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Zeckendorf Decomposition

Defining the Fibonacci numbers as
F1 = 1,F2 = 2,Fn = Fn−1 + Fn−2,

Theorem (Zeckendorf)
Every positive integer has a unique representation as a sum of
non-adjacent Fibonacci numbers. This is referred to as that
number’s Zeckendorf decomposition.
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The Zeckendorf Game

Rules:

Bins F1,F2,F3, . . . , start with n pieces in F1.
Two players, alternating moves, last to move wins.
Two types of moves: combining and splitting.
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Move Types

Two types of combining moves:
Take two pieces in F1 and place one piece in F2, denoted
C1.
For k ≥ 2, take a piece from Fk−1 and a piece from Fk and
place a piece in Fk+1, denoted Ck .

Two types of splitting moves:
Take two pieces in F2 and place one piece in F1 and one
piece in F3, denoted S2.
For k ≥ 3, take two pieces from Fk and place one piece in
Fk−2 and one piece in Fk+1, denoted Sk .
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The Accelerated Zeckendorf Game

Same setup as the Zeckendorf Game, with the addition of
accelerated moves:
A player can repeat their move multiple times during their turn,
denoted m · Ck or m · Sk , where Ck/Sk is the move and m is
the number of times it’s performed.
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Sample Game

Start with n = 8 pieces in F1.

0 0 0 0 8
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 1, 3 · C1.

10



Sample Game

Start with n = 8 pieces in F1.

0 0 0 3 2
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 2, 1 · C1.
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Sample Game

Start with n = 8 pieces in F1.

0 0 0 4 0
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 1, 2 · S2.
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Start with n = 8 pieces in F1.
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Sample Game

Start with n = 8 pieces in F1.

0 0 2 1 0
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 1, 1 · S3.
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Sample Game

Start with n = 8 pieces in F1.

0 1 0 1 1
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 2, 1 · C2.
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Sample Game

Start with n = 8 pieces in F1.

0 1 1 0 0
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 1, 1 · C4.
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Sample Game

Start with n = 8 pieces in F1.

1 0 0 0 0
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Player 1 wins!
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Helpful Terminology

imax(n) is the index of the largest Fibonacci number in the
Zeckendorf decomposition of n.
δi(n) denotes the number of Fi ’s in the Zeckendorf
decomposition of n.
Z (n) denotes the number of terms in the Zeckendorf
decomposition of n.
IZ (n) denotes the sum of the indices of the terms in the
Zeckendorf decomposition of n; i.e.
IZ (n) =

∑imax(n)
i=1 i · δi(n).

A game state will be represented by
(aimax(n),aimax(n)−1, . . . ,a3,a2,a1), where aj is the current
number of pieces in Fj .
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Results That Carried Over

Every Accelerated game has an associated base Zeckendorf
game by decoupling all accelerated moves. As such, there are
a few findings that carry over from the Zeckendorf Game into
the Accelerated Zeckendorf Game:

Theorem (Baird-Smith, Epstein, Flint and Miller)
Every game terminates within a finite number of moves at the
Zeckendorf decomposition.

Theorem (Cusenza et al.)
Let ai = Fi+2 − i − 2. The upper bound of the game is given by∑imax(n)

i=1 ai · δi(n), which is at most 3+
√

5
2 n − IZ (n)− 1+

√
5

2 Z (n).
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Sharp Lower Bound on Game Length

Other findings differ from those for the Zeckendorf Game.

Theorem (Garcia-Fernandezsesma et al.)
imax(n)− 1 is a sharp lower bound on the number of moves in
the Accelerated Zeckendorf Game.

For contrast, in the Zeckendorf Game,

Theorem (Baird-Smith, Epstein, Flint and Miller)
The shortest game, achieved by greedy algorithm, arrives at
the Zeckendorf decomposition in n − Z (n) moves.
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Sharp Lower Bound Proof: Part 1

Proof: First, we showed imax(n)− 1 is a lower bound:

All moves advance a piece at most 1 bin forward. As such, at
least imax(n)− 1 moves need to be made to get a piece from F1
to Fimax(n).
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Sharp Lower Bound Proof: Part 2

Then, we proved the bound was sharp for n = Fk :

Fk−2 · C1 brings (0, . . . ,0,0,Fk ) to (0, . . . ,0,Fk−2,Fk−3).
Fj−1 · Ci brings (0, . . . ,0,0,Fj ,Fj−1,0, . . . ,0) to
(0, . . . ,0,Fj−1,Fj−2,0,0, . . . ,0).

This gives us the series of imax(Fk )− 1 moves
(Fk−2 · C1,Fk−3 · C2, . . . ,F1 · Ck−2,F0 · Ck−1) that takes us to
(F0,F−1,0, . . . ,0) = (1,0,0, . . . ,0), the Zeckendorf
decomposition of Fk .
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Sharp Lower Bound Proof: Part 3

Finally, we extended this sharp lower bound to all cases:

Let Fk1 + Fk2 + · · ·+ Fkm be the Zeckendorf decomposition of n,
with Fk1 > Fk2 > · · · > Fkm . We can think of the moves needed
to achieve each term in the decomposition:
Fk1−2 · C1, . . . ,F0 · Ck1−1,
Fk2−2 · C1, . . . ,F0 · Ck2−1,
...
Fkm−2 · C1, . . . ,F0 · Ckm−1
We can then group together all like combine moves:
(
∑m

j=1 Fkj−2) · C1, . . . , (
∑m

j=1 Fkj−km) · Ckm−1,

(
∑m−1

j=1 Fkj−km+1) · Ckm , . . . , (
∑m−1

j=1 Fkj−km−1) · Ckm−1−1,
...
Fk1−k2+1 · Ck2 , . . . ,F0 · Ck1−1
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Sharp Lower Bound Example Game

Start with n = 11 = 8 + 3 pieces in F1.

