Bulk and Blip Distributions of Various Random Matrix Ensembles Under Anticommutator Operator

Random Matrix Theory Group (SMALL 2024 REU) ds15@williams.edu, bf8@williams.edu

> AISC, UNC Greensboro, October 12, 2024

 Motivation and Preliminaries
 σ-recursion
 Anticommutator of Checkerboards
 References and Thanks

 •0000000000
 •00000000000
 •0000000000
 •0000000000
 •0

#### Why care about Large Random Matrices



Figure of two particles before collision



Population evolution of a predator-prey population

 $\begin{array}{c} \text{Complex plot of an} \\ L\text{-function} \end{array}$ 

## Random Matrix Ensembles: the GOE

#### Definition (Gaussian Orthogonal Ensemble)

The GOE  $X_N$  is constructed by assigning a random variable  $a_{ij}$  to each entry of a square matrix by the following rules:

$$\begin{cases} a_{ij} = a_{ji} \sim \mathcal{N}(0, 1) & i \neq j \\ a_{ii} \sim \mathcal{N}(0, 2) \end{cases}$$

$$X_N = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

For any instance  $A_N^1$  of  $X_N$ ,  $A_N = A_N^{\top}$ , so eigenvalues of  $A_N$  are purely real.

 ${}^{1}A_{N}$  is a fixed matrix w/o randomness

SMALL 2024

### **Deriving Spectral distributions**

### Definition (Spectral Measure of Eigenvalues)

$$\nu_{A_N,N}(x) = \frac{1}{N} \sum_{i=1}^N \delta\left(x - \frac{\lambda_i}{\sqrt{N}}\right),$$

where  $\{\lambda_i\}_{i=1}^N$  are the eigenvalues of  $X_N$ . Size of eigenvalues are typically  $\Theta(\sqrt{N})$ .

## Moments of the distribution

### Lemma (Computing Moments by Trace)

Let  $M_{N,k}$  be the  $k^{th}$  moment of the spectral distribution  $\nu_{A_N,N}$ . The moment can be computed by the trace of  $A_N$ . i.e.

$$M_{N,k}(A_N) = \frac{\lambda_1^k + \dots + \lambda_N^k}{N^{\frac{k}{2}+1}} = \frac{\text{Tr}(A_N^k)}{N^{\frac{k}{2}+1}}$$

#### Remark

The power of N on the numerator depends on the normalization adopted for the definition of spectral density.

### Matrix to RMT Ensembles

## Corollary

For a random matrix ensemble  $X_N$ , the moment of the spectral density can be computed by the expected trace:

$$M_{N,k}(X_N) = \frac{\mathbb{E}[\operatorname{Tr}(X_N^k)]}{N^{\frac{k}{2}+1}}.$$

## Matrix to RMT Ensembles

#### Corollary

For a random matrix ensemble  $X_N$ , the moment of the spectral density can be computed by the expected trace:

$$M_{N,k}(X_N) = \frac{\mathbb{E}[\operatorname{Tr}(X_N^k)]}{N^{\frac{k}{2}+1}}.$$

### Definition (Limiting Spectral Density of a RMT Ensemble)

The LSD is defined as the spectral density of the RMT ensemble as N approaches infinity. Also, we define the moment of the LSM as follows.

$$\nu_X(x) = \lim_{N \to \infty} \nu_{X_N,N}(x).$$

LSD's are well-defined for most matrix ensembles.

# A Useful Tool

#### Lemma (Wick's Formula)

Let  $(x_1, \ldots, x_n)$  be a real Gaussian random vector, and  $\mathcal{P}_2(k)$  be the set of all pairings of [k]. Then

$$\mathbb{E}(x_{i_1}\cdots x_{i_k}) = \sum_{\pi\in\mathcal{P}_2(k)} \mathbb{E}_{\pi}(x_{i_1},\ldots,x_{i_k}) \quad \text{for any } i_1,\ldots,i_k \in [n],$$

where  $\mathbb{E}_{\pi}$  is the paired expectation, i.e.

