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1 Research Interests: Summary

While my primary training is in analysis and number theorgda do love working on problems in these
fields), | have collaborated with numerous people outsideuoé mathematics, writing papers in Account-
ing, Computer Science, Economics, Engineering, Geologykkting, Physics, Sabermetrics and Statistics.
I enjoy these projects for many reasons. Frequently thesetaresting problems which lead to interesting
theoretical issues. Further, | am often able to use theserpapclasses | teach, and | find these projects are
a great way to interest and excite students.

My main area of research is number theory. Since Riemanm&siigations 150 years ago, zeros of
L-functions have been known to be intimately connected totswols to many problems in number theory.
In the last few decades finer properties of the zeros haveetielpderstand problems such as the observed
preponderance of primes congruent to 3 mod 4 over 1 mod 4 &asvigle growth of the class number. Ran-
dom Matrix Theory has become a powerful tool to model the biehaf these zeros, suggesting both the
answers as well as new questions to ask. My primary intesaatthe distribution of zeros near the central
point for families of L-functions, especially families of elliptic curves witmiaoverQ(7"). Related to this,
| am also investigating constructions for moderate to higihkrone-parameter families of elliptic curves,
lower order corrections ta-level densities of elliptic curves (where the arithmebies$), and the influence
of forced zeros at the central point on the distribution ef finst zero above the central point. Additionally,
| am studying the low zeros of Dirichlet characters with sguiaee modulus (which have applications to
how primes are distributed in arithmetic progressions) Radkin-Selberg convolutions of Gland GL,,
families of L-functions (which highlights how the behavior of complerilies can be understood in terms
of the behavior of the building blocks). Finally, much of ngcent work involves determining lower order
terms in the behavior of zeros éffunctions. These terms are sadly inaccessible througiuatd random
matrix theory, which misses arithmetic; however, througbent bold conjectures such as thdunctions
Ratios Conjecture we have an excellent predictive methbdvé studied these lower order terms in a variety
of interesting families; the most exciting recent applmat(joint with several colleagues) a model which
explains the observed repulsion of zeros near the centiral ipdfamilies of quadratic twists of elliptic curve
L-functions, which we are currently extending to more gelfarailies. Similar to the Berry-Essen theorem
from probability (where the universality of the Central Liitfhheorem is due to the first and second moments,
and the higher moments affect only the rate of convergeht&le shown similar phenomena exist in num-
ber theory (where the higher moments of the Fourier coeffisien families of L-functions affect the rate
of convergence to the Random Matrix Theory predictions;tieowords, the arithmetic of the families live
only in the converge rates).

| am investigating numerous problems in Random Matrix Theord Random Graphs, especially en-
sembles with few degrees of freedom (ordérindependent matrix elements, instead of ord¥é). These
provide fascinating windows to see new behavior and haveenoms applicationskfregular graphs are used
to construct cheap and efficient networks). Along theses|iheam also studying several problems on the
boundary of Probability Theory, Number Theory and Analysisch as proving that the distribution of the
first digits of | L(s, f)| near the critical line and iterates of tBe + 1 map follows Benford’s Law of digit bias
(the first digit is a 1 about 30% of the time). These problemethed to results ranging from the distribution
of digits of order statistics to a generalization of the calniimit theorem for random variables modulo 1.
With some colleagues and students | am extending thesasesul working on applications (I have been
in contact with the Criminal Investigative Division of thR$, helped organize the first conference on Ben-
ford’s law, and am currently editing the first book on the tlyeand applications of the law). Using recent
strong concentration results | proved a conjecture on the @i the sumset to the difference set in additive
number theory / probability theory, with fascinating belbawat the critical threshold which | am continuing
to explore.

| have also worked on and am pursuing several applied projed@robability, Statistics, Linear Algebra
and Cryptography, such as closed-form Bayesian inferéiocdise multinomial logit model, a binary integer
linear programming problem for movie distributors, boumydincomplete multiple exponential sums arising



in Computer Science, extreme cases of the Cramer-Rao ilitggoendeling baseball games, and determining
the security of certain signature schemes in cryptograghiyyell as studying the propagation of viruses in
networks. | am also interested in computational aspectisesiet problems, writing algorithms to investigate
many of these topics, from zeros of elliptic curliefunctions and moments of Dirichldi-functions over
function fields to random matrix theory and graph theory tgd3gan inference and linear programming.

2 Current NSF Grant

2.1 Background

The proposed research covers three major, but relateds: atis&ribution of zeros of -functions (and corre-
sponding problems for ensembles of random matrix theorghlpms in additive number theory (especially
those related to Zeckendorf decompositions, the struatfisum and difference sets, problems in point
configurations and Ramsey theory), and Benford’s law (iti@&#ar dependent random variables and frag-
mentation problems). We first provide some background ferpitoblems, then summarize the PI's work
under previous grants, and end with a description of thequeg research. The Pl has extensive experience
in supervising undergraduate, graduate, post-doc andrjd@culty research; in addition to many of these
projects being central in current investigations, sevemavide a very accessible introduction to higher math-
ematics, which works well with the Pl being at an RUI instidatand having numerous REU students. The
P1 will continue mentoring students and junior colleagugiging public lectures, and writing introductory
material (such as textbooks, conference resources, anelysarticles).

In attempting to describe the energy levels of heavy nu@&HMPW,Wigl,Wig2], researchers were
confronted with daunting calculations for a many bodiedteayswith extremely complicated interaction
forces. Unable to explicitly calculate the energy levelygicists developed Random Matrix Theory (RMT)
to predict general properties of the systems. Surprisjrigy same model is an excellent predictor of many
(but not all') properties of zeros and valuesiefunctions [Conl, KS1, KS2]. The PI plans to continue his
studies of several statistics, especially the behavioeoisz near the central point and the 1-level density in
various families, which is defined by

. 1 ~
]\}E)noo 7l Z Z ¢ (Vjsf) s

JEFN ]

with ¢ an even Schwartz functiotf = UFy a family of L-functions ordered by conductor, and (assuming
GRH) the zeros of.(s, f) arel/2+iv;. ; (they;.; are the normalized imaginary parts of the non-trivial zgros
The Katz and Sarnak conjectures [KS1,KS2] state that asah@uctors tend to infinity, the behavior of the
zeros near the central point agree with the scaling limitaimalized eigenvalues of a classical compact
group. In particular, while RMT does an excellent job prédg the main term, it misses the arithmetic,
which surfaces as lower order corrections, which the Plgsep to isolate.

The development of RMT was motivated by Statistical MectsinFor example, consider a room with
N air molecules (which either move left or right at a constg@eslv) and a macroscopic quantity such as
pressure. To calculate the pressure one must know thegyoaitid velocity of each molecule, an unrealistic
goal. Instead one approximates the pressure for a givengemafion of molecules by finding the average
pressure over all configurations, as most configuratione hgwessure close to the system average. These
central limit theorem type results led to modeling the epdeyels of heavy nuclei by the eigenvalues of
ensembles of matrices. At first physicists studied real sgtrimand complex Hermitian matrices with
entries independently drawn from Gaussians [Meh], thougliadlays the ensembles are usually taken to
be the classical compact groups with Haar measure [Conli&2]. The PI will continue his studies of
the distribution of eigenvalues of structured ensemblessé families have significantly fewer degrees of
freedom than the full families of real symmetric and comgtermitian matrices, and provide an excellent
opportunity to see new behavior. If the independent matgments are chosen from a nice distribution,
the limiting spectral distribution is reduced to integngtithe trace of powers of the matrix over the space,
which converts the problem to a combinatorial one of deteimyi which matching contribute in the limit
(the answer depends on the structure of the ensemble).



The second major theme concerns problems in additive nuthieery, mostly related to Zeckendorf
decompositions and sizes of sum and difference sets. Emtagdr can be written uniquely as a sum of
non-adjacent Fibonacci summands (if we label= 1, F5 = 2). Lekkerkerker computed the mean number
of summands needed for integerg i,, F),+1); other researchers showed the fluctuations here and in other
recurrence relations are Gaussian. Numerous other gunestan be asked, especially for signed decom-
positions and for the distribution of gaps between summdbadth in the bulk as well as the longest gap).
Another topic concerns sum and difference sets.A be a finite set of integers, and séf- A andA — A to
be the set of all sums (respectively differences) of elementl. As addition is commutative but subtraction
is not, it was believed that ‘most’ of the timjel + A| < |A — A|. It thus came as a surprise when Martin
and O’Bryant [MO] proved that if each element frof@, 1,..., N} is in A with positive probabilityp then
asN — oo a positive percentage of are sum dominated (i.d4 + A| > |A — Al).

The final topic is Benford’s law of digit bias. In many systethe probability of observing a first digit
of d is not 1/9 butlog;, (1 + 1/d); if this holds we say the system obeys Benford’s law. Beri$olalv for
the original sequence is equivalent to the logarithms ndeing equidistributed, which suggests Fourier
analytic techniques will be useful. The main problems s&ddire related to fragmentation questions.

2.2 Results from Prior Support

The Pl is currently supported by NSF Grant DMS1265673 (AsialyNumber Theory and Combinatorics:
$135,610): Low-Lying Zeros ofL-functions & Problems in Additive Number ThepAugust 15, 2013 to
August 15, 2016, as well as two extensions (for travel / stigefor students and to support his math riddles
page); from 2006 to 2013 he was supported by NSF Grants DM®B2&and DMS0970067. Additionally,
(1) the PI received support from the DHS Center at Rutgersvaik on a cryptography book for non-
math majors, (2) VCTAL to develop mathematical modules gipitrgraphy and streaming information for
high school students (part of a large project to bring comipanal thinking to the classrooms, received
small stipend), (3) NSF Grant DMS1347804 (the Williams €gd SMALL REU), where he was the Pl and
program director for two years (the PI did not receive anyd&ifrom this grant, but administered it and it
supported some of his students and colleagues), (4) a snpptdo the SMALL REU grant to travel with
students and colleagues to conferences such as SACNAS amdatin Alliance’s Field of Dreams (where
he is an Alliance Mentor) to encourage students to pursueecsiin mathematics, to inform them about
research opportunities both as undergraduate and grastudtents, and to give talks about careers at liberal
arts institutions, (5) participant on the most recent SA@\grant (travel / lodging reimbursed to talk to
students, to give a talk and to help with writing the grantjd #6) AIM/ICERM REUF grant NSF Grant
DMS1239280 to support to mentor four junior faculty in imyirgy their research and working with students
(small stipend and travel expenses). All papers are on g and the PI's homepage.

2.2.1 Intellectual Merits

On DMS1265673 the Pl had 32 papers appear (in journals suéligabra & Number Theory; Commu-
nications in Number Theory and Physics; Experimental Mates; Fibonacci Quarterly (4x); Journal of
Combinatorial Theory, Series A; Journal of Mathematicablmis and Applications; Journal of Number
Theory (3x); Int Math Res Notices; Physical Review E; Randdatrices: Theory and Applications (2x)),

6 more are to appear, 10 are under review, and 10+ are in ptepaand serve as starting points for the
new proposed research. The published or accepted worknisvigih over 50 undergraduates, 5 graduate
students and 2 post-docs, as well as 7 junior faculty the Rleistoring, and is listed in the main body of
the bibliography with the other references (and for the eaience of the reader is also listed separately by
category at the end of the bibliography). To leave room teidles the proposed research, we just give a brief
summary of a representative sample of the work below.

