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Introduction

Maass waveforms and low-lying zeros (with Levent
Alpoge, Nadine Amersi, Geoffrey Iyer, Oleg Lazarev and
Liyang Zhang), preprint 2014.

http://arxiv.org/pdf/1306.5886.pdf
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Properties of zeros of L-functions

Infinitude of primes, primes in arithmetic progression.

Chebyshev’s bias: π3,4(x) ≥ π1,4(x) ‘most’ of the time.

Birch and Swinnerton-Dyer conjecture.

Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

Even better estimates for h(D) if a positive
percentage of zeros of ζ(s) are at most 1/2− ǫ of the
average spacing to the next zero.
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Distribution of zeros

ζ(s) 6= 0 for Re(s) = 1: π(x), πa,q(x).

GRH: error terms.

GSH: Chebyshev’s bias.

Analytic rank, adjacent spacings: h(D).
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

Hψn = Enψn

H : matrix, entries depend on system
En : energy levels
ψn : energy eigenfunctions
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Origins of Random Matrix Theory

Statistical Mechanics: for each configuration,
calculate quantity (say pressure).
Average over all configurations – most configurations
close to system average.
Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric
A = AT , complex Hermitian A

T
= A).
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Random Matrix Ensembles

A =




a11 a12 a13 · · · a1N

a12 a22 a23 · · · a2N
...

...
...

. . .
...

a1N a2N a3N · · · aNN


 = AT , aij = aji

Fix p, define

Prob(A) =
∏

1≤i≤j≤N

p(aij).

This means

Prob (A : aij ∈ [αij , βij ]) =
∏

1≤i≤j≤N

∫ βij

xij=αij

p(xij)dxij .

Want to understand eigenvalues of A.
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence of numbers, B ⊂ Rn−1 a
compact box. Define the n-level correlation by

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N

Instead of using a box, can use a smooth test function.
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Measures of Spacings: n-Level Correlations

1 Normalized spacings of ζ(s) starting at 1020.
(Odlyzko)

70 million spacings between adjacent normalized zeros of
ζ(s), starting at the 1020th zero (from Odlyzko).
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence of numbers, B ⊂ Rn−1 a
compact box. Define the n-level correlation by

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N
Instead of using a box, can use a smooth test function.

1 Spacings of ζ(s) starting at 1020 (Odlyzko).
2 Pair and triple correlations of ζ(s) (Montgomery,

Hejhal).
3 n-level correlations for all automorphic cupsidal

L-functions (Rudnick-Sarnak).
4 n-level correlations for the classical compact groups

(Katz-Sarnak).
5 insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Correlations

Let gi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (g) =
∑

j1,...,jn
ji 6=±jk

g1

(
γf ,j1

log Qf

2π

)
· · ·gn

(
γf ,jn

log Qf

2π

)

Properties of n-level density:
⋄ Individual zeros contribute in limit.
⋄ Most of contribution is from low zeros.
⋄ Average over similar L-functions (family).

12



Intro Conjs/Thms Data/New Model Ratios to Excised Q/Refs Bias: Intro Bias: Evidence Bias: Data Bias: Future

Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1

=
d
ds

∑

p

log
(
1− p−s

)

=
∑

p

log p · p−s

1− p−s
=
∑

p

log p
ps

+ Good(s).
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1

=
d
ds

∑

p

log
(
1− p−s

)

=
∑

p

log p · p−s

1− p−s
=
∑

p

log p
ps

+ Good(s).

Contour Integration:
∫
− ζ ′(s)

ζ(s)
xs

s
ds vs

∑

p

log p
∫ (

x
p

)s ds
s
.
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1

=
d
ds

∑

p

log
(
1− p−s

)

=
∑

p

log p · p−s

1− p−s
=
∑

p

log p
ps

+ Good(s).

Contour Integration:
∫
− ζ ′(s)

ζ(s)
φ(s)ds vs

∑

p

log p
∫
φ(s)p−sds.
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s

)−1

=
d
ds

∑

p

log
(
1− p−s

)

=
∑

p

log p · p−s

1− p−s
=
∑

p

log p
ps

+ Good(s).

Contour Integration (see Fourier Transform arising):
∫
− ζ ′(s)

ζ(s)
φ(s)ds vs

∑

p

log p
∫
φ(s)e−σ log pe−it log pds.

Knowledge of zeros gives info on coefficients.
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n-Level Density

n-level density: F = ∪FN a family of L-functions ordered
by conductors, gk an even Schwartz function: Dn,F(g) =

lim
N→∞

1
|FN |

∑

f∈FN

∑

j1,...,jn
ji 6=±jk

g1

(
log Qf

2π
γj1;f

)
· · ·gn

(
log Qf

2π
γjn;f

)

As N →∞, n-level density converges to
∫

g(−→x )ρn,G(F)(
−→x )d−→x =

∫
ĝ(−→u )ρ̂n,G(F)(

−→u )d−→u .

Conjecture (Katz-Sarnak)
(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.

18



Intro Conjs/Thms Data/New Model Ratios to Excised Q/Refs Bias: Intro Bias: Evidence Bias: Data Bias: Future

Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for
the correct model for finite conductors.

In the limit must recover the independent model, and want
to explain data on:

1 Excess Rank: Rank r one-parameter family over
Q(T ): observed percentages with rank ≥ r + 2.

2 First (Normalized) Zero above Central Point: Influence
of zeros at the central point on the distribution of
zeros near the central point.
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros ←→ Energy Levels

Schwartz test function −→ Neutron

Support of test function ←→ Neutron Energy.
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Conjectures and Theorems
for Families of Elliptic Curves

1- and 2-level densities for families of elliptic curves:
evidence for the underlying group symmetries,
Compositio Mathematica 140 (2004), 952–992.

http://arxiv.org/pdf/math/0310159.
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Tate’s Conjecture

Tate’s Conjecture for Elliptic Surfaces

Let E/Q be an elliptic surface and L2(E , s) be the L-series
attached to H2

ét(E/Q,Ql). Then L2(E , s) has a
meromorphic continuation to C and satisfies

−ords=2L2(E , s) = rank NS(E/Q),

where NS(E/Q) is the Q-rational part of the Néron-Severi
group of E . Further, L2(E , s) does not vanish on the line
Re(s) = 2.
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Conjectures: ABC, Square-Free

ABC Conjecture
Fix ǫ > 0. For coprime positive integers a, b and c with
c = a + b and N(a, b, c) =

∏
p|abc p, c ≪ǫ N(a, b, c)1+ǫ.