$$\mathbb{E}_{(12)(34)}[x_1x_2x_3x_4] = \mathbb{E}[x_1x_2]\mathbb{E}[x_3x_4].$$

## Experimental Spectral Density: N = 1000



 $2/2\pi \approx 0.318$ 

### LSD of GOE: Semicircular Law

#### Theorem (Semicircular Law)

Let  $\{X_N\}_{N=1}^{\infty}$  be a sequence of  $N \times N$  GOE random matrices with spectral measure  $\{\nu_{X_N,N}\}_{N=1}^{\infty}$ . Then,  $\{\nu_{X_N,N}\}_{N=1}^{\infty}$  converges weakly almost surely to semicircle distribution

$$\lim_{N \to \infty} \nu_{X_N,N} = \sigma,$$

where  $\sigma := \frac{1}{2\pi}\sqrt{4-t^2}$ , in the sense that

$$\lim_{N \to \infty} \mathbb{P}\left( |M_{N,k}(X_N) - M_k(\sigma)| > \epsilon \right) = 0.$$

### Proof Sketch of the semicircle law

### Lemma (Moments of GOE)

$$M_k(\sigma) = \frac{1}{2\pi} \int_{-2}^{2} t^k \sqrt{4 - t^2} \, dt = \begin{cases} C_{k/2} & (k = 0 \mod 2) \\ 0 & (k = 1 \mod 2) \end{cases},$$

where  $C_k$  is the  $k^{th}$  Catalan number.

## Combining two RMT Ensembles

## Question

Is there a natural way to combine two random matrix ensembles such that

- **1** All the eigenvalues are real;
- **2** The combination is symmetric.

## Combining two RMT Ensembles

## Question

Is there a natural way to combine two random matrix ensembles such that

- **1** All the eigenvalues are real;
- **2** The combination is symmetric.

#### Definition

Consider the Anticommutator product, namely

$$\{A, B\} := AB + BA.$$

## Anticommutator of two RMT Ensembles

## $\bullet GOE;$

- **2** Palindromic Toeplitz;
- $\mathbf{3}$  k-checkerboard.

## Spectral Density of the Anticommutator

## Definition (Spectral Density of the Anticommutator)

$$\mu_N(x) := \lim_{N \to \infty} \frac{1}{N} \sum_{\lambda \in \Lambda} \delta\left(x - \frac{\lambda}{N}\right).$$

### Theorem (Moments of Spectral Density)

$$M_{N,k}(X_N Z_N + Z_N X_N) = \mathbb{E}\left[\operatorname{Tr}\left(\left[\frac{1}{N}(X_N Z_N + Z_N X_N)\right]^k\right)\right].$$

## Definition of PTE

### **Definition** (Palindromic Toeplitz)

An  $N \times N$  real symmetric palindromic Toeplitz matrix (where N is assumed to be even for simplicity) is a matrix  $A_N$  whose entries are paramatrized by  $b_0, b_1, \ldots, b_{N/2-1}$ , where the  $b_i$ 's are i.i.d. random variables with mean 0 and variance 1:

$$a_{ij} = \begin{cases} b_{|i-j|}, & \text{if } 0 \le |i-j| \le \frac{N}{2} - 1\\ b_{N-1-|i-j|}, & \text{if } \frac{N}{2} \le |i-j| \le N - 1. \end{cases}$$

This matrix is in the form

$$\begin{pmatrix} b_0 & b_1 & \cdots & b_1 & b_0 \\ b_1 & b_0 & \cdots & b_2 & b_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_1 & b_2 & \cdots & b_0 & b_1 \\ b_0 & b_1 & \cdots & b_1 & b_0 \end{pmatrix}.$$

14/36

SMALL 2024

# Remark (Kologlu, Kopp, Miller 2011)

The structure of the PTE creates Diophantine Obstructions which make certain terms of the expected trace vanish in the  $N \to \infty$ . In particular, terms that have a **Crossing Pairing** vanish.

# Moments of $\{GOE, PT\}$

### Question

Can we compute the moments of the Spectral distribution of the anticommutator of two ensembles GOE, PT?



| 2th | moment: | 2.005185    |
|-----|---------|-------------|
| 3th | moment: | -0.000116   |
| 4th | moment: | 12.220592   |
| 5th | moment: | -0.059222   |
| 6th | moment: | 110.056541  |
| 7th | moment: | 2.953869    |
| 8th | moment: | 1177.779577 |

**Figure:** Moments of  $\{GOE, PTE\}$ 

SMALL 2024

## **Computing Normalized Spectral Density**

#### Remark

Foiling trace expansion and invoking Wick's formula, we verify that GOE's have crossings do not contribute to the moments as  $N \to \infty$ .

