Nc	n-l	Иa	th

Accelerated Zeckendorf Game

Future Work

References

The Accelerated Zeckendorf Game

Ajmain Yamin CUNY Graduate Center

ayamin@gradcenter.cuny.edu

Joint with Diego Garcia-Fernandezsesma, Steven J. Miller, Thomas Rascon, and

Risa Vandegrift

Hunter College Mathematics Colloquium March 16, 2023

Non-Math ●000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References 00
About Mo				

About Me

- Bengali-American, New Yorker
- Undergrad at Stony Brook University
- Currently 2nd year PhD student at CUNY Graduate Center
- Instructor at Hunter College
- DRP organizer
- Research interest: Number Theory!

on-Math ●○○	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
	DD			

https://sites.google.com/view/cunydrp

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	Reference
0000				

About Polymath

Polymath Jr.

Collaborative mathematical research for undergraduate students

https://geometrynyc.wixsite.com/polymathreu

Non-Math ○○○●	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

About this project

- Part of the 2022 Summer Polymath Jr. program
- Faculty mentor: Steven Miller (Williams College)
- Graduate student mentor: me
- Undergraduate researchers:
 - Diego Garcia-Fernandezsesma (Boston University)
 - Thomas Rascon (UCSD)
 - Risa Vandergrift (University of Minnesota)

Non-Math 0000	Zeckendorf Game ●0000000000000	Accelerated Zeckendorf Game	Future Work	References	
Zeckendorf Decomposition					

Fibonaccis: $F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$.

1

Non-Math 0000	Zeckendorf Game ●0000000000000	Accelerated Zeckendorf Game	Future Work	References	
Zeckendorf Decomposition					

Fibonaccis: $F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$.

1, 2

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Zeckendo	rf Decompositio	n		

Fibonaccis: $F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$.

1, 2, 3

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Zeckend	lorf Decompositi	ion		
F ib				

Fibonaccis: $F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$. 1, 2, 3, 5

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
_				
Zeckend	lorf Decompositi	ion		
Lip a				

Fibonaccis: $F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$. 1, 2, 3, 5, 8

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References	
Zeckend	Zeckendorf Decomposition				
Fibo	naccis: $F_0 = 1, F_1$	$= 1, F_{n+2} = F_{n+1} + F_{n+2}$)-		

1, 2, 3, 5, 8, 13...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Non-Math	Zeckendorf Game •ooooooooooooooo	Accelerated Zeckendorf Game	Future Work	References 00
Zeckend	dorf Decompositi	on		
Fibo	naccis: $F_0 = 1, F_1$	$= 1, F_{n+2} = F_{n+1} + F_n$).	

1, 2, 3, 5, 8, 13...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example

- $18 = 13 + 5 = F_6 + F_4$, legal decomposition, two summands.
- $18 = 13 + 3 + 2 = F_6 + F_3 + F_2$, non-legal decomposition, three summands.

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
	000000000000000000000000000000000000000			

Zeckendorf Decomposition: Greedy Algorithm

Greedy Algorithm

- Start with n > 0.
- Subtract off the largest Fibbonacci number less than n.
- Repeat.

Example:

 $2023 = 1597 + 377 + 34 + 13 + 2 = F_{16} + F_{13} + F_8 + F_6 + F_2.$

Jon-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
0000	0000000000000			

Zeckendorf Decomposition: Greedy Algorithm

Greedy Algorithm

- Start with n > 0.
- Subtract off the largest Fibbonacci number less than n.
- Repeat.

Example:

 $2023 = 1597 + 377 + 34 + 13 + 2 = F_{16} + F_{13} + F_8 + F_6 + F_2.$

Justification:

- We will never subtract off consecutive Fibonacci numbers (say F_j and then F_{j-1}) because we could have subtracted off their sum F_{j+1} = F_j + F_{j-1} to begin with.
- We will never subtract off the same Fibonacci number twice because *F_{j+1}* < 2 ⋅ *F_j*.

