of λ moves, written as G = (M1,M2, . . . ,Mλ).
We study two probability measures to complete the space (ΩN ,FN ): the uniform
measure µN , defined by

µN (G) =
1

|ΩN |
for all G ∈ ΩN

and the probability measure PN induced by choosing, at every configuration
along a given game, uniformly at random among available moves, defined by

PN (G) =

λ∏
k=1

1

num. playable moves after (M1, . . . ,Mk−1)

for G = (M1, . . . ,Mλ) ∈ ΩN . All of the results we derive in this context apply
to both probability spaces.

1.3 Main Results

The work [5] determines an upper bound on the length of a game on input N .
We improve this upper bound using similar techniques as in the work [3].

Theorem 5. The length of a Zeckendorf game on input N is upper-bounded by⌊
φ2N − ZI(N) − 2Z(N) + (φ− 1)

⌋
where ZI(N) represents the index sum of the Zeckendorf decomposition of N .
Furthermore, the bound is sharp for infinitely many N .

Much of our work was inspired by the following conjecture (the only one
still unresolved in the paper it was introduced in), initially posed by [3], which
concerns distributional properties of the length of random Zeckendorf games on
input N in the limit N → ∞.

8 This is why we have elected to deviate from notation traditionally used in papers
concerning this game.
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Conjecture 1 ([3, 7]). In the limit N → ∞, the distribution of the number of
moves in a random Zeckendorf game on input N converges to a Gaussian, with
expectation and variance approximately 0.215N .9

As such, many of our main results have largely arisen from attempting to under-
stand those aspects of Zeckendorf games which may potentially aid in resolving
the aforementioned conjecture (and in striving to determine what such aspects
are). First, we have the following lower bound on the number of shortest Zeck-
endorf games of length N . Intuitively, if the distribution of random game lengths
were indeed Gaussian, this should be an extreme underestimate compared to the
number of ways to achieve other game lengths (shortest games involve the fewest
number of decisions, so one might naturally expect that the probability of achiev-
ing one via a random game is larger than longer games), yet it still explodes in
N .

Theorem 6. Let Fn ≤ N < Fn+1. Then the number of shortest Zeckendorf
games with input N is at least

∏n−2
k=1 Cat(Fk), where Cat(Fk) denotes the Fk

th

Catalan number.

The shortest game and longest game were studied in [3] and [5], respectively.
It is natural to ask whether every game length between the shortest and longest
game length is achievable: we resolve this in the affirmative.

Theorem 7. For any input N to the Zeckendorf game, let M denote the length
of the longest Zeckendorf game with input N . Then for any m satisfying N −
Z(N) ≤ m ≤ M , there exists a Zeckendorf game of length m on input N . In
other words, the set of achievable game lengths constitutes an interval in the
natural numbers.

We also study the winning odds of players in the limit N → ∞ of infinite
input when studying random Zeckendorf games, for which one might expect that
both players win with probability 1/2 in the limit if if Conjecture 1 holds as the
variance of the conjectured Gaussian grows with N . We establish that this is
indeed true by proving a much more general result: we can understand Theorem
8 as saying that in the limit of infinite input, a Z-player random Zeckendorf game
is fair, in the sense that all Z players have the same probability of winning.

Theorem 8. For any integer Z ≥ 1 and z ∈ {0, 1, . . . ,M − 1}, we have that

lim
N→∞

µN (Game length ≡ z mod Z) = lim
N→∞

PN (Game length ≡ z mod Z) =
1

Z
.

9 The authors of [3] posed this conjecture based on numerical data gathered from
9,999 simulations of a random game with n = 18. The authors of [7] gathered
further numerical evidence with a sample of 1,000 games with n = 1, 000, 000. We
ran a brute force enumeration over all possible games for n ≤ 18 and found the
distribution of lengths appeared to be Gaussian. This is a slightly different problem
than the random game though is closely related.
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Taking Z = 2 in Theorem 8 above yields the following result for the classical
two-player Zeckendorf game.

Theorem 9. For the two-player Zeckendorf game, in the limit N → ∞ under
both probability measures µN and PN , Player 1 and Player 2 are equally likely
to win. Explicitly,

lim
N→∞

µN (Player 1 wins) = lim
N→∞

µN (Player 2 wins) =
1

2
,

lim
N→∞

PN (Player 1 wins) = lim
N→∞

PN (Player 2 wins) =
1

2
.

Finally, we establish that there exist natural ways to partition the collection
of Zeckendorf games ΩN on input N so that the distribution of game lengths
over the corresponding classes are nearly Gaussian with high probability in the
limit N → ∞. The construction of the subsets RP

N ⊂ ΩN and RS
N ⊂ ΩN , and

the sets AN (R), is elaborated in Propositions 5 and 6.

Theorem 10. For R ∈ RP
N , let FR

N (x) : R → [0, 1] denote the distribution
function corresponding to game lengths in AN (R) over the conditional distri-
bution induced by PN , normalized to have expectation 0 and variance 1. Let
Φ : R → [0, 1] denote the distribution function of the standard normal. Then for
any ϵ > 0,

lim
N→∞

PN

(
sup
x∈R

∣∣∣FR
N (x) − Φ(x)

∣∣∣ ≥ ϵ

)
= 0.

Similarly, for R ∈ RS
N , let FR

N (x) : R → [0, 1] denote the distribution function
corresponding to game lengths in AN (R) over the conditional distribution in-
duced by PN , normalized to have expectation 0 and variance 1. Then for any
ϵ > 0,

lim
N→∞

PN

(
sup
x∈R

∣∣∣FR
N (x) − Φ(x)

∣∣∣ ≥ ϵ

)
= 0.

The analogous results hold for the uniform measure µN .

2 Structural Results

In this section, we include some straightforward, but fundamental results con-
cerning the nature of the Zeckendorf game; some of these will be invoked in
proofs of deeper theorems.

2.1 Combinatorial Observations

We begin by exploring some basic properties of the Zeckendorf game, observ-
able by studying deterministic subroutines of moves. The following simple result
mirrors techniques in [3]
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Proposition 1. Consider any decomposition of N into a sum of (possibly non-
distinct, non-consecutive) Fibonacci numbers: this decomposition can be achieved
via a sequence of combine moves from the starting configuration of the Zeckendorf
game.

Proof. We “play the game in reverse”: consider the configuration corresponding
to this decomposition, and construct a sequence of moves by always taking the
game piece not in the first bin (i.e., F1) and farthest out, and replace it as the
result of a combine move. Specifically, if k ≥ 3, then replace Fk by {Fk−2, Fk−1};
if k = 2, replace with 2F1. Then reverse all the moves to get a Zeckendorf game
from the initial state to this state.

The following is an easy consequence of Theorem 3 above, which states that
the longest game paradigm from the starting position extends to intermediate
game positions on input N which are given by converting Fn − 1 instances of
F1 = 1 into the Zeckendorf decomposition of Fn − 1, where n denotes the index
of the largest Fibonacci number in the Zeckendorf decomposition of the input
N .

Lemma 1. Let n denote the index of the largest Fibonacci number in the Zeck-
endorf decomposition of the input N . A longest Zeckendorf game from an inter-
mediate configuration given by converting Fn − 1 instances of 1 into the Zeck-
endorf decomposition of Fn − 1 is given by greedily playing any Type A move
whenever possible, and if no such Type A move can be played, play the available
Type B move with the smallest index.

Proof. If a game achieved by playing Type A moves whenever possible from this
configuration were not maximal (i.e., there existed a Zeckendorf game of strictly
larger length), then by initially playing the longest game on input Fn − 1 via all
Type A moves (possible by Theorem 4), we can play the game exactly accord-
ing to Theorem 3 but fail to achieve a game of maximal length, contradicting
Theorem 3.

Using similar techniques as in [3], we derive the following results in order to
improve the upper bound found in [5].

Lemma 2. Let n be the largest summand in the Zeckendorf decomposition of
N , we get that for any 2 ≤ k ≤ n− 1, the following sum is constant:

MSk + MCk + MCk+1 + · · · + MCn−1.

Proof. Consider the following relabeling of the board:

F1 · · · Fk Fk+1 − 1 Fk+2 − 2 Fk+3 − 4 Fk+4 − 7 · · ·

where after the kth bin, the value of a bin is equal to one less than the sum
of the values of the two bins which precede it. We get that only the moves
Sk, Ck, Ck+1, . . . can change the weighted sum of the tokens by the relabeled
values, and each of these moves reduce the sum by 1. Since we have a fixed initial
sum N and a fixed ending sum depending on the Zeckendorf Decomposition of
N , we get that the sum of those moves must be constant regardless of how the
game is played.
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Lemma 3. For any Zeckendorf game starting with N tokens,

MC1 −MS2 ≈ (2 − φ)N

with approximation error ≤ φ− 1.

Proof. Similarly, we prove this with a relabeling of the board

2 3 5 · · · Fk+1 · · ·

and observing that the sum of token values goes from 2N to ∼ φN with the sum
decreasing by 1 only by performing C1 and increasing by 1 only by performing
S2. Note that the final sum is equal to shifting each Zeckendorf summands of
N forward by one, which is approximated by multiplying each by φ. By Bi-

net’s formula, we have Fk = φk+1−(−1/φ)k+1

√
5

due to how we index the Fibonacci

sequence. Thus, the error of approximating the summand Fk+1 with φFk is∣∣∣∣∣ (φk+1 − (−1/φ)k+1)φ− (φk+2 − (−1/φ)k+2)√
5

∣∣∣∣∣ =
φ2 + 1

φk+2
√

5

The largest error happens when N = F1 + F3 + F5 + · · · with error at most

φ2 + 1

φ3
√

5

 ∞∑
i=0

1

φ2i

 =
φ2 + 1

φ3(1 − 1/φ2)
√

5
=

1

φ
= φ− 1

which yields the desired.

As a corollary, we prove Theorem 5.

