BENFORD’S LAW, VALUES OF L-FUNCTIONS AND THE $3x+1$ PROBLEM

STEVEN J. MILLER

Abstract. Below are slides for talks at Boston College (10/19/04), the University of Michigan (11/15/04) and the University of Arizona (1/11/06). Many systems exhibit a digit bias. For example, the first digit (base 10) of the Fibonacci numbers or 2^n equals 1 about 30% of the time. This phenomena was first noticed by observing which pages of log tables were most worn with age – it’s a good thing there were no calculators 100 years ago! We show that the first digit of values of L-functions near the critical line also exhibit this bias. A similar bias exists (in a certain sense) for the first digit of terms in the $3x+1$ problem, provided the base is not a power of two. For L-functions the main tool is the Log-Normal law; for $3x+1$ it is the rate of equidistribution of $n \log_B 2 \mod 1$ and understanding the irrationality measure of $\log_B 2$. This work is joint with Alex Kontorovich.
Benford's Law Values of L-Frac $3x + 1$

(1) History

- Newcomb: 1881 \(\text{Prob}(d) = \log_b \left(\frac{d+1}{d} \right) \)
- Benford: 1938
- Lonyi Street, invariant under rescaling: define y_n

(2) Lucas + Benford

\[x_n, \quad y_n = \log_b x_n \]
\[y_n \equiv 0 \mod 1 \iff x_n \text{ Benford} \]

Example: \(x_n = \varphi^n \), \(\log_b \varphi \in \mathbb{Q} \)

- D. + \(\mathbb{Q} \) \(\varphi \) (Fibonacci)

Let each: \[a_n = 2a_{n-1} - a_{n-2} \]
\[a_0 = a_1 = 1 \]
\[a_0 = 0 \quad a_1 = 1 \]
(3) Poisson Sum + Benford

P. Kibria (1961), Feller: errors

Motivation: \(x > 0 \): \(M_k(x) \), extend to \(x \in \mathbb{C} \)

Sets: \(\bar{P}(A) = \lim_{t \to 0} \frac{\# \{ a \in A \cap \mathbb{N} t > \}}{t} = \lim_{t \to 0} \frac{\# \{ a \in \mathbb{N} t > \leq \text{a} \}}{t} \)

Setup: \(X_T \circ \hat{Y}_T, B = \log_B \hat{X}_T \rightarrow \hat{Y}_B \)

Say \(\mathcal{F} \) nice density \(f \) st \(\hat{Y}_{T,B} \) is sparse \(f \) plus error.

CDF: \(\hat{P}_{T,B}(x) = \int_{-\infty}^{x} \frac{1}{t} f \left(\frac{t}{T} \right) dt + E_T(x) \)

Assume \(\mathcal{F} \) normal inc \(b(T) \to \infty \) st \(\mathcal{P} = \mathcal{E} \)

Corollary: \(F_T(-\infty) = F_T(\hat{h}(T)) = 0(1) \)

\(F_T(-\hat{h}(T)) = F_T(-\infty) = o(1) \)

\(\frac{1}{T} \sum_{k \geq T(h)} f \left(\frac{x + k}{T} \right) dx = o(1) \)

\(\sum_{k \geq 0} \left| \frac{f(Tk)}{k} \right| = o(1) \)

\(\sum_{k \geq 0} \left[E_T(b+k) - E_T(b+k) \right] = o(1) \)
THM (M-1, ?)

Conds 1-4 imply Benford (if \(f \) is \(\epsilon \)-intermediate prob dst)

\[
P_T(a, b) = \mathbb{P}(\bar{T}_b \text{ mod } 1 \in [a, b])
\]

\[
= \sum_{r} \mathbb{P}(a + r \leq \bar{T}_b \leq b + r)
\]

\[
\sim \text{Poisson Sum}
\]

\[
= f(0)(b-a) + \sum_{k=0}^{\infty} f(\pi k) \frac{e^{2\pi i \beta} - e^{-2\pi i \beta}}{2\pi i \beta} + o(1)
\]

\(b + f(0) \sim 1 \) as prob dst

Corr: Geo. Brownian Motions are Benford

General Idea

- Structure Thm of sorts

 In many cases spread out so something nice

 apply Poisson Sum

- Control of errors
VALUES OF L-FUNCTIONS

Unconditionally, $\zeta(s)$, Dirichlet, holomorphic, class L^2, orthogonality (Density Conjecture replaces GRH) \(N(T, \delta) = O \left(T^{-1/2} \log^{1+\delta} T \right) \).

