The Accelerated Zeckendorf Game

Diego Garcia-Fernandezsesma NYU Courant Institute

2022 Polymath Jr. REU

Joint with Steven J. Miller, Thomas Rascon, Risa Vandegrift, and Ajmain Yamin

21st International Fibonacci Conference
July 9, 2024

Zeckendorf Decomposition

Defining the Fibonacci numbers as
$F_{1}=1, F_{2}=2, F_{n}=F_{n-1}+F_{n-2}$,

Theorem (Zeckendorf)

Every positive integer has a unique representation as a sum of non-adjacent Fibonacci numbers. This is referred to as that number's Zeckendorf decomposition.

The Zeckendorf Game

Rules:

The Zeckendorf Game

Rules:

- Bins $F_{1}, F_{2}, F_{3}, \ldots$, start with n pieces in F_{1}.

The Zeckendorf Game

Rules:

- Bins $F_{1}, F_{2}, F_{3}, \ldots$, start with n pieces in F_{1}.
- Two players, alternating moves, last to move wins.

The Zeckendorf Game

Rules:

- Bins $F_{1}, F_{2}, F_{3}, \ldots$, start with n pieces in F_{1}.
- Two players, alternating moves, last to move wins.
- Two types of moves: combining and splitting.

Move Types

Two types of combining moves:

- Take two pieces in F_{1} and place one piece in F_{2}, denoted C_{1}.
- For $k \geq 2$, take a piece from F_{k-1} and a piece from F_{k} and place a piece in F_{k+1}, denoted C_{k}.

Move Types

Two types of combining moves:

- Take two pieces in F_{1} and place one piece in F_{2}, denoted C_{1}.
- For $k \geq 2$, take a piece from F_{k-1} and a piece from F_{k} and place a piece in F_{k+1}, denoted C_{k}.
Two types of splitting moves:
- Take two pieces in F_{2} and place one piece in F_{1} and one piece in F_{3}, denoted S_{2}.
- For $k \geq 3$, take two pieces from F_{k} and place one piece in F_{k-2} and one piece in F_{k+1}, denoted S_{k}.

The Accelerated Zeckendorf Game

Same setup as the Zeckendorf Game, with the addition of accelerated moves:
A player can repeat their move multiple times during their turn, denoted $m \cdot C_{k}$ or $m \cdot S_{k}$, where C_{k} / S_{k} is the move and m is the number of times it's performed.

Sample Game

Start with $n=8$ pieces in F_{1}.

Next move : Player 1, $3 \cdot C_{1}$.

Sample Game

Start with $n=8$ pieces in F_{1}.

Next move : Player 2, $1 \cdot C_{1}$.

Sample Game

Start with $n=8$ pieces in F_{1}.

Next move : Player 1, $2 \cdot S_{2}$.

Sample Game

Start with $n=8$ pieces in F_{1}.

Next move : Player 2, 1• C_{1}.

Sample Game

Start with $n=8$ pieces in F_{1}.

Next move : Player 1, $1 \cdot S_{3}$.

Sample Game

Start with $n=8$ pieces in F_{1}.

Next move : Player 2, 1• C_{2}.

Sample Game

Start with $n=8$ pieces in F_{1}.

Next move : Player 1, $1 \cdot C_{4}$.

Sample Game

Start with $n=8$ pieces in F_{1}.

Player 1 wins!

Helpful Terminology

- $i_{\max }(n)$ is the index of the largest Fibonacci number in the Zeckendorf decomposition of n.
- $\delta_{i}(n)$ denotes the number of F_{i} 's in the Zeckendorf decomposition of n.
- $Z(n)$ denotes the number of terms in the Zeckendorf decomposition of n.
- $I Z(n)$ denotes the sum of the indices of the terms in the Zeckendorf decomposition of n; i.e.
$I Z(n)=\sum_{i=1}^{i_{\max }(n)} i \cdot \delta_{i}(n)$.
- A game state will be represented by $\left(a_{i_{\max }(n)}, a_{i_{\max }(n)-1}, \ldots, a_{3}, a_{2}, a_{1}\right)$, where a_{j} is the current number of pieces in F_{j}.