1. L-Functions (4 papers)[AMil] ( Low-lying zeroes of Maass forfi+functiong: We determine the 1-
level density for Maass forms for support up(te2, 2) under smooth weighting. Previous work could
not break(—1,1). Briefly, we first write down the explicit formula to convehe relevant sums over
zeroes to sums over Hecke eigenvalues. We then average plydtagp Kuznetsov trace formula and



reduce the difficulty to bounding an integral of shape
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where these/ are Bessel functions, arfdr is a certain weight function. We break into cases:
“small” and X “large”. For X small, we move the line of integration frofhidown toR — i R and take
R — 400, converting the integral to a sum over residues. The ditfjcten lies in bounding a sum
of residues of shape
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where P is closely related tch. To do this (after a few tricks), we apply an integral forméda
these Bessel functions, switch summation and integradpply Poisson summation, apply Fourier
inversion, and then apply Poisson summation again. Thetrissa sum of Fourier coefficients, to
which we apply the stationary phase method one by one. Téidsythe bound foX small. To handle
X large, we use a precise asymptotic for the.(X) term from Dunster [Du] (as found in [ST]). In
fact, for X large it is enough to simply use the oscillation.Bf,. (X ) to get cancelation. It is worth
noting that the same considerations would also be enoughdarase ofX small were the asymptotic
expansion convergent.

[AMPT] (Then-Level Density of DirichlefL-Functions oveif,[T]): Hughes and Rudnick [HR] com-
puted1-level density statistics for low-lying zeros of the famdy primitive Dirichlet L-functions of
fixed prime conductof) — oo, and verified the unitary symmetry predicted by random mateory.
We computel- and2-level statistics of the analogous family of Dirichletfunctions overF,(7'). In
our situation the test function is periodic and our resulésamly restricted by a decay condition on its
Fourier coefficients, and include error terms.

[FMil] ( Surpassing the Ratios Conjecture in the 1-level densityin€idet L-functiong: We study
the 1-level density of low-lying zeros of DirichleL-functions in the family of all characters modulo
q, with Q/2 < ¢ < Q. For test functions whose Fourier transform is supporte@-iB/2,3/2),

we calculate this quantitpeyondthe square-root cancellation expansion arising from/tHanction
Ratios Conjecture of Conrey, Farmer and Zirnbauer [CFZy(thgree in the region the conjecture
is believed), and isolate a new lower-order term which ispredicted by this powerful conjecture.
This is the first family where the 1-level density is deteredrwell enough to see a term which is not
predicted by the Ratios Conjecture, and proves that therexpimf the error terrﬁ)‘%“ in the Ratios
Conjecture is best possible. The analysis requires serg=alts on smooth sums of primes in arith-
metic progression, combining divisor switching technsjaed precise estimates on the mean value
of smoothed sums of the reciprocal of Euler’s totient fumctiWe also show how various conjectures
on the distribution of primes in arithmetic progressionrgase the support, from modest conjectures
increasing up t@—4, 4) to stronger ones (such as Montgomery’s conjecture) givibgrary support.

[BMMPT-B] (Gaps between zeros of GL(R)functiong: We extend previous work on large gaps be-
tween zeros of (s) and Dirichlet L-functions to cuspidal newforms on GL(2). Our arguments are
general and hold for elements of the Selberg class, and ieuapplicability in the end is reduced to
proving a givenL-function has the conjectured behavior. We use Wirtingeegjuality to relate gaps

to second moments df-functions and their derivatives. We analyze in great gaiigrthe shifted
second moments which arise and derive the needed main ard doder terms.

. Random Matrix Theory (3 papers)lGKMN] ( The expected eigenvalue distribution of large, weighted
d-regular graph$: McKay [McK] proved the limiting spectral measures of thressembles ofi-regular
graphs with/V vertices converge to Kesten's measureNas— oco. We generalize and considéf
regular graphs with random weights, drawn from some digion )V, on the edges. We establish
the existence of a unique ‘eigendistribution’ (a weightriisition 1/ such that the associated limiting
spectral distribution is a rescaling Bp). Initial investigations suggested that the eigendistidn was
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the semi-circle distribution, which by Wigner’s Law is thimiting spectral measure for real symmetric
matrices. We prove this is not the case, though the devid@ween the eigendistribution and the
semi-circular density is small (the first seven momentsegaed the difference in each higher moment
is O(1/d?)). The main ingredient in the proof is a combinatorial resibut closed acyclic walks in
large trees.

[MSTW] (Limiting Spectral Measures for Random Matrix Ensembles wiPolynomial Link Func-
tion): We studied ensembles of matrices where there is a linkiomé& such that ifZ(i, j) = L(i’, j)
thena; ; = ay j. Using the Method of Moments and an analysis of the resullimgphantine equa-
tions, we show that the spectral measures associated wéhrlibivariate polynomials converge in
probability and almost surely to universal non-semiciacuistributions. We prove that these limiting
distributions approach the semicircle in the limit of langdues of the polynomial coefficients. We
then prove that the spectral measures associated with theosulifference of any two real-valued
polynomials with different degrees converge in probap#ihd almost surely to a universal semicircu-
lar distribution (we need this difference in order to deallwdome resulting integrals). Many of the
formulas were first conjectured by extensive numericalyamsl

[BLMST] (Distribution of eigenvalues of weighted, structured magnsembles)Given a structured
ensemble such that (i) each random variable oce@ré) times in each row and (ii) the limiting
rescaled spectral measufeexists, we introduce a parameter to continuously intetpobeetween
these two behaviors. We fixa € [1/2,1] and study the ensemble of signed structured matrices
by multiplying the (i, 7)" and (j,4)" entries of a matrix by a randomly chosen € {1, -1}, with
Prob(e;; = 1) = p (i.e., the Hadamard product). Fpr= 1/2 we prove that the limiting signed
rescaled spectral measure is the semi-circle. For all ptivee prove the limiting measure has bounded
(resp., unbounded) supportifhas bounded (resp., unbounded) support, and convergessio — 1.
Notably, these results hold for Toeplitz and circulant mxa@énsembles. The proofs are by Markov’s
Method of Moments. The analysis of tB&™ moment for such distributions involves the pairings of
2k vertices on a circle. The contribution of each pairing in $igned case is weighted by a factor
depending orp and the number of vertices involved in at least one crossifgese numbers are of
interest in their own right, appearing in problems in conalbimics and knot theory. The number of
configurations with no vertices involved in a crossing islvetlidied, and are the Catalan numbers.
We discover and prove similar formulas for configurationthwi 6, 8 and 10 vertices in at least one
crossing. We derive a closed-form expression for the erplectlue and determine the asymptotics for
the variance for the number of vertices in at least one angssAs the variance converges to 4, these
results allow us to deduce properties of the limiting measur

. Zeckendorf decompositions (7 paper3fe main results here are in [BILMTGaps between sum-
mands in generalized Zeckendorf decomposijiorisarlier work established that for positive linear
recurrence relations (these relations have non-negateiicents and the first coefficient is positive),
every positive integer has a unique legal decompositioarims of the sequendé~,, }, and as, — oo
the number of summands used in decompositions.of [G,,, G,,+1) approaches a Gaussian. We
prove that the distribution of gaps between summands cgeseio essentially a geometric random
variable on average, and almost surely for the individual geasures attached to eaeh we also
show the distribution of the longest gap converges to smhikhavior as seen in the longest run of
heads in a biased coin. The proofs on the gap measure foltow dounting arguments applied to de-
pendent events and Levy'’s criteria, while the longest gapdee technical and uses Rouche’s theorem
to prove needed results about general characteristic paliats.

In [DDKMMV1] ( Generalizing Zeckendorf’'s Theorem fedecompositions [DDKMMV?2] ( A Gen-
eralization of Fibonacci Far-Difference Representati@m Gaussian Behaviand [CFHMN] Gen-
eralizing Zeckendorf’s Theorem: The Kentucky Seqyeneeexplore different generalizations of pre-
vious work. The first introduces a new notion of a legal decositipn, where now if.,, is a summand
thena,—1,an—2,...,a,_s) are unavailable, the second allows positive and negatirerg@nds to
be used, and the third is a recurrence where the first coefficsezero. We obtain similar results,
although interestingly a related sequence to the Kentucdley ourrently being investigated with the



same authors, does not have unique decompositions.

In [BDEMMTW1] (Gaussian Behavior of the Number of Summands in Zeckendadnmositions

in Small Intervaly we show that it is not necessary to look at the natural iaisi\#,,, F,, ;1) and
that similar behavior is obtained in almost all sub-intésyavhile in [MW2] (Gaussian Behavior in
Generalized Zeckendorf Decompositipmge provide a non-technical general overview of results in
the area.

The paper [BDEMMTW1] Benford Behavior of Zeckendorf Decompositjonsll be described in
greater detail in the Benford section.

. More Sums Than Differences Sets (4 papdisEMZ2] ( Finding and Counting MSTD sétand [MilV]
(Most Subsets are Balanced in Finite Groupse two conference proceedings report on work with
students on a variety of MSTD sets. The first includes (amdhgraesults) a powerful generalization
of the base expansion method which allows us to completsbive many questions, including proving
a positive percentage of sets having a given linear conibimgteater than another linear combination,
and a proof that a positive percentage of setskagenerational sum-dominant (meanidgA + A, ...,

kA = A+---4 A are each sum-dominant). The second looks at similar quesiicfinite groups. We
show that if we take subsets of larger and larger finite graugf®rmly at random, then not only does
the probability of a set being sum-dominated tend to zerdhmiprobability thatA + A| = |A — A
tends to one, and hence a typical set is balanced in this Gésecause of this marked difference in
behavior from subsets of the integers is that subse{§,of . , n} have a fringe, whereas finite groups
do not. We give a detailed analysis of dihedral groups, whiggeresults are in striking contrast to
what occurs for subsets of integers. Specifically, evengh@lmost all subsets of dihedral groups are
balanced as the size grows, more sets are sum-dominateditfemance-dominated.

In [DKMMW] ( Sums and Differences of Correlated Random)Sstartin and O’Bryant [MO] showed

a positive proportion of subsets o, ...,n} are sum-dominant. We generalize and study sums and
differences of pairs oforrelatedsets(A, B) (a € {0,...,n} is in A with probability p, anda goes

in B with probability p; if a € A and probabilityps if a ¢ A). If |[A+ B| > |(A— B)U (B — A)|,

we call (A, B) a sum-dominan{p, p1, p2)-pair. We prove for any fixegq = (p, p1, p2) in (0,1)3,
(A, B) is a sum-dominantp, p1, p2)-pair with positive probability, which approaches a linit ).

We investigater decaying withn, generalizing results of Hegarty-Miller [HeMi] on phasarisitions,

and find the smallest sizes of MSTD pairs. The main ingredietite proof is bounding probabilities

of fringe structures, especially through Bayes’ theorem.