Non-Math

Zeckendorf Game

Accelerated Zeckendorf Game

Future Work

References

Zeckendorf Decomposition: Uniqueness

Uniqueness of Zeckendorf Decomposition: Proof by Contradiction

- Exercise.
- Use Lemma: The sum of distinct, non-consecutive Fibonacci numbers all less than F_i is less than F_{i+1}.
 - Prove Lemma by induction.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

The Zeckendorf Game

Zeckendorf Game

Non-Math 0000	Zeckendorf Game ○○○○●○○○○○○○○○	Accelerated Zeckendorf Game	Future Work	References
The Zeck	endorf Game: F	Rules		

• Two player game, alternate turns, last to move wins.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
The Zec	kendorf Game: F	Rules		
•	Two player game,	alternate turns, last to	move wins.	

Bins F₁, F₂, F₃, ..., start with N pieces in F₁ and others empty.

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
The Zecl	kendorf Game: F	Rules		

- Two player game, alternate turns, last to move wins.
- Bins F₁, F₂, F₃, ..., start with N pieces in F₁ and others empty.
- A turn is one of the following moves:
 ◇ If have two pieces on F_k can remove and put one piece at F_{k+1} and one at F_{k-2} (if k = 1 then 2F₁ becomes 1F₂) (if k = 2 then 2F₂ becomes 1F₃ + 1F₁)
 ◇ If pieces at F_k and F_{k+1} remove and add one at F_{k+2}.

Non-Math 0000	Zeckendorf Game ooooo●oooooooo	Accelerated Zeckendorf Game	Future Work	References
Questions				

Questions:

- Does the game end? How long?
- For each N who has the winning strategy?
- What is the winning strategy?

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample	Game			

Next move: Player 1: $F_1 + F_1 = F_2$

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample Ga	ame			

Next move: Player 2: $F_1 + F_1 = F_2$

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample Ga	ame			

6	2	0	0	0
[<i>F</i> ₁ = 1]	[<i>F</i> ₂ = 2]	[<i>F</i> ₃ = 3]	[<i>F</i> ₄ = 5]	[<i>F</i> ₅ = 8]

Next move: Player 1: $2F_2 = F_3 + F_1$

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References 00
Sample	Game			

Next move: Player 2: $F_1 + F_1 = F_2$

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References 00
Sample	Game			

Next move: Player 1: $F_2 + F_3 = F_4$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample G	ame			

Next move: Player 2: $F_1 + F_1 = F_2$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample	Game			

Next move: Player 1: $F_1 + F_1 = F_2$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample (Game			

Next move: Player 2: $F_1 + F_2 = F_3$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References 00
Sample C	Game			

$$\begin{matrix} 0 & 1 & 1 & 1 & 0 \\ [F_1 = 1] & [F_2 = 2] & [F_3 = 3] & [F_4 = 5] & [F_5 = 8] \end{matrix}$$

Next move: Player 1: $F_3 + F_4 = F_5$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample G	ame			

0	1	0	0	1
[<i>F</i> ₁ = 1]	[<i>F</i> ₂ = 2]	[<i>F</i> ₃ = 3]	[<i>F</i> ₄ = 5]	[<i>F</i> ₅ = 8]

No moves left, Player One wins.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample	Game			

Player One won in 9 moves.

10	0	0	0	0
8	1	0	0	0
6	2	0	0	0
7	0	1	0	0
5	1	1	0	0
5	0	0	1	0
3	1	0	1	0
1	2	0	1	0
0	1	1	1	0
0	1	0	0	1
[<i>F</i> ₁ = 1]	[<i>F</i> ₂ = 2]	[<i>F</i> ₃ = 3]	[<i>F</i> ₄ = 5]	[<i>F</i> ₅ = 8]

Non-Math 0000	Zeckendorf Game ooooooooooooo	Accelerated Zeckendorf Game	Future Work	References

Sample Game

Player Two won in 10 moves.

