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Motivation

Fibonacci Numbers: Fn+1 = Fn + Fn−1; F1 = 1, F2 = 2, F3 = 3.

Zeckendorf’s Theorem (Zeckendorf Decomposition)

Every positive integer can be written uniquely as a sum of non-consecutive
Fibonacci numbers.

We call such a sum as the Zeckendorf (or legal) decomposition.
Example: The Zeckendorf representation of 64 is 64 = 55 + 8 + 1.

Alternate Definition of Fibonacci Numbers

Fibonacci numbers form the only sequence such that every positive integer
can be written uniquely as sum of non-adjacent terms.
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Geometric Variation

We generalize the alternative definition of Fibonacci numbers to a
2-dimensional lattice, where a legal decomposition is called a simple jump
path. We then construct the lattice grid:

1
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Geometric Variation
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Geometric Variation

We generalize the alternative definition of Fibonacci numbers to a
2-dimensional lattice, where a legal decomposition is called a simple jump
path. We then construct the lattice grid:

84 · · · · · · · · · · · · · · · · · · · · ·
50 82 · · · · · · · · · · · · · · · · · ·
28 48 74 · · · · · · · · · · · · · · ·
14 24 40 66 · · · · · · · · · · · ·
7 12 20 33 59 · · · · · · · · ·
3 5 9 17 30 56 · · · · · ·
1 2 4 8 16 29 54 · · ·
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Construction of 2-dimensional Lattice Sequence yi ,j

We define a legal movement (referred to as step) as one that moves at
least one unit downward and one unit to the left.

Definition (Simple Jump Path)

A simple jump path is a path on the lattice grid where each movement
on the lattice grid consists of at least one unit movement to the left and
one unit movement downward.
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Counting Simple Jump Paths

Number of Simple Jump Paths with Length k

Let td(k ; (a1, a2, . . . , ad)) denote the number of simple jump paths from
(a1, a2, . . . , ad) to the origin with length k. Then

td(k ; a1, a2, . . . , ad) =

(
a1 − 1

k − 1

)(
a2 − 1

k − 1

)
· · ·
(
ad − 1

k − 1

)
.

Proof: Stars-and-bars problem

Number of All Simple Jump Paths

Let sd(a1, a2, . . . , ad) denote the number of simple jump paths from
(a1, a2, . . . , ad) to the origin. Then

sd(a1, a2, . . . , ad) =

min(a1,a2,...,ad )∑
k=1

td(k ; a1, a2, . . . , ad).
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Counting Simple Jump Paths

Vandermonde’s Identity(
m + n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
.

Theorem 1

Recall that sd((v)) denotes the number of simple jump paths from v to
(0, . . . , 0). Applying Vandermonde’s Identity, we directly derive

s2(a1, a2) =

(
a1 + a2 − 2

a1 − 1

)
.

When a1 = a2 = n, we have s2(n) =
(2n−2
n−1

)
.
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Counting Simple Jump Paths

It’s important to note that combinatorial identities like(
m + n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
generally do not have analogues in higher dimension, therefore our
research will focus on 2-dimensional case.
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Gap Definitions

In the 1-dimensional case, the distribution of gap converges to geometric
decay.
Here we investigate the distribution of gaps between adjacent points on a
simple jump path. We focus on two definitions.

• A gap vector of a step from (xm,1, xm,2) to (xm+1,1, xm+1,2) is the
difference vector (xm,1 − xm+1,1, xm,2 − xm+1,2).
For example, for a path from 66 (4, 4) to 9 (3, 2) to 1 (1, 1), the gap
vectors are (4− 3, 4− 2) = (1, 2) and (3− 1, 2− 1) = (2, 1).

• A gap sum is the sum of components of a gap vector.
For example, the gap sum of (1, 1) is 2.
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Counting Gap Vectors

Number of Gap Vectors of All Simple Jump Paths

Recall that t2(k, n) denotes the number of simple jump paths from (n, n)
to the origin of length k . Let g2(n) denote the number of gap vectors of
all simple jump paths from (n, n) to the origin, then

g2(n) =
n∑

k=1

k t2(k, n).
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Generalization of Gaps

Due to the presence of n − 1 in the formula below, we work with n + 1
instead to simplify some of the algebra.

Lemma 1

Consider all the simple paths from (n + 1, n + 1) to (0, 0) in 2-dimensional
lattice. Let G ((x , y), (x + v1, y + v2)) denote the number of gap vectors
(v1, v2) from (x + v1, y + v2) to (x , y) within the simple jump paths, then

G ((x , y), (x + v1, y + v2)) =

(
x + y − 2

x − 1

)(
2n − v1 − v2 − x − y

n − v1 − x

)
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Generalization of Gaps

Lemma 2

Let g (n + 1; (v1, v2)) denote the number of gap vectors (v1, v2) in all the
simple jump paths from (n + 1, n + 1) to (0, 0), then

g (n + 1; (v1, v2)) = (2n−v1−v2−1)

(
2n − v1 − v2 − 2

n − v1 − 1

)
+2

(
2n − v1 − v2

n − v1

)
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Sketch of Proof

We study the three different locations of (x , y):
(1) 1 ≤ x ≤ n − v1 and 1 ≤ y ≤ n − v2,
(2) x = 0 and y = 0,
(3) x = n − v1 + 1 and y = n − v2 + 1.