[DKMMWW] ( Sets Characterized by Missing Sums and Differences iniDjj&olytopes We gener-
alize investigations of integers in a growing interval te thttice points in a dilating polytope. Specif-
ically, let P be a polytope inR” with vertices inZ”, and Ietpi’d now denote the proportion of
subsets ofL.(nP) that are missing exactly sums inL(nP) + L(nP) and exactly2d differences in
L(nP) — L(nP). The geometry of? has a significant effect on the limiting behaviorp:fffd. We
introduce a geometric characteristic of polytopes caltamill point symmetry, and show thpi’d is
bounded below by a positive constantas> oo if and only if P is locally point symmetric. We prove
that the proportion of subsets ia(nP) that are missing exactly sums and at leagtd differences
remains positive in the limit, independent of the geomeftrydthis is the correct higher-dimensional
analogue of being a More Sums Than Differences set, as tferatite set frequently has far more
candidate points than the sumset), an@ifs additionally point symmetric, then the proportion of
sum-dominant subsets &fn P) also remains positive in the limit.

. Benford's Law (3 papers and 1 booKJhe main contribution is the edited book [Mil8Tljeory and
Applications of Benford’s Layywhere the Pl also wrote two chapters and collaborated binch T his
is the first book to have the theory and applications extehsideveloped together.

The leading digits of the Fibonacci numbers obey Benfoalig in [BDEMMTW1] (Benford Behavior
of Zeckendorf Decompositigna/e prove that additionally the number of summands in Zedkén
decompositions with leading digitfollows Benford’s law. The main idea is to prove the resultewh
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we randomly choose summands in a legal decomposition tokiea t&ith a fixed probabilityp, and
then note that a special choicepois equivalent to uniformly choosing integers.

[IMS] (Equipartitions and a distribution for numbers: A statistienodel for Benford’s lajvconsiders
fragmentation problems, and establishes new upper and lwvumds for the distribution of fragments
with a given leading digit.

6. General Number Theory (5 paperdjhe two papers [ACM]lewman’s conjecture in various settings
and [CMMRSY] (Newman'’s Conjecture in Function Fieldgplore Newman'’s conjecture, which quan-
tifies the maxim that if RH is true it is just barely true, in iars settings. [AMPT] $ets of Special
Primes in Function Fieldsand [ABMRS] (Generalized Ramanujan Primdsok at some special sets
of primes (the first involves the totient function and counsting a non-trivial set of prime® where
if p € P soisr for anyr|p — 1, while the second involves determining interval sizes sd ¢hgiven
number of primes always lie in such intervals). [CHMVW]dntinued Fraction Digit Averages and
Maclaurin’s Inequalitie} generalizes the arithmetic mean - geometric mean resultigits of con-
tinued fractions to all symmetric means, and determinesaagltransition.

7. Sabermetrics (3 papers)CGLMP] (Pythagoras at the Basummarizes research on the Pythagorean
Won-Loss formula to estimate a team’s winning percentag®/iging new justifications using just cal-
culus and elementary algebra applied to baseball modeBVITKIThe James Functigrextracts from
the standard Pythagorean formula a set of conditions dsifar any predictor and determines the
class of functions satisfying those conditions; [LMiR€lieving and Readjusting Pythagoyaxtends
standard models on ballgames to include ballpark effealsrare events (among others), as well as
introducing a Weibull-basis to obtain tractable closedrfg@redictive statistics.

8. General / Surveys (9 papers)Xhe first five papers are a mix of survey articles and prelinyirzan-
nouncements on work in progress, much of which will be expdnah in theNew Problemsection.
[MMRW] (Lower-Order Biases in Elliptic Curve Fourier Coefficients Familieg is a continuation
of work begun in the PI's thesis on observed biases in thensecmments of the Fourier coefficients
of elliptic curve L-functions, and consequences on low-lying zeros. [OFMTHBdmM Quantum Sys-
tems toL-Functions: Pair Correlation Statistics and Beygneviews of the development of random
matrix theory and its connections to number theory. [AAILMElaass waveforms and low-lying ze-
ros) contains weaker results than [AMil] but a significantly iea®xposition, highlighting the issues
of applying the Kuznetsov trace formula. [FrMilpétermining Optimal Test Functions for Bounding
the Average Rank in Families @f-Functiong returns to a problem from [ILS]; they determine the
optimal test function to bound the average rank in a familyubing the 1-level density for support
in (—2,2); we remove the support restriction by introducing a serfedetay differential equations.
Finally [MMRT-BW] (Some Results in the Theory of Low-lying Zgmises an elementary and ac-
cessible account of low-lying zeros, concentrating on fi@sniof Dirichlet characters and highlighting
how the arithmetic of the family enters the analysis.

[Mil4, Mil5, Mil6, Mil7] ( The Pi Mu Epsilon 100th Anniversary Problems: Parts )IMs 2014
marked the 100 anniversary of Pi Mu Epsilon, the Pl (who is the Problem EditbPi Mu Epsilon)
decided to celebrate with 100 problems related to importethematics milestones of the past century,
meant to provide a brief tour through some of the most exgiind influential moments in recent
mathematics. Several leading experts in the relevant faaldsored pieces (the Pl was the primary
author on 47 entries, and edited all).

2.2.2 Broader Impacts

For almost twenty years, the Pl has worked extensively witltiengraduates; in the last three years he super-
vised 43 summer undergraduate research students and 7 thersies (3 more co-advised). He has mentored
and published with 6 graduate students, 2 postdocs and @rjtadulty. Some of the proposed problems



represent continuing work of the Pl and colleagues at otisditutions, while others are meant to introduce
students and junior faculty to the fields and research. Als,suany of these problems are meant to serve as
springboards to get people interested and involved, and the final prajéletaigh inspired by the questions
below, may differ in the end. The Pl has used this model vecgessfully with his previous grants, finding
students respond well to the freedom to have input in prolslelection (while at the same time appreciating
and benefiting from some direction, which ensures much ofvibr will be of interest to senior researchers
in the field). The resulting projects have appeared in godogdgournals, have often been related to the major
research interests of the PI, and have helped his studerittedghether or not to pursue graduate studies in
mathematics (and, if so, in which sub-division).

He has incorporated research projects into his classeagdthie academic year, resulting in several
papers. His students have presented at both undergradwhtesearch conferences, including the Maine -
Québec Number Theory Conference, the Combinatorial andieldNumber Theory conference, the Young
Mathematicians Conference at Ohio State, and the AutonmFarms Workshop (University of Michigan).

In addition to working with all on writing papers and givinglks, the Pl has also worked with them in
refereeing papers for journals and writing reviews for MatiNet, in speaking at summer programs for
talented math students, in mentoring later colleagueseoPthand doing fun math units in local schools.

The Pl is also active in mathematics education. He has writeintroductory textbook in cryptography,
just completed one on an introduction to Benford’s law, aiihishing books on Probability and Operations
Research. Related to this, the Pl is writing modules for ligiool math courses (so far on the science of
encryption and information protection, and streaming rimfation), and working with math teachers at all
levels through a variety of outreach efforts (from his madlilles webpage to continuing education classes
in the Teachers as Scholars program to volunteering in $€hoo

2.3 Proposed Problems

The PI proposes to study a large number of problems in senedeabd areas of number theory. He will work
extensively with undergraduates (both thesis studentsiliaiVs and summer students), graduate students,
postdocs and junior faculty (at Williams and at other ingigins). For the past six years he has had students
and junior colleagues working with him on multiple projesisultaneously; this model has worked very
well for the Pl and his colleagues, and the current plan isuitnllon this strength. Thus, in the interest of
space, the project descriptions are a little short in ordérighlight the breadth of problems being studied;
however, many of these problems are natural outgrowthsesfiquis work of the Pl and more information
can be found in the section on previous work.

2.3.1 Low-lying zeros ofL-functions and Random Matrix Theory

The 1-level density is an excellent statistic to invesggattoperties of zeros af-functions near the central
point, which is often where interesting arithmetic occu#b families of L-functions investigated to date have
scaling limits agreeing with the scaling limit of a clas$icampact group (unitary, orthogonal or symplectic),
or a trivial modification (such as elliptic curvefunctions, where there is an extra copy of the identity matr
which models the family zeros at the central point). Thesitad compact groups all have different densities,
though the three orthogonal types cannot be distinguistiet$t functions supported {r-1,1).

There are many reasons to desire as large support as possiatigition to being able to distinguish the
orthogonal flavors, often breakirig-1, 1) (or more) is equivalent to understanding finer arithmetiesgions.
Examples include DirichleL-functions, where larger support is related to the distidsuof the primes in
congruence classes, to cuspidal newforms (where lwanigeg,and Sarnak [ILS] show the equivalence of
larger support to exponential sums over primes.

1. Petersson Formulas for arbitrary level and low-lying zeadsuspidal newformdviany investigations
of cuspidal newforms restrict the level to square-free onatimes even prime) to avoid the technical
obstructions arising from the factorization of the levetldne resulting inclusion-exclusion needed to
obtain a tractable basis. A notable recent exception is tiré& of Blomer and Miltevic [BM], where
they obtain a basis for cusp forms for genekal The Pl proposes to extend this work and generalize



arguments in [ILS] and [Rou] to develop a tractable Peterdsomula for such/V. Preliminary inves-
tigations are promising. In his Summer’15 REU, his studéatse begun the work and have corrected
several minor mistakes in [BM], and have developed the tieguPetersson formula in the simpler
case where the argument of the Fourier coefficient is relgtiprime to the level: ifin, N) = 1 then
we have shown
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with the linear combinations chosen to give us orthonornaae. In addition to being of interest in
its own right, this formula (and the generalization to adsig n) will be of use in computing statistics
such as the 1-level density. In particular, the Pl will ude investigate lower order terms in the 1-level
density. While in many families the main terms agree with &an Matrix Theory, the lower order
terms depend on arithmetic of the family, and thus we hope¢ohew the factorization oV effects
the lower order terms (the first lower order term plays an irtgyd role in determining the behavior
of zeros at the central point for finite conductors). In depéig the Petersson formula it was essential
that(n, N) = 1; we hope to remove this restriction,, which would allow us plitthe families by sign

of the functional equation.

. Optimal test functions for bounding order of vanishing imfles at the central pointln [ILS] the
authors determine the optimal test functions to obtain #& bounds on excess rank at the central
point using the 1-level density when the support of the Favuriansform of the test function lies in
(—2,2) for the orthogonal families. In [FrMil] the PI and his recehesis student, Jesse Freeman,
determine the optimal test functions for the 1-level dgnfsit support in(—3, 3). We proved that ifs

is an even Schwartz test function such thaip(¢) C [—2s, 2s], with s = /2, then for2 < o < 3the
optimal test function is given bzg? = gg.0 * 9g,0. Herex represents convolutiong ,(z) = gg.-(—x),

andgg - is given by

€1,G,0 COS <|i\/2l> lz| <o/2-1
COS(%—L—II)) 0/2-1<|z|<2-0/2
gSO(even),U(w) = )\SO(even),U Cl.G.o - -1
—5 sin (x—2> +e3ge 2-0/2<|z[<0/2
0 2| = 0/2,
and
e |z <o/2
gO,U(m) = Lto/2
0 |z > 0/2
forG = O, and
€1,G,0 COS (%) lz| <o/2-1
cos (12l 4 =71) 0/2-1< o] <2-0/2
96.0(1) = Agoq N .
“ge i (54) 4erg, 2 0/2< [o] <02
0 |z > 0/2
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for G = SO(odd) or Sp. Here, ther; ¢ and A\ are easily explicitly computed. In the proposed work
we will extend these results two ways: (1) arbitrary suppanid (2) generalize ta-level densities.
The work on (1) uses the Fredholm alternative, Paley-Weineory, and a system of delay differ-
ential equations. Specifically, we deduce an optimalittedon which holds for alk € R™, where
supm{ﬁ) C [—2s,2s]. Our kernels give us a system of location-specific integgalaéions, which we
will use to extend the results to larger support.