Square-Free Sieve Conjecture

Fix an irreducible polynomial f (t) of degree at least 4. As
N →∞, the number of t ∈ [N, 2N] with D(t) divisible by
p2 for some p > log N is o(N).

23



Intro Conjs/Thms Data/New Model Ratios to Excised Q/Refs Bias: Intro Bias: Evidence Bias: Data Bias: Future

Conjectures: Restricted Sign

Restricted Sign Conjecture (for the Family F )

Consider a 1-parameter family F of elliptic curves. As
N →∞, the signs of the curves Et are equidistributed for
t ∈ [N, 2N].

Fails: constant j(t) where all curves same sign.
Rizzo:

Et : y2 = x3 + tx2 − (t + 3)x + 1, j(t) = 256(t2 + 3t + 9),

for every t ∈ Z, Et has odd functional equation,

Et : y2 = x3 +
t
4

x2 − 36t2

t − 1728
x − t3

t − 1728
, j(t) = t ,

as t ranges over Z in the limit 50.1859% have even and
49.8141% have odd functional equation.
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Conjectures: Polynomial Mobius

Polynomial Moebius

Let f (t) be an irreducible polynomial such that no fixed
square divides f (t) for all t . Then

∑2N
t=N µ(f (t)) = o(N).
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Conjectures: Polynomial Mobius

Helfgott shows the Square-Free Sieve and Polynomial
Moebius imply the Restricted Sign conjecture for many
families. More precisely, let M(t) be the product of the
irreducible polynomials dividing ∆(t) and not c4(t).

Theorem
Equidistribution of Sign in a Family Let F be a
one-parameter family with coefficients integer polynomials
in t ∈ [N, 2N]. If j(t) and M(t) are non-constant, then the
signs of Et , t ∈ [N, 2N], are equidistributed as N →∞.
Further, if we restrict to good t, t ∈ [N, 2N] such that D(t)
is good (usually square-free), the signs are still
equidistributed in the limit.
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Theorem: Preliminaries

Consider a one-parameter family

E : y2 + a1(T )xy + a3(T )y = x3 + a2(T )x2 + a4(T )x + a6(T ).

Let at(p) = p + 1− Np, where Np is the number of
solutions mod p (including∞). Define

AE(p) :=
1
p

∑

t(p)

at(p).

AE(p) is bounded independent of p (Deligne).
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Theorem: Preliminaries

Theorem
Rosen-Silverman (Conjecture of Nagao): For an elliptic
surface (a one-parameter family), assume Tate’s
conjecture. Then

lim
X→∞

1
X

∑

p≤X

−AE(p) log p = rank E(Q(T )).

Tate’s conjecture is known for rational surfaces: An elliptic
surface y2 = x3 + A(T )x + B(T ) is rational iff one of the
following is true:

0 < max{3degA, 2degB} < 12;
3degA = 2degB = 12 and ordT=0T 12∆(T−1) = 0.
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Comparing the RMT Models

Theorem: M– ’04
For small support, one-param family of rank r over Q(T ):

lim
N→∞

1
|FN |

∑

Et∈FN

∑

j

ϕ

(
log CEt

2π
γEt ,j

)

=

∫
ϕ(x)ρG(x)dx + rϕ(0)

where

G =





SO if half odd

SO(even) if all even

SO(odd) if all odd.

Supports Katz-Sarnak, B-SD, and Independent model in limit.
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Data for Elliptic Curve Famillies
Dueñez, Huynh, Keating, Miller and Snaith

Investigations of zeros near the central point of elliptic curve
L-functions, Experimental Mathematics 15 (2006), no. 3, 257–279.

http://arxiv.org/pdf/math/0508150.

The lowest eigenvalue of Jacobi Random Matrix Ensembles and
Painlevé VI, (with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating
and Nina Snaith), Journal of Physics A: Mathematical and Theoretical
43 (2010) 405204 (27pp).

http://arxiv.org/pdf/1005.1298.

Models for zeros at the central point in families of elliptic curves (with
Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith),
J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp).

http://arxiv.org/pdf/1107.4426.
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Comparing the RMT Models

Theorem: M– ’04
For small support, one-param family of rank r over Q(T ):

lim
N→∞

1
|FN |

∑

Et∈FN

∑

j

ϕ

(
log CEt

2π
γEt ,j

)

=

∫
ϕ(x)ρG(x)dx + rϕ(0)

where

G =





SO if half odd

SO(even) if all even

SO(odd) if all odd.

Supports Katz-Sarnak, B-SD, and Independent model in limit.
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Excess rank

One-parameter family, rank r(E) over Q(T ).
For each t ∈ Z consider curves Et .
RMT =⇒ 50% rank r(E), 50% rank r(E) + 1.
For many families, observe

Rank r(E) = 32% Rank r(E) + 1 = 48%
rank r(E) + 2 = 18% Rank r(E) + 3 = 2%

Problem: small data sets, sub-families, convergence rate
log(conductor)?
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Excess rank

One-parameter family, rank r(E) over Q(T ).
For each t ∈ Z consider curves Et .
RMT =⇒ 50% rank r(E), 50% rank r(E) + 1.
For many families, observe

Rank r(E) = 32% Rank r(E) + 1 = 48%
rank r(E) + 2 = 18% Rank r(E) + 3 = 2%

Problem: small data sets, sub-families, convergence rate
log(conductor)?

