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Sumsets and Difference sets

Let A be a set of integers.

Sumset

We define the sumset A + A := {a + b
∣∣ a,b ∈ A}, and denote

its cardinality
∣∣A + A

∣∣.
Difference set

We define the difference set A − A := {a − b
∣∣ a,b ∈ A}, and

denote its cardinality
∣∣A − A

∣∣.
We say A is sum-dominated or a more sums than differences
(MSTD) set if

∣∣A + A
∣∣ >

∣∣A − A
∣∣.
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Known Results

MSTDs should be rare since a + b = b + a, but
a − b ̸= b − a, for all a,b ∈ Z with a ̸= b.

If A is MSTD, then x · A + {y} is MSTD for any x , y ∈ Z
with x ̸= 0.
If there exists an a∗ ∈ Z such that A = {a∗} − A, then A is
symmetric with respect to a∗ and A is sum-difference
balanced (

∣∣A + A
∣∣ =

∣∣A − A
∣∣).

The Conway set, {0,2,3,4,7,11,12,14}, is the smallest
MSTD set in terms of both cardinality and diameter.
Several methods for constructing MSTD sets exist.
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Problem Statement

At the recent CANT (Combinatorial and Additive Number
Theory Conference), Samuel Alexander posed the following:
Find a sequence of sets with Ai−1 ⊂ Ai that alternate being
sum and difference dominated.
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Filling In

For a set A ⊂ [a,b], filling in A refers to the process of
adding elements in [a,b] \ {A} to A. We create the desired
sequence by filling in.

Let A1 ⊂ [0,m] be a MSTD set where m ∈ N and let
p > m + 1, p ∈ N. Then

A2 := [0,m] ∪ {p}

is difference-dominated.
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To get a MSTD A3, we apply Theorem 4 from Nathanson
(2007) and obtain

B = [0,n − 1] \ {r}
A∗

3 = B ∪ {2n − r ,3n − r , . . . , (k + 1)n − r} ∪ (a∗ − B)

A3 = A∗
3 ∪ {n}

where n = p + 2 if p is odd, n = p + 5 if p is even,
2 ≤ r ≤ n − 3, k ≥ 2, and a∗ = (k + 3)n − 2r .
We have A1 ⊂ A2 ⊂ A3, and we can extend this sequence
infinitely by setting m = max(A3) and repeating the steps
used to generate A2 and A3.
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Non-Filling Method 1

We now add the constraint that we are not allowed to fill in
sets to obtain the desired sequence.

Let A1 be MSTD with 0 ∈ A1, and n > max(A1) satisfying:
|(A1 + A1) mod n | = |(A1 − A1) mod n |
2y − x − 1 > |A1 + A1| − |A1 − A1| where:

x = |a ∈ A1 : n + a /∈ A1 + A1|
y = |b ∈ A1 : n − b /∈ A1 − A1|

Then, A2 = A1 ∪ {n} is difference-dominated, and
A3 = A1 + {0,n} is sum-dominated.
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Non-filling Method 1

We have A1 ⊂ A2 ⊂ A3

For l ≥ 2, let

A2l = A2l−1 ∪ {ln}
A2l+1 = A2l−1 ∪ (A + ln)

Clearly, A2l ⊂ A2l+1. We proved A2l and A2l+1 alternate
being sum- and difference-dominated.
Using these constructions, we are able to generate the
desired infinite sequence.
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Non-filling Method 2

A = {0,2,3,4,7,11,12,14} can be expressed as
{0,2} ∪ {3,7,11} ∪ {12,14} ∪ {4}.

By extending the arithmetic progression {3,7,11}, we are
able to generate the desired sequence.
A1 = A ∪ {−1,15} is MSTD. A2 = A1 ∪ {19} is
difference-dominated. A3 = A2 ∪ {−5} is MSTD.
For l ≥ 2, A2l = A2l−1 ∪ {4l + 15} is difference-dominated,
and A2l+1 = A2l ∪ {−4l − 1} is MSTD.
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Table: Comparison of MSTD set growth characteristics

Method |A1| A1 Diam. Growth
Filling 1 ≥ 8 ≥ 14 Exponential
Non-Filling 1 ≥ 8 ≥ 14 Linear
Non-Filling 2 ≥ 8 ≥ 14 Linear
Filling 2 ≥ 10 ≥ 17 Linear
Non-Filling 3 ≥ 11 ≥ 18 Linear
Non-Filling 4 ≥ 13 ≥ 33 Linear

not presented
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