. Biases in second moments of Fourier coefficients of familidsfunctions. In his thesis [Mill] the

Pl noticed that for one parameter families of elliptic cuewerQ|[T] that the second moments of the
at(p) exhibited a bias. By this we mean the following: Michel prdvkat if j(T") is non-constant then
>t mod p as(p)? = p?+O(p*/?), with the lower order terms having co-homological intetatiens. In
every family he investigated the first term which did not aggr to zero had a negative average. More
evidence was recently obtained by him and his students in[RMW| where they proved this bias exists
in numerous families. The PI proposes to continue this tiyatson to other families of.-functions,
such as Dirichlef.-functions, cuspidal forms, and symmetric power lifts. Tingn tools are averaging
formulas (orthogonality of characters, Petersson forrrauta formulas for Legendre sums). The bias
of these terms are very important in thdevel densities, and play a major role in identifying lower
order terms (which in the next project are related to the Wiehaf zeros near the central point).

. Models for zeros at the central point for finite conductohs.[DHKMS1, DHKMSZ2] the Pl and his
collaborators introduced the Excised Orthogonal Ensetolbteodel the behavior of zeros of quadratic
twists of elliptic curveL-functions at the central point. This new approach sucakeaautifully in
explaining the observed repulsion which vanishes as thdumtars go to infinity but is strongly seen
in the range experimentally reachable. The excised engehas two parameters, one determining an
effective matrix size, and the other restricting the ortthej matrices to those whose characteristic
polynomial atd = 1 is a certain size in absolute value; this is responsible Her‘éxcision’, and
incorporates the discreteness of the elliptic cukviinctions at the central point.

We plan on extending this model to other families, includidigichlet L-functions (and provide an
interpretation for the discrepancy seen there from theilgibehavior as the matrix sizes tend to in-
finnity) and cuspidal newforms on GL(2) and symmetric povifes.| The Pl has begun investigations
of these cases with his REU students and Nathan Ryan at Bluckiree way of obtaining the effec-
tive matrix size is to match the first lower order terms inn bemtheory and random matrix theory;
interestingly when this happens we obtainegativesize for quadratic Dirichlet characters (this is not
terminal, as the RMT formulas can be analytically continaed negative values make sense). We plan
on gathering numerical evidence for this and related fasifind testing the new theoretical predic-
tions. Many of the calculations are first done throughithleunction Ratios Conjecture [CFZ1, CFZ2].

. Large gaps between zeroslofunctions.In [BMMPT-B] the Pl and his colleagues generalized existing
techniques to study large gaps between zeros of GL{finctions. Combining mean-value estimates
of Montgomery and Vaughan with a method of Ramachandra, exef formula for the mixed second
moments of derivatives at(1/2 + it, f). As an application, we use an argument of Hall to show that
there are infinitely many gaps between consecutive zerds(bf2 + it, f) that are at least/3 =
1.316. .. times the average spacing. The linking factor between themends and gaps is Wirtinger’s
inequality: Lety : [a,b] — C be a continuously differentiable function, and suppose ifia) =

y(b) = 0. Then ,
/a yle)ds < (b;a) / @) .

Building on this success and other recent work in the fieldpmgose to go further by using mollifiers
and fourth moments. We will expand on the ideas in [HY] and JHHattack shifted sums. Our first
task will be the case where we average over the family, aswigecan exploit additional cancellation
through the Petersson formula; if we are successful theravilteonsider the more general case of
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a fixed form. Preliminary investigations give four terms tody, arising from the Kronecker delta
versus the Bessel-Kloosterman term in the Petersson farmand from whether or not the resulting
quadratic form is zero or non-zero. To date we have had ssicecesalyzing the Bessel-Kloosterman
piece attached to the non-zero associated value, and angsijt that similar techniques will handle
the other cases.

6. Alternative formulations of the Katz-Sarnak determin&mitgpansions and applicationshe Pl and
C. Hughes [HuMi] computed the-level density for cuspidal newforms. The main difficulty sva
multidimensional Bessel-Kloosterman sum. We convertedttha 1-dimensional sum, at the cost of
replacing the test function with am-fold convolution. While this facilitated the analysis,lé&d to
difficulties in comparing with random matrix theory. We dexdl a new and more tractable expres-
sion for then-level densities. This new formula facilitated comparsdaor test functions supported
in (—ﬁ, ﬁ) by simplifying the combinatorial arguments. This work segig that additional terms
emerge whenever the support breaksni—k, ﬁ). Building on this success, the Pl plans on further
developing the combinatorics to increase the support wigsealternative formula holds. As an ap-
plication, then-level density of cuspidal newforms, currently known onjyto (——1-, -L-), will be
expanded (currently our new methods g@%, ﬁ). The plan is to generalize Hypothegigrom
[ILS], which the authors use to bredk-2, 2) for the 1-level density, to an-dimensional analogue.
These are very delicate calculations; as [ILS] remark, gaoe&ntial sum similar to that in Hypothesis

S does not have the conjectured cancelation.

2.3.2 Classical Random Matrix Theory

1. Structured matrices.The Pl has extensive experience [HaMi,MMS,JMP,KKMSX] indsting the
limiting spectral measure of families of structured magsic LetA be anN x N matrix with some
structure (perhaps it is Toeplitz and constant along dialgdnwith independent entries drawn from a
fixed densityp with mean 0, variance 1 and finite higher moments. The engbpisicectral measure

g Ai(A)
pan(z)de = N;5<x— N )dm

often converges (weakly, almost surely) to a limiting spianeasure. The determination of the limit
if often deduced to delicate combinatorics, whose soluligmends on finding the proper combinatorial
vantage. The PI plans on further studies of interestingmhkas. One of the more interesting ensem-
bles are checkerboard matrices, where eveentries in rowi vanish, starting at entrymod k. So

far we have shown that, properly normalized, the limitingapal measure of most of the eigenvalues
converges to the semi-circle; however, there is a boundetbatof eigenvalues that escape — the plan
is to determine the proper normalization to focus on thogersialues and see (in what sense) they
have a limiting behavior.

2.3.3 Generalized Zeckendorf Decompositions

1. Non-Positive Linear Recurrencebluch of the previous literature in generalized Zeckendedain-
positions (see for example [BILMT]) assumes that the limeaurrence has non-negative coefficients
and positive leading term. Working with four junior facultyris work was begun at a REUF program
at AIM and continue at ICERM), the PI is investigating whappens when the leading coefficient
vanishes. In some cases unique decompositions still ékistgreedy algorithm still leads to valid
decompositions, and the fluctuation of the number of summadGaussian and the gaps between
summands is geometric decay; the situation is strikingffeidint in other cases. We have associated
a sequence to the Fibonacci Spiral (the sequence of squéarels tite the plane, declaring a decom-
position legal if we never use two terms who share an edgedryEuteger has a decomposition, but
the decompositions are not unique (by solving an assocramarence we have shown the number
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grows exponentially), and the greedy algorithm only temt®s successfully in a decomposition ap-
proximately 93% of the time. We plan on continuing this warlsee if the fluctuation in the number of
summands and gaps are more universal and still exhibit the bahavior. One of the main ingredients
in these problems is a new method which bypasses many ofdheital obstructions in previous work
(see for example [MW1]). There the difficulty was to show agrtcoefficients were positive, which
required involved analysis of the polynomials associatetth¢ initial recurrence. This analysis could
only be done in the special case listed earlier. We are deveja@ new technique which uses a partial
fraction decomposition of a two variable generating fumttiand then show the needed coefficients
must be positive or the number of numbers in our interval Wdd too small. We have already applied
this argument to some recurrences where the leading tereras laut these have unique decomposi-
tion. We plan on extending this method to the Fibonacci Quitt other cases, developing a useful tool
to handle many similar problems.

2. Geometric Notions of Legal Decompositiona.addition to the Fibonacci Spiral, the PI will explore
other notions leading to legal decompositions, and see hewessulting geometry affects the behavior.

2.3.4 Sum and Difference Sets

1. Phase transitionsThe Pl and P. Hegarty [HeMi] proved that the existence of dtipegercentage of
setsA C {0,...,n — 1} being sum-dominant (i.elA + A| > |A — A]) asn — oo is due to choosing
eachk € {0,...,n — 1} to be in A with a positive probability independent of If all k& are still
chosen equally but with some probabiljtyn) decaying to zero, then with probability one a set is dif-
ference dominated. Finer behavior of the relative sizegni@p on the decay rate, and there is a phase
transition wherp(n) = n~/2. The PI plans on exploring the presence of phase transitioother
phenomena, especially when there Areummands, each weighted Byl. The critical threshold is
now p(n) = n~(»=1/h: we currently have results up to and including this critiegbonent (the main
idea involves generalizing the combinatorics from [HeMipound the number of repeated elements),
and are investigating the case of slow decay (i.e., expsress tharih — 1)/h).

2. Explicit constructions of generalized MSTD seln.[ILMZ1] the Pl and his students proved many
properties about generalized MSTD sets, including thaafiyrk a k-generational set exists, but no set
works for allk (a setA is k-generationalif A,2A, ..., kA are all MSTD). We have already improved
previous constructions fronm| = Q(k!?) to Q(k) by replacing the base-expansion technique with a
more delicate fringe argument. We plan on exploring how faroan push these fringe arguments.
Other recent successes include proving a positive pegertsets are bi-MSTD (a set C [0, n]
is bi-MSTDif A and A€ are both MSTD, withA¢ the set of elements if9), n| not in A); we plan on
trying to push this further (for what: can a positive percentage of sets be written as a disjoinuni
of m MSTD sets?) Related to the above, we will explore higheretligional versions of these prob-
lems. In previous work [DKMMWW)] the author and his colleagueund the right interpretation of
being MSTD in higher dimensions was to have fewer missingsstivan missing differences (as the
difference set was just naturally so much larger); the bienaepended greatly on the geometry of the
polytope. There are many additional questions we will paiisthigher dimensions, including the need
to find computationally efficient algorithms so that the hatiaof the quantities on the dimension can
be numerically isolated.