Theorem 5. The length of a Zeckendorf game on input N is upper-bounded by⌊
φ2N − ZI(N) − 2Z(N) + (φ− 1)

⌋
where ZI(N) represents the index sum of the Zeckendorf decomposition of N .
Furthermore, the bound is sharp for infinitely many N .

Proof. Using the relabeling of the board given by

3 4 5 · · · k+2 · · ·

we get that

2MC1 + 2MC2 + 3MC3 + 4MC4+ · · · = 3N − 2Z(N) − ZI(N)

+MS3 + MS4+ · · ·

Applying Lemma 3, we get

MC1 + 2MC2 + 3MC3 + 4MC4+ · · · ≤ 3N − 2Z(N) − ZI(N)

+(2 − φ)N − (φ− 1) + MS2 + MS3 + MS4+ · · ·
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Thus, if we subtract the excess MC2 + 2MC3 + 3MC4 + · · · from the left hand
side, we get the upper bound

MC1 + MC2 + MC3 + MC4+ · · · ≤ (1 + φ)N − 2Z(N) − ZI(N) + (φ− 1)

+MS2 + MS3 + MS4+ · · ·

which we round down as the number of all moves performed is an integer. Note
that if we consider N = Fn − 1 then we get that there are no C2, C3, performed
within the longest game. Furthermore, if we consider N = F2n − 1, then our
approximation error is less than 1 and thus must be sharp after rounding down.

Recall that [3] proved non-constructively that Player 2 always has a winning
strategy for any N ≥ 3: finding such a winning strategy remains open. It is gen-
erally believed ([8]) that the key to such a strategy lies in understanding “parity
swaps”: distinct sequences of moves of differing length which yield the same ef-
fect on the board. The following definition follows from the easy observation that
whenever playable, the sequences of moves

Sk → Sk−1 → · · · → Sk−ℓ+1 → Ck−ℓ Ck−ℓ → Sk−ℓ+1 → · · · → Sk−1 → Sk

both have the same effect on the board as the move Ck, for some k ≥ 2.

Definition 2. For any ℓ ≥ 0 and k ≥ 2, call a sequence of moves of form
Sk → Sk−1 → · · · → Sk−ℓ+1 → Ck−ℓ an (ℓ, k)-prefix, and a sequence of moves
of form Ck−ℓ → Sk−ℓ+1 → Sk−ℓ+2 → · · · → Sk an (ℓ, k)-suffix. We call an
(ℓ, k)-prefix a prefix of Ck, and an (ℓ, k)-suffix a suffix of Ck.

It should be emphasized that an (ℓ, k)-prefix or (ℓ, k)-suffix corresponds to an
equivalent action as the combine move Ck, for all lengths ℓ ≥ 0 and k ≥ 2;
the combine move is thus “expanded” via a sequence of ℓ splitting moves with
contiguous indices. The next result captures the intuition that the variation in
game lengths is entirely due to the parity swaps described in Definition 2, namely
by describing arbitrary Zeckendorf games via permutations of suffixes.

Proposition 2. Any Zeckendorf game on input N can be achieved by taking a
shortest game, expanding combine moves via suffixes, then shifting the splitting
moves.

Proof. For an arbitrary Zeckendorf game, greedily take the earliest split move
of a game, move it back to be played as early as possible, and compress it into a
combine move. Proceed similarly until we only have combine moves, from which
we achieve the original game by reversing the compressions and playing split
moves later.

We can interpret the statement of Proposition 2 as saying that we can greedily
embed an arbitrary Zeckendorf game on input N into a shortest game on input
N in a natural way.



10 Cheigh et al.

2.2 Shortest Games

Proposition 2 suggests that a study of shortest Zeckendorf games might be fruit-
ful, as any particular Zeckendorf game can be understood as an extension and
permutation of a particular shortest game. We first observe the following.

Proposition 3. Shortest games are exactly those games which strictly use com-
bine moves. Furthermore, such a game exists for any input N , and the multiset
of combine moves for any such shortest game is unique.

Proof. A move decreases the number of pieces by at most one, so N − Z(N)
lower-bounds the number of moves necessary, achieved exactly by those games
using strictly combine moves; such games exist by Proposition 1. To establish
uniqueness of the multiset of combine moves for any such game, say Fn ≤ N <
Fn+1, and study bin k for 1 ≤ k ≤ n. Moves affecting hk are known precisely:
letting the Zeckendorf decomposition of N be denoted (z1, z2, . . . , zn) (where
zi ∈ {0, 1}), this yields the system

N − 2MC1 −MC2 = z1

MC1 −MC2 −MC3 = z2

· · ·
MCn−3 −MCn−2 −MCn−1 = zn−2

MCn−2 −MCn−1 = zn−1

MCn−1 = zn = 1

from which it easily follows that this system must have a unique solution.

Proposition 4. For n = n(N) and any δ ∈ (0, 1),

lim
N→∞

max
G∈ΩN

#{Ck ∈ G, k > δn}
#{Combine moves in G}

= lim
N→∞

max
G∈ΩN

#{Ck ∈ G, k > δn}
N − 1

= 0.

Proof. For G ∈ ΩN , consider all combine moves Ck with k > δn; each such
combine move corresponds to a particular token “jumped,” for which we consider
all combine moves with index ≤ δn that led this token to land in this position,
of which there must be at least ⌊δn/2⌋. The sets of combine moves with index
≤ δn corresponding to distinct combine moves with index > δn are observed to
be disjoint, so

#{Ck ∈ G, k > δn}
N − 1

≤ 1

⌊δn/2⌋ + 1

which vanishes as N → ∞.

Proposition 3 yields the following interesting lower bound10 on the number
of shortest Zeckendorf games with input N .

10 We suspect the lower bound of Theorem 6 to be somewhat loose, as much is lost
when crudely pursuing the interweaving of the Dyck paths π2, π3, . . . , πn−1 (see the
proof for details).
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Theorem 6. Let Fn ≤ N < Fn+1. Then the number of shortest Zeckendorf
games with input N is at least

∏n−2
k=1 Cat(Fk), where Cat(Fk) denotes the Fk

th

Catalan number.

Proof. It suffices to study N = Fn, since the number of distinct shortest Zeck-
endorf games is increasing in N : for input N ̸= Fn, one can first play a shortest
Zeckendorf game on input Fn, then proceed by always playing the rightmost
available combine move to achieve a shortest game on input N by Proposi-
tion 3. (See Lemma 4, where we understand this as incrementing instances
of F1s after playing a shortest game on Fn.) The Zeckendorf decomposition is
(z1, z2, . . . , zn−1, zn) = (0, 0, . . . , 0, 1), where zi denotes the number of instances
of Fi in the decomposition. By Proposition 3, there exists a unique multiset of
combine moves constituting a shortest game: by solving the system above, this
multiset is defined by

(MC1,MC2, . . . ,MCn−1) = (Fn−2, Fn−3, Fn−4, . . . , F3, F2, F1, F0)

where we let F0 = 1. A permutation of these moves constitutes a game if and
only if every move is valid, i.e., no move would force the height of any bin to
become negative. Specifically, at any intermediate point in the sequence, the
number of C1’s played is no less than the sum of the number of C2’s and C3’s
played (bin 2 is nonnegative), the number of C2’s is no less than the number of
C3’s and C4’s played (bin 3 is nonnegative), and so on, to the number or Cn−2’s
being no less than the number of Cn−1’s played (bin n− 1 is nonnegative). (We
need not study bin 1 or bin n, which will necessarily always have nonnegative
height.)

Let us restrict our attention to the moves C1, C2, C3 (moves affecting the
height of bin 2): the number of permutations of these moves such that the num-
ber of C1’s played being no less than the sum of the number of C2’s and C3’s
performed holds at any point in the game is in bijective correspondence with (up-
down) Dyck paths on j = Fn−2 (C1 ↔ U ; C2, C3 ↔ D), the number of which is
Cat(Fn−2). Similarly, by studying moves affecting bin k ≥ 2, we achieve bijective
correspondences with Dyck paths on j = Fn−k.

For any choice of Dyck paths π2, π3, . . . , πn−1 on j = Fn−2, Fn−3, . . . , F1,
respectively, there exists a shortest Zeckendorf game on input N where the or-
dering of the relevant moves is consistent with the bijections described above.
To construct such a game, begin by placing 2Fn−2 moves along a line, label-
ing Fn−2 of them as C1 in a manner consistent with π2 (C1 ↔ U). Among
the Fn−2 = Fn−3 + Fn−4 unlabeled moves, label Fn−3 of them as C2 (impor-
tantly, including the first D move) in a manner consistent with π3 (not too
many unlabeled moves between consecutive instances of C2) and the other Fn−4

as C3. Now add Fn−5 instances of C4 along this line to complete π3 (include
all missing C4 ↔ D moves) while respecting π4 (not too many unlabeled moves
between consecutive instances of C3). Specifically, construct a labeling of the
Fn−3 = Fn−4 + Fn−5 D moves in π3 with Fn−4 C3’s and Fn−5 C4’s such that
the first D is labeled C3, and there are not too many unlabeled D moves between
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consecutive instances of C3 (with respect to π4). Insert C4’s to be adjacent to
established instances of C2 and C3 to be consistent with this labeling.

Continue by similarly adding, for k ≥ 5, Fn−k−1 instances of Ck, completing
πk−1 while respecting πk, until we add F0 = 1 instance of Cn−1 such that we
complete πn−1. This results in a shortest Zeckendorf game with the ordering of
the relevant moves being consistent with π2, π3, . . . , πn−1.

3 The Set of Possible Game Lengths Constitute An
Interval

In this section, we prove Theorem 7, which we restate below.

Theorem 7. For any input N to the Zeckendorf game, let M denote the length
of the longest Zeckendorf game with input N . Then for any m satisfying N −
Z(N) ≤ m ≤ M , there exists a Zeckendorf game of length m on input N . In
other words, the set of achievable game lengths constitutes an interval in the
natural numbers.

We begin by establishing some intermediate results that we shall invoke in the
proof of the main theorem. In the first lemma, in discussing the position given
by the Zeckendorf decomposition of N − 1, we refer to the terminal position of
the Zeckendorf game when played on input N − 1.