Structure

Selberg's LG-Normal Law

\[
M(t) \leq \frac{1}{\sqrt{2\pi t^3}} \int_{-\infty}^{\infty} \frac{e^{-\frac{s^2}{2}}}{{s}^2} ds + O \left(\frac{\sqrt{\pi}}{T} \right)
\]

Error term due to lack of pointwise summation

Neal Hejhal's refinement

Ingredients of proof

1. Approx $\log L(s+it)$ with $\sum_{n=x}^{\infty} \frac{\chi(n) \Lambda(n)}{n} e^{-it} n^{-s}$

2. Look at moments $\int_{-T}^{T} |L(\frac{1}{2}+it)|^{2k} dt$, $k \leq \log \frac{1}{\log T}$

3. Mat.-Weiner-Haar:

\[
\int_{-T}^{T} (\sum a_n e^{-it}) (\sum b_n e^{-it}) dt = H \sum a_n b_n + O(1) \sum \Lambda^2 n \sqrt{n} \sum \Lambda n \Lambda^2
\]

4. Work @ test frs: Check for $\chi_{a,b}$

Do for $\sigma = \frac{1}{2} + \frac{1}{\log^3 T}$

\cdots
3X+1 and Benford

- Kahutani: Conspiracy
- Erdos: not ready

\[X \text{ odd: } T(X) = \frac{3X+1}{2^k} \quad \text{for } k \geq 1 \]

Conj: eventually 1

\[7 \rightarrow 11 \rightarrow 17 \rightarrow 13 \rightarrow 7 \rightarrow 1 \]

Structure Thm \((S, K-S)\)

Given \(p\) ints \((k_1, \ldots, k_m)\): two arithmetic progressions of form \(X, X+6, \ldots, X+k_m\)

full (shift initially)

\[\Rightarrow \text{ get natural density } \]

\[P(A) = \lim_{N \to \infty} \frac{\# \{ n \in N, n \leq N \mid A \}}{N} \]

\[\Rightarrow \text{ Geo Brownian Motion in a sense } \quad P(n) = \left(\frac{1}{2} \right)^n, \alpha = 1.33 \ldots \]

- \(k_j\) are iid rv \(\exp\) dist \(\exp\) param \(\frac{1}{2}\)

\[P \left(\frac{X_m}{\log_2(3) X_0} \leq \alpha \right) = \prod_{j=1}^{m} P \left(S_m - 2m \leq n \right) \]

where \(S_m\) is sum \(\exp\) dist \(\exp\) dist \(\frac{1}{2}\)
THEM (K-M)

As \(m \to \infty \), \(\frac{x_m}{(\frac{3}{4})^m x_0} \) is Benford.

\textbf{Proof:} Lattice bad errors (Abelian approx)

\textbf{Proof:} CLT: \(S_m - 2m \to N(0, \ln m) \)

1. \(\text{Prob} \left(\frac{S_m}{\sqrt{m}} = \frac{k}{\sqrt{m}} \right) = \sqrt{\frac{\pi}{2m}} + O \left(\frac{1}{\sqrt{m}} \right) \), \(k \) is std normal

\(\Rightarrow \) \(O \left(\frac{1}{\sqrt{g(m)\sqrt{m}}} \right) \)

2. \(I_1 = \{ 1, 1+1, \ldots, (l+1)M-1 \} \)

\(M = m^c, \ c < \frac{1}{2} \)

- \(k, k_2 \in I_1 \Rightarrow \left\lfloor \frac{1}{\sqrt{m}} \ln \left(\frac{k_2}{k_1} \right) - \frac{1}{2} \ln \left(\frac{k_2}{k_1} \right) \right\rfloor \) is measurable

