Can the change in zero statistics going from interaction (for small values of the parameter T) to independence (as $T \to \infty$) be modeled using random matrices?

Consider orthogonal matrices having a certain number ρ of eigenvalues exactly lying at the central point $+1$.

ρ plays the role of a "repulsion parameter" closely related to the rank.
Can the change in zero statistics going from interaction (for small values of the parameter T) to independence (as $T \to \infty$) be modeled using random matrices?

Consider orthogonal matrices having a certain number ρ of eigenvalues exactly lying at the central point +1.

ρ plays the role of a “repulsion parameter” closely related to the rank.

The joint PDF of N pairs of eigenvalues $\{e^{i\theta_j}\}_{1 \leq j \leq N}$, taken from random orthogonal matrices having other ρ fixed eigenvalues at +1 is

$$d\varepsilon_\rho(\theta_1, \ldots, \theta_N) = C_{N,\rho} \prod_{j<k} (\cos \theta_k - \cos \theta_j)^2 \prod_j (1 - \cos \theta_j)^\rho \ d\theta_j.$$

This probability measure is well defined for $\rho \in (-\frac{1}{2}, \infty)$.
The Repulsion Parameter ρ

For simplicity, assume that \mathcal{E} is an even orthogonal family depending on a parameter $T \to \infty$.

- The repulsion parameter $\rho = \rho_\mathcal{E}(T)$ will monotonically decrease from an initial maximum value $\rho_\mathcal{E}(0)$ to a minimum value $\lim_{T \to \infty} \rho_\mathcal{E}(T) = 0$ (resp., $\lim_{T \to \infty} \rho_\mathcal{E}(T) = 1$ if \mathcal{E} is an odd orthogonal family.)
The Repulsion Parameter ρ

For simplicity, assume that \mathcal{E} is an even orthogonal family depending on a parameter $T \to \infty$.

- The repulsion parameter $\rho = \rho_\mathcal{E}(T)$ will monotonically decrease from an initial maximum value $\rho_\mathcal{E}(0)$ to a minimum value $\lim_{T \to \infty} \rho_\mathcal{E}(T) = 0$ (resp., $\lim_{T \to \infty} \rho_\mathcal{E}(T) = 1$ if \mathcal{E} is an odd orthogonal family.)

- By making ρ vary with T, the statistics of eigenvalues in this model match several of the theoretical and experimental features observed in the critical zeros of \mathcal{E}:
 - Repulsion of eigenvalues away from central point when $\rho > 0$. (The larger ρ, the more repulsion.)
 - Independent model statistics when $\rho = 0$.
 - Basically unchanged non-central spacings.
The standard normalization $x = \frac{N\theta}{\pi}$ makes the eigen-angles θ_j into unit-spaced (on average) “levels” x_j.

In terms of the x-variable, the limiting 1-level density is given by

$$
D_1^{(\rho)}(x) = \rho \delta_0(x) + \pi \left(\frac{\pi x}{2} \left[J_{\rho+\frac{1}{2}}(\pi x)^2 + J_{\rho-\frac{1}{2}}(\pi x)^2 \right] - (\rho - \frac{1}{2}) J_{\rho+\frac{1}{2}}(\pi x) J_{\rho-\frac{1}{2}}(\pi x) \right).
$$
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = 24/12$.
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = \frac{23}{12}$.

$\rho = 1.9167$
Figure: 1-level density for the ensemble with $\rho = 22/12$.

Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

$$r^* = 1.7500$$

Figure: 1-level density for the ensemble with $\rho = \frac{21}{12}$.
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

$r^* = 1.6667$

Figure: 1-level density for the ensemble with $\rho = 20/12$.

E. Dueñez, D. K. Huynh, S. J. Miller (UTSA, Modeling Decreasing Repulsion in Families)
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

$$r^* = 1.5833$$

Figure: 1-level density for the ensemble with $\rho = \frac{19}{12}$.

E. Dueñez, D. K. Huynh, S. J. Miller (UTSA, Modeling Decreasing Repulsion in Families)
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = 18/12$. E. Dueñez, D. K. Huynh, S. J. Miller (UTSA, Modeling Decreasing Repulsion in Families)
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

$r^* = 1.4167$

Figure: 1-level density for the ensemble with $\rho = \frac{17}{12}$. E. Dueñez, D. K. Huynh, S. J. Miller (UTSA, Modeling Decreasing Repulsion in Families)
Animated Example of Decreasing repulsion: \(2 \geq \rho \geq 0 \)

Figure: 1-level density for the ensemble with \(\rho \approx 16/12 \).
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = 15/12$.

E. Dueñez, D. K. Huynh, S. J. Miller (UTSA, Modeling Decreasing Repulsion in Families)
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = \frac{14}{12}$. E. Dueñez, D. K. Huynh, S. J. Miller (UTSA, Modeling Decreasing Repulsion in Families)
Figure: 1-level density for the ensemble with $\rho = \frac{13}{12}$.
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$
Figure: 1-level density for the ensemble with $\rho = 11/12$.