Interval Primes Twin Primes Pairs
[1, 10] 2, 3, 5, 7 (40%) (3, 5), (5, 7) (20%)

[11, 20] 11, 13, 17, 19 (40%) (11, 13), (17, 19) (20%)

Small data can be misleading! Remember
∑

p≤x 1/p ∼ log log x .
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Data on Excess Rank

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

Family: a1 : 0 to 10, rest −10 to 10.
14 Hours, 2,139,291 curves (2,971 singular, 248,478
distinct).

Rank r = 28.60% Rank r + 1 = 47.56%
Rank r + 2 = 20.97% Rank r + 3 = 2.79%
Rank r + 4 = .08%
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Data on excess rank (cont)

y2 = x3 + 16Tx + 32

Each data set runs over 2000 consecutive t-values.

t-Start Rk 0 Rk 1 Rk 2 Rk 3 Time (hrs)
-1000 39.4 47.8 12.3 0.6 <1
1000 38.4 47.3 13.6 0.6 <1
4000 37.4 47.8 13.7 1.1 1
8000 37.3 48.8 12.9 1.0 2.5

24000 35.1 50.1 13.9 0.8 6.8
50000 36.7 48.3 13.8 1.2 51.8

Final conductors ∼ 1011, small on log scale.
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RMT: Theoretical Results ( N →∞)

0.5 1 1.5 2

0.5

1

1.5

2

1st normalized evalue above 1: SO(even)
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RMT: Theoretical Results ( N →∞)

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

1st normalized evalue above 1: SO(odd)
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

Figure 4a: 209 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [3.26, 9.98], median = 1.35, mean = 1.36
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4b: 996 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [15.00, 16.00], median = .81, mean = .86.
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Rank 2 Curves from y2 = x3 − T 2x + T 2 (Rank 2 over Q(T ))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Figure 5a: 35 curves, log(cond) ∈ [7.8, 16.1], µ̃ = 1.85,
µ = 1.92, σµ = .41
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Rank 2 Curves from y2 = x3 − T 2x + T 2 (Rank 2 over Q(T ))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Figure 5b: 34 curves, log(cond) ∈ [16.2, 23.3], µ̃ = 1.37,
µ = 1.47, σµ = .34
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of j th normalized zero above the central point;

863 rank 0 curves from the 14 one-param families of rank 0 over Q(T );

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T ).

863 Rank 0 Curves 701 Rank 2 Curves t-Statistic
Median z2 − z1 1.28 1.30
Mean z2 − z1 1.30 1.34 -1.60
StDev z2 − z1 0.49 0.51
Median z3 − z2 1.22 1.19
Mean z3 − z2 1.24 1.22 0.80
StDev z3 − z2 0.52 0.47
Median z3 − z1 2.54 2.56
Mean z3 − z1 2.55 2.56 -0.38
StDev z3 − z1 0.52 0.52
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of the j th norm zero above the central point;

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T );

23 rank 4 curves from the 21 one-param families of rank 2 over Q(T ).

64 Rank 2 Curves 23 Rank 4 Curves t-Statistic
Median z2 − z1 1.26 1.27
Mean z2 − z1 1.36 1.29 0.59
StDev z2 − z1 0.50 0.42
Median z3 − z2 1.22 1.08
Mean z3 − z2 1.29 1.14 1.35
StDev z3 − z2 0.49 0.35
Median z3 − z1 2.66 2.46
Mean z3 − z1 2.65 2.43 2.05
StDev z3 − z1 0.44 0.42
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of the j th norm zero above the central point;

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T );

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T ).

701 Rank 2 Curves 64 Rank 2 Curves t-Statistic
Median z2 − z1 1.30 1.26
Mean z2 − z1 1.34 1.36 0.69
StDev z2 − z1 0.51 0.50
Median z3 − z2 1.19 1.22
Mean z3 − z2 1.22 1.29 1.39
StDev z3 − z2 0.47 0.49
Median z3 − z1 2.56 2.66
Mean z3 − z1 2.56 2.65 1.93
StDev z3 − z1 0.52 0.44

44



Intro Conjs/Thms Data/New Model Ratios to Excised Q/Refs Bias: Intro Bias: Evidence Bias: Data Bias: Future

Summary of Data

The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank 0
curves.

As the conductors increased, the repulsion
decreased.

Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i. e., shifted by the same amount).
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New Model for Finite Conductors

Replace conductor N with Neffective .
⋄ Arithmetic info, predict with L-function Ratios Conj.
⋄ Do the number theory computation.

Excised Orthogonal Ensembles.
⋄ L(1/2,E) discretized.
⋄ Study matrices in SO(2Neff ) with |ΛA(1)| ≥ ceN .

Painlevé VI differential equation solver.
⋄ Use explicit formulas for densities of Jacobi ensembles.
⋄ Key input: Selberg-Aomoto integral for initial conditions.

Open Problem:

Generalize to other families (Owen Barrett, Nathan Ryan, ...).
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000

 0
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 0.6

 0.8
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 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart), lowest eigenvalue
of SO(2N) with Neff (solid), standard N0 (dashed).
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000

 0
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 0.4

 0.6
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 1.4
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 1.8

 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart); lowest eigenvalue
of SO(2N): Neff = 2 (solid) with discretisation, and

Neff = 2.32 (dashed) without discretisation.
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Ratio’s Conjecture
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History

Farmer (1993): Considered
∫ T

0

ζ(s + α)ζ(1− s + β)

ζ(s + γ)ζ(1− s + δ)
dt ,

conjectured (for appropriate values)

T
(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α+ β)(γ + δ)
.
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History

Farmer (1993): Considered
∫ T

0

ζ(s + α)ζ(1− s + β)

ζ(s + γ)ζ(1− s + δ)
dt ,

conjectured (for appropriate values)

T
(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α+ β)(γ + δ)
.

Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over
families:

RF =
∑

f∈F

ωf
L
(

1
2 + α, f

)

L
(

1
2 + γ, f

) .
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Uses of the Ratios Conjecture

Applications:
⋄ n-level correlations and densities;
⋄ mollifiers;
⋄ moments;
⋄ vanishing at the central point;

Advantages:
⋄ RMT models often add arithmetic ad hoc;
⋄ predicts lower order terms, often to square-root
level.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms
+ ǫXL(s)

∑

n≤y

an

n1−s
;

⋄ ǫ sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms
+ ǫXL(s)

∑

n≤y

an

n1−s
;

⋄ ǫ sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.

