#### Modeling the Decrease in Repulsion

- Can the change in zero statistics going from interaction (for small values of the parameter T) to independence (as  $T \to \infty$ ) be modeled using random matrices?
  - Consider orthogonal matrices having a certain number  $\rho$  of eigenvalues exactly lying at the central point +1.
  - ho plays the role of a "repulsion parameter" closely related to the rank.

#### Modeling the Decrease in Repulsion

- Can the change in zero statistics going from interaction (for small values of the parameter T) to independence (as  $T \to \infty$ ) be modeled using random matrices?
  - Consider orthogonal matrices having a certain number  $\rho$  of eigenvalues exactly lying at the central point +1.
  - ho plays the role of a "repulsion parameter" closely related to the rank.
- The joint PDF of N pairs of eigenvalues  $\{e^{i\theta_j}\}_{1\leq j\leq N}$ , taken from random orthogonal matrices having other  $\rho$  fixed eigenvalues at +1 is

$$d\varepsilon_{\rho}(\theta_{1},\ldots,\theta_{N}) = C_{N,\rho} \prod_{j< k} (\cos\theta_{k} - \cos\theta_{j})^{2} \prod_{j} (1 - \cos\theta_{j})^{\rho} d\theta_{j}.$$

• This probability measure is well defined for  $\rho \in (-\frac{1}{2}, \infty)$ .



#### The Repulsion Parameter p

For simplicity, assume that  $\mathcal E$  is an even orthogonal family depending on a parameter  $T\to\infty$ .

• The repulsion parameter  $\rho = \rho_{\mathcal{E}}(T)$  will monotonically decrease from an initial maximum value  $\rho_{\mathcal{E}}(0)$  to a minimum value  $\lim_{T\to\infty}\rho_{\mathcal{E}}(T)=0$  (resp.,  $\lim_{T\to\infty}\rho_{\mathcal{E}}(T)=1$  if  $\mathcal{E}$  is an odd orthogonal family.)

#### The Repulsion Parameter p

For simplicity, assume that  $\mathcal E$  is an even orthogonal family depending on a parameter  $T\to\infty$ .

- The repulsion parameter  $\rho = \rho_{\mathcal{E}}(T)$  will monotonically decrease from an initial maximum value  $\rho_{\mathcal{E}}(0)$  to a minimum value  $\lim_{T\to\infty}\rho_{\mathcal{E}}(T)=0$  (resp.,  $\lim_{T\to\infty}\rho_{\mathcal{E}}(T)=1$  if  $\mathcal{E}$  is an odd orthogonal family.)
- By making  $\rho$  vary with T, the statistics of eigenvalues in this model match several of the theoretical and experimental features observed in the critical zeros of  $\mathcal{E}$ :
  - Repulsion of eigenvalues away from central point when  $\rho > 0$ . (The larger  $\rho$ , the more repulsion.)
  - Independent model statistics when  $\rho = 0$ .
  - Basically unchanged non-central spacings.

#### 1-Level Density as a Function of $\rho$

- The standard normalization  $x = \frac{N\theta}{\pi}$  makes the eigen-angles  $\theta_j$  into unit-spaced (on average) "levels"  $x_i$ .
- In terms of the x-variable, the limiting 1-level density is given by

$$D_1^{(\rho)}(x) = \rho \delta_0(x) + \pi \left( \frac{\pi x}{2} \left[ J_{\rho + \frac{1}{2}}(\pi x)^2 + J_{\rho - \frac{1}{2}}(\pi x)^2 \right] - \left( \rho - \frac{1}{2} \right) J_{\rho + \frac{1}{2}}(\pi x) J_{\rho - \frac{1}{2}}(\pi x) \right).$$



Figure: 1-level density for the ensemble with  $\rho = 24/12$ .



Figure: 1-level density for the ensemble with  $\rho = 23/12$ .



Figure: 1-level density for the ensemble with  $\rho = 22/12$ .



Figure: 1-level density for the ensemble with  $\rho = 21/12$ .