\(\Rightarrow \) allows us to use just left endpoints

- assume \(C: \log_2^2 \) is irrational of type \(k < 1 \)

\(\nu(\mathbb{Z}) + \{ k \in I_1 : kC \text{ mod } 1 \in [0, c] \} = M(l-1) + O(M + \frac{c}{2}) \)

(quotient euclidean + irrationality measure)

3. \(\text{Prob}S_m: \ \frac{1}{6} \sum \frac{1}{n} e^{-\pi n^2 \sqrt{m}} = \sum \frac{1}{n} e^{-\pi n^2 / m} \)

\(Y_m = \log_2 \frac{x_m}{(\frac{3}{4})^m x_0} \) : mult by \(\frac{1}{\log_2 \sqrt{2}} = \frac{1}{\log_2 2} \)

Study \(S_m \cdot \log_2 \mod 1 \in [0,1] \)
\[P_m(a, b) = \sum_{k \in \mathbb{Z}} \text{Prob} \left(\overline{s_m} = k \in I_k : k \in \mathbb{Z} \text{ and } 1 \in G(s) \right) \\
+ \sum \text{case } l \]

Rate of Error

Given seq \(x_1, x_2, \ldots \)

\[D_N = \frac{1}{N} \sup_{|N| = k} \left| N(k - m) - \sum_{n \in k \in \mathbb{R}} x_n \right| \]

Erdos-Turan: \(\exists \ C > 0 \) m

\[D_N \leq C \cdot \left(\frac{1}{m} + \frac{\sum_{k=1}^m}{h} \right) \left| \frac{1}{N} \sum_{n=1}^N e^{2\pi i h x_n} \right| \]

Say \(X_n = 1 \) not mod 1

Exp sum is \(\leq \frac{1}{|\sin \theta|} \leq \frac{1}{2|\sin \theta|} \) distance to nearest 1/2

Must control

\[\sum_{h=1}^m \frac{1}{h \langle h \theta \rangle} \]

Now see why can’t be too close to \(m^{1/2} \)

Say of type \(k \) if \(\sum \langle k \theta \rangle \sum 2 < k \theta \rangle = 0 \)

\(\Rightarrow \) Rel: alg \#s of type \(1 \): \(|k - \frac{n}{2}| > \frac{\pi}{\theta} \)

\(\Rightarrow \) Gives \(\sum_{h=1}^m \frac{1}{h \langle h \theta \rangle} = O(m^{k-1/2}) \), take \(m = \lfloor N^{1/k} \rfloor \)
\[\left| \log_{10} 2 - \frac{p}{2} \right| = \left| \frac{\log 2}{\log 10} - \frac{p}{2} \right| = \left| \frac{\log 2 - p \log 10}{2 \cdot \log 10} \right| \]

Enough to show \(| \log 2 - p \log 10 | > \frac{1}{2^n} \)

(Literature always works with log not \(\log \) -
- choose get \(\log 2 \) \& integer powers)

THM (Baker)

\[\lambda_1, \ldots, \lambda_n \text{ alg roots of } -1 \text{ at most } A^2(x, y) \]

\[\beta_1, \ldots, \beta_n \text{ rational ints } \text{ at most } B(x, y) \]

\[\Lambda = \beta_1 \log x + \cdots + \beta_n \log x \]

If \(\Lambda \neq 0 \), \(| \Lambda | > \frac{1}{B \cdot C \cdot S \cdot \log S} \)

where \(C = (16 \pi d)^{2n-1} \)

\[K = \Omega(x, \beta) \text{ of deg } d \]

\[S = \log A_1 \cdots \log A_n \]

\[S' = S / \log A_n \]

(Consider special for few poles center \(S, \ldots \))

For \(u, d = 1, n = 2, C = 2^{2000} \)

\[\Omega = 6 \pi \cdot \log 10 \quad S' = \log y \]

\[K = 1 + C \Omega \log 2' = 2^{2007}(\log 4 \cdot \log 10)(\log 10 \cdot \log 4) + 1 = 1,197052,10602 \]
E-mail address: sjmiller@math.brown.edu

Department of Mathematics, Brown University, Providence, RI 02912