Explicit Formula: g Schwartz test function,

∑

f∈F

ωf

∑

γ

g
(
γ

log Nf

2π

)
=

1
2πi

∫

(c)
−
∫

(1−c)
R′

F(· · · )g (· · · )

⋄ R′
F(r) =

∂
∂α

RF (α, γ)
∣∣∣
α=γ=r

.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Procedure (‘Illegal Steps’)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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1-Level Prediction from Ratio’s Conjecture

AE (α, γ)

= Y−1
E (α, γ)×

∏

p|M

(
∞∑

m=0

(
λ(pm)ωm

E

pm(1/2+α)
− λ(p)

p1/2+γ

λ(pm)ωm+1
E

pm(1/2+α)

))
×

∏

p∤M

(
1 +

p
p + 1

(
∞∑

m=1

λ(p2m)

pm(1+2α)
− λ(p)

p1+α+γ

∞∑

m=0

λ(p2m+1)

pm(1+2α)

+
1

p1+2γ

∞∑

m=0

λ(p2m)

pm(1+2α)

))

where

YE (α, γ) =
ζ(1 + 2γ)LE (sym2, 1 + 2α)

ζ(1 + α+ γ)LE(sym2, 1 + α+ γ)
.

Huynh, Morrison and Miller confirmed Ratios’ prediction, which is
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1-Level Prediction from Ratio’s Conjecture

1

X∗

∑

d∈F(X )

∑

γd

g
(γd L

π

)

=
1

2LX∗

∫

∞

−∞

g(τ)
∑

d∈F(X )

[

2 log

(√
M|d|
2π

)

+
Γ′

Γ

(

1 +
iπτ

L

)

+
Γ′

Γ

(

1 −
iπτ

L

)

]

dτ

+
1

L

∫

∞

−∞

g(τ)



−
ζ′

ζ

(

1 +
2πiτ

L

)

+
L′E
LE

(

sym2
, 1 +

2πiτ

L

)

−
∞
∑

ℓ=1

(Mℓ − 1) log M

M

(

2+ 2iπτ
L

)

ℓ



 dτ

−
1

L

∞
∑

k=0

∫

∞

−∞

g(τ)
log M

M(k+1)(1+ πiτ
L )

dτ +
1

L

∫

∞

−∞

g(τ)
∑

p∤M

log p

(p + 1)

∞
∑

k=0

λ(p2k+2) − λ(p2k )

p(k+1)(1+ 2πiτ
L )

dτ

−
1

LX∗

∫

∞

−∞

g(τ)
∑

d∈F(X )

[

(

√
M|d|
2π

)

−2iπτ/L Γ(1 − iπτ
L )

Γ(1 + iπτ
L )

ζ(1 + 2iπτ
L )LE (sym2, 1 − 2iπτ

L )

LE (sym2, 1)

×AE

(

−
iπτ

L
,

iπτ

L

)

]

dτ + O(X−1/2+ε
);
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Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants −d ∈ [1012,1012 + 3.3 · 106]

Histogram of normalized zeros (γ ≤ 1, about 4 million).
⋄ Red: main term. ⋄ Blue: includes O(1/ log X ) terms.

⋄ Green: all lower order terms.
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Excised Orthogonal Ensembles
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Excised Orthogonal Ensemble: Preliminaries

Characteristic polynomial of A ∈ SO(2N) is

ΛA(eiθ,N) := det(I−Ae−iθ) =

N∏

k=1

(1−ei(θk−θ))(1−ei(−θk−θ)),

with e±iθ1 , . . . , e±iθN the eigenvalues of A.

Motivated by the arithmetical size constraint on the central
values of the L-functions, consider Excised Orthogonal
Ensemble TX : A ∈ SO(2N) with |ΛA(1,N)| ≥ exp(X ).
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX

1 (θ1) := CX · N
∫ π

0
· · ·

∫ π

0
H(log |ΛA(1,N)| − X )×

×
∏

j<k

(cos θj − cos θk )
2dθ2 · · · dθN ,

Here H(x) denotes the Heaviside function

H(x) =

{

1 for x > 0

0 for x < 0,

and CX is a normalization constant
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX

1 (θ1) =
CX
2πi

∫ c+i∞

c−i∞
2Nr exp(−rX )

r
RJN

1 (θ1; r − 1/2,−1/2)dr

where CX is a normalization constant and

RJN
1 (θ1; r − 1/2,−1/2) = N

∫ π

0
· · ·

∫ π

0

N
∏

j=1

w (r−1/2,−1/2)(cos θj)

×
∏

j<k

(cos θj − cos θk )
2dθ2 · · · dθN

is the one-level density for the Jacobi ensemble JN with weight function

w (α,β)(cos θ) = (1−cos θ)α+1/2(1+cos θ)β+1/2, α = r − 1/2 and β = −1/2.
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Results

With CX normalization constant and P(N, r , θ) defined in terms of
Jacobi polynomials,

RTX

1 (θ) =
CX
2πi

∫ c+i∞

c−i∞

exp(−rX )

r
2N2+2Nr−N×

×
N−1
∏

j=0

Γ(2 + j)Γ(1/2 + j)Γ(r + 1/2 + j)
Γ(r + N + j)

×

× (1 − cos θ)r 21−r

2N + r − 1
Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
P(N, r , θ)dr .