Results That Carried Over

Every Accelerated game has an associated base Zeckendorf game by decoupling all accelerated moves. As such, there are a few findings that carry over from the Zeckendorf Game into the Accelerated Zeckendorf Game:

Results That Carried Over

Every Accelerated game has an associated base Zeckendorf game by decoupling all accelerated moves. As such, there are a few findings that carry over from the Zeckendorf Game into the Accelerated Zeckendorf Game:

Theorem (Baird-Smith, Epstein, Flint and Miller)

Every game terminates within a finite number of moves at the Zeckendorf decomposition.

Results That Carried Over

Every Accelerated game has an associated base Zeckendorf game by decoupling all accelerated moves. As such, there are a few findings that carry over from the Zeckendorf Game into the Accelerated Zeckendorf Game:

Theorem (Baird-Smith, Epstein, Flint and Miller)

Every game terminates within a finite number of moves at the Zeckendorf decomposition.

Theorem (Cusenza et al.)

Let $a_{i}=F_{i+2}-i-2$. The upper bound of the game is given by $\sum_{i=1}^{i_{\max }(n)} a_{i} \cdot \delta_{i}(n)$, which is at most $\frac{3+\sqrt{5}}{2} n-I Z(n)-\frac{1+\sqrt{5}}{2} Z(n)$.

Sharp Lower Bound on Game Length

Other findings differ from those for the Zeckendorf Game.

Sharp Lower Bound on Game Length

Other findings differ from those for the Zeckendorf Game.
Theorem (Garcia-Fernandezsesma et al.)
$i_{\max }(n)-1$ is a sharp lower bound on the number of moves in the Accelerated Zeckendorf Game.

Sharp Lower Bound on Game Length

Other findings differ from those for the Zeckendorf Game.

Theorem (Garcia-Fernandezsesma et al.)

$i_{\max }(n)-1$ is a sharp lower bound on the number of moves in the Accelerated Zeckendorf Game.

For contrast, in the Zeckendorf Game,

Theorem (Baird-Smith, Epstein, Flint and Miller)

The shortest game, achieved by greedy algorithm, arrives at the Zeckendorf decomposition in $n-Z(n)$ moves.

Sharp Lower Bound Proof: Part 1

Proof: First, we showed $i_{\max }(n)-1$ is a lower bound:

Sharp Lower Bound Proof: Part 1

Proof: First, we showed $i_{\max }(n)-1$ is a lower bound: All moves advance a piece at most 1 bin forward. As such, at least $i_{\max }(n)-1$ moves need to be made to get a piece from F_{1} to $F_{i_{\text {max }}(n)}$.

Sharp Lower Bound Proof: Part 2

Then, we proved the bound was sharp for $n=F_{k}$:

Sharp Lower Bound Proof: Part 2

Then, we proved the bound was sharp for $n=F_{k}$:

- $F_{k-2} \cdot C_{1}$ brings $\left(0, \ldots, 0,0, F_{k}\right)$ to $\left(0, \ldots, 0, F_{k-2}, F_{k-3}\right)$.

Sharp Lower Bound Proof: Part 2

Then, we proved the bound was sharp for $n=F_{k}$:

- $F_{k-2} \cdot C_{1}$ brings $\left(0, \ldots, 0,0, F_{k}\right)$ to $\left(0, \ldots, 0, F_{k-2}, F_{k-3}\right)$.
- $F_{j-1} \cdot C_{i}$ brings $\left(0, \ldots, 0,0, F_{j}, F_{j-1}, 0, \ldots, 0\right)$ to $\left(0, \ldots, 0, F_{j-1}, F_{j-2}, 0,0, \ldots, 0\right)$.

Sharp Lower Bound Proof: Part 2

Then, we proved the bound was sharp for $n=F_{k}$:

- $F_{k-2} \cdot C_{1}$ brings $\left(0, \ldots, 0,0, F_{k}\right)$ to $\left(0, \ldots, 0, F_{k-2}, F_{k-3}\right)$.
- $F_{j-1} \cdot C_{i}$ brings $\left(0, \ldots, 0,0, F_{j}, F_{j-1}, 0, \ldots, 0\right)$ to $\left(0, \ldots, 0, F_{j-1}, F_{j-2}, 0,0, \ldots, 0\right)$.
This gives us the series of $i_{\max }\left(F_{k}\right)-1$ moves $\left(F_{k-2} \cdot C_{1}, F_{k-3} \cdot C_{2}, \ldots, F_{1} \cdot C_{k-2}, F_{0} \cdot C_{k-1}\right)$ that takes us to $\left(F_{0}, F_{-1}, 0, \ldots, 0\right)=(1,0,0, \ldots, 0)$, the Zeckendorf decomposition of F_{k}.

