The Accelerated Zeckendorf Game

Diego Garcia-Fernandezsesma NYU Courant Institute

2022 Polymath Jr. REU

Joint with Steven J. Miller, Thomas Rascon, Risa Vandegrift, and Ajmain Yamin

21st International Fibonacci Conference July 9, 2024

Defining the Fibonacci numbers as $F_1 = 1, F_2 = 2, F_n = F_{n-1} + F_{n-2},$

Theorem (Zeckendorf)

Every positive integer has a unique representation as a sum of non-adjacent Fibonacci numbers. This is referred to as that number's Zeckendorf decomposition.

The Zeckendorf Game

Rules:

Rules:

• Bins F_1, F_2, F_3, \ldots , start with *n* pieces in F_1 .

Rules:

- Bins F_1, F_2, F_3, \ldots , start with *n* pieces in F_1 .
- Two players, alternating moves, last to move wins.

Rules:

- Bins F_1, F_2, F_3, \ldots , start with *n* pieces in F_1 .
- Two players, alternating moves, last to move wins.
- Two types of moves: combining and splitting.

Two types of combining moves:

- Take two pieces in *F*₁ and place one piece in *F*₂, denoted *C*₁.
- For $k \ge 2$, take a piece from F_{k-1} and a piece from F_k and place a piece in F_{k+1} , denoted C_k .

Two types of combining moves:

- Take two pieces in *F*₁ and place one piece in *F*₂, denoted *C*₁.
- For $k \ge 2$, take a piece from F_{k-1} and a piece from F_k and place a piece in F_{k+1} , denoted C_k .

Two types of splitting moves:

- Take two pieces in *F*₂ and place one piece in *F*₁ and one piece in *F*₃, denoted *S*₂.
- For $k \ge 3$, take two pieces from F_k and place one piece in F_{k-2} and one piece in F_{k+1} , denoted S_k .

Same setup as the Zeckendorf Game, with the addition of *accelerated moves*:

A player can repeat their move multiple times during their turn, denoted $m \cdot C_k$ or $m \cdot S_k$, where C_k/S_k is the move and *m* is the number of times it's performed.

Start with n = 8 pieces in F_1 .

Next move : Player 1, $3 \cdot C_1$.

Start with n = 8 pieces in F_1 .

Next move : Player 2, $1 \cdot C_1$.

Start with n = 8 pieces in F_1 .

Next move : Player 1, $2 \cdot S_2$.

Start with n = 8 pieces in F_1 .

Next move : Player 2, $1 \cdot C_1$.

Start with n = 8 pieces in F_1 .

Next move : Player 1, $1 \cdot S_3$.

Start with n = 8 pieces in F_1 .

Next move : Player 2, $1 \cdot C_2$.

Start with n = 8 pieces in F_1 . 0 1 1 0 0 $[F_5 = 8]$ $[F_4 = 5]$ $[F_3 = 3]$ $[F_2 = 2]$ $[F_1 = 1]$

Next move : Player 1, $1 \cdot C_4$.

Start with n = 8 pieces in F_1 .

Player 1 wins!

- *i*_{max}(*n*) is the index of the largest Fibonacci number in the Zeckendorf decomposition of *n*.
- δ_i(n) denotes the number of F_i's in the Zeckendorf decomposition of n.
- *Z*(*n*) denotes the number of terms in the Zeckendorf decomposition of *n*.
- IZ(n) denotes the sum of the indices of the terms in the Zeckendorf decomposition of *n*; i.e. $IZ(n) = \sum_{i=1}^{i} \sum_{j=1}^{i} \delta_{ij}(n)$

$$IZ(n) = \sum_{i=1}^{n} I \cdot \delta_i(n).$$

• A game state will be represented by

 $(a_{i_{\max}(n)}, a_{i_{\max}(n)-1}, \dots, a_3, a_2, a_1)$, where a_j is the current number of pieces in F_j .

Every Accelerated game has an associated base Zeckendorf game by decoupling all accelerated moves. As such, there are a few findings that carry over from the Zeckendorf Game into the Accelerated Zeckendorf Game: Every Accelerated game has an associated base Zeckendorf game by decoupling all accelerated moves. As such, there are a few findings that carry over from the Zeckendorf Game into the Accelerated Zeckendorf Game:

Theorem (Baird-Smith, Epstein, Flint and Miller)

Every game terminates within a finite number of moves at the Zeckendorf decomposition.