Lemma 4. Consider the Zeckendorf game on input N , satisfying Fn ≤ N <
Fn+1, from the position given by the Zeckendorf decomposition on N − 1 (as
specified above) with an additional instance of 1. There is a unique sequence of
moves from this configuration to the Zeckendorf decomposition of N , all of which
are combine moves. Furthermore, the number of such combine moves performed
is bounded by ⌊n/2⌋.

Proof. Since no moves can be played from the Zeckendorf decomposition on
N−1, any playable move from this position (on input N) is necessarily either C1

or C2, possible if and only if F1 = 1 or F2 = 2 is in the Zeckendorf decomposition
of N−1, respectively (such cases are disjoint, since the Zeckendorf decomposition
on N −1 does not contain consecutive Fibonacci numbers); otherwise, no moves
can be played. We study both cases.

– If the Zeckendorf decomposition of N − 1 contains an instance of F1, then
after playing C1, it is easy to see that the only possible move is C3 (iff the
decomposition of N − 1 contains an F3), then C5 (iff the decomposition of
N − 1 contains an F5), and so on, until we exhaust all playable moves.

– If the Zeckendorf decomposition of N − 1 contains an instance of F2, then
after playing C2, it is easy to see that the only possible move is C4 (iff the
decomposition of N − 1 contains an F4), then C6 (iff the decomposition of
N − 1 contains an F6), and so on, until we exhaust all playable moves.
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In both cases, it is straightforward to confirm that we cannot play strictly more
than ⌊n/2⌋ such combine moves, as otherwise there must be an instance of Fk for
k either n + 1 or n + 2 after completing this sequence of moves, a contradiction
on N < Fn+1.

We shall also frequently use the following lemma. Intuitively, this states that
if we have isolated the Zeckendorf game to a suffix of bins all of height 0 or 1,
and this suffix is separated from earlier bins by a bin of height 0 (say bin k),
then we can ignore bins 1, . . . , k for the remainder of the game.

Lemma 5. For some 1 ≤ k ≤ n, let (x1, x2, . . . , xk, xk+1, . . . , xn) denote the
heights of bins 1, . . . , n at some point during a Zeckendorf game, with xi denoting
the height of bin i. Assume xi ∈ {0, 1} for k ≤ i ≤ n, xk = 0, no playable moves
involving bins 1, . . . , k exist, and we play according to Theorem 3. Then heights
x1, . . . , xk remain fixed for the rest of the game.

Proof. We prove this on k = n− j by induction on 0 ≤ j ≤ n−2. The statement
trivially holds if j ∈ {0, 1, 2}; assuming it for all values less than j ≥ 3, if
xk+1 = 0 or xk+2 = 0 we can apply the induction hypothesis to j − 1 or j − 2,
respectively, so assume xk+1 = xk+2 = 1. Take r ≤ n to be largest possible such
that xk+1 = · · · = xr = 1: the game proceeds by playing according to Theorem
3, i.e., by playing the sequence of moves

(Ck+1 → Sk+3 → Sk+4 → · · · → Sr) → (Ck+1 → Sk+3 → · · · → Sr−2) → · · ·

where the final subsequence of moves, either Ck+1 or Ck+1 → Sk+3, depends on
the parity of r − k. It follows immediately by studying the moves involved that
x1, . . . , xk remain unchanged during this sequence. Following this sequence, we
have xr = 0: invoke the induction hypothesis on k = r (i.e., n−r < j) afterwards
to complete the proof.

We now proceed with the proof of Theorem 7.

Proof (Proof of Theorem 7). We have confirmed this statement for N ≤ F6−1 =
12 via a computer check. Thus, for N ≥ F6 = 13, assume the statement holds
for all input sizes at most N − 1: we aim to show the result holds for N . We
explicitly specify that Fn ≤ N < Fn+1.

Let I ′1 denote the interval (by induction hypothesis) of possible Zeckendorf
game lengths for input N − 1: by Lemma 4, if we include an additional instance
of F1 to the Zeckendorf decomposition of N − 1, there is a sequence of combine
moves from the resulting configuration to the Zeckendorf decomposition of N .
On input N , consider initially playing the Zeckendorf game (to completion) as
if the input were N − 1, then executing this sequence of moves to terminate
the game. Let I1 = [L1, R1] denote the interval I ′1 shifted by the length of this
sequence: by the preceding description, it follows that every game length in I1
is achievable for input N . Furthermore, L1 = N − Z(N), since the game length
L1 as studied above results from playing strictly combine moves (see Lemma
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4), which necessarily yields a shortest game by Proposition 3, and for which the
length is N − Z(N) by Theorem 2.

By Theorem 4, it is possible to play the Zeckendorf game on input Fn − 1
strictly using Type A moves. Let I ′2 denote the interval (by induction hypothesis)
of possible Zeckendorf game lengths for input Fn − 1 ≤ N − 1: on input N ,
consider initially playing the Zeckendorf game (to completion) as if the input
were Fn − 1, then executing the longest possible sequence of moves from the
resulting position to terminate the game. Let I2 = [L2, R2] denote the interval
I ′2 shifted by the number of moves of this longest sequence. By Theorem 3, R2

is necessarily the length of the longest Zeckendorf game on input N , since the
above approach is consistent with playing Type A moves whenever possible.

Thus, it suffices to show that L2 ≤ R1 to complete the induction and establish
the theorem, as this yields that I1 ∪ I2 = [L1, R2] is an interval of achievable
game lengths on input N , with the endpoints being the shortest and longest
possible game lengths for input N .

The known game with length R1 corresponds to playing the longest game on
input N − 1, then performing the unique sequence of combine moves to achieve
the Zeckendorf decomposition of N ; by Theorems 3 and 4, we can take the first
phase of this game (longest game on input N − 1) as playing the longest game
on input Fn−1, then playing the longest remaining game (on input N −1). The
known game with length L2 corresponds to playing the shortest game on input
Fn−1, then playing the longest remaining game until we achieve the Zeckendorf
decomposition of N . By Lemma 1, we can take the second phase of this game
(playing the longest remaining game) as playing consistent to Theorem 3 until
achieving the Zeckendorf decomposition.

We henceforth denote these games with length R1 and L2 by G1 and G2,
respectively, which we depict as follows; “longest on k” indicates that during
this phase, we think of the game as being played on input k, and leaving the
appropriate number of instances of F1 = 1 in the first bin fixed.

G1 :
[
(Longest on Fn − 1) → (longest remaining on N − 1)

]
→ (combine on N)

G2 : (Shortest on Fn − 1) → (longest remaining on N)

Denoting the difference between the lengths of the longest and shortest games
on input Fn − 1 by ℓ(n), game G1 took exactly ℓ(n) more moves than game G2

on input Fn − 1. However, G2 may take longer afterwards to finish the game on
input N : we aim to show that the discrepancy in the game lengths after initially
playing on input Fn−1 is dominated by ℓ(n), from which we conclude that G2 is
no longer than G1, i.e., that L2 ≤ R1. In particular, it certainly suffices to show
that the first two segments of G1 involve at least as many moves as the first two
segments of G2 to establish the result: this is how we shall proceed.

By Theorem 3 and Lemma 1, we can choose how we would like to play a
longest game after playing the game on input Fn − 1 (specifically, we can fix an
ordering on Type A moves which determines what we play when given multiple
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Type A moves): until the two games diverge11, pursue a longest remaining game
by always playing the rightmost Type A move whenever a Type A move is
playable. Following this ordering on Type A moves, we study the first move on
which games G1 and G2 deviate. This move is necessarily either C1 or C2 in game
G2 (the move must not have been playable in game G1, and thus must involve
bin 1), and by the ordering on Type A moves established before, bins 2, 3, . . . , n
are either 0 or 1 when it is played. We perform casework on which move the two
games deviate on.

Case 1: Move is C1. In game G1, this configuration can be represented by
the vector (1, x2, x3, . . . , xn), where xi ∈ {0, 1} for i ≥ 2 denotes the height of the
ith bin (the first entry would be a 2 for game G2). Let us first study the setting
x2 = 0, and consider what happens after game G2 plays C1. If x3 = 0, then by
Lemma 5 applied to k = 3, both games are consistent on bins 4, . . . , n so that
game G2 takes one more move than G1 to finish. Otherwise (i.e., x3 = 1), Lemma
5 on k = 2 yields that game G1 works strictly over bins 3, . . . , n, and Lemma
5 on k = 1 yields that game G2 works strictly over the bins 2, . . . , n (i.e., bin
1 becomes irrelevant). Thus, the resulting setting corresponds exactly to Case
2 over the n − 1 bins 2, . . . , n; here, we have an upper bound of n − 1 for the
number of additional moves G2 takes, for a total upper bound of (n− 1) + 1 = n
(with the C1 in G2) for the number of additional moves G2 takes.

Thus, assume x2 = 1, and let position k + 1, with k ≥ 2, denote the first
index that is 0. Study the length-k prefix (1, 1, 1, . . . , 1) (in game G1; first entry
is 2 in game G2) with no zero entries; we can exactly describe how the two games
proceed when playing according to the longest game paradigm of Theorem 3.

– Game G1: We play the sequence of moves

(C2 → S3 → S4 → · · · → Sk) → (C2 → S3 → · · · → Sk−2) → · · ·

continuing similarly until one of the first two bins is empty (so we cannot
play C2). In general, shorten the contiguous 1s down two indices and repeat
until one of the first two bins is empty (the bin which ends up empty depends
on the parity of k).

– Game G2: We play the sequence of moves

(C1) → (S2) → (S3 → C1) → (S4 → S2) → · · ·

continuing similarly until we play all splitting moves Sj for j ≤ k. In general,
when first playing Sj , we play the sequence Sj → Sj−2 → · · · (final move is
S2 or C1, depending on parity of j), and this continues until position k.

