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Sumsets and Difference sets

Let A be a set of integers.

We define the sumset A+ A = {a+ b } a,b € A}, and denote
its cardinality |A -+ A|.

Difference set

We define the difference set A— A == {a—b|a bec A}, and
denote its cardinality |A — A|.

We say A is sum-dominated or a more sums than differences
(MSTD) setif |A+ A\ > }A - A].
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Known Results

@ MSTDs should be rare since a+ b = b + a, but
a—b+#b—a forall abe Zwitha#b.

@ If Ais MSTD, then x - A+ {y} is MSTD for any x,y € Z
with x # 0.

@ If there exists an a* € Z suchthat A= {a*} — A,then Ais
symmetric with respect to a* and A is sum-difference
balanced (|A+ A = |A— A|).

@ The Conway set, {0,2,3,4,7,11,12,14}, is the smallest
MSTD set in terms of both cardinality and diameter.

@ Several methods for constructing MSTD sets exist.
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Problem Statement

At the recent CANT (Combinatorial and Additive Number
Theory Conference), Samuel Alexander posed the following:
Find a sequence of sets with A;_; C A, that alternate being
sum and difference dominated.
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@ Foraset AC [a, b, filling in A refers to the process of
adding elements in [a, b] \ {A} to A. We create the desired
sequence by filling in.
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Filling In

@ Foraset AC [a, b, filling in A refers to the process of
adding elements in [a, b] \ {A} to A. We create the desired
sequence by filling in.

@ Let Ay C [0, m] be a MSTD set where m € N and let
p>m+1,peN. Then

A = [07 m] U {p}

is difference-dominated.
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@ To get a MSTD As, we apply Theorem 4 from Nathanson
(2007) and obtain

B = [0,n—1]\{r}
Ay =Bu{2n—-r,3n—r,....,(k+1)n—r} U (a° — B)
Az = A3 U {n}
where n=p+2if pisodd, n=p+5if pis even,
2<r<n-3,k>2,anda* =(k+3)n—2r.
@ We have A; C A, C Az, and we can extend this sequence

infinitely by setting m = max(Az) and repeating the steps
used to generate A, and As.
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@ We now add the constraint that we are not allowed to fill in
sets to obtain the desired sequence.
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@ We now add the constraint that we are not allowed to fill in
sets to obtain the desired sequence.
@ Let Aj be MSTD with 0 € Ay, and n > max(Aj) satisfying:
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Non-Filling Method 1

@ We now add the constraint that we are not allowed to fill in
sets to obtain the desired sequence.
@ Let Aj be MSTD with 0 € Ay, and n > max(Aj) satisfying:
o |(A1 + A1) mod n|=|(A1 —As) mod n|
e 2y — x —1>|A; + A¢| — |As — Aq¢| where:
@ x=|acA n+ag¢ A + A
@ y=|bcA:n—b¢A — A
@ Then, A, = Ay U {n} is difference-dominated, and
As = A; + {0, n} is sum-dominated.
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Non-filling Method 1

@ We have Ay C A> C A3
@ For/> 2, let

Az = Ag—1 U {In}
Aoip1 = A1 U(A+In)

@ Clearly, Ay C Ag/11. We proved Ay and Ay, 1 alternate
being sum- and difference-dominated.

@ Using these constructions, we are able to generate the
desired infinite sequence.
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Non-filling Method 2

@ A=1{0,2,3,4,7,11,12,14} can be expressed as
{0,2} U{8,7, 11} U {12,14} U {4}.
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Non-filling Method 2

@ A=1{0,2,3,4,7,11,12,14} can be expressed as
{0,2} U{8,7, 11} U {12,14} U {4}.

@ By extending the arithmetic progression {3,7,11}, we are
able to generate the desired sequence.

@ A; =AU{-1,15}is MSTD. A, = A1 U {19} is
difference-dominated. Az = A, U {-5} is MSTD.

@ For /> 2, Ay = Ag_1 U {4l + 15} is difference-dominated,
and A2/+1 =AU {—4/ — 1} is MSTD.
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Table: Comparison of MSTD set growth characteristics

Method |A1| | Aq Diam. | Growth
Filling 1 >8 > 14 Exponential
Non-Filing1 | >8 | > 14 Linear
Non-Filling2 | > 8 > 14 Linear
Filling 2 >10 | > 17 Linear
Non-Filling3 | > 11 | > 18 Linear
Non-Filling4 | > 13 | > 33 Linear

not presented
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