Residue calculus implies RTX

1 (θ) = 0 for d(θ,X ) < 0 and

RTX

1 (θ) = RSO(2N)
1 (θ) + CX

∞
∑

k=0

bk exp((k + 1/2)X ) for d(θ,X ) ≥ 0,

where d(θ,X ) := (2N − 1) log 2 + log(1 − cos θ)− X and bk are
coefficients arising from the residues. As X → −∞, θ fixed,
RTX

1 (θ) → RSO(2N)
1 (θ).
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Numerical check
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R_1: formula
R_1: data

Figure: One-level density of excized SO(2N),N = 2 with cut-off
|ΛA(1,N)| ≥ 0.1. The red curve uses our formula. The blue crosses
give the empirical one-level density of 200,000 numerically generated
matrices.
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Theory vs Experiment
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Figure: Cumulative probability density of the first eigenvalue from
3× 106 numerically generated matrices A ∈ SO(2Nstd) with
|ΛA(1,Nstd)| ≥ 2.188× exp(−Nstd/2) and Nstd = 12 red dots compared
with the first zero of even quadratic twists LE11(s, χd ) with prime
fundamental discriminants 0 < d ≤ 400,000 blue crosses. The
random matrix data is scaled so that the means of the two
distributions agree.
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Open Questions
and References
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Open Questions: Low-lying zeros of L-functions

Generalize excised ensembles for higher weight GL2

families where expect different discretizations.

Obtain better estimates on vanishing at the central point by
finding optimal test functions for the second and higher
moment expansions.

Further explore L-function Ratios Conjecture to predict
lower order terms in families, compute these terms on
number theory side.
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1 Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices (with Christopher
Hammond), Journal of Theoretical Probability 18 (2005), no. 3, 537–566.
http://arxiv.org/abs/math/0312215

2 Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices (with
Adam Massey and John Sinsheimer), Journal of Theoretical Probability 20 (2007), no. 3, 637–662.
http://arxiv.org/abs/math/0512146

3 The distribution of the second largest eigenvalue in families of random regular graphs (with Tim Novikoff
and Anthony Sabelli), Experimental Mathematics 17 (2008), no. 2, 231–244.
http://arxiv.org/abs/math/0611649

4 Nuclei, Primes and the Random Matrix Connection (with Frank W. K. Firk), Symmetry 1 (2009), 64–105;
doi:10.3390/sym1010064. http://arxiv.org/abs/0909.4914

5 Distribution of eigenvalues for highly palindromic real symmetric Toeplitz matrices (with Steven Jackson and
Thuy Pham), Journal of Theoretical Probability 25 (2012), 464–495.
http://arxiv.org/abs/1003.2010

6 The Limiting Spectral Measure for Ensembles of Symmetric Block Circulant Matrices (with Murat Koloǧlu,
Gene S. Kopp, Frederick W. Strauch and Wentao Xiong), Journal of Theoretical Probability 26 (2013), no. 4,
1020–1060. http://arxiv.org/abs/1008.4812

7 Distribution of eigenvalues of weighted, structured matrix ensembles (with Olivia Beckwith, Karen Shen),
submitted December 2011 to the Journal of Theoretical Probability, revised September 2012.
http://arxiv.org/abs/1112.3719 .

8 The expected eigenvalue distribution of large, weighted d-regular graphs (with Leo Goldmahker, Cap
Khoury and Kesinee Ninsuwan), preprint.
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Publications: L-Functions

1 The low lying zeros of a GL(4) and a GL(6) family of L-functions (with Eduardo Dueñez), Compositio
Mathematica 142 (2006), no. 6, 1403–1425. http://arxiv.org/abs/math/0506462

2 Low lying zeros of L–functions with orthogonal symmetry (with Christopher Hughes), Duke Mathematical
Journal 136 (2007), no. 1, 115–172. http://arxiv.org/abs/math/0507450

3 Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137
(2009), 51–98. http://arxiv.org/abs/0704.0924

4 The effect of convolving families of L-functions on the underlying group symmetries (with Eduardo Dueñez),
Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018.
http://arxiv.org/pdf/math/0607688.pdf

5 Low-lying zeros of number field L-functions (with Ryan Peckner), Journal of Number Theory 132 (2012),
2866–2891. http://arxiv.org/abs/1003.5336

6 The low-lying zeros of level 1 Maass forms (with Levent Alpoge), preprint 2013.
http://arxiv.org/abs/1301.5702

7 The n-level density of zeros of quadratic Dirichlet L-functions (with Jake Levinson), submitted September
2012 to Acta Arithmetica. http://arxiv.org/abs/1208.0930

8 Moment Formulas for Ensembles of Classical Compact Groups (with Geoffrey Iyer and Nicholas
Triantafillou), preprint 2013.

75

http://arxiv.org/abs/math/0506462
http://arxiv.org/abs/math/0507450
http://arxiv.org/abs/0704.0924
http://arxiv.org/pdf/math/0607688.pdf
http://arxiv.org/abs/1003.5336
http://arxiv.org/abs/1301.5702
http://arxiv.org/abs/1208.0930


Intro Conjs/Thms Data/New Model Ratios to Excised Q/Refs Bias: Intro Bias: Evidence Bias: Data Bias: Future

Publications: Elliptic Curves

1 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries,
Compositio Mathematica 140 (2004), 952–992. http://arxiv.org/pdf/math/0310159

2 Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad.
Sci. Canada 27 (2005), no. 4, 111–120. http://arxiv.org/abs/math/0506461

3 Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15
(2006), no. 3, 257–279. http://arxiv.org/pdf/math/0508150

4 Constructing one-parameter families of elliptic curves over Q(T ) with moderate rank (with Scott Arms and
Álvaro Lozano-Robledo), Journal of Number Theory 123 (2007), no. 2, 388–402.
http://arxiv.org/abs/math/0406579

5 Towards an ‘average’ version of the Birch and Swinnerton-Dyer Conjecture (with John Goes), Journal of
Number Theory 130 (2010), no. 10, 2341–2358. http://arxiv.org/abs/0911.2871

6 The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with Eduardo Dueñez, Duc
Khiem Huynh, Jon Keating and Nina Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010)
405204 (27pp). http://arxiv.org/pdf/1005.1298

7 Models for zeros at the central point in families of elliptic curves (with Eduardo Dueñez, Duc Khiem Huynh,
Jon Keating and Nina Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp).
http://arxiv.org/pdf/1107.4426

8 Effective equidistribution and the Sato-Tate law for families of elliptic curves (with M. Ram Murty), Journal of
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Publications: L-Function Ratio Conjecture