After these subroutines, it is straightforward to confirm that bin k is empty, bins
k + 1, . . . , n− 1 are all 0 or 1 with heights agreeing between G1 and G2, and no
playable moves involving bins 1, . . . , k exist. Thus, both games proceed strictly

11 We shall assume this does happen, as otherwise the lengths of the second segments
of G1 and G2 are equal, and thus the inequality L2 ≤ R1 is immediate.
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over bins k + 1 to n− 1 by Lemma 5, and perform the same sequence of moves;
we need only compute the difference in the lengths of these two subroutines on
this prefix of length k.

– The length of the sequence of moves in the game of length L2 is{
2
∑(k−1)/2

j=1 j + k+1
2 k odd,

2
∑k/2

j=1 j k even.

– The length of the sequence of moves in the game of length R1 is{∑(k−1)/2
j=1 (k − 2j + 1) = 2

∑(k−1)/2
j=1 j k odd,∑k/2

j=1(k − 2j + 1) =
∑k/2

j=1(2j − 1) = 2(
∑k/2

j=1 j) −
k
2 k even.

We can thus study this difference exactly: the difference is given by
[
2
∑(k−1)/2

j=1 j + k+1
2

]
− 2

∑(k−1)/2
j=1 j = k+1

2 = ⌈k/2⌉ k odd

2
∑k/2

j=1 j −
∑k/2

j=1(2j − 1) = k
2 k even

so in general, the difference is bounded by ⌈n/2⌉ ≤ n.

Case 2: Move is C2. In game G1, this configuration can be represented by
the vector (0, x2, x3, . . . , xn), where xi ∈ {0, 1} for i ≥ 2 denotes the height of the
ith bin (the first entry would be a 1 for game G2) and x2 = 1 (since otherwise
C2 cannot be played in game G2). Let us first study the setting x3 = 0, and
consider what happens after game G2 plays C2. Applying Lemma 5 on k = 3
for G1 and k = 2 for G2 yield that both games work strictly over bins 3, . . . , n,
and this reduces to the same setting on the suffix of bins 3, . . . , n. Say we reduce
the problem to a suffix with length reduced by 2 in this manner m times, so we
study the case where x3 = 1 over n − 2m bins: by extracting the bound in the
following argument (i.e., the x3 = 1 case) for the number of additional moves G2

takes, this yields a bound of m + (n− 2m) ≤ n.
Thus, assume x3 = 1, and let position k + 1, with k ≥ 3, denote the first

index that is 0. Study the length-k prefix (0, 1, 1, . . . , 1) (in game G1; first entry is
1 in game G2): we can explicitly describe how the two games necessarily proceed
when playing according to the longest game paradigm.

– Game G1: We play the sequence of moves

(C3 → S4 → S5 → · · · → Sk) → (C3 → S4 → · · · → Sk−2) → · · ·

continuing similarly until either bin 2 or bin 3 is empty (so we cannot play
C3). In general, shorten the contiguous 1s down two indices and repeat until
either bin 2 or bin 3 is empty (the bin which ends up empty depends on the
parity of k).

– Game G2: This is exactly the same as game G1 in Case 1.
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After these subroutines, it is straightforward to confirm that bin k is empty, bins
k + 1, . . . , n− 1 are all 0 or 1 with heights agreeing between G1 and G2, and no
playable moves involving bins 1, . . . , k exist. Thus, both games proceed strictly
over bins k + 1 to n− 1 by Lemma 5, and perform the same sequence of moves;
we need only compute the difference in the lengths of these two subroutines on
this prefix of length k.

The length of the sequence of moves in game G2 was computed in Case 1,
while the length of the sequence of moves in game G1 is{∑(k−1)/2

j=1 (k − 2j) =
∑(k−1)/2

j=1 (2j − 1) = 2(
∑(k−1)/2

j=1 j) − k−1
2 k odd∑(k−2)/2

j=1 (k − 2j) =
∑(k−2)/2

j=1 (2j − 1) = 2(
∑(k−2)/2

j=1 j) − k−2
2 k even.

so the difference is given by2
∑(k−1)/2

j=1 j −
[
2(
∑(k−1)/2

j=1 j) − k−1
2

]
= k−1

2 = ⌊k/2⌋ k odd[
2(
∑k/2

j=1 j) −
k
2

]
−
[
2(
∑(k−2)/2

j=1 j) − k−2
2

]
= k − 1 k even

so in general, the difference is bounded by max{⌊k/2⌋, k − 1} ≤ n− 1 ≤ n.

We observe that in both cases, the difference in the lengths of the second
segments of these games is bounded by n. We now show that the difference ℓ(n)
between the lengths of the longest and shortest games on input Fn − 1 is at
least n for all n ≥ 6. One can confirm, by playing a longest game according
to Theorem 3 on input N = F6 − 1 = 12, that ℓ(6) = 17 − (12 − Z(12)) =
17 − 9 ≥ 6; it is similarly easy to confirm that ℓ(4), ℓ(5) ≥ 1. Since we have
Fn+1 − 1 = (Fn − 1) +Fn−1 ≥ (Fn − 1) + (Fn−1 − 1), one can pursue a game on
input Fn+1 − 1 by first playing a game on input Fn − 1, then a game on input
Fn−1 − 1, and finally performing some fixed sequence of moves to completion.
By combining respective shortest games and longest games on input Fn − 1 and
input Fn−1 − 1, we observe that ℓ(n + 1) − ℓ(n) ≥ 1 for any n ≥ 6, and thus
ℓ(n) ≥ n for all n ≥ 6 (recall ℓ(6) ≥ 6).

Therefore, we have that for all N ≥ F6 = 13,

R1 − L2 ≥ℓ(n) − {(len. longest remaining on N)

− (len. longest remaining on N − 1)}
≥ℓ(n) − n ≥ ℓ(n) − ℓ(n) = 0

from which we conclude that L2 ≤ R1.

4 Winning Odds in the Limit N → ∞

We dedicate this section to establishing Theorem 9, which follows as an imme-
diate corollary of Theorem 8: recall that Theorem 8 is given as follows.
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Theorem 8. For any integer Z ≥ 1 and z ∈ {0, 1, . . . ,M − 1}, we have that

lim
N→∞

µN (Game length ≡ z mod Z) = lim
N→∞

PN (Game length ≡ z mod Z) =
1

Z
.

The case Z = 2 gives Theorem 9.

Theorem 9. For the two-player Zeckendorf game, in the limit N → ∞ under
both probability measures µN and PN , Player 1 and Player 2 are equally likely
to win. Explicitly,

lim
N→∞

µN (Player 1 wins) = lim
N→∞

µN (Player 2 wins) =
1

2
,

lim
N→∞

PN (Player 1 wins) = lim
N→∞

PN (Player 2 wins) =
1

2
.

4.1 Overview

We provide a brief sketch of the proof of Theorem 9. We specifically focus on the
number of (1, k)-prefixes which occur over the course of a game, recalling that
whenever applicable, the sequence of moves (Sk, Ck−1) has the same effect on
the game as Ck. We partition the collection of games ΩN into subsets of games
which differ only via such (1, k)-prefixes, describe the conditional distribution
induced by any such subset (under both µN and PN ), and argue that in the
limit of infinite input, the sizes of the subsets induced by this partition grow so
fast that the probability of Player 1 or Player 2 winning can be reduced to the
outcome of a binomial random variable with exploding variance.

4.2 Partitioning the Collection of Possible Games

As observed in Definition 2, for k ≥ 2, the sequence12 (Sk, Ck−1) is a (1, k)-
prefix. We establish some notation to use later: define RN ∈ FN to be the
collection13 of all Zeckendorf games on input N such that (for all k ≥ 2) any
instance of the sequence (Sk, Ck−1) is immediately preceded by Sk+1; in other
words, RN is the collection of all Zeckendorf games on input N such that there
are no (1, k)-prefixes for any k ≥ 2. We can express this collection as

RN ={(M1, . . . ,Mλ) ∈ ΩN : (Mi,Mi+1) = (Sk, Ck−1) =⇒ Mi−1 = Sk+1

∀ i ∈ [λ− 1], k ≥ 2}.

For a game R = (M1,M2, . . . ,Mλ) ∈ RN , construct the subset of indices IN (R)
to denote all combine moves in R, not involved in a sequence (Sk, Ck−1) for

12 We deviate from notation earlier in the paper and write move sequences as tuples.
13 We elect to use the notation RN as we think of these games on input N as represen-

tatives of the corresponding classes AN (R) that we define later in this discussion.
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k ≥ 2, for which the latter bin has height at least 2 (i.e., combine moves Ck for
k ≥ 2 replaceable with a (1, k)-prefix):

IN (R) =
{
i ∈ [λ] : Mi = Ck, Mi−1 ̸= Sk+1, hk(i) ≥ 2 for some k ≥ 2

}
.

Now, construct the formal sequence of moves M(R) = (M̃1, M̃2, . . . , M̃λ) by
replacing Mi by a symbol Ek (the subscript being the corresponding k ≥ 2) for all
i ∈ IN (R); call M(R) the base sequence of R ∈ RN . Let AN (R) ∈ FN denote
the collection of all Zeckendorf games resulting from replacing each instance of
Ek in M by either Ck or the 1-prefix (Sk, Ck−1) (for every k ≥ 2). We establish
the following important result, which makes it clear why we have pursued this
construction in the manner that we did.

Lemma 6. The sets {AN (R) : R ∈ RN} partition ΩN .