E. Dueñez, D. K. Huynh, S. J. Miller (UTSA, Modeling Decreasing Repulsion in Families)
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = \frac{10}{12}$.
Figure: 1-level density for the ensemble with $\rho = 9/12$.

$\rho \geq 0$
Figure: 1-level density for the ensemble with $\rho = 8/12$.

$\rho \geq 0$
Figure: 1-level density for the ensemble with $\rho = \frac{7}{12}$.

$\rho \geq 0$
Animated Example of Decreasing repulsion: \(2 \geq \rho \geq 0 \)

\[r^* = 0.50000 \]

Figure: 1-level density for the ensemble with \(\rho = 6/12 \).
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = 5/12$.

$r^* = 0.41667$
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = 4/12$.
Figure: 1-level density for the ensemble with $\rho^\ast = 3/12$.

$\rho \geq r^\ast \geq 0$
Figure: 1-level density for the ensemble with $\rho = 2/12$.

$\rho \geq 0$
An animated example of decreasing repulsion: \(2 \geq \rho \geq 0 \)

Figure: 1-level density for the ensemble with \(\rho = \frac{1}{12} \).
Animated Example of Decreasing repulsion: $2 \geq \rho \geq 0$

Figure: 1-level density for the ensemble with $\rho = 0/12$.

E. Dueñez, D. K. Huynh, S. J. Miller (UTSA, Modeling Decreasing Repulsion in Families)
The Effect of the Parameter ρ

- As ρ varies from $\rho(0)$ to 0 the “central repulsion” decreases and, at $r = 0$, it disappears completely.
- Any $\rho > 0$ merely tends to shift all the eigenvalues to the right: they are pushed away, but the relative spacings between them are basically unchanged.
What is the Function $\rho_{\mathcal{E}}(T)$?

First issue: What should $\rho_{\mathcal{E}}(0)$ be?
- Choice #1: Take $\rho_{\mathcal{E}}(0)$ equal to the geometric rank of a family \mathcal{E} over $\mathbb{Q}(T)$.

Second issue: How does $\rho_{\mathcal{E}}(T)$ vary with T?
r should probably go to zero inversely with the log conductors of curves in \mathcal{E}. Best bet so far: $\rho_{\mathcal{E}}(T) = \langle r \rangle_{\mathcal{E}}(T) \log T + 1$ if odd family.
What is the Function $\rho_\mathcal{E}(T)$?

First issue: What should $\rho_\mathcal{E}(0)$ be?
- Choice #1: Take $\rho_\mathcal{E}(0)$ equal to the geometric rank of a family \mathcal{E} over $\mathbb{Q}(T)$.
- Choice #2: Take $\rho_\mathcal{E}(0)$ equal to the theoretical and/or empirical average rank of curves in the family having “small” conductors.

Second issue: How does $\rho_\mathcal{E}(T)$ vary with T?
- r should probably go to zero inversely with the log conductors of curves in \mathcal{E}.
- Best bet so far: $\rho_\mathcal{E}(T) = \langle r \rangle_\mathcal{E}(T) \log T$ (if odd family.)
What is the Function $\rho_\mathcal{E}(T)$?

First issue: What should $\rho_\mathcal{E}(0)$ be?
- Choice #1: Take $\rho_\mathcal{E}(0)$ equal to the geometric rank of a family \mathcal{E} over $\mathbb{Q}(T)$.
- Choice #2: Take $\rho_\mathcal{E}(0)$ equal to the theoretical and/or empirical average rank of curves in the family having “small” conductors.

Second issue: How does $\rho_\mathcal{E}(T)$ vary with T?
- r should probably go to zero inversely with the log conductors of curves in \mathcal{E}.

Best bet so far: $\rho_\mathcal{E}(T) = \langle r \rangle_\mathcal{E}(T) + \log T$ (if odd family.)
What is the Function $\rho_\mathcal{E}(T)$?

- First issue: What should $\rho_\mathcal{E}(0)$ be?
 - Choice #1: Take $\rho_\mathcal{E}(0)$ equal to the geometric rank of a family \mathcal{E} over $\mathbb{Q}(T)$.
 - Choice #2: Take $\rho_\mathcal{E}(0)$ equal to the theoretical and/or empirical average rank of curves in the family having “small” conductors.

- Second issue: How does $\rho_\mathcal{E}(T)$ vary with T?
 - r should probably go to zero inversely with the log conductors of curves in \mathcal{E}.
 - Best bet so far:

$$
\rho_\mathcal{E}(T) = \frac{\langle r \rangle_{\mathcal{E}(T)}}{\log T} \quad (+1 \text{ if odd family}).
$$