1 A symplectic test of the L-Functions Ratios Conjecture, Int Math Res Notices (2008) Vol. 2008, article ID
rnm146, 36 pages, doi:10.1093/imrn/rnm146. http://arxiv.org/abs/0704.0927

2 An orthogonal test of the L-Functions Ratios Conjecture, Proceedings of the London Mathematical Society
2009, doi:10.1112/plms/pdp009. http://arxiv.org/abs/0805.4208

3 A unitary test of the L-functions Ratios Conjecture (with John Goes, Steven Jackson, David Montague,
Kesinee Ninsuwan, Ryan Peckner and Thuy Pham), Journal of Number Theory 130 (2010), no. 10,
2238–2258. http://arxiv.org/abs/0909.4916

4 An Orthogonal Test of the L-functions Ratios Conjecture, II (with David Montague), Acta Arith. 146 (2011),
53–90. http://arxiv.org/abs/0911.1830

5 An elliptic curve family test of the Ratios Conjecture (with Duc Khiem Huynh and Ralph Morrison), Journal
of Number Theory 131 (2011), 1117–1147. http://arxiv.org/abs/1011.3298

6 Surpassing the Ratios Conjecture in the 1-level density of Dirichlet L-functions (with Daniel Fiorilli).
submitted September 2012 to Proceedings of the London Mathematical Society.
http://arxiv.org/abs/1111.3896
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Thank you!
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Bias Conjecture for Moments of Fourier Coefficients of Elliptic
Curve L-functions

Joint with students Blake Mackall (Williams), Christina Rapti
(Bard) and Karl Winsor (Michigan)

Emails: Blake.R.Mackall@williams.edu, cr9060@bard.edu and
krlwnsr@umich.edu.
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Families and Moments

A one-parameter family of elliptic curves is given by

E : y2 = x3 + A(T )x + B(T )

where A(T ),B(T ) are polynomials in Z[T ].

Each specialization of T to an integer t gives an elliptic
curve E(t) over Q.

The r th moment of the Fourier coefficients is

Ar ,E(p) =
∑

t mod p

aE(t)(p)
r .
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Tate’s Conjecture

Tate’s Conjecture for Elliptic Surfaces

Let E/Q be an elliptic surface and L2(E , s) be the L-series attached to
H2

ét(E/Q,Ql). Then L2(E , s) has a meromorphic continuation to C

and satisfies
−ords=2L2(E , s) = rank NS(E/Q),

where NS(E/Q) is the Q-rational part of the Néron-Severi group of E .
Further, L2(E , s) does not vanish on the line Re(s) = 2.

Tate’s conjecture is known for rational surfaces: An elliptic surface
y2 = x3 + A(T )x + B(T ) is rational iff one of the following is true:

0 < max{3degA, 2degB} < 12;

3degA = 2degB = 12 and ordT=0T 12∆(T−1) = 0.
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Negative Bias in the First Moment

A1,E(p) and Family Rank (Rosen-Silverman)

If Tate’s Conjecture holds for E then

lim
X→∞

1
X

∑

p≤X

A1,E(p) log p
p

= −rank(E/Q).

By the Prime Number Theorem,
A1,E(p) = −rp + O(1) implies rank(E/Q) = r .
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families E with j(T ) non-constant, the second moment is

A2,E(p) = p2 + O(p3/2).

The lower order terms are of sizes p3/2, p, p1/2, and 1.
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families E with j(T ) non-constant, the second moment is

A2,E(p) = p2 + O(p3/2).

The lower order terms are of sizes p3/2, p, p1/2, and 1.

In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion which
does not average to 0 is on average negative .
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Preliminary Evidence and Patterns

Let n3,2,p equal the number of cube roots of 2 modulo p, and set

c0(p) =
[

(−3
p

)

+
(3

p

)

]

p, c1(p) =
[

∑

x mod p

(x3−x
p

)

]2
, c3/2(p) = p

∑

x(p)

(4x3+1
p

)

.

Family A1,E(p) A2,E(p)
y2 = x3 + Sx + T 0 p3 − p2

y2 = x3 + 24(−3)3(9T + 1)2 0
{

2p2−2p p≡2 mod 3
0 p≡1 mod 3

y2 = x3 ± 4(4T + 2)x 0
{

2p2−2p p≡1 mod 4
0 p≡3 mod 4

y2 = x3 + (T + 1)x2 + Tx 0 p2 − 2p − 1
y2 = x3 + x2 + 2T + 1 0 p2 − 2p −

(−3
p

)

y2 = x3 + Tx2 + 1 −p p2 − n3,2,pp − 1 + c3/2(p)
y2 = x3 − T 2x + T 2 −2p p2 − p − c1(p)− c0(p)
y2 = x3 − T 2x + T 4 −2p p2 − p − c1(p)− c0(p)

y2 = x3 + Tx2 − (T + 3)x + 1 −2cp,1;4p p2 − 4cp,1;6p − 1
where cp,a;m = 1 if p ≡ a mod m and otherwise is 0.

85



Intro Conjs/Thms Data/New Model Ratios to Excised Q/Refs Bias: Intro Bias: Evidence Bias: Data Bias: Future

Preliminary Evidence and Patterns

The first family is the family of all elliptic curves; it is a two parameter family
and we expect the main term of its second moment to be p3.

Note that except for our family y2 = x3 + Tx2 + 1, all the families E have
A2,E(p) = p2 − h(p)p + O(1), where h(p) is non-negative. Further, many of
the families have h(p) = mE > 0.

Note c1(p) is the square of the coefficients from an elliptic curve with complex
multiplication. It is non-negative and of size p for p 6≡ 3 mod 4, and zero for
p ≡ 1 mod 4 (send x 7→ −x mod p and note

(−1
p

)

= −1).

It is somewhat remarkable that all these families have a correction to the

main term in Michel’s theorem in the same direction, and we analyze the

consequence this has on the average rank. For our family which has a p3/2

term, note that on average this term is zero and the p term is negative.
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Lower order terms and average rank

1
N

2N∑

t=N

∑

γt

φ

(
γt

log R
2π

)
= φ̂(0) + φ(0) − 2

N

2N∑

t=N

∑

p

log p
log R

1
p
φ̂

(
log p
log R

)
at(p)

− 2
N

2N∑

t=N

∑

p

log p
log R

1
p2 φ̂

(
2 log p
log R

)
at(p)2 + O

(
log log R

log R

)
.