Proof. We first show that the sets AN (R) are disjoint. Take distinct R1 =
(M1

1 , . . . ,M
1
λ),R2 = (M2

1 , . . . ,M
2
λ′) ∈ RN with base sequences M1(R1) =

(M̃1
1 , M̃

1
2 , . . . , M̃

1
λ) and M2(R2) = (M̃2

1 , M̃
2
2 , . . . , M̃

2
λ′), respectively. Since R1 ̸=

R2, take smallest i for which M1
i ̸= M2

i =⇒ M̃1
i ̸= M̃2

i , and study the con-
struction of any two games G1 ∈ AN (R1) and G2 ∈ AN (R2) as described above.
If G1 and G2 are consistent prior to M̃1

i and M̃2
i (i.e., for k ≥ 2, all Ek are

replaced by the same choice of Ck or (Sk, Ck−1)), which is certainly the only
way the two games remain equal up to this point of their construction, then we
necessarily produce a difference in the two games on M̃1

i and M̃2
i if M1

i = M̃1
i

and M2
i = M̃2

i (M1
i ̸= M2

i ) or M1
i ̸= M̃1

i and M2
i ̸= M̃2

i (M̃1
i = Ek1

, M̃2
i = Ek2

,
k1 ̸= k2). If M1

i = M̃1
i and M2

i ̸= M̃2
i (say M̃2

i = Ek, so necessarily M2
i = Ck and

M2
i−1 ̸= Sk+1 for some k ≥ 2), then game G2 is next filled with either Ck ̸= M1

i

(M1
i = M2

i if Ck = M1
i ) or (Sk, Ck−1). In the latter case, if the two games were

equal after this, then necessarily (M1
i−1,M

1
i ,M

1
i+1) = (Sk+1, Sk, Ck−1) (by defi-

nition of IN (R1) and RN , M1
i+1 and M1

i−1 follow after establishing M1
i = Sk),

contradicting M2
i−1 ̸= Sk+1 (since M1

i−1 = M2
i−1 and M2

i = Ck, M̃2
i = Ek).

We therefore conclude that AN (R1) ∩AN (R2) = ∅, i.e., the sets AN (R) for
R ∈ RN are disjoint; it remains to show that any game G ∈ ΩN is in some set
AN (R). For G ∈ ΩN , let R be the game resulting from replacing every instance
of the sequence (M,Sk, Ck−1), M ̸= Sk+1 in game G by the sequence (M,Ck)
(for k ≥ 2). The resulting game R is such that (Mi,Mi+1) = (Sk, Ck−1) =⇒
Mi−1 = Sk+1 for all i ∈ [λ] and k ≥ 2: any sequence (Mi−1,Mi,Mi+1) =
(M,Sk, Ck−1) with M ̸= Sk+1 in R necessarily results from having replaced
(Sk−1, Ck−2) for Ck−1 in game G (as (Sk, Ck−1) would have been replaced by
Sk+1 otherwise), but we know this does not occur by the description above, so
we indeed have R ∈ RN . Also, G ∈ AN (R): we can reverse all the replacements
(Sk, Ck−1) ↔ Ck made in achieving R from G, since the resulting Ck moves
correspond to Ek (for some k ≥ 2) in the base sequence M(R) as the preceding
move is not Sk+1.
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Therefore, applying Lemma 6 and the law of total probability,

µN (length is z mod Z) =
∑

R∈RN

µN

(
length is z mod Z | AN (R)

)
µN

(
AN (R)

)
PN (length is z mod Z) =

∑
R∈RN

PN

(
length is z mod Z | AN (R)

)
PN

(
AN (R)

)
(1)

so we can reduce proving Theorem 8 to establishing that the conditional proba-
bilities for R ∈ RN , with respect to both measures, overwhelmingly tend to 1/2
in the limit.

4.3 Analysis

Define the random variable mN : ΩN → N first on R ∈ RN by mN (R) =
|IN (R)|, denoting the number of terms Ek (for k ≥ 2) in the base sequence of R,
then lift to arbitrary G ∈ ΩN by letting mN (G) = mN (R) for the unique R ∈ RN

such that G ∈ AN (R) (see Lemma 6).14 Fix R ∈ RN , and observe that on the
event AN (R), mN (G) for G ∈ AN (R) is the fixed constant |IN (R)|. Now con-
struct corresponding Bernoulli random variables XR

1 , XR
2 , . . . , XR

|mN (R)| : ΩN →
{0, 1} for each of the instances of terms of form Ek (for k ≥ 2) in the base se-
quence of R: here, XR

i (G) = 1 if and only if G ∈ AN (R) and G is achieved by the
ith instance of Ek in the base sequence R being the (1, k)-prefix (Sk, Ck−1). Say
we replaced this Ek with (Sk, Ck−1), and let ni denote the number of playable
moves in the game available in the turn immediately after playing Sk. We can
say more about the random variables XR

i defined here.

Lemma 7. Fix R ∈ RN . Define the random variables XR
1 , XR

2 , . . . , XR
|mN (R)|

as above. When conditioned on AN (R), the variables XR
1 , XR

2 , . . . , XR
|mN (R)|

are independent Bernoulli random variables with each XR
i having parameter

1/2 under the measure µN , and parameter pi = 1
1+ni

under the measure PN .
Explicitly,

µN

(
XR

i = 1 | AN (R)
)

=
1

2
, PN

(
XR

i = 1 | AN (R)
)

=
1

1 + ni
.

Proof. Fix a random variable XR
i , and observe that for every particular setting

of all other Ek terms in R, there exist exactly two games in AN (R) faithful to
this setting, corresponding to choosing Ck and the (1, k)-prefix (Sk, Ck−1) for
the ith such Ek. It follows immediately that under the uniform measure µN ,
we indeed have µN

(
XR

i = 1 | AN (R)
)

= 1
2 , since in particular there exists a

bijection between games in the subset AN (R) with XR
i = 0 and XR

i = 1 and all
games in ΩN are given equal probability under the measure µN .

Under the probability measure PN , it is straightforward to observe that the
game replacing the ith instance of Ek by the (1, k)-prefix (Sk, Ck−1) requires an

14 In particular, mN (R) = log2(AN (R)).
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additional decision with probability 1
ni

of yielding the desired Ck−1, and it thus

follows that the parameter pi of the Bernoulli random variable XR
i is given by

pi
1 − pi

=
1

ni
=⇒ pi =

1

1 + ni
.

To establish independence, it suffices to show that for any subset S ⊆
[
mN (R)

]
,

we have the identity

PN

(
XR

i = 1 iff i ∈ S | AN (R)
)

=
∏
i∈S

PN

(
XR

i = 1 | AN (R)
)

·
∏
j /∈S

PN

(
XR

j = 0 | AN (R)
)

=
∏
i∈S

pi ·
∏
j /∈S

(1 − pj).

We can relate the conditional probabilities {PN

(
XR

i = 1 iff i ∈ S AN (R)
)

:

S ∈
[
mN (R)

]
} whenever S1 = S2 ∪ {j} (for j ∈

[
mN (R)

]
): all choices for

each term Ek but one are consistent (namely, XR
j = 1 for the numerator in the

following), and thus

PN

(
XR

i = 1 iff i ∈ S1 | AN (R)
)

PN

(
XR

i = 1 iff i ∈ S2 | AN (R)
) =

1

nj
=

pj
1 − pj

=

∏
i∈S1

pi ·
∏

j /∈S1
(1 − pj)∏

i∈S2
pi ·
∏

j /∈S2
(1 − pj)

.

Now, since we have the identity

∑
S⊆[mN (R)]

PN

(
XR

i = 1 iff i ∈ S | AN (R)
)

= 1 =

mN (R)∏
i=1

(
pi + (1 − pi)

)

=
∑

S⊆[mN (R)]

∏
i∈S

pi ·
∏
j /∈S

(1 − pj)


and quotients between summands corresponding to two sets differing by one ele-
ment are the same, the summands on both sides for any subset S ⊆

[
mN (R)

]
are

necessarily equal. More specifically, letting p1 = PN

(
XR

i = 1 iff i ∈ ∅ | AN (R)
)

and p2 =
∏

i∈∅ pi ·
∏

j /∈∅(1 − pj), by incrementally including elements to some

S ⊆
[
mN (R)

]
we can write the corresponding summands on the left and right

hand sides as the same multiple of p1 and p2, respectively. This reduces to
p1 = p2, and thus summands corresponding to the same S are equal. Thus,
we have the desired identity for any subset S ⊆

[
mN (R)

]
.

Lemma 7 yields the following easy observation.

Corollary 1. Say Fn ≤ N < Fn+1, fix some R ∈ RN , and define the ran-
dom variables XR

1 , XR
2 , . . . , XR

mN (R) as above. Under the uniform measure µN ,
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whenever R ∈ RN is such that mN (R) > 0, µN

(
Player 1 wins | AN (R)

)
= 1/2.

Under the probability measure PN , when conditioned on the event AN (R), there
are at most 2n distinct values of the parameters pi = 1

1+ni
amongst the random

variables XR
i , and for any such i, 1

2n−2 ≤ pi ≤ 1/2.

Proof. If mN (R) > 0, then the statement µN

(
Player 1 wins | AN (R)

)
= 1/2

follows immediately by applying the law of total probability on all settings of the
Bernoulli random variables (XR

2 , . . . , XR
mN (R)) ∈ {0, 1}mN (R)−1, namely since

this further conditioning always yields a conditional probability of 1/2 (see the
proof of Lemma 7). At any point of a game G ∈ ΩN satisfying Fn ≤ N < Fn+1,
there are at most 2n − 3 (and thus certainly at most 2n) playable moves (and
thus at most 2n − 3 distinct values of ni, and thus pi): the combine moves
C1, C2, . . . , Cn−1 and the splitting moves S2, S3, . . . , Sn−1. In particular, since
ni ∈ [2n − 3] for all i ∈

[
mN (R)

]
, it follows that 1

1+(2n−3) ≤ pi ≤ 1
1+1 , i.e.,

1
2n−2 ≤ pi ≤ 1

2 .

We will also make use of the following lemma.

Lemma 8. Say Fn ≤ N < Fn+1.
15 For any c ∈ (0, φ) (with φ denoting the

golden ratio),

lim
N→∞

µN

(
mN (G) ≥ cn

)
= 1, lim

N→∞
PN

(
mN (G) ≥ cn

)
= 1.