#### Example

$$N^{3}\mu(2) = \mathbb{E}[\operatorname{Tr}(XZXZ)] + \mathbb{E}[\operatorname{Tr}(XZZX)] + \mathbb{E}[\operatorname{Tr}(ZXZZ)] + \mathbb{E}[\operatorname{Tr}(ZXZZ)]$$
$$= 2\left(\mathbb{E}[\operatorname{Tr}(XZZZ)] + \mathbb{E}[\operatorname{Tr}(XZZZ)]\right).$$

The following computations give motivation for the following definitions.

## **Special Words**

## **Definition** (Special Words)

A special word of length 2k is composed of k blocks of  $\{XX, ZX, XZ\}$ . The characteristic of a special word  $w, \chi(w)$ , is the number XX blocks.

#### Example

When k = 3,

### $XX \ ZX \ XZ$

has length 6, characteristic 1.

### Set of Special Words

### Definition (Set of Special Words)

 $H_{n,k}$  is the set of special words of length 2n, characteristic k.

#### Example

For n = 2 and k = 1:

 $H_{2,1} = \{XX ZX, XX XZ, ZX XX, XZ XX\}.$ 

# Valid Pairings

# **Definition** (Valid Pairings)

A pairing is valid if each paired letter are the same.

#### Example

For the word XXZZ, a valid pairing is

(12)(34)

and an invalid pairing is

(13)(24).



# Valid Pairings

# **Definition** (Valid Pairings)

A pairing is valid if each paired letter are the same.

#### Example

For the word XXZZ, a valid pairing is

(12)(34)

and an invalid pairing is

(13)(24).

### Remark (Motivation for Validness)

Assuming x, z are independent r.v. with mean zero, then

 $\mathbb{E}[xz] = 0.$ 

SMALL 2024

# **Non-Crossing Pairings**

## **Definition (Non-Crossing Pairings)**

A non-crossing pairing is a valid pairing where for any two pairs  $\{i, k\}$  and  $\{j, l\}$ , it is not the case that i < j < k < l.

#### Example

For the word XXZZ, the pairing (12)(34) is non-crossing, while the pairing (13)(24) is crossing because 1 < 2 < 3 < 4.



The crossing pairs vanish due to Diophantine Obstructions.

SMALL 2024

21/36

# Pairing Number

## **Definition** (Pairing Number)

 $\nu_{n,k}$  is the number of valid, non-crossing pairings for all words in  $H_{n,k}$ , i.e.

$$\nu_{n,k} = \sum_{w \in H_{n,k}} \varphi(w),$$

where  $\varphi(w)$  counts valid, non-crossing pairings of w.

# Pairing Number

## **Definition** (Pairing Number)

 $\nu_{n,k}$  is the number of valid, non-crossing pairings for all words in  $H_{n,k}$ , i.e.

$$\nu_{n,k} = \sum_{w \in H_{n,k}} \varphi(w),$$

where  $\varphi(w)$  counts valid, non-crossing pairings of w.

It is hard to provide a direct recursive relation on  $\nu_{n,k}$ ...

# Pairing Number

## **Definition** (Pairing Number)

 $\nu_{n,k}$  is the number of valid, non-crossing pairings for all words in  $H_{n,k}$ , i.e.

$$\nu_{n,k} = \sum_{w \in H_{n,k}} \varphi(w),$$

where  $\varphi(w)$  counts valid, non-crossing pairings of w.

It is hard to provide a direct recursive relation on  $\nu_{n,k}$ ...

**Definition (Auxiliary Sequence)** 

Define

$$\sigma_{n,s,k} := \sum_{w \in H_{n,s,k}} \varphi(w).$$

 $H_{n,s,k}$  is the set of all words with n total blocks, at least s blocks of XX in the beginning, k blocks of XZ, ZX.

SMALL 2024

## Moment Computation as a Combinatorial Problem

### **Theorem (Moments of** $\{PTE, GOE\}$ )

The  $n^{th}$  moment of the LSD of the anticommutator ensemble of  $\{GOE, PTE\}$  can be computed by the pairing number, i.e.

$$M_n = \nu_{n,n} = \sigma_{n,s=0,k=-n}.$$

# Initial Conditions for $\sigma_{n,s,k}$

# Theorem (Initial Conditions for $\sigma_{n,s,k}$ )

For  $n, s, k \in \mathbb{Z}_{pos}$ ,

- $\sigma_{n,s,k} = 0$  if s + k > n,
- $\sigma_{n,s,2k+1} = 0,$
- $\sigma_{n,s,-k}=0,$

• 
$$\sigma_{n,s,0} = (2n-1)!!.$$

#### Proof.

Conditions s + k > n and k < 0 will not generate a valid word. k odd does not generate valid pairings.