If φ is non-negative, we obtain a bound for the average rank in
the family by restricting the sum to be only over zeros at the

central point. The error O
(

log log R
log R

)
comes from trivial

estimation and ignores probable cancellation, and we expect

O
(

1
log R

)
or smaller to be the correct magnitude. For most

families log R ∼ log Na for some integer a.
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Lower order terms and average rank (cont)

The main term of the first and second moments of the at(p) give
rφ(0) and − 1

2φ(0).

Assume the second moment of at(p)2 is p2 −mEp + O(1), mE > 0.

We have already handled the contribution from p2, and −mEp
contributes

S2 ∼ −2
N

∑

p

log p
log R

φ̂

(
2

log p
log R

)
1
p2

N
p
(−mEp)

=
2mE

log R

∑

p

φ̂

(
2

log p
log R

)
log p
p2 .

Thus there is a contribution of size 1
log R .
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Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of [ILS]) is the
Fourier pair

φ(x) =
sin2(2π σ

2 x)
(2πx)2 , φ̂(u) =

{
σ−|u|

4 if |u| ≤ σ

0 otherwise.

Note φ(0) = σ2

4 , φ̂(0) = σ
4 = φ(0)

σ , and evaluating the prime sum gives

S2 ∼
(
.986
σ
− 2.966

σ2 log R

)
mE

log R
φ(0).
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Lower order terms and average rank (cont)

Let rt denote the number of zeros of Et at the central point (i.e., the analytic

rank). Then up to our O
(

log log R
log R

)

errors (which we think should be smaller),

we have

1
N

2N
∑

t=N

rtφ(0) ≤
φ(0)
σ

+

(

r +
1
2

)

φ(0) +
(

.986
σ

−
2.966
σ2 log R

)

mE
log R

φ(0)

Ave Rank[N,2N](E) ≤
1
σ
+ r +

1
2
+

(

.986
σ

−
2.966
σ2 log R

)

mE
log R

.

σ = 1, mE = 1: for conductors of size 1012, the average rank is bounded by
1 + r + 1

2 + .03 = r + 1
2 + 1.03. This is significantly higher than Fermigier’s

observed r + 1
2 + .40.

σ = 2: lower order correction contributes .02 for conductors of size 1012, the

average rank bounded by 1
2 + r + 1

2 + .02 = r + 1
2 + .52. Now in the ballpark

of Fermigier’s bound (already there without the potential correction term!).
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Interpretation: Approaching semicircle 2nd moment from be low

Sato-Tate Law for Families without CM
For large primes p, the distribution of aE(t)(p)/

√
p,

t ∈ {0,1, . . . ,p − 1}, approaches a semicircle on [−2,2].

Figure: aE(t)(p) for y2 = x3 + Tx + 1 at the 2014th prime.
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Implications for Excess Rank

Katz-Sarnak’s one-level density statistic is used to
measure the average rank of curves over a family.

More curves with rank than expected have been observed,
though this excess average rank vanishes in the limit.

Lower-order biases in the moments of families explain a
small fraction of this excess rank phenomenon.
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Theoretical Evidence
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Methods for Obtaining Explicit Formulas

For a family E : y2 = x3 + A(T )x + B(T ), we can write

aE(t)(p) = −
∑

x mod p

(
x3 + A(t)x + B(t)

p

)

where
(

·
p

)
is the Legendre symbol modp given by

(
x
p

)
=





1 if x is a non-zero square modulo p

0 if x ≡ 0 mod p

−1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

∑

x mod p

(
ax + b

p

)
= 0 if p ∤ a

∑

x mod p

(
ax2 + bx + c

p

)
=




−
(

a
p

)
if p ∤ b2 − 4ac

(p − 1)
(

a
p

)
if p | b2 − 4ac
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

∑

x mod p

(
ax + b

p

)
= 0 if p ∤ a

∑

x mod p

(
ax2 + bx + c

p

)
=




−
(

a
p

)
if p ∤ b2 − 4ac

(p − 1)
(

a
p

)
if p | b2 − 4ac

Average Values of Legendre Symbols

The value of
(

x
p

)
for x ∈ Z, when averaged over all primes p, is

1 if x is a non-zero square, and 0 otherwise.
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Rank 0 Families

Theorem (MMRW’14): Rank 0 Families Obeying the Bias
Conjecture

For families of the form E : y2 = x3 + ax2 + bx + cT + d ,

A2,E(p) = p2 − p
(

1 +

(−3
p

)
+

(
a2 − 3b

p

))
.

The average bias in the size p term is −2 or −1, according
to whether a2 − 3b ∈ Z is a non-zero square.
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Families with Rank

Theorem (MMRW’14): Families with Rank

For families of the form E : y2 = x3 + aT 2x + bT 2,

A2,E(p) = p2−p
(

1 +

(−3
p

)
+

(−3a
p

))
−



∑

x(p)

(
x3 + ax

p

)


2

.

These include families of rank 0, 1, and 2.

The average bias in the size p terms is −3 or −2,
according to whether −3a ∈ Z is a non-zero square.
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Families with Complex Multiplication

Theorem (MMRW’14): Families with Complex Multiplication

For families of the form E : y2 = x3 + (aT + b)x ,

A2,E(p) = (p2 − p)
(

1 +

(−1
p

))
.

The average bias in the size p term is −1.

The size p2 term is not constant, but is on average p2, and
an analogous Bias Conjecture holds.
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Families with Unusual Distributions of Signs

Theorem (MMRW’14): Families with Unusual Signs

For the family E : y2 = x3 + Tx2 − (T + 3)x + 1,

A2,E(p) = p2 − p
(

2 + 2
(−3

p

))
− 1.

The average bias in the size p term is −2.