Proof. Fix c ∈ (0, φ), and consider a game G ∈ ΩN : for the representative
R ∈ RN such that G ∈ AN (R), every occurrence of the sequence (C1, C1, C2)
corresponds to an element of IN (R) (specifically the move C2, as it is not pre-
ceded by S3, and the latter two moves are maintained in R; see the proof of
Lemma 6), i.e., mN (G) = |IN (R)| is at least the number of occurrences of the
sequence (C1, C1, C2) in G. Letting N (G) denote the number of occurrences of
the sequence (C1, C1, C2) in the game G, it thus suffices to show that

lim
N→∞

µN

(
N (G) ≥ cn

)
= 1, lim

N→∞
PN

(
N (G) ≥ cn

)
= 1.

Proceed studying the probability measure PN ; the analysis carries over exactly16

when PN is replaced with µN . By Corollary 1, at any move where h1 ≥ 5,

the probability of achieving the sequence (C1, C1, C2) is at least
(

1
2n

)3
= 1

8n3 ,
and any sequence of three moves can decrease the height of bin 1 by at most
6 (via three consecutive C1 moves); observe that the occurrence of C2 in a
sequence (C1, C1, C2) within a game G necessarily corresponds to an instance
of the delimiter E2 in the base sequence of G (e.g. see the proof of Lemma 6).
Thus, study the sequences of moves in game G (which necessarily exist by the
preceding discussion) given by the triples

(M1,M2,M3), (M4,M5,M6), . . . , (M3⌊N/6⌋−2,M3⌊N/6⌋−1,M3⌊N/6⌋)

15 It is perhaps more appropriate to think of n as a function n(N).
16 Certainly, the analysis is much looser than necessary when PN is replaced with µN .
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each of which independently takes on the value (C1, C1, C2) with probability at

least 1
8n3 . Thus, letting YN

d
= Bin

(
⌊N/6⌋, p = 1

8n3

)
, we have that

P (YN ≥ cn) ≤ PN

(
N (G) ≥ cn

)
from which E[YN ] = ⌊N/6⌋

8n3 together with a Chernoff bound with δ = 1
2 yields for

N large,

P (YN ≤ cn) ≤ P
(
YN ≤ ⌊N/6⌋

16n3

)
≤ exp

(
−⌊N/6⌋

32n3

)
N→∞−−−−→ 0

since it is straightforward to verify that cn ≤ ⌊N/6⌋
16n3 for large N (e.g. use Binet).

Corollary 2. Lemma 8 immediately yields that for any d ∈ N,

lim
N→∞

µN

(
mN (G) ≥ nd

)
= 1, lim

N→∞
PN

(
mN (G) ≥ nd

)
= 1

i.e., with probability approaching 1 as N → ∞, the number of decisions made
to achieve G from the set AN (R) containing it is superpolynomial in n. This is
more convenient for later.

The proof of Lemma 8 yields the following observations on the likeliest collection
AN (R) and the number of representative games, which will be referenced again
in Section 5.

Corollary 3. The probability of the likeliest collection AN (R) vanishes as N →
∞, i.e.,

lim
N→∞

max
G∈ΩN

µN (AN (G)) = lim
N→∞

max
G∈ΩN

PN (AN (G)) = 0

and the number of representatives satisfies |RN | N→∞−−−−→ ∞.

Proof. Again, proceed on the probability measure PN , as the analysis carries
over exactly for µN . The proof of Lemma 2 (taking d = 1) determines there are
at least m ≥ n instances of (C1, C1, C2) in the first ⌊N/6⌋ moves of a random
game G ∈ ΩN , with probability tending to 1 in the limit N → ∞: we proceed
studying such a game G. Writing G ∈ AN (R), every latter instance of C1 in one
of these m sequences is in17 any game in AN (R), and the move C2 could have
been played instead of this instance of C1. For i = 1, . . . ,m, denote BN

i (R) ⊆ ΩN

to be those games consistent with a game in AN (R) up to the ith such instance
of C1, but for which the move C2 is played instead. It is immediately observed

17 This is in the sense that this instance of C1 is not compressed in achieving R from G
(see the proof of Lemma 6), and is not replaced with a term of form Ek in achieving
the base sequence M(R).
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that the sets BN
i (R) are disjoint and that PN (AN (R)) ≤ PN (BN

i (R)) for each
i = 1, . . . ,m, so we have

n · PN (AN (R)) ≤ m · PN (AN (R)) ≤
m∑
i=1

PN (BN
i (R)) ≤ 1

=⇒ PN (AN (R)) ≤ 1

n

N→∞−−−−→ 0

so we have limN→∞ maxG∈ΩN
PN (AN (G)) = 0, and |RN | N→∞−−−−→ ∞ follows

immediately.

Finally, we need the following simple result concerning the behavior of a
binomial random variable with sufficiently large variance. Certainly, the case
Z = 2 in Lemma 9 corresponds to studying the expressions P (B is odd) and
P (B is even).

Lemma 9. Consider a binomial random variable B = Bin(m, p). For any values
of ϵ > 0 and Z ∈ N, there exists a constant N(ϵ, Z) such that if var(B) =
mp(1−p) ≥ N(ϵ, Z) (i.e., if the variance of B is sufficiently large), then for any
z ∈ {0, 1, . . . , Z − 1}, ∣∣∣∣P (B ≡ z mod Z) − 1

Z

∣∣∣∣ ≤ ϵ.

Proof. The value P(B = k) increases on k ≤ ⌊(m + 1)p⌋ and decreases on

k ≥ ⌊(m + 1)p⌋, and max0≤k≤m P(B = k) = P
(
B = ⌊(m + 1)p⌋

) mp(1−p)→∞−−−−−−−−→ 0
(use Stirling); denoting pk = P(B = k), write p0 ≤ p1 ≤ · · · ≤ p⌊(m+1)p⌋ and
p⌊(m+1)p⌋ ≥ p⌊(m+1)p⌋+1 ≥ · · · ≥ pm. Fix ϵ > 0, and choose N(ϵ, Z) such that

mp(1−p) ≥ N(ϵ, Z) implies P
(
B = ⌊(m + 1)p⌋

)
< ϵ

2 . Certainly, for any distinct
values z1 < z2 in {0, 1, . . . , Z−1}, the number of terms p0, p1, . . . , p⌊(m+1)p⌋ with
indices equal to z1 modulo Z and equal to z2 modulo Z is either the same or
there exists one more such term corresponding to z1: we can switch the “dom-
inant modulus” by removing the term of largest index equal to either z1 or z2
modulo Z, for which the corresponding term pk ≤ ϵ

2 by choice of the constant
N(ϵ, Z). The analogous statement extends to p⌊(m+1)p⌋, p⌊(m+1)p⌋+1, . . . , pm, so
it follows that we can write∣∣P (B ≡ z1 mod Z) − P (B ≡ z2 mod Z)

∣∣ ≤ ϵ

which immediately yields the desired statement.

We are now ready to proceed with the proof of Theorem 8.

Proof (Proof of Theorem 8). Fix an integer Z ≥ 2 corresponding to the number
of players in a Z-player Zeckendorf game, and some value z ∈ {0, 1, . . . , Z − 1}.
As in the proof of Lemma 8, we strictly concern ourselves with the probability
measure PN , as the analysis carries over exactly for the uniform measure µN
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(again, it is much looser than necessary for µN ). For the probability measure
PN , since mN (G) is fixed at |IN (R)| = mN (R) on any set AN (R) for R ∈ RN ,
for N ≥ N1(ϵ), ∑

R∈RN

mN (R)<2n3

PN

(
AN (R)

)
≤ ϵ. (2)

Consider a fixed representative R ∈ RN for which mN (R) ≥ 2n3: by Corollary
1, there are at most 2n distinct values of the parameters pi = 1

1+ni
of the cor-

responding random variables XR
1 , XR

2 , . . . , XR
mN (R), and thus by the pigeonhole

principle, the number of instances of the value of pi with largest multiplicity is

at least 2n3

2n = n2 N→∞−−−−→ ∞; henceforth call this p. Let us say there are m ≥ n2

instances of this value of pi: we can study the sum BR =
∑m

i=1 Yi, where the Yi

correspond to those random variables XR
i with this corresponding success prob-

ability p. Furthermore, by Lemma 7, the random variables Yi are independent

when conditioned on the event AN (R), so BR
d
= Bin(m, p) under this conditional

distribution. From the bounds on p from Corollary 1, it follows that the variance
of this binomial random variable, when conditioned on the event AN (R), has
the exploding lower bound

var(BR) = mp(1 − p) ≥ n2

2(2n− 2)

N→∞−−−−→ ∞

i.e., the binomial random variable BR has variance exploding in the limit N → ∞
(for any R ∈ RN ). By Lemma 9, the random variable BR will take a value equal
to z modulo Z with probability approaching 1

Z as N → ∞. Thus, studying the
quantities given by PN

(
Game length equals z mod Z | AN (R)

)
, we can further

condition (upon the conditioning AN (R)) on all random variables XR
i not cor-

responding to those Yi constituting a summand in the binomial random variable
BR and appeal to the law of total probability:

PN

(
Game length is z mod Z | AN (R)

)
=

∑
assignments A

to XR
i ̸=Yj∀j

PN

(
Game length is z mod Z | AN (R), A

)
· PN

(
A | AN (R)

)

where each term PN

(
Game length equals z mod Z | AN (R), A

)
is understood

as the probability that the length of the game is equal to z mod Z when replacing
those Ek which correspond to the random variables Yi, while leaving all other
moves of the game fixed: this is precisely given by the binomial random variable
BR added to some fixed length determined by the setting of the XR

i which are
not of the form Yj for some j. Letting ℓ(A) denote this length for the assignment
A, we can thus write

PN

(
Game length is z mod Z |AN (R), A

)
= PN

(
BR + ℓ(A) is odd |AN (R), A

)



26 Cheigh et al.

By Lemma 7, the random variables Yi constituting the Bernoulli trials in BR are
independent from the random variables XR

i that were fixed when conditioned
on AN (R) and the assignment A, and thus we can apply Lemma 9 to deduce
that these conditional probabilities are arbitrarily close to 1

Z for N ≥ N2(ϵ, Z)
by the preceding discussion (for sufficiently large N2(ϵ, Z) ∈ N). Importantly,
this is uniform over all such terms in the sum, in the sense that we can choose
N2(ϵ, Z) such that we achieve the same guarantee for any such assignment A of
binary values to the random variables XR

i not constituting BR. Thus, for any
R ∈ RN satisfying mN (R) ≥ 2n3 and N ≥ N2(ϵ, Z), we have the bound∣∣∣∣PN

(
Game length equals z mod Z | AN (R)

)
− 1

Z

∣∣∣∣ ≤ ϵ.