If k = 0, then the word is comprised solely of X's, which reduces to the GOE case.

## Theorem 3: Recurrence Relation for $\sigma_{n,s,2k}$

# Theorem (Recurrence Relation for $\sigma_{n,s,2k}$ )

The recurrence relation for  $\sigma_{n,s,2k}$  is given by:

$$\sigma_{n,s,2k} = \sum_{p=s+1}^{n} \sum_{q=p+1}^{n} \sum_{r=0}^{2k} \left[ \sigma_{n-q+p,p,r} \cdot \sigma_{q-p-1,0,2k-2-r} \right]$$

+ 
$$\sum_{p=s+1}^{n} \sum_{q=p+1}^{n} \sum_{r=0}^{2k} \left[ \sigma_{n-q+p-1,p-1,r} \cdot \sigma_{q-p,1,2k-2-r} \right].$$

### **Recurrence Relation: Demo**

### Proposition

The pairing number of the word is given by the sum of the product of pairing numbers generated by the Y-slicings.

$$\varphi(W) = \sum_{\substack{W_1, V_1 \\ Type \ 1}} \varphi(W_1)\varphi(V_1) + \sum_{\substack{W_2, V_2 \\ Type \ 2}} \varphi(W_2)p(V_2).$$

### Recurrence Relation: Demo

### Proposition

The pairing number of the word is given by the sum of the product of pairing numbers generated by the Y-slicings.

$$\varphi(W) = \sum_{\substack{W_1, V_1 \\ Type \ 1}} \varphi(W_1)\varphi(V_1) + \sum_{\substack{W_2, V_2 \\ Type \ 2}} \varphi(W_2)p(V_2).$$

Corollary (Informal justification of the recurrence relation)

$$\sigma_{n,s,2k} =$$

$$\sum_{p=s+1}^{n} \sum_{q=p+1}^{n} \sum_{r=0}^{2k} \left[ \sigma_{n-q+p,p,r} \cdot \sigma_{q-p-1,0,2k-2-r} + \sigma_{n-q+p-1,p-1,r} \cdot \sigma_{q-p,1,2k-2-r} \right].$$

### Numerical computations of theoretical moments

| Tał | ole o | f \si | gma_ | {n,  | k} | for | • N = | 15: |       |
|-----|-------|-------|------|------|----|-----|-------|-----|-------|
|     | k:    | e     | )    | 1    | 2  |     | 3     | 4   | 5     |
| n   |       |       |      |      |    |     |       |     |       |
| 6   | ):    | 1     |      |      |    |     |       |     |       |
| 1   | L:    | 0     | 1    |      |    |     |       |     |       |
| 2   | 2:    | 2     | 0    | 3    |    |     |       |     |       |
| 3   | 3:    | 0     | 12   | 0    |    | 15  |       |     |       |
| 2   | 1:    | 12    | 0    | 84   |    | 0   | 105   |     |       |
| 5   | 5:    | 0     | 160  | 0    | 7  | 720 | 0     | 945 |       |
| 6   | 5: 3  | 104   | 0    | 1908 |    | 0   | 7470  | 0   | 10395 |

**Figure:** Numerical values of  $\sigma_{n,s=0,k}$ 

# **Recap:** *k*-Checkerboard

### **Definition** ((k, w)-Checkerboard)

An  $N \times N$  (k, w)-checkerboard matrix  $M = (m_{ij})$  is a matrix whose entries are defined as

$$m_{i,j} = \begin{cases} a_{i,j} & \text{if } i \not\equiv j \mod k \\ w & \text{if } i \equiv j \mod k \end{cases},$$

where  $a_{ij} = a_{ji}$  with  $a_{ij}$  i.i.d. random variables with mean 0 and variance 1, and  $w \in \mathbb{R}$ . For example, (2, w)-checkerboard matrices look like the following:

$$M = \begin{pmatrix} w & a_{0,1} & w & a_{0,1} & w & \cdots & a_{0,N-1} \\ a_{0,1} & w & a_{1,2} & w & a_{1,4} & \cdots & w \\ w & a_{1,2} & w & a_{2,3} & w & \cdots & a_{2,N-1} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

We refer to the (k, 1)-checkerboard ensemble as the k-checkerboard ensemble.

SMALL 2024

## Anticommutator of Checkerboards

### Question

What is the limiting spectral distribution of the anticommutator of k-checkerboard and j-checkerboard?

## Multiple Regimes



### Figure: Multiple Regimes

There is one bulk regime and five other smaller regimes (blip regimes).