10	0	0	0	0
8	1	0	0	0
6	2	0	0	0
7	0	1	0	0
5	1	1	0	0
5	0	0	1	0
3	1	0	1	0
1	2	0	1	0
2	0	1	1	0
0	1	1	1	0
0	1	0	0	1
[<i>F</i> ₁ = 1]	[<i>F</i> ₂ = 2]	[<i>F</i> ₃ = 3]	[<i>F</i> ₄ = 5]	[<i>F</i> ₅ = 8]

Non-Math 0000	Zeckendorf Game ○○○○○○○●○○○○○○	Accelerated Zeckendorf Game	Future Work	References
Games en	d			

Theorem (Baird-Smith, Epstein, Flynt and Miller)

All games end in finitely many moves.

Non-Math 0000	Zeckendorf Game oooooooeooooo	Accelerated Zeckendorf Game	Future Work	References			
Games end							

Theorem (Baird-Smith, Epstein, Flynt and Miller)

All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict monovariant.

- Adding consecutive terms: $-\sqrt{k-2} \sqrt{k-1} + \sqrt{k} < 0$.
- Splitting: $-2\sqrt{k} + \sqrt{k-2} + \sqrt{k+1} < 0.$
- Adding 1's: $-2\sqrt{1} + \sqrt{2} < 0$.
- Splitting 2's: $-2\sqrt{2} + \sqrt{3} + \sqrt{1} < 0$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

Games end

Theorem (Baird-Smith, Epstein, Flynt and Miller)

All games end at the Zeckendorf decomposition.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

Games end

Theorem (Baird-Smith, Epstein, Flynt and Miller)

All games end at the Zeckendorf decomposition.

Proof.

If it terminated elsewhere, there would either be duplicate terms or the recurrence would apply, by definition. So, there would still be a valid move and the game would not have terminated. $\hfill\square$
Non-Math 0000	Zeckendorf Game ooooooooooooooo	Accelerated Zeckendorf Game	Future Work	References

Games Lengths: I

Theorem (Baird-Smith, Epstein, Flynt and Miller)

Upper bound: At most $n \log_{\phi} (n\sqrt{5} + 1/2)$ moves.

Fastest game: n - Z(n) moves (Z(n) is the number of summands in n's Zeckendorf decomposition). From always moving on the largest summand possible (deterministic).

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References 00
Comool	ongthou ll			

Frequency graph of the number of moves in 9,999 simulations of the Zeckendorf Game with random moves when n = 60 vs a Gaussian. Natural conjecture....

Non-Math 0000	Zeckendorf Game ○○○○○○○○○○●○○	Accelerated Zeckendorf Game	Future Work	References
Winning Strategy				

Theorem (Baird-Smith, Epstein, Flynt and Miller)

Player Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One's strategy.

Non-constructive!

Non-M	ath
0000	

Accelerated Zeckendorf Game

Future Work

References

Zeckendorf Game

Accelerated Zeckendorf Game

Future Work

References

Non-M	ath
0000	

Accelerated Zeckendorf Game

Future Work

References

Non-I	Math
0000	

Accelerated Zeckendorf Game

Future Work

References

Non-I	Math
0000	

Accelerated Zeckendorf Game

Future Work

References

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Further	Questions			

- What if *p* ≥ 3 people play the Fibonacci game?
- Does the number of moves in random games converge to a Gaussian?
- Define *k*-nacci numbers by $S_{i+1} = S_i + S_{i-1} + \cdots + S_{i-k}$; game terminates but who has the winning strategy?

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game ●00000000000	Future Work	References

Accelerated Zeckendorf Game

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

Definition (The two player Zeckendorf Game)

Game states are represented (*a_k*, *a_{k-1}*, *a_{k-2}*,..., *a₁*) where *a_i* is the current number of copies of *F_i*.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

Definition (The two player Zeckendorf Game)

- Game states are represented (*a_k*, *a_{k-1}*, *a_{k-2}*,..., *a₁*) where *a_i* is the current number of copies of *F_i*.
- Initial game state (0,...,0,0,*n*).

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game o●oooooooooooo	Future Work	References

Definition (The two player Zeckendorf Game)

- Game states are represented (*a_k*, *a_{k-1}*, *a_{k-2}*,..., *a₁*) where *a_i* is the current number of copies of *F_i*.
- Initial game state (0,...,0,0,*n*).