Therefore, for N ≥ max{N1(ϵ), N2(ϵ, Z)}, we can take Equations (1) and (2) to
achieve the bound on the probability PN (Game length equals z mod Z) given
by

PN (Game length is z mod Z)

=
∑

R∈RN

PN

(
Game length is z mod Z | AN (R)

)
· PN

(
AN (R)

)
≤ ϵ +

∑
R∈RN

mN (R)≥2n3

PN

(
Game length is z mod Z | AN (R)

)
· PN

(
AN (R)

)

≤ ϵ +
∑

R∈RN

mN (R)≥2n3

(
1

Z
+ ϵ

)
· PN

(
AN (R)

)
+ ϵ ≤ 1

Z
+ 2ϵ

and similarly, we have

PN (Game length is z mod Z)

=
∑

R∈RN

PN

(
Game length is z mod Z | AN (R)

)
· PN

(
AN (R)

)
≥

∑
R∈RN

mN (R)≥2n3

PN

(
Game length is z mod Z | AN (R)

)
· PN

(
AN (R)

)

≥
∑

R∈RN

mN (R)≥2n3

(
1

Z
− ϵ

)
· PN

(
AN (R)

)
≥
(

1

Z
− ϵ

)
(1 − ϵ)

so we conclude that for N ≥ max{N1(ϵ), N2(ϵ, Z)},

ϵ2 − Z + 1

Z
ϵ ≤ PN (Game length equals z mod Z) − 1

Z
≤ 2ϵ

which yields the desired limit by sending ϵ ↓ 0.

As previously mentioned, the Z = 2 case of Theorem 8 immediately yields
Theorem 9.
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4.4 Extending the Partition on ΩN

Theorem 9 establishes that if both players advance randomly, the two-player
Zeckendorf game is fair in the limit N → ∞: a key stage of the proof involved
partitioning ΩN into collections of games where the games in any given collection
only differ via certain interchanges of (1, k)-prefixes with the corresponding Ck.
We can naturally extend this partition of ΩN (i.e., strictly larger classes in
the partition) to encompass arbitrary (ℓ, k)-prefixes or arbitrary (ℓ, k)-suffixes.
Section 5 will establish that for these enlarged partitions of ΩN , we can achieve
an analogue of 1 for the resulting sets in the partition, in the sense that with high
probability in the limit, the corresponding distribution is “nearly Gaussian,” in
the sense of vanishing Kolmogorov-Smirnov distance (when mean and variance
are normalized to be 0 and 1, respectively) with the standard normal.18

We first study the generalization for arbitrary (ℓ, k)-prefixes. Define RP
N ∈

FN to be the collection of all Zeckendorf games on input N such that any
combine move Ck, for k ≥ 2, cannot be compressed by a (1, k)-prefix (and thus
by any prefix of Ck). Explicitly,

RP
N =

{
(M1, . . . ,Mλ) ∈ ΩN : Mi = Ck =⇒ Mi−1 ̸= Sk+1, ∀i ∈ [λ], k ≥ 2

}
.

For a game R = (M1,M2, . . . ,Mλ) ∈ RP
N with number of moves λ, construct

the subset of indices IN (R) to denote all combine moves in R:

IN (R) =
{
i ∈ [λ] : Mi = Ck for some k ≥ 2

}
.

Now, construct the formal sequence of moves M(R) = (M̃1, M̃2, . . . , M̃λ) by
replacing Mi by a symbol Eℓ

k for all i ∈ IN (R): the subscript is the corresponding
k ≥ 2, while ℓ ≥ 0 denotes the longest (ℓ, k)-prefix that Mi = Ck can be expanded
into; note in particular that M(R) contains no combine moves. Call M(R) the
base sequence of R ∈ RN , and let AN (R) ∈ FN denote the collection of
all Zeckendorf games resulting from replacing each instance of Eℓ

k in M by an
(l, k)-prefix for some l ≤ ℓ. We establish the following analogue of Lemma 6,
which yields a strictly broader partition of ΩN (in the sense that each set in the
partition given by Lemma 5 is a union of sets in the partition given by Lemma
6).

Proposition 5. The sets {AN (R) : R ∈ RP
N} partition ΩN .

Proof. Observe that a base sequence M(R) = (M̃1, M̃2, . . . , M̃λ) uniquely de-
termines R ∈ RP

N by its explicit split moves moves and the subscripts of each
of its symbols Eℓ

k. This is true up to any initial subsequence, in the sense that
there exists at most one R ∈ RP

N which agrees with the moves and symbols Eℓ
k

up to subscript.

18 In this subsection and Section 5, we borrow much of the same notation that was
used in establishing Theorem 9. It will be clear from context exactly what objects
we are referring to.
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We show that the sets AN (R) are disjoint. Take distinct R1 = (M1
1 , . . . ,M

1
λ),

R2 = (M2
1 , . . . ,M

2
λ′) ∈ RP

N with base sequences M1(R1) = (M̃1
1 , M̃

1
2 , . . . , M̃

1
λ)

and M2(R2) = (M̃2
1 , M̃

2
2 , . . . , M̃

2
λ′), respectively. Since R1 ̸= R2, take smallest i

for which M1
i ̸= M2

i , and study the construction of any two games G1 ∈ AN (R1)
and G2 ∈ AN (R2) as described above. If G1 and G2 are consistent prior to M̃1

i

and M̃2
i (i.e., for k ≥ 2, all Eℓ

k are replaced by the same prefix of Ck), which
is the only way the two games remain equal up to this point, then we produce
a difference in the two games on M̃1

i and M̃2
i if M1

i = M̃1
i and M2

i = M̃2
i

(M1
i ̸= M2

i ) or M1
i ̸= M̃1

i and M2
i ̸= M̃2

i (M̃1
i = Eℓ1

k1
, M̃2

i = Eℓ2
k2

, k1 ̸= k2). If

M1
i = M̃1

i and M2
i ̸= M̃2

i (say M̃2
i = Eℓ

k, so M2
i = Ck), then G2 is next filled

with either Ck ̸= M1
i (M1

i = M2
i if Ck = M1

i ) or an (l, k)-prefix for some l ≤ ℓ.
In the latter case, if the two games were equal until move i + l − 1, necessarily
R1 contains a prefix of length at least 1, contradicting R1 ∈ RP

N .
We therefore conclude that AN (R1) ∩AN (R2) = ∅, i.e., the sets AN (R) for

R ∈ RN are disjoint; it remains to show that any game G ∈ ΩN is in some
set AN (R). For G ∈ ΩN , let R be the game resulting from replacing every
combine move Ck with the longest playable (ℓ, k)-prefix. It follows immediately
from construction that R ∈ RP

N , and that G ∈ AN (R).

Similarly, we define the generalization for arbitrary (ℓ, k)-suffixes. Define
RS

N ∈ FN to be the collection of all Zeckendorf games on input N such that any
combine move Ck, for k ≥ 2, cannot be compressed by a (1, k)-suffix (and thus
by any suffix of Ck). Explicitly,

RS
N =

{
(M1, . . . ,Mλ) ∈ ΩN : Mi = Ck =⇒ Mi+1 ̸= Sk+1 ∀i ∈ [λ], k ≥ 2

}
For a game R = (M1,M2, . . . ,Mλ) ∈ RS

N with number of moves λ, construct
the subset of indices IN (R) to denote all combine moves in R:

IN (R) =
{
i ∈ [λ] : Mi = Ck for some k ≥ 2

}
.

Now, construct the formal sequence of moves M(R) = (M̃1, M̃2, . . . , M̃λ) by
replacing Mi by a symbol Eℓ

k for all i ∈ IN (R): the subscript is the corresponding
k ≥ 2, while ℓ denotes the longest (ℓ, k)-suffix that Mi = Ck can be expanded
into. Call M(R) the base sequence of R ∈ RN , and let AN (R) ∈ FN denote
the collection of all Zeckendorf games resulting from replacing each instance of
Eℓ
k in M by an (l, k)-suffix for some l ≤ ℓ. We establish the following analogue

of Lemma 6.

Proposition 6. The sets {AN (R) : R ∈ RS
N} partition ΩN .

We do not provide the proof of Proposition 6, as it is pursued analogously to the
proof of Proposition 5. The easy observation that each set AN (R), for R ∈ RP

N

or R ∈ RS
N , is a union of equivalence classes of the corresponding sets studied

in the proof of Theorem 9, yields the following trivial extension of Lemma 2,
where we promote the notation AN (G) = AN (R) for the unique R satisfying
G ∈ AN (R).
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Proposition 7. Say Fn ≤ N < Fn+1. For any c ∈ (0, φ) (with φ the golden
ratio),

lim
N→∞

µN

(
log2

∣∣AN (G)
∣∣ ≥ cn

)
= 1, lim

N→∞
PN

(
log2

∣∣AN (G)
∣∣ ≥ cn

)
= 1,

which holds for either of the understandings R ∈ RP
N and R ∈ RS

N .

Finally, we have the following extension of Corollary 1. We also omit the
proof of this result, as it is a straightforward generalization of the proof of the
aforementioned result.

Proposition 8. Say Fn ≤ N < Fn+1, fix some R ∈ RP
N , and define random

variables XR
1 , XR

2 , . . . , XR
N−1 corresponding to the length of the expansion corre-

sponding to each combine move for a game in AN (R). Under the measures µN

and PN conditioned on AN (R), the random variables XR
i are independent.