Every Accelerated game has an associated base Zeckendorf game by decoupling all accelerated moves. As such, there are a few findings that carry over from the Zeckendorf Game into the Accelerated Zeckendorf Game:

Theorem (Baird-Smith, Epstein, Flint and Miller)

Every game terminates within a finite number of moves at the Zeckendorf decomposition.

Theorem (Cusenza et al.)

Let $a_i = F_{i+2} - i - 2$. The upper bound of the game is given by $\sum_{i=1}^{i_{max}(n)} a_i \cdot \delta_i(n)$, which is at most $\frac{3+\sqrt{5}}{2}n - IZ(n) - \frac{1+\sqrt{5}}{2}Z(n)$.

Other findings differ from those for the Zeckendorf Game.

Other findings differ from those for the Zeckendorf Game.

Theorem (Garcia-Fernandezsesma et al.)

 $i_{max}(n) - 1$ is a sharp lower bound on the number of moves in the Accelerated Zeckendorf Game.

Other findings differ from those for the Zeckendorf Game.

Theorem (Garcia-Fernandezsesma et al.)

 $i_{max}(n) - 1$ is a sharp lower bound on the number of moves in the Accelerated Zeckendorf Game.

For contrast, in the Zeckendorf Game,

Theorem (Baird-Smith, Epstein, Flint and Miller)

The shortest game, achieved by greedy algorithm, arrives at the Zeckendorf decomposition in n - Z(n) moves.

Proof: First, we showed $i_{max}(n) - 1$ is a lower bound:

Proof: First, we showed $i_{max}(n) - 1$ is a lower bound: All moves advance a piece at most 1 bin forward. As such, at least $i_{max}(n) - 1$ moves need to be made to get a piece from F_1 to $F_{i_{max}(n)}$.

• $F_{k-2} \cdot C_1$ brings $(0, \ldots, 0, 0, F_k)$ to $(0, \ldots, 0, F_{k-2}, F_{k-3})$.

- $F_{k-2} \cdot C_1$ brings $(0, \ldots, 0, 0, F_k)$ to $(0, \ldots, 0, F_{k-2}, F_{k-3})$.
- $F_{j-1} \cdot C_i$ brings $(0, \dots, 0, 0, F_j, F_{j-1}, 0, \dots, 0)$ to $(0, \dots, 0, F_{j-1}, F_{j-2}, 0, 0, \dots, 0)$.

•
$$F_{k-2} \cdot C_1$$
 brings $(0, \ldots, 0, 0, F_k)$ to $(0, \ldots, 0, F_{k-2}, F_{k-3})$.

•
$$F_{j-1} \cdot C_i$$
 brings $(0, \dots, 0, 0, F_j, F_{j-1}, 0, \dots, 0)$ to $(0, \dots, 0, F_{j-1}, F_{j-2}, 0, 0, \dots, 0)$.

This gives us the series of $i_{max}(F_k) - 1$ moves $(F_{k-2} \cdot C_1, F_{k-3} \cdot C_2, \dots, F_1 \cdot C_{k-2}, F_0 \cdot C_{k-1})$ that takes us to $(F_0, F_{-1}, 0, \dots, 0) = (1, 0, 0, \dots, 0)$, the Zeckendorf decomposition of F_k .

Finally, we extended this sharp lower bound to all cases:

Finally, we extended this sharp lower bound to all cases: Let $F_{k_1} + F_{k_2} + \cdots + F_{k_m}$ be the Zeckendorf decomposition of *n*, with $F_{k_1} > F_{k_2} > \cdots > F_{k_m}$. We can think of the moves needed to achieve each term in the decomposition: Finally, we extended this sharp lower bound to all cases: Let $F_{k_1} + F_{k_2} + \cdots + F_{k_m}$ be the Zeckendorf decomposition of *n*, with $F_{k_1} > F_{k_2} > \cdots > F_{k_m}$. We can think of the moves needed to achieve each term in the decomposition:

$$F_{k_{1}-2} \cdot C_{1}, \dots, F_{0} \cdot C_{k_{1}-1}, \\F_{k_{2}-2} \cdot C_{1}, \dots, F_{0} \cdot C_{k_{2}-1}, \\\vdots \\F_{k_{m}-2} \cdot C_{1}, \dots, F_{0} \cdot C_{k_{m}-1}$$