2.3.5 Ramsey Theory for Sets Avoiding 3-term Geometric Pragssions

Joint with Nathan McNew, Towson

1. Finite Fields and Non-commutative setsast summer the Pl and Nathan McNew generalized ear-
lier work on sets avoiding three term arithmetic progressifrom subsets df to subsets of number
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fields, to see how the structure of the number field affectdb#tevior. We propose to look at two
other natural extensions. The first is finite fields, the sdcae non-commutative sets (such as the
quaternions or families of matrices). We have made exdgiegress on the finite field case; the main
difficulty involved a combinatorial inclusion / exclusiof jgolynomials of different lengths. The non-
commutative case is considerably harder. The proposedraswill look at various free groups and
see how the structure (hnumber of elements and their ordiées} the answer; a nice application will be
to understand PSR, Z). We have spent the past few months learning the quaternickghbzund, and
are now in a position to deal with the issues arising from thie-commutativity. The main problem is
figuring out how elements of a given norm can arise as mu#tiptanultiples of squares of numbers of
smaller norm. The analysis often reduces to counting &fimints in 4-dimensional space.

2.3.6 Point Configuration
Joint with Eyvi Palsson, Virginia Tech

1. Erd6s Distance ProblenThe Erdds distinct distance problem asks what is the least numbsistinct
distances amongy points in the plane. This problem, which Bsllater described as his most striking
contribution to geometry, turned out to be quite hard.drdonjectured that asymptotically the least
amount of distinct distances was on the ordeNgf,/log(N). This was essentially solved by Guth and
Kat [GK] in 2010 when they obtained the lower boui log(NV') although the problem is still open
in higher dimensions. Throughout the years&&éxplored and made many conjectures regarding the
structure of sets that asymptotically obtain the lower lmbudany of these conjectures turned out to
be even harder than the original question and are still uadolOne of the key ingredients from [GK]
was the polynomial ham sandwich theorem. We will apply tlei& technique to some open problems.
We have already shown that optimal sets in higher dimensiwmst have many points on a single hy-
perplanes and also on a single hypersphere. We conject8+B ihat optimal sets must lie in a special
lattice that is based on the hexagonal triangular latti¢keérplane, which we propose to explore further.

2. Point Configurations.The point configuration problems in geometric measure thaod combina-
torics can be thought of as continuous multipoint analogiiéise well known Erds distinct distance
problem. Recently Palsson and his collaborators provedsthaif a subset of the Euclidean space
has large enough Hausdorff dimension then it is guarantesidypbu have many distinct patterns of a
particular type. Few sharpness examples have been fouad,fegm the trivial ones, so it is not en-
tirely clear what the right conjectures should be. We witieexi the few sharpness examples that exist
from distances to higher order configurations, such asgiésn and take them into higher dimensions.
Some delicate number theory arose when they had to counuthber of triangles in an integer lattice
adapted to a paraboloid, such as looking at how many numipaisin? are the sum of; calculator
numbers from the table up ta

2.3.7 Benford’s Law

Many systems exhibit a digit bias. For example, the firsttdigise 10 of the Fibonacci numbers, or26f
equals 1 not 10% or 11% of the time, as one would expect if gitsliwere equally likely, but about 30%
of the time. This phenomenon, known as Benford’s Law, hasymaaplications, ranging from detecting tax
fraud for the IRS to analyzing round-off errors in computeiesce. The central question is determining
which data sets follow Benford’s law. There has been a lotakveon independent random variables; below
we propose a project involving dependent random variables.

1. Dependent random variables and fragmentatibrspired by natural processes such as particle decay,
the PI1 will explore various models for the decomposition @figerved quantities (see [Lem]). The PI
has already proved that often the distribution of lengthsveayes to Benford behavior as the num-
ber of divisions grow. The main difficulty is that the resadfirandom variables are dependent, which
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requires a careful analysis of the dependencies and ta@oisFourier analysis to obtain quantified con-
vergence rates. The solution proceeds by quantifying $evetiependence and how often two pieces
share a given number of cuts, and then using earlier worksofjhantifying the convergence. The PI
will extend these results to more complicated fragmentatimdels, especially those in higher dimen-
sions. There is an extensive literature in physics on fragat®n. Though much of it is not rigorous
by mathematical standards, there are many good ideas arelsweatth exploring. Much of this work
will be joint with Frederick Strauch (physics departmenillldms College) and math/physics majors
at Williams College. One project, joint with Nathan McNew,td look at the distribution of digits of
prime factors of an integer.

2. Matrix groups. With C. Manack the PI proposes to investigate the distrioudf digits from random
matrix ensembles. In many cases we have already deterntiesd taws; in the compact case the
behavior is reduced to that of coordinates of points on gshefhe arguments are a mix of classic
results about Haar measure, Lie Theory, and standard @alys

3. Fraud detectionThe PI has written several papers with Mark Nigrini (professf accounting) on the

theory and application of Benford’s law, especially withesie to detecting data fraud [MN1,MN2,NM1,NM2].

He has submitted to the IRS a new method to detect fraud usnfpBl’s law, and hopes to work with
them on refining such tests.

2.4 Intellectual Merit and Broader Impact

The Pl is a professor at Williams College with a 2-2 teachiogdl which is what his load was during
his previous two grants. He thus has experience balancamhitey and research, in particular in getting
undergraduates, graduate students and junior facultyviedo The PI plans on investigating many of these
problems with students and junior colleagues, a model wiéshworked well for him throughout his career.
Thus, while the PI is proposing to study a large number of lerab, his goal is to create an environment
(both during the academic school year as well as the sumnieesstudents will be colleagues, and graduate
students and junior faculty will gain experience in designand supervising research programs.

2.4.1 Intellectual Merit of the Proposed Work

The questions the PI proposes to study range from some of ¢is¢ fomdamental in the subject to some
more standard questions (which are not only very apprapfiat undergraduates, but serve as excellent
introductions to the subject and often lead to deeper questi We describe the intellectual merit of a few
of them below.

The problems fall naturally into several groups; in the ies¢ of space we describe just two of them.
The first concerns the distribution of zerosoffunctions and the eigenvalues of matrix ensembles. These
are some of the most fundamental and important objects ihenadtics, encoding the answers to numerous
problems. The models being explored have applicationsysips as well.

The primary goal is to obtain a better understanding of titbraetic of families ofL-functions. The 1-
level density provides an excellent window to see such liehavhe proposed work will explore a variety of
families, developing techniques to isolate the arithmetiotributions. In the course of these investigations
numerous combinatorial challenges will surface. It is guikely that the techniques and results used to
surmount these difficulties will be of independent inteiastllied fields.

The second major theme is the distribution of the number ofrsands and gaps between them. This
is similar in spirit to the studies of zeros @f-functions and eigenvalues of matrix ensembles. The two
main questions are how many objects are there, and how areligtebuted. As recurrence relations model
a variety of phenomena, the techniques and results might belependent interest in related fields (the
distribution of the largest gap can be cast as an extreme patblem, which is studied by many researchers).
The Pl is developing a new technique which will bypass thér@al obstructions that have plagued the
subject, forcing people to derive difficult bounds on rodtsaynomials associated to the recurrence relation;
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the new method avoids these difficulties and replaces itav#imple counting problem. We have successfully
applied this in some systems, and plan on further develothiisgnew method. Additionally, the proposed
additive number theory problems involve understandingspheansitions, another popular research topic
cutting across many fields.

2.4.2 Broader Impacts of the Proposed Work

The Pl is in his eighth year (and is tenured) at Williams Ggalewhich prides itself on its excellence in
teaching and efforts to attract people to mathematics. &\thié national average of math majors is about
1%, at Williams it is 10%. There are a large number of studeritis strong backgrounds who are looking
to see the connections and applications of higher mathesnatihe PI will work with this talented pool of
students, both through his classes (where he constanttdimntes research projects), senior thesis students,
and summer REU students (the summer REU program at Willisimsd of the largest in the nation, attracting
over 200+ applications each year).

The PI has extensive experience in involving undergraduaieaduate students and junior faculty in
research, having supervised almost 300 undergraduateseanch and over 20 graduate students. Much of
the PI's work has focused on mentoring older students (uggeEsmen or graduate students) in how to mentor
younger students; the PI plans to build on these succesbkesfuture research groups. Many of his students
have continued to graduate school in mathematics or alliscipdines, and have found their experiences
extremely helpful in understanding what academic lifeks.liA typical comment from the anonymous end-
of-summer reviews was:Besides research, | learned a lot in writing good papersvigg presentations,
choosing grad school, and more, which all help me a lot now @léas the career in math in the future.”

The Pl maintains numerous websites of material for begmaindents and professors interested in start-
ing undergraduate research programs. These files areldgaia his homepage, and range from notes on
L-functions to reports on panels on undergraduate research.

The Pl is strongly committed to providing opportunities tghly motivated students of all backgrounds.
In his past three REUSs, the PI has had 14 women and severatwepmiesented minorities (the Pl is an Al-
liance Mentor of the Math Alliance, was part of a recent gtargupport SACNAS, and has been extensively
involved in outreach activities such as the Field of Dream SACNAS meetings). His students are con-
stantly encouraged and invited to attend conferences andlenwith professional mathematicians; in the
past three years all undergraduates whom he has worked mdtr his current grant were invited to present
at research conferences.

Recognizing that the colleagues of tomorrow are the colggeéents and high school students of today,
the P1 does many activities to encourage people to explatg@arsue mathematics. These range from giving
lectures at programs such as the Ross Program at Ohio SREMPS at Boston University and Hampshire
College’s summer program to being a research mentor at PR®{utvising high school students and their
college councilors) to writing interesting and expositaryicles (ranging from articles for the Monthly to
a survey of the path from nuclear physics to number theoryjditing and giving talks in junior high and
high schools. He has also served as a visiting committeei@r $thool math departments, and is on the
school committee of the regional high school, where he hésefic worked on collaborative programs.
Examples include one set of students in his Operations Resekass working with the principal to optimize
daily schedules to increase the accessibility of coursiofjs, and another coordinating scheduling for Math
Blast, when all tenth graders from several local schoolsectmWilliams and we try to optimize assignments
to general math/stat lectures.

In order to excite young students, the Pl has been runningta maalles page for over a decade (located
at http://mathriddles.williams.edu/). The site is oftéie humber one hit when googling ‘math riddles’. It
gets over 4000 hits per month, and is being used in junior highhigh schools around the world. The PI
corresponds extensively with teachers and students abeuathematics behind these riddles. The Pl has
created a student / teacher corner for the website, totiteilthe use of these riddles in classrooms. The PI
plans on continuing this expansion.

The results from this grant will be disseminated through réetsaof channels. In addition to traditional
journal publications, the Pl is working on books on prolabilinear programming and a list of 100 problems
related to each of the past 100 years (in honor of Pi Mu Epsiloentennial), all with the goal of making
these important subjects accessible to a wide audience Pl also present the results at colleges and
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conferences, as well as organize meetings on these subjdatede developed will be made freely available,
and all results posted on the arXiv.