SMALL 2024

## A Closer Look



Figure: Intermediary Blips



Figure: Largest Blip

# Limiting Spectral Distribution

## Observation

Numerical simulation tells us location of 5 blip regimes:

**1** 
$$\frac{N^2}{ki} + \Theta(N)$$
 (1 blip eigenvalue);

$$2 \pm \frac{1}{k} \sqrt{1 - \frac{1}{j} N^{3/2}} + \Theta(N) \ (k - 1 \ blip \ eigevalues);$$

**3** 
$$\pm \frac{1}{j}\sqrt{1-\frac{1}{k}N^{3/2}}+\Theta(N)$$
  $(j-1 \ blip \ eigenvalues).$ 

### Remark

Standard techniques fail to find centered distribution  $\rightarrow$  construction of weight functions.

# Definitions

We focus on the spectral distribution of the largest blip.

#### Definition

The empirical largest blip spectral measure of  $\{A_N, B_N\}$ :

$$\mu_{\{A_N,B_N\}}(x) = \sum_{\lambda \text{ eigenvalues}} g_0^{2n} \left(\frac{jk\lambda}{2N^2}\right) \delta\left(x - \left(\frac{\lambda - \frac{2}{jk}N^2}{N}\right)\right),$$

where  $g_0^{2n}(x) = x^{2n}(2-x)^{2n}$ ,  $n(N) = \log \log(N)$ .

## Weight Function for Largest Blip Regime



Figure:  $g_0(x)^{100} = x^{100}(2-x)^{100}$ 

## Moments of the Empirical Largest Blip Spectral Measure

#### Theorem

The  $m^{th}$  moment of the largest blip spectral measure is

$$\mathbb{E}\left[\mu_{\{A_N,B_N\}}^{(m)}\right] = \sum_{\substack{m_{1a}+m_{1b}+m_{2a}+m_{2b}=m;\\m_{1a},m_{1b} \text{ even}}} C(m,m_{1a},m_{2a},m_{1b},m_{2b})$$

$$\left(k\sqrt{1-\frac{1}{k}}\right)^{m_{1a}+2m_{2a}} \left(j\sqrt{1-\frac{1}{j}}\right)^{m_{1b}+2m_{2b}},$$
where  $C(m,m_{1a},m_{2a},m_{1b},m_{2b}) := m! \left(\frac{2}{jk}\right)^m \frac{2^{\frac{m_{1a}+m_{1b}}{2}-2(m_{2a}+m_{2b})}m_{1a}!!m_{1b}!!}{m_{1a}!m_{1b}!m_{2a}!m_{2b}!}.$ 

## Thanks

This work was joint work with Glenn Bruda, Raul Marquez, Beni Prapashtica, Vismay Sharan, Saad Waheed, and Janine Wang under the visage of Professor Steven J. Miller at SMALL REU 2024. We would like to thank the National Science Foundation for their grant numbered *DMS-2241623*, Williams College, Finnerty Fund all of whom made this research possible. Moreover, we thank Professor Steven J. Miller for his guidance.  $\begin{array}{cccc} {\rm Motivation \ and \ Preliminaries} & \sigma\mbox{-recursion} & {\rm Anticommutator \ of \ Checkerboards} & {\rm References \ and \ Thanks} \\ \bullet & \bullet \end{array}$ 

| [NR]   | A. Nica, and S. Roland, Commutators of free random variables. (1998): 553-592.                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [GKMN] | L. Goldmakher, C. Khoury, S. J. Miller and K. Ninsuwan,<br>On the spectral distribution of large weighted random<br>regular graphs, to appear in Random Matrices: Theory and<br>Applications. http://arxiv. org/abs/1306.6714. |
| [HJ]   | R. Horn and C. Johnson, Matrix Analysis, Cambridge<br>University Press, 1985                                                                                                                                                   |
| [HM]   | C. Hammond and S. J. Miller "Distribution of Eigenvalues<br>of Real Symmetric Toeplitz Matrices" Journal of Theoretical<br>Probability 18 (2005)                                                                               |
| [MMS]  | A. Massey, S.J. Miller, and J. Sinsheimer. "Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices." Journal of Theoretical Probability 20 (2007): 637-662.                        |

[Wig1] E. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Proc. Cambridge Philo. Soc. 47 (1951), 790–798.

[Wis]

J. Wishart, The generalized product moment distribution in samples from a normal multivariate population, Biometrika 20 A (1928), 32–52.