Sharp Lower Bound Proof: Part 3

Finally, we extended this sharp lower bound to all cases:

Sharp Lower Bound Proof: Part 3

Finally, we extended this sharp lower bound to all cases:
Let $F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{m}}$ be the Zeckendorf decomposition of n, with $F_{k_{1}}>F_{k_{2}}>\cdots>F_{k_{m}}$. We can think of the moves needed to achieve each term in the decomposition:

Sharp Lower Bound Proof: Part 3

Finally, we extended this sharp lower bound to all cases:
Let $F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{m}}$ be the Zeckendorf decomposition of n, with $F_{k_{1}}>F_{k_{2}}>\cdots>F_{k_{m}}$. We can think of the moves needed to achieve each term in the decomposition:
$F_{k_{1}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{1}-1}$,
$F_{k_{2}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{2}-1}$,
\vdots
$F_{k_{m}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{m}-1}$

Sharp Lower Bound Proof: Part 3

Finally, we extended this sharp lower bound to all cases:
Let $F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{m}}$ be the Zeckendorf decomposition of n, with $F_{k_{1}}>F_{k_{2}}>\cdots>F_{k_{m}}$. We can think of the moves needed to achieve each term in the decomposition:
$F_{k_{1}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{1}-1}$,
$F_{k_{2}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{2}-1}$,
\vdots
$F_{k_{m}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{m}-1}$
We can then group together all like combine moves:

Sharp Lower Bound Proof: Part 3

Finally, we extended this sharp lower bound to all cases:
Let $F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{m}}$ be the Zeckendorf decomposition of n, with $F_{k_{1}}>F_{k_{2}}>\cdots>F_{k_{m}}$. We can think of the moves needed to achieve each term in the decomposition:
$F_{k_{1}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{1}-1}$,
$F_{k_{2}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{2}-1}$,
\vdots
$F_{k_{m}-2} \cdot C_{1}, \ldots, F_{0} \cdot C_{k_{m}-1}$
We can then group together all like combine moves:
$\left(\sum_{j=1}^{m} F_{k_{j}-2}\right) \cdot C_{1}, \ldots,\left(\sum_{j=1}^{m} F_{k_{j}-k_{m}}\right) \cdot C_{k_{m}-1}$,
$\left(\sum_{j=1}^{m-1} F_{k_{j}-k_{m}+1}\right) \cdot C_{k_{m}}, \ldots,\left(\sum_{j=1}^{m-1} F_{k_{j}-k_{m-1}}\right) \cdot C_{k_{m-1}-1}$,
:
$F_{k_{1}-k_{2}+1} \cdot C_{k_{2}}, \ldots, F_{0} \cdot C_{k_{1}-1}$

Sharp Lower Bound Example Game

Start with $n=11=8+3$ pieces in F_{1}.

0	0	0	0	11
$\left[F_{5}=8\right]$	$\left[F_{4}=5\right]$	$\left[F_{3}=3\right]$	$\left[F_{2}=2\right]$	$\left[F_{1}=1\right]$

Next move : Player 1, $(3+1) \cdot C_{1}$.

Sharp Lower Bound Example Game

Start with $n=11=8+3$ pieces in F_{1}.

0	0	0	4	3
$\left[F_{5}=8\right]$	$\left[F_{4}=5\right]$	$\left[F_{3}=3\right]$	$\left[F_{2}=2\right]$	$\left[F_{1}=1\right]$

Next move : Player 2, $(2+1) \cdot C_{2}$.

Sharp Lower Bound Example Game

Start with $n=11=8+3$ pieces in F_{1}.

Next move : Player 1, $1 \cdot C_{3}$.