Figure: 1-level density for the ensemble with  $\rho = 20/12$ .



Figure: 1-level density for the ensemble with  $\rho = 19/12$ .



Figure: 1-level density for the ensemble with  $\rho = 18/12$ .



Figure: 1-level density for the ensemble with  $\rho = 17/12$ .



Figure: 1-level density for the ensemble with  $\rho = 16/12$ .



Figure: 1-level density for the ensemble with  $\rho = 15/12$ .



Figure: 1-level density for the ensemble with  $\rho = 14/12$ .



Figure: 1-level density for the ensemble with  $\rho = 13/12$ .



Figure: 1-level density for the ensemble with  $\rho = 12/12$ .



Figure: 1-level density for the ensemble with  $\rho = 11/12$ .



Figure: 1-level density for the ensemble with  $\rho = 10/12$ .



Figure: 1-level density for the ensemble with  $\rho = 9/12$ .



Figure: 1-level density for the ensemble with  $\rho = 8/12$ .



Figure: 1-level density for the ensemble with p= 7/12. 3 > 3 > 3 < 0



Figure: 1-level density for the ensemble with  $\rho = 6/12$ .



Figure: 1-level density for the ensemble with p=5/12.



Figure: 1-level density for the ensemble with p= 4/12. 3 > 3 > 3 < 0



Figure: 1-level density for the ensemble with  $\rho = 3/12$ .



Figure: 1-level density for the ensemble with  $\rho = 2/12$ .



Figure: 1-level density for the ensemble with p=1/12.



Figure: 1-level density for the ensemble with  $\rho = 0/12$ .

#### The Effect of the Parameter $\rho$

- As  $\rho$  varies from  $\rho(0)$  to 0 the "central repulsion" decreases and, at r = 0, it disappears completely.
- Any  $\rho > 0$  merely tends to shift all the eigenvalues to the right: they are pushed away, but the relative spacings between them are basically unchanged.

- First issue: What should  $\rho_{\mathcal{E}}(0)$  be?
  - Choice #1: Take  $\rho_{\mathcal{E}}(0)$  equal to the geometric rank of a family  $\mathcal{E}$  over  $\mathbb{Q}(T)$ .

- First issue: What should  $\rho_{\mathcal{E}}(0)$  be?
  - Choice #1: Take  $\rho_{\mathcal{E}}(0)$  equal to the geometric rank of a family  $\mathcal{E}$  over  $\mathbb{Q}(T)$ .
  - Choice #2: Take  $\rho_{\mathcal{E}}(0)$  equal to the theoretical and/or empirical average rank of curves in the family having "small" conductors.

- First issue: What should  $\rho_{\mathcal{E}}(0)$  be?
  - Choice #1: Take  $\rho_{\mathcal{E}}(0)$  equal to the geometric rank of a family  $\mathcal{E}$  over  $\mathbb{Q}(T)$ .
  - Choice #2: Take  $\rho_{\mathcal{E}}(0)$  equal to the theoretical and/or empirical average rank of curves in the family having "small" conductors.
- Second issue: How does  $\rho_{\mathcal{E}}(T)$  vary with T?
  - r should probably go to zero inversely with the log conductors of curves in  $\mathcal{E}$ .

- First issue: What should  $\rho_{\mathcal{E}}(0)$  be?
  - Choice #1: Take  $\rho_{\mathcal{E}}(0)$  equal to the geometric rank of a family  $\mathcal{E}$  over  $\mathbb{Q}(T)$ .
  - Choice #2: Take  $\rho_{\mathcal{E}}(0)$  equal to the theoretical and/or empirical average rank of curves in the family having "small" conductors.
- Second issue: How does  $\rho_{\mathcal{E}}(T)$  vary with T?
  - r should probably go to zero inversely with the log conductors of curves in E.
    - Best bet so far:

$$\rho_{\mathcal{E}}(T) = \frac{\langle r \rangle_{\mathcal{E}(T)}}{\log T} \qquad (+1 \text{ if odd family.})$$