Finally, the Benford law research (in particular, the worikhaMark Nigrini on order statistics [NM2])
has already found applications in data integrity. The Phglan continuing these and related studies (to
detect dependence), and will continue his discussionswatiiers at the Internal Revenue Service about the
issues and applications with fraud detection.
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3 Summary of Thesis Results

Following Brumer-Heath-Browri [BH-B], Iwaniec-Luo-SatkflLS], Katz-Sarnak([KaSd1, KaSa2], Rubin-
stein [Rub] and Silverman [Si], | used theand2-level densities to study the distribution of low-lying aer
for one-parameter rational families of elliptic curves ahk » over Q(7); these densities are defined by
summing test functions at scaled zeros of fhéunctions. Katz and Sarnak [KaSal, KaSa2] predict that,
to each family ofL-functionsF, there is an associated symmetry gra@ifF) (a classical compact group)
which governs the distribution of the low-lying zeros. Irhet words, the behavior of zeros in a family
of L-functions near the central point is well modeled by the biheof eigenvalues near 1 of a classical
compact group. For families of elliptic curves of rablover Q(7"), we expect7(F) to be SO(even if all
curves have even functional equatiénjf half are even, half odd, an8O(odd) if all are odd. If the family
has rankr over Q(T"), the densities are trivially modified to take into accourg thexpected zeros at the
central point, and we will still refer to these & SO(even, SO(odd). Thel-level densities for the Unitary
and Symplectic are distinguishable from the three Orthafgnoups for test functions of arbitrary small
support; unfortunately, the three orthogonal groups akador functions supported i1, 1). The2-level
densities for the orthogonal groups, however, are disisigiole for functions supported in arbitrarily small
neighborhoods of the origin.

Modulo standard conjectures (which can be verified for mgegiic cases), for small support | showed
the densities agree with Katz and Sarnak’s predictionsI[MilThe difficulty is that the logarithm of the
analytic conductors must be extremely well controlled ailtzgory behavior drowns out the main term. In
particular, it is not enough to confine the logarithms of theductors to lie irflog N¢,log 2N¢] asN — oc.
The conductors are controlled by careful sieving and dagigxplicit formulas via Tate’s algorithm. Further,
the densities confirm that the curvasfunctions behave in a manner consistent with haviregros at the
central point, as predicted by the Birch and Swinnertonflopmjecture. By studying the-level densities of
some constant sign families, we find the first examples oflfasf elliptic curves where we can distinguish
SO(even from SO(odd) symmetry.

Similar to the GUE universality Rudnick and Sarnak [RS] fdun studyingn-level correlations of’-
functions, our universality follows from the sumsadf(p) in our families. For non-constani{7), this follows
from a Sato-Tate law proved by Michéel [Mic]; however, for nyasf our families we are able to show this by
a direct calculation. The effect of the rank oW@{7") surfaces through sums of(p).

Finally, while then-level densities for these families are universal, po&thdwer order correction terms
have been observed in several families. These family deperabrrections are of size/ log N; unfortu-
nately, trivial estimation of the errors lead to terms ofedizg log N/log N. | have recently completed a
detailed analysis for many families [Mil5], where theserections can be isolated. These corrections show
how the arithmetic of the family enters as lower order cdiogs; in particular, families with and without
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complex multiplication behave differently. | am currenéyploring the relation between these lower order
terms and finer properties of the behavior of low zeros forlsoaaductors.

4 Representative Subset of Previous Research

4.1 Previous Research.

Below is a representative sample of some of my older work.
(i) Elliptic curves and additive number theory

(a) While most of my work in elliptic curves is related to thehavior of zeros near the central point,
with graduate students Scott Arms and Alvaro Lozano-RabjédlM] | also proved results on the geometric
side. Specifically, generalizing an idea from my thesis, &g new, novel construction of one-parameter
families of elliptic curves of moderate rank ov@(T"). The key idea is to use Rosen and Silverman’s [RSi]
proof of Nagao’s conjecture for rational surfaces to interaverages of the Fourier coefficients as the rank.
These averages are sums of Legendre sums; while these avssitylp to evaluate in general, by careful
construction these can be determined for special famili@&se interesting consequence is that families of
moderate rank are constructegthout having to enumerate rational solutions and showing that dine lin-
early independent (in other words, no height matrices aeded). The families constructed here are of great
use in other investigations, as their Legendre sums are traw&ble than the general family, and thus it is
possible to isolate lower order correction terms (whicheshepon the arithmetic).

(b, c) Let A be a finite set of integers, and sét+ A and A — A to be the set of all sums (respectively
differences) of elements id. As addition is commutative but subtraction is not, it wakdved that ‘most’
of the time|A + A| < |A — A|. It thus came as a surprise when Martin and O’Bryant [MO] prbthat if
each element fromj0,1,..., N} is in A with positive probabilityp then asN — oo a positive percentage
of A are sum dominated (i.64 + A| > |A — A]). | and Peter Hegarty [HeMi] investigated the relationship
between the sizes of the sum and difference sets attacheduosat of{0, 1, ..., N} chosen randomly ac-
cording to a binomial model with parametgV ), with N—! = o(p(IV)). We showed that the random subset
is almost surely difference dominated, sis— oo, for any choice ofp(NV) tending to zero, thus confirming
a conjecture of Martin and O’Bryant. The proofs involve gfipd recent strong concentration results to our
situation. It is worth noting that interesting transitibbahavior is observed wher{ V') crosses the threshold
of N1/2. More precisely, the main result is

TheoremLetp : N — (0, 1) be any function such that ~! = o(p(NV)) andp(N) = o(1). For eachV € N
let A be a random subset dfy chosen according to a binomial distribution with parameigy). Then,
asN — oo, the probability thatA is difference dominated tends to one. More precisely,4et”7 denote
respectively the random variable$ + A| and|A — A|. Then the following three situations arise:

() p(N) = o(N~Y2) : Then.¥ ~ W2 andg ~ 2.9 ~ (N -p(N))2.

(i) p(N) = c¢- N~1/2 for somec € (0,00) : Define the functiong : (0,00) — (0,2) by g(z) :=
2 (L(l_m)> Then.? ~ g (%) NandZ ~ g(*)N.

x
(iiy N~Y/2 =o(p(N)) : Let.#°:= 2N +1) —.#, 9°:= 2N +1) — 2. Then¥° ~ 2- ¢ ~ SV
In a related project, with my undergraduate student DaniSehman | developed a new construction for
families of more sum than difference sets; at the time ofrtbenstruction, they were the densest known.
The construction was generalized to more general lineabawtions ofA with Brooke Orvosz and David
Newman, as well as two students in a number theory class &egado and Luc Robinson) at Williams.

(d) A beautiful theorem of Zeckendorf states that every tha@sinteger can be written uniquely as a
sum of non-consecutive Fibonacci numbers. Once this has &emwvn, it is natural to ask how many Fi-
bonacci numbers are needed. Lekkerkerker proved that #rags number of such summands needed for
integers in[F,, F,,11) isn/(¢? + 1), whereg is the golden mean. With summer students Murat Kologlu,

23



Gene Kopp and Yinghui Wang [KKMW, MW], we showed that the flation about the mean is Gaussian
for the Fibonacci numbers. Unlike previous number-théorapproaches, we attack the problem through
combinatorics and generating functions. Our techniquaseageneralized to apply to a large class of linear
recurrence relations, leading to 10+ papers with studerdgumior faculty in the ensuing years.

(i) L-functions and the Ratios Conjecture

Much of my previous research dirfunctions splits naturally into two cases, determining thain term
and determining lower order corrections for the 1-levelsitgndefined by:

. 1 ~
]\}KHOO W Z Z o (’Yj;f) .

JEFN ]

Here ¢ is an even Schwartz functiotf;, = UFy is a family of L-functions ordered by conductor, and (as-
suming GRH) we may write the zeros bfs, f) asl/2 + iv;.s (the?;,; are the normalized imaginary parts
of the non-trivial zeros). The Katz and Sarnak conjectukaSal], [KaSa?2] state that as the conductors
tend to infinity, the behavior of the zeros near the centrabtpagree with the scaling limit of normalized
eigenvalues of a classical compact group.

(a) For families where the signs of the functional equatiareall even and there is no corresponding
family with odd functional equations, a “folklore” conjere (for example, see page 2877[of [KeSn1]) states
that the symmetry is symplectic, presumably based on theredion that SO(even) and SO(odd) symme-
tries in the examples known to date arise from splitting @gtinal families according to the sign of the
functional equations.A priori the symmetry type of a family with all functional equationger is either
symplectic or SO(even). Letbe a fixed Maass form and |&f; denote the space of cusp forms of full level.
All L-functions in the families (formed by Rankin-Selberg cdation) {¢ x H} and{¢ x sym?H;} (by
sym2H;, we mean the setym?f for f € H,) have even functional equations, and neither family seems
to naturally arise from splitting sign within a full orthogal family. By calculating the 1-level density |
and Duefiez proved in [DM1] that the symmetry of the first is plgatic (as predicted); however, the sec-
ond family has orthogonal symmetry (we cannot distinguistwieen SO(evenp and SO(odd) due to the
small-support restriction on the allowable test functidmawever, analyzing the 2-level density allowed us
to discard O and SO(odd)). Thus our calculations are onlgistent with the symmetry being SO(even). In
particular, this work proved that the theory of low-lying-ae is more than just a theory of the distribution of
signs of functional equations.

(b) Building on this work, | and Duefiez ih [DMZ2] considerec tRankin-Selberg convolution of more
general families. We define an NT-good familylofunctions to be a family where there is good control over
the conductors, the cardinality of the family, and a goodugihoaveraging formula to evaluate the needed
prime sums to compute thelevel density; known examples include Dirichletfunctions, cuspidal new-
forms, as well as twists and symmetric powers of these. The reault relates how the zeros of compound
families formed by Rankin-Selberg convolution are disttéal in terms of how the constituent families are
distributed. Explicitly,

Thereom. Let 7 andG be NT-good families of unitary automorphic cuspidal repreations ofGL,,(Aq)
and GL,,(Ag) with trivial central character, with symmetry constants andcg. AssumeF x G is an
NT-good family. Then the familyF x G (which is the limit of 7y x Gus, whereN and M tend to infinity
together) has symmetry constant.g = cr - cg.

The proof follows from understanding the moments of the I&atsmrameters, with the main terms de-
termined from the first and second moments. It is the uniligrsaf these moments that is responsible for
the universality of the results. Numerous specific examgtesgiven, in particular families of elliptic curves
with rank. The difficulty there is in controlling the condacs.
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(c) The last result involving the main term of the zeros néar dentral point is for the family of cus-
pidal newforms of prime levelN split by sign of the functional equation. Iwaniec, Luo andr& [[LS]
showed that the main term of the 1-level density in theself@snagrees with random matrix theory when
the Fourier transform of the test function is supported-i#2, 2). This impressive calculation depends on a
difficult analysis of the non-diagonal term in the Peterskiwmula, namely the Bessel-Kloosterman sums.
With Chris Hughes[[HuMi] generalized these results to thievel density (which improves estimates of
high order of vanishing), avoiding analyzimgdimensional analogues of the Bessel-Kloosterman piece by
cleverly changing variables. The cost of this switch wafidift combinatorics needed to show agreement
with random matrix theory; this is because random matrixithaevas expecting an-dimensional integral
whereas we changed test functions to a one-dimensiongjrattehich can be evaluated by the techniques
in [ILS]. (It is not the case that the combinatorics can alsvhg analyzed; in Gao's thesis [Gao] the num-
ber theory computations are thought to agree with randomixrtheory throughout his range, but this can
only be shown for a restricted window.) This led to the diggvof a new formula for the:-level den-
sity, which after some combinatorics was shown to agree thghdeterminantal expansions of Katz-Sarnak
[KaSal|KaSaz2]. This formulais significantly easier for gamson purposes in restricted ranges. We proved

Theorem Letn > 2, supp($) C (— -7, -1), and define

- - Tan—1 o SIN 27T 1 n 9 PN 9
R0) = et | [T o T2 a - Joor|. o} =2 [ bR a

Assume GRH forL(s, f) and for all DirichletL-functions. AsN — oo through the primes, the centered
n moment forH,jE(N) (the family of weightk cuspidal newforms of levelV and functional equation either
even or odd) agrees with RMT and equéls, — 1)!!0;m + Rom () if n = 2m is even andt Ry, 11 () if

n = 2m + 1 is odd. One application of these results (where it is esslafiiat we are able to evaluate the
relevant sums without using the Petersson weights) is tadbbigh vanishing in the family. Specifically, we
prove the following (which for large provides better bounds than the previous records):

Theorem: Consider the families of weiglit cuspidal newforms split by sigtH,f(N). Assume GRH for all
Dirichlet L-functions and allL(s, f). For eachn there are constants, andc,, such that asv — oo through
the primes, fon- > r,, the probability of at least zeros at the central point is at mest-—"; equivalently,
the probability of fewer tham zeros at the central point is at ledst ¢,,r—".