Let p = n − v1 − 1 and q = n − v2 − 1, then for case (1),

n−v1∑
x=1

n−v2∑
y=1

G ((x , y), (x + v1, y + v2)) =

p∑
x=0

q∑
y=0

(
x + y

x

)(
p + q − (x + y)

p − x

)
.

It follows from Theorem 1 that

p∑
x=0

(
x + y

x

)(
p + q − (x + y)

p − x

)
=

(
p + q

p

)
.
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Sketch of Proof

Since there are p + q + 1 values of x + y → the number of gap vectors
(v1, v2) in Case (1) is

(p + q + 1)

(
p + q

p

)
= (2n − v1 − v2 − 1)

(
2n − v1 − v2 − 2

n − v1 − 1

)
.

For Cases (2) and (3), the number of gap vectors (v1, v2) are both(
2n − v1 − v2

n − v1

)
.

Adding up all the cases, g (n + 1; (v1, v2)) =

(2n − v1 − v2 − 1)

(
2n − v1 − v2 − 2

n − v1 − 1

)
+ 2

(
2n − v1 − v2

n − v1

)
.
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Generalization of Gaps

Lemma 3

Recall that g2(n + 1) =
∑n+1

k=1 k t2(k , n + 1) denotes the number of gap
vectors of all simple jump paths from (n + 1, n + 1) to the origin, then

g2 (n + 1) =
(n

2
+ 1
)(2n

n

)
.

Note that t2(k , n + 1) is the number of simple jump paths from
(n + 1, n + 1) to (0, 0) of length k .
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Gaps in 1-dimensional Case

Theorem (Zeckendorf Gap Distribution)

Consider the distribution of gaps among the decompositions of all the
integers m ∈ [Fn,Fn+1). For fixed positive integer k, the probability that a
gap equals k converges to 1/φk for k ≥ 2.

Distribution of gaps in [F1000, F1001)
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Generalization of Gaps

Theorem 2

Let n be a positive integer. Consider the distribution of gap vectors among
all simple jump paths of dimension 2 with starting point (n + 1, n + 1).
For fixed positive integers v1, v2, the probability that a gap vector equals
(v1, v2) converges point-wise to 1/2v1+v2 as n→∞.

Borade, Fang, & Xu Zeckendorf Gap July 21, 2020 24 / 30



Sketch of Proof

Recall that g (n + 1; (v1, v2)) denotes the number of gap vectors (v1, v2)
and g2(n + 1) denotes the number of all gap vectors in all simple jump
paths from (n + 1, n + 1) to the origin. Let P(n + 1; v1, v2) denote the
probability that a given gap vector is (v1, v2), then

P(n + 1; v1, v2) =
g (n + 1; (v1, v2))

g2 (n + 1)
.

Applying Lemma 2 and Lemma 3 and simplifying the result, we obtain

lim
n→∞

P(n + 1; v1, v2) = lim
n→∞

(2n−v1−v2−1)!
(n−v1−1)!(n−v2−1)!

(n2 + 1) (2n)!n!n!

.
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Sketch of Proof

Using Stirling’s approximation, we obtain

lim
n→∞

P(n + 1; v1, v2) = lim
n→∞

2n − v1 − v2 − 1
n
2 + 1

e−1

2v1+v2+2

×

(
1 +

v1−v2+1
2

n − v1 − 1

)n−v1−1(
1 +

v2−v1+1
2

n − v2 − 1

)n−v2−1

.

Finally, applying the equation limx→∞
(
1 + a

x

)x
= ea, we simplify the

result into

lim
n→∞

P(n + 1; v1, v2) =
1

2v1+v2
.
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Generalization of Gaps

Theorem 3

Let n be a positive integer. Consider the distribution of gap sums among
all simple jump paths of dimension 2 with starting point (n + 1, n + 1).
The probability that a gap sum equals an integer v ≥ 2 converges to
(v − 1)/2v as n→∞ (the probability of a gap sum of 0 or 1 is zero).

Sketch of Proof:
Let P(v) denote the probability that a given gap sum equals v ≥ 2. Since
for each v , there are v − 1 pairs of (v1, v2) such that v1 + v2 = v . Thus by
Theorem 2,

lim
n→∞

P(v) = (v − 1)

(
1

2

)v

.
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Future Work

Conjecture (d-dimensional Gap Vector)

As n→∞, the distribution of the gap vectors in the Zeckendorf
decompositions from d-dimensional lattice grid approaches multivariate
geometric decay.

We proved that

P(v1, . . . , vd) = 2
gn−v1,...,n−vd

gn,...,n
+
∑
i

gi1,...,idgn−i1−v1,...,n−id−vd
gn,...,n

,

where ga1,...,ad =
∑∞

k=1 k
(a1−1
k−1
)
· · ·
(ad−1
k−1

)
, and the first term goes to zero

as n→∞. It remains to prove convergence for the second term.

Conjecture (d-dimensional Gap Sum)

As n→∞, the distribution of the gap sums in the Zeckendorf
decompositions from d-dimensional lattice grid approaches geometric
decay.
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Future Work

Generalization to Euclidean Distances

Our method can potentially be generalized to study the distribution of the
Euclidean distances between summands. The analysis involves counting
the number of diophantine equations that have solutions within the range
of {1, 2, . . . , n}.
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Thank you!
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