On each turn, a player can make one of the following moves.

If the list contains two consecutive Fibonacci numbers,
F_{i-1}, *F_i*, then a player can change these to *F_{i+1}*. We denote this move *C_i*.

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

Definition (The two player Zeckendorf Game)

- Game states are represented (*a_k*, *a_{k-1}*, *a_{k-2}*,..., *a₁*) where *a_i* is the current number of copies of *F_i*.
- Initial game state (0,...,0,0,*n*).

On each turn, a player can make one of the following moves.

If the list contains two consecutive Fibonacci numbers,
F_{i-1}, *F_i*, then a player can change these to *F_{i+1}*. We denote this move *C_i*.

2 If the list has two identical Fibonacci numbers, F_i , F_i , then

- if i = 1, a player can change F_1, F_1 to F_2 , denoted C_1 ,
- 2 if i = 2, a player can change F_2 , F_2 to F_1 , F_3 , denoted S_2 ,
- **3** if $i \ge 3$, a player can change F_i , F_i to F_{i-2} , F_{i+1} , denoted S_i .

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

Definition (The two player Zeckendorf Game)

- Game states are represented (*a_k*, *a_{k-1}*, *a_{k-2}*,..., *a₁*) where *a_i* is the current number of copies of *F_i*.
- Initial game state (0,...,0,0,*n*).

On each turn, a player can make one of the following moves.

• If the list contains two consecutive Fibonacci numbers, F_{i-1}, F_i , then a player can change these to F_{i+1} . We denote this move C_i .

2 If the list has two identical Fibonacci numbers, F_i , F_i , then

- if i = 1, a player can change F_1 , F_1 to F_2 , denoted C_1 ,
- 2 if i = 2, a player can change F_2 , F_2 to F_1 , F_3 , denoted S_2 ,

3 if $i \ge 3$, a player can change F_i , F_i to F_{i-2} , F_{i+1} , denoted S_i .

The players alternative moving. The game ends when no more moves can be made. The last player to move wins.

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
		00000000000		

Definition (The two player Accelerated Zeckendorf Game)

• Same rules as Zeckendorf game except players may play as many moves of the same type as possible on their turn.

Jon-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
0000		00000000000		

Definition (The two player Accelerated Zeckendorf Game)

• Same rules as Zeckendorf game except players may play as many moves of the same type as possible on their turn.

On each turn, a player can make one of the following moves.

If the list contains at least *m* > 0 copies of both *F_{i-1}* and *F_i*, then a player can change *m* copies of *F_{i-1}* and *m* copies of *F_i* to *m* copies of *F_{i+1}*. We denote this move *m* ⋅ *C_i*.

Ion-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
		00000000000		

Definition (The two player Accelerated Zeckendorf Game)

• Same rules as Zeckendorf game except players may play as many moves of the same type as possible on their turn.

On each turn, a player can make one of the following moves.

- If the list contains at least *m* > 0 copies of both *F_{i-1}* and *F_i*, then a player can change *m* copies of *F_{i-1}* and *m* copies of *F_i* to *m* copies of *F_{i+1}*. We denote this move *m* ⋅ *C_i*.
- 2 If the list contains at least 2m > 0 copies of F_i then
 - if i = 1, a player can change 2m copies of F₁ to m copies of F₂, denoted by m · C₁.

lon-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
		00000000000		

Definition (The two player Accelerated Zeckendorf Game)

• Same rules as Zeckendorf game except players may play as many moves of the same type as possible on their turn.

On each turn, a player can make one of the following moves.

- If the list contains at least *m* > 0 copies of both *F_{i-1}* and *F_i*, then a player can change *m* copies of *F_{i-1}* and *m* copies of *F_i* to *m* copies of *F_{i+1}*. We denote this move *m* · *C_i*.
- 2 If the list contains at least 2m > 0 copies of F_i then
 - if i = 1, a player can change 2m copies of F₁ to m copies of F₂, denoted by m · C₁.
 - if *i* = 2, a player can change 2*m* copies of *F*₂ to *m* copies of *F*₁ and *m* copies of *F*₃, denoted by *m* ⋅ *S*₂
 - if i ≥ 3, a player can change 2m copies of F_i to m copies of F_{i-2} and m copies of F_{i+1}, denoted by m · S_i.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

Research Questions

Questions:

- Does the game end? How long?
- For each N who has the winning strategy?
- What is the winning strategy?