(d) In addition to studying the main term, I've also inveatigd the arithmetic dependence of lower order
terms in various families. These investigations are inmgrdras the main term is independent of the arith-
metic. In [Mil3] I studied families of elliptic curves (usihmany of the families constructed in [ALM] and
discussed earlier). By isolating the first correction teorthe 1-level density, we csn see differences depend-
ing on whether or not the families had complex multiplicatar what the torsion group was.

(e, f) Building on analogies with Random Matrix Theory anépwous number theory conjectures, re-
cently Conrey, Farmer and Zirnbauer [CFZ1], [CFFZ2] credtexlL-functions Ratios Conjecture (or recipe)
to predict sums of ratios df-functions in a family. These quantities allow us to compltaeost any desired
statistic, fromn-level correlations and densities to mollifiers and momeiatsiame a few. The predictions
are believed to be correct to square-root cancelation ifettndy’s cardinality. To put this in context, a typi-
cal family of one-parameter elliptic curves ov@(7") with 7" specialized to be iV, 2N| has an error term
of size O(loglog N/log N), much larger tharV—1/2+¢<I There is little basis for such a small conjectured
error term, other than the philosophy of square-root catiogl. The recipe is as follows: let

L(1/2+ o f)
Rr, (a
f; L(1/2+7, )
1. Use the approximate functional equation to expand theenator into two sums plus a remainder. The
first sum is overn up toz and the second over up toy, wherexy is of the same size as the analytic
conductor (typically one takes ~ y). We ignore the remainder term.
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2. Expand the denominator by using the generalized Mobiustiton.

3. Execute the sum ovefy, keeping only main (diagonal) terms; however, before etteguhese sums
replace any product over epsilon factors (arising from tgassof the functional equations) with the
average value of the sign of the functional equation in theilja

4. Extend then andn sums to infinity (i.e., complete the products).

5. Differentiate with respect to the parameters, and naettie size of the error term does not signifi-
cantly change upon differentiating.

6. A contour integral involvin%R;N (a,7) yields the 1-level density.
a=y=s
What is remarkable is that in many of the steps above we thveay &rror terms that are the same size
as main terms, yet at the end we obtain (conjecturally) peegreement! I've studied families of quadratic
characters, cuspidal newforms (not split by sign) and nunfie L-funtions; for suitably restricted test
functions, we've [GIMMNPP, Mill, Mil4[ MilMo,[ MilP&] prove the Ratios’ prediction (complete with
square-root cancelation) is correct. For example, for ratedcharacters the Ratios Conjecture predicts one

of the lower order terms is 5 o % A
T

2 (1 dr;

logX/_OO(b(T)C ( " logX> "

which implies that the lower order term depends on the zefrtieedRiemann zeta function. This was numer-
ically observed by Rubinstein, and the improvement in thbyfiincorporating these terms was powerfully
demonstrated by Stopple’s computations. Additional @agtibns of knowing these lower order terms is to
finding Negective, the optimal size matrices to model behavior of zeros at geftonductor (and not in the
limit).

(iif) Random Graphs and Random Matrix Ensembles

Let A be arealV x N symmetric matrix with eigenvalue (A). We can form a measure by placing a
mass of sizd /N at each (normalized) eigenvalue. If our ensemble is largegm we can average over the
family and a generic matrix will have behavior close to theteyn average. While these ensembles typically
do not directly correspond to families @ffunctions, they are nevertheless useful in building titni as to
how small sub-families can behave, as well as being intagest their own right.

(a) Building on joint work with Chris Hammond [HalMi], | stuelil the distribution of eigenvalues of real
symmetric palindromic Toeplitz matrices with undergradgalohn Sinsheimer and Adam Massey, both of
whom have continued to graduate school. Many authors hadedothat the density of normalized eigen-
values of real symmetric Toeplitz matrices was close to,nmtitequal to, the standard normal. In [HaMi]
we interpreted the discrepancy in terms of Diophantinerabsbns to systems of equations, and conjectured
that forcing the first row to be a palindrome would remove ¢helstructions. We proved this in [MMS].
The difficulty in this project, as is frequently the case mdsting random matrix ensembles, was developing
the combinatorics to obtain closed form expressions fomtlbenents. Similar to many other problems in
the field, it is straightforward to show the averages of themmats of the measures converge; however, it is
quite difficult to determine the precise value of the averagenents. One reason this ensemble is so difficult
to study is that it has of the orde¥ degrees of freedom, far less than the full family of all reahmetric
matrices (which is of ordeN?/2). Through Cauchy’s interlacing formula, there are expfcimulas for the
eigenvalues of these matrices, and as one application vaeabtentral limit theorem for weighted sums of
random variables.

(b) Joint with undergraduates Tim Novikoff and Anthony SAHEINS] (who are now graduate students
in applied math at Cornell), | studied the distribution o gecond largest eigenvalue in familiesiafegular
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Figure 1: Plots forfy, fa, f1. fs, f16 and the semi-circle density.

graphs. Recently Friedman]Fr] proved Alon’s conjecturg {&r many families ofd-regular graphs, namely
that given any > 0 “most” graphs have their largest non-trivial eigenvaluenast2/d — 1 + ¢ in absolute
value; if the absolute value of the largest non-trivial eigdue is at mos2v/d — 1 then the graph is said to
be Ramanujan. These graphs have important applicationsnimeinication network theory, allowing the
construction of superconcentrators and nonblocking nétsy@oding theory and cryptography. As many of
these applications depend on the size of the largest naatpiositive and negative eigenvalues, it is natural
to investigate their distributions. We showed these aré-metleled by thes = 1 Tracy-Widom distribution
for several families. If the observed growth rates of the maad standard deviation as a function of the
number of vertices holds in the limit, then in the limit apgroately 52% ofd-regular graphs from bipartite
families should be Ramanujan, and abaaf from non-bipartite families (assuming the largest positiv
and negative eigenvalues are independent). The key diffizuinterpreting the numerical investigations is
that, appropriately normalized, the three Tracy-Widoniriistions and the standard normal are very close
to each other; the best test was looking at the percentaggesfvalues to the right of the mean.

(c) Given an ensemble & x N random matrices, the first question to ask is whether or moéthpirical
spectral measures of typical matrices converge to a limipectral measure @6 — oo. While this has
been proved in many thin patterned ensembles sitting ir@ldeal symmetric matrices, frequently there is
no nice closed form expression for the limiting measure.theur current theorems provide few pictures of
transitions between ensembles. Building on earlier wotk wiy students [HaMi, MMS, JMP], | continued
to explore highly patterned matrices this past summer with REU students, Murat Kologlu and Gene
Kopp [KKM]. We considered the ensemble of symmetric periedcirculant matrices with entries i.i.d.r.v.
These matrices have toroidal diagonals periodic of peniodWe viewm as a “dial” we can “turn” from
the highly structured symmetric circulant matrices, whinsiting eigenvalue density is a Gaussian, to the
ensemble of all real symmetric matrices, whose limitingeai@lue density is a semi-circle. The limiting
eigenvalue densitieg,,, show a visually stunning convergence to the semi-circlenass oo, which we
prove. In contrast to most studies of patterned matrix ebssnwe find explicit closed form expressions for
the densities. We prove thét, is the product of a Gaussian and a certain even polynomiggied2m — 2.
The proof is by derivation of the moments from the eigenvahaee formula. The new feature, which
allows us to obtain closed form expressions, is convertiggcentral combinatorial problem in the moment
calculation into an equivalent counting problem in alg@btapology. The explicit formula is then obtained
using topology (especially Euler characteristic), getiegafunctions, and complex analysis. | explored the
effect of changing the structure on the answer with one oflmegis students, Wentao Xiong, who was also
being mentored by Murat and Gene. See Figlire 1.

(d) We introduced a new family a¥ x N random real symmetric matrix ensembles, Aheheckerboard
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Figure 2: A histogram, normalized appropriately to achiea#& mass, of the scaled eigenvalue distribution
for 100 x 100 2-checkerboard real matrices with= 1 after 500 trials.

matrices. FixD = R,CorH, k£ € N, w € R. Then theN x N (k,w)-checkerboard ensemble ov@ris the
ensemble of matriced/ = (m;;) given by

a;; ifi# jmodk
mi; = . .
w ifi=jmodk
wherea;; = @;; and
Tij if D=R
= ) rutbyi if D=C

CLij = V2
Tij-i-biji-i-cijj-i-dijk . _
5 if D=H

with r;;, b;;, ¢;j, andd,; i.i.d. random variables with mean 0, variance 1, and finighér moments, and
the probability measure on the ensemble given by the nabwoaluct probability measure. We refer to the
(k, 1)-checkerboard ensemble oversimply as the:-checkerboard ensemble over The limiting spectral
measure has two components which can be determined elyplsite Figuré 2. All but: eigenvalues are
in the bulk, and their behavior, appropriately normalizednverges to the semi-circle @8 — oo; the
remainingk are tightly constrained nea¥/k and their distribution converges to thex & hollow GOE
ensemble (this is the density arising by modifying the GOREeemble by forcing all entries on the main
diagonal to be zero). Similar results hold for complex andtgrnionic analogues. We are able to isolate
each regime separately through appropriate choices ofhivéimctions for the eigenvalues and then an
analysis of the resulting combinatorics.

(e) Continuing the work | did with Chris Hughes, one of my ikestudents (Jake Levinson) and | ex-
tended that analysis to derive alternatives to the detemtdth formuls of Katz and Sarnak for thelevel
densities for larger support than donelin [HuMi]. The mdima for this is Peng Gao’s thesis [Gao]. Gao
was able to determine the number theory forsiHevel density for families of DirichleL-functions, unfortu-
nately, due to the difficulty of the combinatorics, he wasatue to show that his answer always agrees with
the random matrix theory prediction (though we do beliewytalways agree). We derived more tractable
formulas for these expansions to facilitate these compasisand showed agreement foK 7, reducing the
general case to a Fourier-combinatorial identity.