Sharp Lower Bound Example Game

Start with $n=11=8+3$ pieces in F_{1}.

Next move : Player 2, $1 \cdot C_{4}$.

Sharp Lower Bound Example Game

Start with $n=11=8+3$ pieces in F_{1}.

1	0	1	0	0
$\left[F_{5}=8\right]$	$\left[F_{4}=5\right]$	$\left[F_{3}=3\right]$	$\left[F_{2}=2\right]$	$\left[F_{1}=1\right]$

Game ended in 4 moves.

Conjecture on Winning Strategy

Conjecture (Garcia-Fernandezsesma et al.)

If $n>9$, Player 1 has a winning strategy.

Conjecture on Winning Strategy

Conjecture (Garcia-Fernandezsesma et al.)

If $n>9$, Player 1 has a winning strategy.
Tested up to $n=140$ by computer (see https://github. com/ThomasRascon/Accelerated-Zeckendorf-Game), and in stark contrast to the Zeckendorf Game:

Theorem (Baird-Smith, Epstein, Flint and Miller)
For all $n>2$, Player 2 has the winning strategy for the
Zeckendorf Game.

Accelerated Zeckendorf Game Strategy Methodology

We considered winning and losing states; states where the current player does or doesn't have a winning strategy, respectively.

Accelerated Zeckendorf Game Strategy Methodology

We considered winning and losing states; states where the current player does or doesn't have a winning strategy, respectively.
Allows for colorings of game state graphs:

- All states that lead to a losing state are winning states.
- A losing state leads to only winning states.
- A winning state leads to at least one losing state.
- The final game state is a losing state.

Steps Towards Proving Conjecture

Conjecture (Garcia-Fernandezsesma et al.)

If Player 2 has the winning strategy, then all game states of the form ($0, \ldots, 0, k, 0, n-3 k$) are losing states.

Steps Towards Proving Conjecture

Conjecture (Garcia-Fernandezsesma et al.)

If Player 2 has the winning strategy, then all game states of the form ($0, \ldots, 0, k, 0, n-3 k$) are losing states.

Theorem (Garcia-Fernandezsesma et al.)

The above conjecture implies Player 1's winning strategy for $n>9$.

Proof of Conjecture Implication: Auxiliary Lemma

Proof: We first prove an auxiliary lemma:

Lemma (Garcia-Fernandezsesma et al.)

Let k be an odd positive integer and let $n \geq 2 k$. Assume all game states of the form $(0, \ldots, 0, i, 0, n-3 i)$ with $i<k$ are losing states. Then $n \geq 3 k$ and $(0, \ldots, 0, k, 0, n-3 k)$ is the only losing state reachable from $(0, \ldots, 0, k, n-2 k)$ by a single accelerated move.

Proof of Conjecture Implication: Auxiliary Lemma

Proof: We first prove an auxiliary lemma:

Lemma (Garcia-Fernandezsesma et al.)

Let k be an odd positive integer and let $n \geq 2 k$. Assume all game states of the form $(0, \ldots, 0, i, 0, n-3 i)$ with $i<k$ are losing states. Then $n \geq 3 k$ and $(0, \ldots, 0, k, 0, n-3 k)$ is the only losing state reachable from $(0, \ldots, 0, k, n-2 k)$ by a single accelerated move.

This can be shown graphically.

Proof of Auxiliary Lemma

Proof of Auxiliary Lemma

Proof of Auxiliary Lemma

Proof of Conjecture Implication

Assume the losing state conjecture and assume there exists an $n>9$ such that player 2 has the winning strategy. Since $n>9$, there exists an odd k such that $2 k \leq n<3 k$. By assumption, all states of the form $(0, \ldots, 0, i, 0, n-3 i)$ with $i<k$ are losing states. Therefore, $n \geq 3 k$, contradiction.

Steps Towards Losing State Conjecture

If $(0, \ldots, 0, k, 0, n-3 k)$ can be proven to be losing for even k, then with the auxiliary lemma the conjecture is proven.

Steps Towards Losing State Conjecture

If $(0, \ldots, 0, k, 0, n-3 k)$ can be proven to be losing for even k, then with the auxiliary lemma the conjecture is proven.
We were able to prove the losing state for $k=2$ and $k=4$ assuming Player 2's winning strategy by contradiction.