Finally, we extended this sharp lower bound to all cases: Let $F_{k_1} + F_{k_2} + \cdots + F_{k_m}$ be the Zeckendorf decomposition of *n*, with $F_{k_1} > F_{k_2} > \cdots > F_{k_m}$. We can think of the moves needed to achieve each term in the decomposition:

$$F_{k_{2}-2} \cdot C_{1}, \dots, F_{0} \cdot C_{k_{2}-1},$$

$$F_{k_{m}-2} \cdot C_{1}, \dots, F_{0} \cdot C_{k_{m}-1}$$

$$F_{k_{m}-2} \cdot C_{1}, \dots, F_{0} \cdot C_{k_{m}-1}$$

We can then group together all like combine moves:

Finally, we extended this sharp lower bound to all cases: Let $F_{k_1} + F_{k_2} + \cdots + F_{k_m}$ be the Zeckendorf decomposition of *n*, with $F_{k_1} > F_{k_2} > \cdots > F_{k_m}$. We can think of the moves needed to achieve each term in the decomposition: $F_{k_1-2} \cdot C_1, \ldots, F_0 \cdot C_{k_1-1},$ $F_{k_0-2} \cdot C_1, \ldots, F_0 \cdot C_{k_0-1},$ $F_{k_m-2} \cdot C_1, \ldots, F_0 \cdot C_{k_m-1}$ We can then group together all like combine moves: $(\sum_{i=1}^{m} F_{k_i-2}) \cdot C_1, \ldots, (\sum_{i=1}^{m} F_{k_i-k_m}) \cdot C_{k_m-1},$ $(\sum_{i=1}^{m-1} F_{k_i-k_m+1}) \cdot C_{k_m}, \ldots, (\sum_{i=1}^{m-1} F_{k_i-k_{m-1}}) \cdot C_{k_{m-1}-1},$ $F_{k_1-k_2+1} \cdot C_{k_2}, \ldots, F_0 \cdot C_{k_1-1}$

Start with
$$n = 11 = 8 + 3$$
 pieces in F_1 .

Next move : Player 1, $(3 + 1) \cdot C_1$.

Start with
$$n = 11 = 8 + 3$$
 pieces in F_1 .

$$\begin{matrix} 0 & 0 & 0 & 4 & 3 \\ [F_5 = 8] & [F_4 = 5] & [F_3 = 3] & [F_2 = 2] & [F_1 = 1] \end{matrix}$$

Next move : Player 2, $(2 + 1) \cdot C_2$.

Start with
$$n = 11 = 8 + 3$$
 pieces in F_1 .

Next move : Player 1, $1 \cdot C_3$.

Start with
$$n = 11 = 8 + 3$$
 pieces in F_1 .

$$\begin{matrix} 0 & 1 & 2 & 0 & 0 \\ [F_5 = 8] & [F_4 = 5] & [F_3 = 3] & [F_2 = 2] & [F_1 = 1] \end{matrix}$$

Next move : Player 2, $1 \cdot C_4$.

Start with n = 11 = 8 + 3 pieces in F_1 .

Game ended in 4 moves.

If n > 9, Player 1 has a winning strategy.

If n > 9, Player 1 has a winning strategy.

Tested up to n = 140 by computer (see https://github. com/ThomasRascon/Accelerated-Zeckendorf-Game), and in stark contrast to the Zeckendorf Game:

Theorem (Baird-Smith, Epstein, Flint and Miller)

For all n > 2, Player 2 has the winning strategy for the Zeckendorf Game.

We considered winning and losing states; states where the current player does or doesn't have a winning strategy, respectively. We considered winning and losing states; states where the current player does or doesn't have a winning strategy, respectively.

Allows for colorings of game state graphs:

- All states that lead to a losing state are winning states.
- A losing state leads to only winning states.
- A winning state leads to at least one losing state.
- The final game state is a losing state.

If Player 2 has the winning strategy, then all game states of the form (0, ..., 0, k, 0, n - 3k) are losing states.

If Player 2 has the winning strategy, then all game states of the form (0, ..., 0, k, 0, n - 3k) are losing states.

Theorem (Garcia-Fernandezsesma et al.)

The above conjecture implies Player 1's winning strategy for n > 9.

Proof: We first prove an auxiliary lemma:

Lemma (Garcia-Fernandezsesma et al.)

Let k be an odd positive integer and let $n \ge 2k$. Assume all game states of the form (0, ..., 0, i, 0, n - 3i) with i < k are losing states. Then $n \ge 3k$ and (0, ..., 0, k, 0, n - 3k) is the only losing state reachable from (0, ..., 0, k, n - 2k) by a single accelerated move.

Proof: We first prove an auxiliary lemma:

Lemma (Garcia-Fernandezsesma et al.)