() I completed investigations begun with Leo Goldmakheargeago at AIM and extended with under-
graduate Eve Ninsuwan at Williams on the density of eigemslof weighted d-regular graphs. McKay
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[McK] computed the density of normalized eigenvalues (different from the semi-circle seen for the GOE
ensemble, but does converge to the semi-circlé as o). Goldmakher and | noticed that if the adjacency
matrix elements are weighted by multiplying by independdentically distributed random variables, then if
the resulting distribution is to be the semi-circle thenfirg 9 moments of the weighting distribution must
agree with the semi-circleSs distribution. This suggdsisthe semi-circle is a fixed point of this weighting
procedure. The combinatorics become quite involved, atatdstingly for the eight and higher moments
there is a difference of order/d?> with the momenets of the eigendensity and the semi-circle.falind a
formula for the eigendensity in terms of new combinatorigjkeots.

(iv) Benford's law

Many mathematical and natural phenomena satisfy Benftad/gor a close approximation), where the
probability of a leading digit ofl is log;,(1 + é). While the proofs are typically related to equidistribatio
theory, and thus fall in the province of standard number rtgninvestigations, the numerous applications
(especially for fraud detection and data integrity testsuee that the subject is of interest to many.

(a) Funded in part by NSF Grant DMS0753043, | helped orgathizeConference on the Theory and
Applications of Benford's Laun 2007, and edited an introductory book on the subject withgarticipants
and other world experts. It was the first conference on thgestjland participants came from mathematics,
statistics, biology, engineering, computer science, @atiog and industry, to name a few. The discussions
there have led to many projects.

(b, c) One of the most important questions is why Benfordis imso prevalent, and how rapidly it sets
in (such estimates are essential in prosecuting fraudJKKKM] we answer these questions for data
that is the product of a growing number of independent randariables. The key ingredients are Fourier
analysis and the Mellin transform, which allow us to proveeesion of the Central Limit Theorem for sums
of independent random variables modulo 1 with (at timespagptially decaying error term. For example,
if we consider a product of independent uniform random variables [0nk], the difference between the
cumulative distribution function here and that of Benferldiw is bounded by

k (log k)"—! 1 ((n)-1
sty T \agn T o ) 2lewns,

where((n) is the Riemann zeta function amhek; s is the probability of a Benford random variable having
mantissa ok or less. These results have been converted to new testaéar iy Nigrini and Miller [MN2],
[NM2], which have been shared at an invited address at theoBdeadquarters of the IRS.

(v) Applied Projects

(a: Incomplete Exponential Sums) Exponential sums havehahistory, and estimates of their size
have numerous applications, ranging from uniform distigsuto solutions to Diophantine equations te
functions to the Circle Method, to name a few. Consider tileviong incomplete exponential sum:

S(fimag) = > o 3wy wp /e,
==+1

r1==+1

with f a non-homogenous quadratic. Proving non-trivial expdalytdecreasing upper bounds 6¢ f, n, m)
will provide insight into the computational complexity ottkass of boolean circuits needed to compute the
parity of n binary inputs. A theorem that shows that the nofri(@f, n, m) is ¢"*, wherec < 1 will show that

the size (number of binary gates) of these circuits compgypiarity has to grow exponentially fast. These
lower bound results are of great interest to the theoretioatputer science community. Using Ramsey-
theoretic techniques, Alon and Beigel [AB] proved that facle fixedn, d and m there exists a positive
constantyg ,, , such that.S(f,n,m)| < bgm,, andlim, . bgm,» = 0; note the resulting sequences con-
verge very slowly to 0. In terms of computational complexibjs only tells us that the minimum circuit size
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required to compute parity of bits tends to infinity withn. It is of far more interest, from the computational
point of view, to show exponentially fast growth in minimurnceiit size. This is generally interpreted as
showing that parity circuits of the required kind cannotsibly be built. We have currently obtained sharp
bounds on average, and have solved the problem gmall; this project is joint with Eduardo Duefiez and
Amitabha Roy and Howard Straubirig [DMRS].

(b: Empirical Bayes Inference in the Multinomial Logit Mdilg/hether it's the 20,000+ hits based on a
www.google.com search or the 1000+ hits on www.jstor.drg,multinomial logit (MNL) model plays a very
prominent role in many literatures as a basis for probdiuilisferences. One of the recent advances regarding
the MNL model is the ability to incorporate heterogeneitipithe response coefficients; unfortunately, this
leads to increased numerical computation. Once one combieeVINL kernel, a Bernoulli random variable
with logit link function, with a heterogeneity distributip closed-form inference is unavailable due to the
non-conjugacy of the product Bernoulli likelihood and tletdrogeneity distribution (prior).

Eric Bradlow (professor of marketing and statistics, Ursity of Pennsylvania). Kevin Dayaratna (grad-
uate student in marketing at the University of Maryland) &fMBD] derived a closed-form solution to the
heterogeneous MNL problem; unfortunately, the closedifekpansion requires too many terms to be com-
putationally feasible at present. We reduce the number wipctations by several orders of magnitude by
rewriting the expansion in terms of the number of solutiansytstems of Diophantine equations. This allows
us to have one very long initial calculation, with all subseat calculations involving only 10 or 20 terms
(instead ofL0® and higher), and is now applicable for some problems.

(c: Binary Integer Linear Programming) With Joshua Eliasigh(professor, Wharton), Sanjeev Swami
(professor, India Institute of Technology Kanpur) Chuckiniderg (professor, University of British Columbia)
and Berend Wierenga (professor, Erasmus University Rizte), | solved a binary integer linear program-
ming problem to allow movie theaters to optimally schedutvies each day, taking into account a variety of
managerial constraints in reel time. We are currently edipanour model to include additional constraints,
and it is being implemented at movie theaters in Amsterdans Work [EHHHMSWW!] won the best paper
award for 2009 for the International J. of Research in Mankget

(d: Dynamical Systems) Leo Kontorovich (postdoc, Weizmbmstitute), Amitabha Roy and | are stud-
ied various models for the propagation of viruses in diffiéreystems. We are primarily concerned with
how infections are transmitted in various networks. Fotaierconfigurations we have derived a differential
equation whose fixed points answer the problem. Numericltlagoretical investigations suggested what
the limiting behavior should be. We developed techniquestdyze the resulting equations and proved our
conjecture on the limiting behavior in most cases.

(e: Sabermetrics) Sabermetrics is the application of nmaditieal tools to analyze baseball. The field
really took off with Bill James’ (who later helped build thee® Sox championship teams of ‘04 and '08)
work in the 70’s and 80’s, and has since become an major fortieei baseball industry [l.e]. The subject
poses numerous questions of both theoretical and prastieaést, and it is often highly non-trivial to derive
a mathematically tractable model for a baseball event wtegliures the essential features. It has been noted
that in many professional sports leagues a good predictarteam’s end of season won-loss percentage is
Bill James’ Pythagorean Formul&S,,s” /(RSebs” + RAops?), whereRS,p,s (resp. RA.ps) is the observed
average number of runs scored (allowed) per gameyaisda constant for the league; for baseball the best
agreement is when is about1.82. This formula is often used in the middle of a season to detexnf a
team is performing above or below expectations, and estithair future standings (the principles involved,
however, have enormous application, as the question coslag easily be asked about which mutual funds
or stocks are over- or underperforming, and thus determhnvio buy or sell). In [Mil4] | showed how this
formula is a consequence of a reasonable model of a baselnadl.d have presented this result at numerous
conferences, discussed my model with Bill James at the Bd3&ml Sox, improved the model with a thesis
student, and studied many similar problems.
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(vi) Zeros of Elliptic Curve L-functions

My main ongoing research project involves the observedseguof zeros near the central point by zeros
at the central point. By the Birch and Swinnerton-Dyer Cotyee, if an elliptic curve has geometric rank
its L-function should vanish to orderat the central point, and these curves offer an excitingritboy to
test the conjectures of Random Matrix Theory. | have intoadutwo ‘natural’ models for the random matrix
analogues into the literature, what | call the independendeh(where the forced zeros do not interact with
the remaining zeros) and the interaction model (where ttogy{Mil3]. In my thesis | proved that as the
conductors tend to infinity the distribution of zeros agre@h the independent model (which is the same as
the interaction model with no forced zeros). The interactivodel is related to the classical Bessel kernels
of RMT, and gives a very different prediction as to the bebaei the first few zeros when there are forced
zeros. | and my students (at Princeton, AIM and Ohio Statejexcode to construct large numbers of elliptic
curves and study the effect on the location of the first zeowalthe central point. Extensive calculations and
theoretical modeling were done with Eduardo Duefiez, Jortikggand Nina Snaith (professors, University
of Bristol) and their student Duc Khiem Huynh (in fact, wokdated to this become Duc Khiem’s thesis).
Unlike the excess rank investigations, however, as we aseréhe conductor we see a marked change in
data; specifically, the repulsion decreases. The detailaterical investigations | have run [Mil3] provided
several clues which helped us determine the correct naitifigrbehavior. In particular, we observe that the
repulsion increases with rank, decreases with the sizeeofdhductor, and all the zeros are shifted by the
same amount. This suggests the right modefifote conductors is the interaction model, with parameters a
function of the average rank for conductors of a given sizeeXcess rank has long been observed for finite
conductors, this explains how we can have repulsion in rafiakllies overQ(7") (where there are no zeros
at the central point to repel other zeros!).

Amazingly, all the zeros appear to be repelled equally. &hera random matrix ensemble (Jacobi
ensembles) with very similar properties, namely there iaréable parameter (which may be thought of as
corresponding to the number of zeros at the central point,a& that parameter is increased the remaining
zeros are all equally repelled. We call this the interactimdel, and expect it to model the low-lying zeros for
small conductors. We need two pieces of information for theyesis. The first is related to discretizing the
random matrix ensemble. The second is the matrix size. Diniegponds to the problem of findidg.gective
for modeling zeros of (s) at finite heights, done by Keating-Snaith and others. Wea@mstoucting a rigorous
theory of these low-lying zeros, especially the first zeravatthe central point. There are numerous technical
difficulties, ranging from the fact that values of elliptiorge L-functions are discretized at the central point
(with the discretization depending on arithmetic) to thiiclilty in determining the lower-order terms in the
one-level density to determin€.g..iive. VWe are using the Ratios Conjecture to predict these tenmistheen
using that as a guide for the number theory computations.h\duogress has been made (including writing
code to solve a Painleve VI equation that arises), and oudligii@n does an outstanding job of describing the
data for the family of quadratic twists€e Figuré B In particular, incorporating discretization and the éaw
order arithmetic terms captures the repulsion. | am extendur theory to general families éffunctions.

Using these observations, we found the correct model faefconductors. This is similar to Keating
and Snaith’s observatioh [KeSn1, KeSn2] that zerok-fiinctions at heighf” should not be modeled by the
infinite scaling limits of matrices, but by¢ x N matrices withN ~ logT. To date we have written one
paper on the algorithms needed to solve related Painlevéfetehtial equations [DHKMS], and one on the
number theory.

The references below are from my thesis and previous resedrc
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