$(0, \ldots, 0,2, n-6)$ Losing

($0, \ldots, 0,4, n-12$) Losing

Statistical Conjectures

Conjecture (Garcia-Fernandezsesma et al.)

As n goes to infinity, the number of moves in a random Accelerated Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

Closely matches similar finding for the Zeckendorf Game.

Statistical Conjectures

Conjecture (Garcia-Fernandezsesma et al.)

As n goes to infinity, the number of moves in a random Accelerated Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

Closely matches similar finding for the Zeckendorf Game.

Conjecture (Garcia-Fernandezsesma et al.)

The average game length grows at a sub-linear rate with n.
Differs from the Zeckendorf Game's linear growth.

Statistical Conjectures

Conjecture (Garcia-Fernandezsesma et al.)

As n goes to infinity, the number of moves in a random Accelerated Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

Closely matches similar finding for the Zeckendorf Game.

Conjecture (Garcia-Fernandezsesma et al.)

The average game length grows at a sub-linear rate with n.
Differs from the Zeckendorf Game's linear growth.
Conjectures based on simulations run by Thomas Rascon (see
https://github.com/ThomasRascon/
Accelerated-Zeckendorf-Game).

Gaussian Graph

Graph of the frequency of the number of moves in 9, 999 simulations of the Accelerated Zeckendorf Game with random move where each legal move has a uniform probability for $n=100$ with the best fitting Gaussian (mean ≈ 39.6, STD ≈ 5.8).

Average Game Length Graph

Graph of the average number of moves in the Accelerated Zeckendorf Game with random uniform moves with 9,999 simulations with n varying from 1 to 99 .

Future Research Possibilities

- Proving/disproving the winning strategy, either through the method outlined here or other methods.

Future Research Possibilities

- Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Describing an explicit winning strategy.

Future Research Possibilities

- Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Describing an explicit winning strategy.
- If Player 1 has the winning strategy, analyze the sequence $m(n)$ such that $m(n) \cdot C_{1}$ is the correct move for Player 1.

Future Research Possibilities

- Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Describing an explicit winning strategy.
- If Player 1 has the winning strategy, analyze the sequence $m(n)$ such that $m(n) \cdot C_{1}$ is the correct move for Player 1.
- Investigate exact growth rate for average game length (logarithmic? $n^{\delta}, \delta<1$?)
- Extend Accelerated framework to other variants of the Zeckendorf Game.

Future Research Possibilities

- Proving/disproving the winning strategy, either through the method outlined here or other methods.
- Describing an explicit winning strategy.
- If Player 1 has the winning strategy, analyze the sequence $m(n)$ such that $m(n) \cdot C_{1}$ is the correct move for Player 1.
- Investigate exact growth rate for average game length (logarithmic? $n^{\delta}, \delta<1$?)
- Extend Accelerated framework to other variants of the Zeckendorf Game.
- The Generalized Zeckendorf Game
- The Fibonacci Quilt Game
- The Reversed Zeckendorf Game

References

P. Baird-Smith, A. Epstein, K. Flynt and S. J. Miller, The Zeckendorf Game, Combinatorial and Additive Number Theory III, CANT, New York, USA, 2017 and 2018, Springer Proceedings in Mathematics \& Statistics, 297 (2020), 25-38.
https://arxiv.org/pdf/1809.04881.
A. Cusenza, A. Dunkelberg, K. Huffman, D. Ke, M. McClatchey, S. J. Miller, C. Mizgerd, V. Tiwari, J. Ye, and X. Zheng, Bounds on Zeckendorf Games, The Fibonacci Quarterly, 60.1 (2022), 57-71. https:
//fq.math.ca/Papers/60-1/miller01152021.pdf.
D. Garcia-Fernandezsesma, S. J. Miller, T. Rascon, R. Vandegrift, and A. Yamin, The Accelerated Zeckendorf Game, The Fibonacci Quarterly, 62.1 (2024), 3-14. https: / /web . williams.edu/Mathematics/sjmiller/public_html/ math/papers/zeckgame_accelerated_poly23v20.pdf