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References oo
Sample G	ame			

Start with 10 pieces at F_1 , rest empty. Game state: (0, 0, 0, 0, 10)

Next move: Player 1: $5 \cdot C_1$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample G	ame			

Start with 10 pieces at F_1 , rest empty. Game state: (0, 0, 0, 5, 0)

0	0	0	5	0
[<i>F</i> ₅ = 8]	[<i>F</i> ₄ = 5]	[<i>F</i> ₃ = 3]	[<i>F</i> ₂ = 2]	[<i>F</i> ₁ = 1]

Next move: Player 2: $2 \cdot S_2$

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References oo
Sample G	ame			

Start with 10 pieces at F_1 , rest empty. Game state: (0, 0, 2, 1, 2)

0	0	2	1	2
[<i>F</i> ₅ = 8]	[<i>F</i> ₄ = 5]	[<i>F</i> ₃ = 3]	[<i>F</i> ₂ = 2]	[<i>F</i> ₁ = 1]

Next move: Player 1: $1 \cdot S_3$

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample G	ame			

Start with 10 pieces at F_1 , rest empty. Game state: (0,1,0,1,3)

0	1	0	1	3
[<i>F</i> ₅ = 8]	[<i>F</i> ₄ = 5]	[<i>F</i> ₃ = 3]	[<i>F</i> ₂ = 2]	[<i>F</i> ₁ = 1]

Next move: Player 2: $1 \cdot C_2$

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample G	ame			

Start with 10 pieces at F_1 , rest empty. Game state: (0, 1, 1, 0, 2)

Next move: Player 1: $1 \cdot C_4$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample G	ame			

Start with 10 pieces at F_1 , rest empty. Game state: (1, 0, 0, 0, 2)

1	0	0	0	2
[<i>F</i> ₅ = 8]	[<i>F</i> ₄ = 5]	[<i>F</i> ₃ = 3]	[<i>F</i> ₂ = 2]	[<i>F</i> ₁ = 1]

Next move: Player 2: $1 \cdot C_1$.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Sample G	ame			

Start with 10 pieces at F_1 , rest empty. Game state: (1, 0, 0, 1, 0)

1	0	0	1	0
[<i>F</i> ₅ = 8]	[<i>F</i> ₄ = 5]	[<i>F</i> ₃ = 3]	[<i>F</i> ₂ = 2]	[<i>F</i> ₁ = 1]

No moves left, Player Two wins.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References	
Sample Game					

Player Two won in 6 moves.

 Each game of the Accelerated Zeckendorf Game can be associated to a game of the Zeckendorf Game in which each m · C_i and n · S_j is replaced by m instances of a C_i move and n instances of a S_j move, respectively.

 Each game of the Accelerated Zeckendorf Game can be associated to a game of the Zeckendorf Game in which each m · C_i and n · S_j is replaced by m instances of a C_i move and n instances of a S_j move, respectively.

Theorem (Garcia, Miller, Rascon, Vandegrift, Y.)

Every game terminates after a finite number of moves at the Zeckendorf decomposition of n.

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Upper b	ound on Game L	ength		

 Each game of the Accelerated Zeckendorf Game can be associated to a game of the Zeckendorf Game in which each m · C_i and n · S_j is replaced by m instances of a C_i move and n instances of a S_j move, respectively.

Theorem (Garcia, Miller, Rascon, Vandegrift, Y.)

Every game terminates after a finite number of moves at the Zeckendorf decomposition of n.

 Moreover, the same reasoning shows that the maximum number of moves in the Accelerated Zeckendorf Game on *n* is exactly equal to the maximum number of moves in the Zeckendorf Game on *n*.
Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Shortest	Game			

 Recall that the shortest Zeckendorf Game on *n* takes *n* - *Z*(*n*) moves.