5 Weak Convergence of Random Game Lengths as
N → ∞

In pursuit of the resolution of Conjecture 1, it may be productive to ask whether
there exist natural subsets of ΩN on which the distribution of random game
lengths converge weakly to a Gaussian in the limit N → ∞ of infinite input. As
discussed in Section 4.4, the partitions defined in Propositions 5 and 6 enjoy this
property in the sense described in Theorem 10, restated below.

Theorem 10. For R ∈ RP
N , let FR

N (x) : R → [0, 1] denote the distribution
function corresponding to game lengths in AN (R) over the conditional distri-
bution induced by PN , normalized to have expectation 0 and variance 1. Let
Φ : R → [0, 1] denote the distribution function of the standard normal. Then for
any ϵ > 0,

lim
N→∞

PN

(
sup
x∈R

∣∣∣FR
N (x) − Φ(x)

∣∣∣ ≥ ϵ

)
= 0.

Similarly, for R ∈ RS
N , let FR

N (x) : R → [0, 1] denote the distribution function
corresponding to game lengths in AN (R) over the conditional distribution in-
duced by PN , normalized to have expectation 0 and variance 1. Then for any
ϵ > 0,

lim
N→∞

PN

(
sup
x∈R

∣∣∣FR
N (x) − Φ(x)

∣∣∣ ≥ ϵ

)
= 0.

The analogous results hold for the uniform measure µN .
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To explicitly define the distributions referenced in Theorem 10, define a prob-
ability distribution PR

N : 2AN (R) → [0, 1] via, for any S ∈ 2AN (R),

PR
N (S) =

PN

(
S ∩ AN (R)

)
PN

(
AN (R)

)
Define the random variable LR

N : AN (R) → R on the space (AN (R), 2AN (R),PR
N )

by

LR
N

(
(M1, . . . ,Mλ)

)
= λ

for any game (M1, . . . ,Mλ) ∈ AN (R), i.e., LR
N studies game lengths in AN (R).

Then

FR(x) = PR
N

LR
N − E

[
LR
N

]√
var
(
LR
N

) ≤ x

 . (3)

In other words, when we restrict PN to the sets AN (R) in the natural sense,
Theorem 10 states that the distribution of random game lengths enjoys weak
convergence to a Gaussian with high probability. We write

LR
N =

LR
N − E

[
LR
N

]√
var
(
LR
N

) (4)

to be the random variable LR
N normalized to have mean 0 and variance 1.

Throughout this section, we proceed on the measure PN and the set RP
N , but

the analysis carries over to the uniform measure µN and the suffix partition RS
N .

Proof (Proof of Theorem 10).

By Proposition 7, limN→∞ PN

(
log2

∣∣AN (G)
∣∣ ≥ 1.6n

)
= 1 so fix R ∈ RN such

that |AN (R)| > 21.6
n

, and consider the random variable LR
N : AN (R) → R.

Define random variables19 XR
1 , . . . , XR

N−1 to correspond to each of the combine
moves in R, with XR

i denoting the length of the corresponding prefix for a
game in AN (R): by Proposition 8, the random variables XR

i are independent.
Expanding Equation (4),

LR
N =

LR
N − E

[
LR
N

]√
var
(
LR
N

) =

∑N−1
i=1

(
XR

i − E
[
XR

i

])√
var
(
LR
N

) (5)

where the independence (conditioned on AN (R)) of the random variables XR
i

yields that

var
(
LR
N

)
=

N−1∑
i=1

var

(
XR

i − E
[
XR

i

])
19 Define these to be strictly positive: if the ith delimiter is replaced with a combine

move, say XR
i = 1.
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and furthermore, taking the maximum over those summands XR
i which are non-

constant20,

max
1≤i≤D


E
[∣∣∣XR

i − E
[
XR

i

]∣∣∣3]
E
[(

XR
i − E

[
XR

i

])2]
· var

(
LR
N

)
 ≤ max

1≤i≤D

2n3

var
(
LR
N

) ≤ n3

var (21.6n)

(6)

and the final expression in Equation (6) certainly vanishes as N → ∞. Thus, the
desired result follows immediately from the case of the Berry-Esseen theorem for
independent non-identically distributed summands, which namely yields

sup
x∈R

∣∣FR(x) − Φ(x)
∣∣ ≤ C · n3

var (21.6n)

N→∞−−−−→ 0

for some universal constant C > 0.

Theorem 10 yields that, when restricted to particular natural subsets of games,
we have Gaussianity. The scope of this result is admittedly restricted, especially
given the result of Corollary 3.

6 Open Problems

We conclude the work with several potential directions for further inquiry.

6.1 Other Two-Player Games Based on Recurrences

Theorem 9 can be interpreted as saying that if two players proceed mindlessly,
the Zeckendorf game is fair in the limit of infinite input; Theorem 8 gives that the
analogous statement would be true if we were to extend to a Z-player Zeckendorf
game. Many papers (such as [1, 2, 4]) have extended the paradigm of the two-
player Zeckendorf game to other recurrences: we might ask which of these also
enjoy this property. In particular, we pose the following conjecture, concerning
the two-player Bergman game ([1]).

Conjecture 2. In the limit N → ∞ of infinite input, the probabilities of Player
1 and Player 2 winning, under both analogous definitions of random Bergman
games, is 1/2.

The core challenges of proving Conjecture 2 are as follows. The principal
difference between the two-player Bergman game and the two-player Zeckendorf
game is that the move C1 is now a split move which consumes no tokens. Thus,
there are structural differences between the two games which affects the range
of achievable game lengths. Lemma 2 also depends on the number of a specific
move sequence which may not have an analogue in the Bergman game.

20 Indeed, we understand LR
N as the sum over the nonconstant random variables

amongst those included by the sum in Equation (5)
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6.2 Towards Gaussianity: Other Approaches

Theorem 10 establishes that certain natural partitions of ΩN are such that the
components become arbitrarily close to being Gaussian (in the sense of vanishing
Kolmogorov-Smirnov distance) with arbitrarily high probability: it is unclear
how to extend this to the entirety of ΩN . Proposition 2 remarks that all games
in ΩN can be achieved by permutations of suffixes from a shortest game, which
suggests the following question.

Question 1. Can we extend the techniques in Section 5 to a partition founded
on the greedy embedding of Proposition 2? In particular, could studying the
moments of the corresponding components lead to a proof of Conjecture 1?

Another possible direction is to restrict our attention to certain subsets of
moves across all of ΩN , rather than certain subsets of ΩN . In particular, a
sufficiently strong affirmative answer to Question 2 would resolve Conjecture 1.

Question 2. Is the distribution of the number of occurrences of a particular
combine or split move asymptotically Gaussian, under either the measure µN or
PN?

6.3 Towards Gaussianity: Mixing

We outline one more possible approach towards proving Conjecture 1, which
relies on the literature surrounding mixing central limit theorems: these are
analogues of the central limit theorem concerning sums of dependent random
variables, applicable if the dependencies amongst the summands are sufficiently
well-behaved. In particular, the main result of [6] states the following.

Theorem 11 ([6]). Let {XN,i : 1 ≤ i ≤ dN} be a triangular array of random

variables defined on the probability space (Ω,F ,P), X̄N,dN
= 1

dN

∑dN

i=1 XN,i, and
αN : N → R by

αN (k) = sup
m

sup
A∈Fm

0 (N),B∈F∞
m+k(N)

∣∣P(A ∩B) − P(A)P(B)
∣∣ (7)

where Fm2
m1

(N) = σ
(
XN,m1

, XN,m1+1, . . . , XN,m2

)
denotes the σ-algebra gener-

ated by random variables XN,m1
, XN,m1+1, . . . , XN,m2

. If there exists constants
C1, C2 > 0, δ > 0 such that

E
[∣∣XN,i − E[XN,i]

∣∣2+δ
]
< C1 (8)

and
∞∑
k=0

(k + 1)2α
δ

4+δ

N (k) < C2, (9)

then √
dN
(
X̄N,dN

− EX̄N,dN

) D−−−−→
N→∞

N

(
0, var

(√
dN X̄N,dN

))
. (10)
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We can define a triangular array of Bernoulli random variables by letting XN,i =
1 if and only if the ith move of a Zeckendorf game with input N is a splitting
move (in particular, XN,i maps to 0 on the event that the Zeckendorf game on
input N terminates prior to move i), with dN (the number of random variables
in the Nth row) the length of the longest game on input N ; Conjecture 1 is thus

equivalent to establishing that the row sums
∑dN

i=1 XN,i weakly converge to a
Gaussian, since the number of combine moves for a given input N is constant.
This is precisely the statement of Equation 10. Also, the events A and B in
Equation 7 can be understood as fixed {0, 1}-realizations of subsets of random
variables in {XN,1, . . . , XN,m} and {XN,m+k, . . . , XN,dN

}, respectively.
Since Equation 8 certainly holds under this setup (the constituent random

variables are Bernoulli), resolving Conjecture 1 can be reduced to the following
statement.

Question 3. For the triangular array {XN,i : 1 ≤ i ≤ dN} defined above, does
there exist a constant δ > 0 and a constant C > 0 such that

∞∑
k=0

(k + 1)2α
δ

4+δ

N (k) < C (11)

for all natural numbers N ∈ N?

By the preceding discussion, answering Question 3 in the affirmative by estab-
lishing 11 immediately yields Conjecture 1. In particular, it would suffice to
establish the statement of Question 4 in the affirmative, although it is not im-
mediately clear if this should be true.

Question 4. Does there exist a constant ϵ > 0 and a constant C > 0 such that∣∣PN (A ∩B) − PN (A)PN (B)
∣∣ ≤ C

k2+ϵ
(12)

whenever events A and B correspond to fixed {0, 1}-realizations of subsets of
the Bernoulli random variables in {XN,1, . . . , XN,m} and {XN,m+k, . . . , XN,dN

},
respectively?

Of course, the techniques introduced in the main body of this paper are quite
elementary, and there may be other promising approaches not included in this
section that would contribute towards resolving Conjecture 1.
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