Let k be an odd positive integer and let $n \ge 2k$. Assume all game states of the form (0, ..., 0, i, 0, n - 3i) with i < k are losing states. Then $n \ge 3k$ and (0, ..., 0, k, 0, n - 3k) is the only losing state reachable from (0, ..., 0, k, n - 2k) by a single accelerated move.

This can be shown graphically.

Proof of Auxiliary Lemma

Proof of Auxiliary Lemma

Proof of Auxiliary Lemma

Assume the losing state conjecture and assume there exists an n > 9 such that player 2 has the winning strategy. Since n > 9, there exists an odd k such that $2k \le n < 3k$. By assumption, all states of the form (0, ..., 0, i, 0, n - 3i) with i < k are losing states. Therefore, $n \ge 3k$, contradiction.

If (0, ..., 0, k, 0, n - 3k) can be proven to be losing for even k, then with the auxiliary lemma the conjecture is proven.

If (0, ..., 0, k, 0, n - 3k) can be proven to be losing for even k, then with the auxiliary lemma the conjecture is proven. We were able to prove the losing state for k = 2 and k = 4 assuming Player 2's winning strategy by contradiction.

(0, ..., 0, 2, n-6) Losing

62

As n goes to infinity, the number of moves in a random Accelerated Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

Closely matches similar finding for the Zeckendorf Game.

As n goes to infinity, the number of moves in a random Accelerated Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

Closely matches similar finding for the Zeckendorf Game.

Conjecture (Garcia-Fernandezsesma et al.)

The average game length grows at a sub-linear rate with n.

Differs from the Zeckendorf Game's linear growth.

As n goes to infinity, the number of moves in a random Accelerated Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

Closely matches similar finding for the Zeckendorf Game.

Conjecture (Garcia-Fernandezsesma et al.)

The average game length grows at a sub-linear rate with n.

Differs from the Zeckendorf Game's linear growth. Conjectures based on simulations run by Thomas Rascon (see https://github.com/ThomasRascon/ Accelerated-Zeckendorf-Game).

Gaussian Graph

Graph of the frequency of the number of moves in 9,999 simulations of the Accelerated Zeckendorf Game with random move where each legal move has a uniform probability for n = 100 with the best fitting Gaussian (mean \approx 39.6, STD \approx 5.8).

Average Game Length Graph

Graph of the average number of moves in the Accelerated Zeckendorf Game with random uniform moves with 9,999 simulations with *n* varying from 1 to 99.

• Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Describing an explicit winning strategy.

- Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Describing an explicit winning strategy.
- If Player 1 has the winning strategy, analyze the sequence m(n) such that $m(n) \cdot C_1$ is the correct move for Player 1.

- Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Describing an explicit winning strategy.
- If Player 1 has the winning strategy, analyze the sequence m(n) such that $m(n) \cdot C_1$ is the correct move for Player 1.
- Investigate exact growth rate for average game length (logarithmic? n^{δ} , $\delta < 1$?)
- Extend Accelerated framework to other variants of the Zeckendorf Game.

- Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Describing an explicit winning strategy.
- If Player 1 has the winning strategy, analyze the sequence m(n) such that $m(n) \cdot C_1$ is the correct move for Player 1.
- Investigate exact growth rate for average game length (logarithmic? n^{δ} , $\delta < 1$?)
- Extend Accelerated framework to other variants of the Zeckendorf Game.
 - The Generalized Zeckendorf Game
 - The Fibonacci Quilt Game
 - The Reversed Zeckendorf Game

References

- P. Baird-Smith, A. Epstein, K. Flynt and S. J. Miller, *The Zeckendorf Game*, Combinatorial and Additive Number Theory III, CANT, New York, USA, 2017 and 2018, Springer Proceedings in Mathematics & Statistics, **297** (2020), 25–38. https://arxiv.org/pdf/1809.04881.
- A. Cusenza, A. Dunkelberg, K. Huffman, D. Ke, M. McClatchey, S. J. Miller, C. Mizgerd, V. Tiwari, J. Ye, and X. Zheng, *Bounds on Zeckendorf Games*, The Fibonacci Quarterly, 60.1 (2022), 57–71. https:

//fq.math.ca/Papers/60-1/miller01152021.pdf.

D. Garcia-Fernandezsesma, S. J. Miller, T. Rascon, R. Vandegrift, and A. Yamin, *The Accelerated Zeckendorf Game*, The Fibonacci Quarterly, 62.1 (2024), 3–14. https://web. williams.edu/Mathematics/sjmiller/public_html/ math/papers/zeckgame_accelerated_poly23v20.pdf