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
Shortest C	ame			

• Recall that the shortest Zeckendorf Game on *n* takes n - Z(n) moves.

Theorem (Garcia, Miller, Rascon, Vandegrift, Y.)

If k is the index of the greatest Fibonacci number in the Zeckendorf decomposition of n, then k - 1 is a sharp lower bound on the number of moves in the Accelerated Zeckendorf Game on n.

Thus the shortest Accelerated Zeckendorf Game on n is much shorter than the shortest Zeckendorf Game on n.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

Winning Strategies

Theorem (Garcia, Miller, Rascon, Vandegrift, Y.)

If Player 1 has the winning strategy, Player 1 has only one correct first move. In other words, there exists only one move that will maintain Player 1's winning strategy.

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
0000	00000000000000000	00000000000000	0000	00

Conjecture on Winning Strategies

Conjecture (Garcia, Miller, Rascon, Vandegrift, Y.)

If n > 9, Player 1 has the winning strategy.

- To determine which player has the winning strategy for specific values of *n*, we created a program (see https://github.com/ThomasRascon/
 Accelerated-Zeckendorf-Game).
- We tested all games up to n = 140, and found that for all n > 9 Player 1 had the winning strategy.

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References
		000000000000		

Conjecture on Winning Strategies

Conjecture (Garcia, Miller, Rascon, Vandegrift, Y.)

If n > 9, Player 1 has the winning strategy.

- To determine which player has the winning strategy for specific values of *n*, we created a program (see https://github.com/ThomasRascon/
 Accelerated-Zeckendorf-Game).
- We tested all games up to n = 140, and found that for all n > 9 Player 1 had the winning strategy.
- Note that Conjecture 1 is in stark contrast with the classical situation, as Player 2 always has the winning strategy in the Zeckendorf Game on *n* when n > 2.

Non-Math

Zeckendorf Game

Accelerated Zeckendorf Game

Future Work

References

Progress Towards Proving the Winning Strategies Conjecture

Conjecture (Garcia, Miller, Rascon, Vandegrift, Y.)

If Player 2 has the winning strategy, then all game states of the form (0, ..., 0, k, 0, n - 3k) are losing states.

Non-Math

Progress Towards Proving the Winning Strategies Conjecture

Conjecture (Garcia, Miller, Rascon, Vandegrift, Y.)

If Player 2 has the winning strategy, then all game states of the form (0, ..., 0, k, 0, n - 3k) are losing states.

Theorem (Garcia, Miller, Rascon, Vandegrift, Y.)

Conjecture 2 implies Conjecture 1.

Non-Math

Progress Towards Proving the Winning Strategies Conjecture

Conjecture (Garcia, Miller, Rascon, Vandegrift, Y.)

If Player 2 has the winning strategy, then all game states of the form (0, ..., 0, k, 0, n - 3k) are losing states.

Theorem (Garcia, Miller, Rascon, Vandegrift, Y.)

Conjecture 2 implies Conjecture 1.

Lemma (Garcia, Miller, Rascon, Vandegrift, Y.)

Conjecture 2 is true for $k \in \{1, 2, 3, 4, 5\}$ *.*

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References oo

Game Length Data

Graph of the frequency of the number of moves in 9,999 simulations of the Accelerated Zeckendorf Game with random moves where each legal move has a uniform probability for n = 100 with the best fitting Gaussian (mean \approx 39.6, STD \approx 5.8).

Ν	on-Math

Accelerated Zeckendorf Game

Future Work

References

Conjectures on Average Game Length

Conjecture (Garcia, Miller, Rascon, Vandegrift, Y.)

As n goes to infinity, the number of moves in a random Accelerated Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

• Same conjecture was made for the Zeckendorf Game.

Conjectures on Average Game Length

Conjecture (Garcia, Miller, Rascon, Vandegrift, Y.)

As n goes to infinity, the number of moves in a random Accelerated Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

• Same conjecture was made for the Zeckendorf Game.

Conjecture

The average game length grows at a sub-linear rate with n.