The family has an usual distribution of signs in the
functional equations of the corresponding L-functions.
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The Size p3/2 Term

Theorem (MMRW’14): Families with a Large Error

For families of the form
E : y2 = x3 + (T + a)x2 + (bT + b2 − ab + c)x − bc,

A2,E(p) = p2 − 3p − 1 + p
∑

x mod p

(−cx(x + b)(bx − c)
p

)

The size p3/2 term is given by an elliptic curve coefficient
and is thus on average 0.

The average bias in the size p term is −3.
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General Structure of the Lower Order Terms

The lower order terms appear to always

have no size p3/2 term or a size p3/2 term that is on
average 0;

exhibit their negative bias in the size p term;

be determined by polynomials in p, elliptic curve
coefficients, and congruence classes of p (i.e., values of
Legendre symbols).
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Numerical Investigations
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Numerical Methods

As complexity of coefficients increases, it is much harder to
find an explicit formula.

We can always just calculate the second moment from the
explicit formula; if E : y2 = f (x), we have

A2,E(p) =
∑

t(p)



∑

x(p)

(
f (x)

p

)


2

.

Takes an hour for the first 500 primes. Optimizations?
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Numerical Methods

Consider the family y2 = f (x) = ax3 + (bT + c)x2 + (dT + e)x + f . By
similar arguments used to prove special cases,

A2,E(p) = p2 − 2p + pC0(p) − pC1(p)− 1 +#1,

where

C0(p) =
∑

x(p)

∑

y(p): β(x,y)≡0

(
A(x)A(y)

p

)
,

C1(p) =
∑

x(p): β(x,x)≡0

(
A(x)2

p

)
,

#1 = p
∑

x(p)

∑

y(p): A(x)≡0 and A(y)≡0

(
B(x)B(y)

p

)
,

and β, A, and B are polynomials.
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Numerical Methods

Co(p) ordinarily O(p2) to compute.

Sum over zeros of β(x , y) mod p

Fixing an x , β is a quadratic in y . So, with the quadratic
formula mod p, we know where to look for y to see if there
is a zero.

Now O(p); runs from 6000th to 7000th prime in an hour.
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Potential Counterexamples

Families of Rank as Large as 3

E : y2 = x3 + ax2 + bT 2x + cT 2 with b, c 6= 0:

A2,E(p) = p2 + p
∑

P(x,y)≡0

(
(x3 + bx)(y3 + by)

p

)

+ p


 ∑

x3+bx≡0

(
ax2 + c

p

)


2

− p
∑

P(x,x)≡0

(
x3 + bx

p

)2

− p
(

2 +

(−b
p

))
−


 ∑

x mod p

(
x3 + bx

p

)


2

− 1

where P(x , y) = bx2y2 + c(x2 + xy + y2) + bc(x + y).
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A Positive Size p Term?

p
[∑

x3+bx≡0

(
ax2+c

p

)]2
can be +9p on average!

Terms such as −p
∑

P(x,x)≡0

(
x3+bx

p

)2
, −p

(
2 +

(
−b
p

))
,

and −
[∑

x mod p

(
x3+bx

p

)]2
contribute negatively to the

size p bias.

The term p
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
is of size p3/2.

A2,E (p) = p2 + p
∑

P(x,y)≡0

(

(x3 + bx)(y3 + by)

p

)

+ p





∑

x3+bx≡0

(

ax2 + c

p

)





2

− p
∑

P(x,x)≡0

(

x3 + bx

p

)2

− p
(

2 +

(

−b

p

))

−





∑

x mod p

(

x3 + bx

p

)





2

− 1

where P(x, y) = bx2y2 + c(x2 + xy + y2) + bc(x + y).
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Analyzing the Size p3/2 Term

We averaged
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
over the first 10,000

primes for several rank 3 families of the form
E : y2 = x3 + ax2 + bT 2x + cT 2.

Family Average

y2 = x3 + 2x2 − 4T 2x + T 2 −0.0238

y2 = x3 − 3x2 − T 2x + 4T 2 −0.0357

y2 = x3 + 4x2 − 4T 2x + 9T 2 −0.0332

y2 = x3 + 5x2 − 9T 2x + 4T 2 −0.0413

y2 = x3 − 5x2 − T 2x + 9T 2 −0.0330

y2 = x3 + 7x2 − 9T 2x + T 2 −0.0311
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The Right Object to Study

c3/2(p) :=
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
is not a natural object to

study (for us multiply by p).

An example distribution for y2 = x3 + 2x3 − 4T 2x + T 2.

Figure: c3/2(p) over the first 10,000 primes.
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In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve
coefficients.

Figure: −∑x mod p

(
x3+x+1

p

)
−∑x mod p

(
x3+x+2

p

)
over the first

10,000 primes.
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More Error Distributions

Figure: c3/2(p) for y2 = 4x3 + 5x2 + (4T − 2)x + 1, first 10,000
primes.
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More Error Distributions

Figure: −∑x mod p

(
x3+x+1

p

)
distribution, first 10,000 primes.
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More Error Distributions

Figure: c3/2(p) over y2 = 4x3 + (4T + 1)x2 + (−4T − 18)x + 49, first
10,000 primes.

114



Intro Conjs/Thms Data/New Model Ratios to Excised Q/Refs Bias: Intro Bias: Evidence Bias: Data Bias: Future

More Error Distributions

Figure: −∑x mod p

(
x5+x3+x2+x+1

p

)
distribution, first 10,000 primes.
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Summary of p3/2 Term Investigations

In the cases we’ve studied, the size p3/2 terms

appear to be governed by (hyper)elliptic curve coefficients;

may be hiding negative contributions of size p;

prevent us from numerically measuring average biases that
arise in the size p terms.
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Future Directions
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Questions for Further Study

Are the size p3/2 terms governed by (hyper)elliptic curve
coefficients? Or at least other L-function coefficients?

Does the average bias always occur in the terms of size p?

Does the Bias Conjecture hold similarly for all higher even
moments?

What other (families of) objects obey the Bias Conjecture?
Kloosterman sums? Cusp forms of a given weight and
level? Higher genus curves?
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