0 0 0 0 11
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 1, (3 + 1) · C1.
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Sharp Lower Bound Example Game

Start with n = 11 = 8 + 3 pieces in F1.

0 0 0 4 3
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 2, (2 + 1) · C2.
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Sharp Lower Bound Example Game

Start with n = 11 = 8 + 3 pieces in F1.

0 0 3 1 0
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 1, 1 · C3.
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Sharp Lower Bound Example Game

Start with n = 11 = 8 + 3 pieces in F1.

0 1 2 0 0
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Next move : Player 2, 1 · C4.
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Sharp Lower Bound Example Game

Start with n = 11 = 8 + 3 pieces in F1.

1 0 1 0 0
[F5 = 8] [F4 = 5] [F3 = 3] [F2 = 2] [F1 = 1]

Game ended in 4 moves.
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Conjecture on Winning Strategy

Conjecture (Garcia-Fernandezsesma et al.)
If n > 9, Player 1 has a winning strategy.

Tested up to n = 140 by computer (see https://github.
com/ThomasRascon/Accelerated-Zeckendorf-Game),
and in stark contrast to the Zeckendorf Game:

Theorem (Baird-Smith, Epstein, Flint and Miller)
For all n > 2, Player 2 has the winning strategy for the
Zeckendorf Game.
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Accelerated Zeckendorf Game Strategy Methodology

We considered winning and losing states; states where the
current player does or doesn’t have a winning strategy,
respectively.

Allows for colorings of game state graphs:
All states that lead to a losing state are winning states.
A losing state leads to only winning states.
A winning state leads to at least one losing state.
The final game state is a losing state.
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Steps Towards Proving Conjecture

Conjecture (Garcia-Fernandezsesma et al.)
If Player 2 has the winning strategy, then all game states of the
form (0, . . . ,0, k ,0,n − 3k) are losing states.

Theorem (Garcia-Fernandezsesma et al.)
The above conjecture implies Player 1’s winning strategy for
n > 9.
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Proof of Conjecture Implication: Auxiliary Lemma

Proof: We first prove an auxiliary lemma:

Lemma (Garcia-Fernandezsesma et al.)
Let k be an odd positive integer and let n ≥ 2k. Assume all
game states of the form (0, . . . ,0, i ,0,n − 3i) with i < k are
losing states. Then n ≥ 3k and (0, . . . ,0, k ,0,n − 3k) is the
only losing state reachable from (0, . . . ,0, k ,n − 2k) by a single
accelerated move.

This can be shown graphically.
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Proof of Auxiliary Lemma
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Proof of Auxiliary Lemma
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Proof of Conjecture Implication

Assume the losing state conjecture and assume there exists an
n > 9 such that player 2 has the winning strategy. Since n > 9,
there exists an odd k such that 2k ≤ n < 3k . By assumption,
all states of the form (0, . . . ,0, i ,0,n − 3i) with i < k are losing
states. Therefore, n ≥ 3k , contradiction.
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Steps Towards Losing State Conjecture

If (0, . . . ,0, k ,0,n − 3k) can be proven to be losing for even k ,
then with the auxiliary lemma the conjecture is proven.

We were able to prove the losing state for k = 2 and k = 4
assuming Player 2’s winning strategy by contradiction.
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(0, . . . ,0,2,n − 6) Losing
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(0, . . . ,0,4,n − 12) Losing
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Statistical Conjectures

Conjecture (Garcia-Fernandezsesma et al.)
As n goes to infinity, the number of moves in a random
Accelerated Zeckendorf Game on n, when all legal moves are
equally likely, converges to a Gaussian.

Closely matches similar finding for the Zeckendorf Game.

Conjecture (Garcia-Fernandezsesma et al.)
The average game length grows at a sub-linear rate with n.

Differs from the Zeckendorf Game’s linear growth.
Conjectures based on simulations run by Thomas Rascon (see
https://github.com/ThomasRascon/
Accelerated-Zeckendorf-Game).
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Gaussian Graph

Graph of the frequency of the number of moves in 9,999 simulations
of the Accelerated Zeckendorf Game with random move where each
legal move has a uniform probability for n = 100 with the best fitting
Gaussian (mean ≈ 39.6, STD ≈ 5.8).
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Average Game Length Graph

Graph of the average number of moves in the Accelerated
Zeckendorf Game with random uniform moves with 9,999 simulations
with n varying from 1 to 99.
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Future Research Possibilities

Proving/disproving the winning strategy, either through the
method outlined here or other methods.

Describing an explicit winning strategy.
If Player 1 has the winning strategy, analyze the sequence
m(n) such that m(n) · C1 is the correct move for Player 1.
Investigate exact growth rate for average game length
(logarithmic? nδ, δ < 1?)
Extend Accelerated framework to other variants of the
Zeckendorf Game.

The Generalized Zeckendorf Game
The Fibonacci Quilt Game
The Reversed Zeckendorf Game
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Extend Accelerated framework to other variants of the
Zeckendorf Game.
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