• Contrast with the Zeckendorf Game, where the average game length appears to grow at a linear rate with *n*.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game ○○○○○○○○○○●	Future Work	References

Average Game Length Data

Graph of the average number of moves in the Accelerated Zeckendorf Game with random uniform moves with 9,999 simulations with n varying from 1 to 99.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work ●000	References

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work ○●○○	References
Future Wo	ork			

About Winning Strategies

• Prove Player One has a winning strategy for n > 9.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work ○●○○	References	
Future Work					

About Winning Strategies

- Prove Player One has a winning strategy for n > 9.
- Find winning strategies.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work 0●00	References

About Winning Strategies

- Prove Player One has a winning strategy for n > 9.
- Find winning strategies.
- Assuming the Conjecture on Winning Strategies, there is a unique move Player One can make to preserve their winning state. It is m · C₁ for some m.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work 0●00	References 00

About Winning Strategies

- Prove Player One has a winning strategy for n > 9.
- Find winning strategies.
- Assuming the Conjecture on Winning Strategies, there is a unique move Player One can make to preserve their winning state. It is m · C₁ for some m. What is m?

Non-Math	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References	
Future Work					

About Average Game Lengths

• We conjectures that the average length of the Accelerated Zeckendorf Game grows at a sub-linear rate.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work oo●o	References
E				

About Average Game Lengths

- We conjectures that the average length of the Accelerated Zeckendorf Game grows at a sub-linear rate.
- Investigate the type of sub-linear growth, such as logarithmic versus n^δ for δ < 1.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

About Average Game Lengths

- We conjectures that the average length of the Accelerated Zeckendorf Game grows at a sub-linear rate.
- Investigate the type of sub-linear growth, such as logarithmic versus n^δ for δ < 1.
- Can the conjectured "Gaussianity of Random Zeckendorf Games" be related to the conjectured "Gaussianity of Random Accelerated Zeckendorf Games"?
 - Does one imply the other?

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References	
Future Work					

Other Variants

 We only looked at the Accelerated two Player Zeckendorf Game for the standard Fibonacci sequence.

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References	

- We only looked at the Accelerated two Player Zeckendorf Game for the standard Fibonacci sequence.
- Study accelerated versions of other variants of the Zeckendorf Game, such as

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References		
Future Work						

- We only looked at the Accelerated two Player Zeckendorf Game for the standard Fibonacci sequence.
- Study accelerated versions of other variants of the Zeckendorf Game, such as
 - the Generalized Zeckendorf Game

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References 00

- We only looked at the Accelerated two Player Zeckendorf Game for the standard Fibonacci sequence.
- Study accelerated versions of other variants of the Zeckendorf Game, such as
 - the Generalized Zeckendorf Game
 - the Fibonacci Quilt Game

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

- We only looked at the Accelerated two Player Zeckendorf Game for the standard Fibonacci sequence.
- Study accelerated versions of other variants of the Zeckendorf Game, such as
 - the Generalized Zeckendorf Game
 - the Fibonacci Quilt Game
 - the Multi-player Zeckendorf Game

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References

- We only looked at the Accelerated two Player Zeckendorf Game for the standard Fibonacci sequence.
- Study accelerated versions of other variants of the Zeckendorf Game, such as
 - the Generalized Zeckendorf Game
 - the Fibonacci Quilt Game
 - the Multi-player Zeckendorf Game
- Come up with your own variant and study it!

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References ●○

References

Non-Math 0000	Zeckendorf Game	Accelerated Zeckendorf Game	Future Work	References ○●

References

- P. Baird-Smith, A. Epstein, K. Flynt and S. J. Miller, *The Zeckendorf Game*, Combinatorial and Additive Number Theory III, CANT, New York, USA, 2017 and 2018, Springer Proceedings in Mathematics & Statistics, **297** (2020), 25–38. https://arxiv.org/pdf/1809.04881.
- D. Garcia-Fernandezsesma, S. J. Miller, T. Rascon, R. Vandegrift, and A. Yamin, *The Accelerated Zeckendorf Game*. https://web.williams.edu/Mathematics/sjmiller/ public_html/math/papers/zeckgame_accelerated_ poly23v20.pdf